

Cerridwen

Cerridwen provides solar system data that is suitable for both astronomical
and astrological purposes. It comes with a simple command-line utility and
a JSON server, but is also designed to serve as a basis for your own
application.

The motivation for this package is to have a reliable open-source library
and API that provides comprehensive data on various planetary bodies and
factors at a certain point in time.

	Demo server

	Quickstart

	Setup from source

	FAQ
	What zodiac is used for the longitudes?

	What about other planetary bodies?

	Will you add more moon data?

	What’s the precision of the generated data?

	Hey, some of this stuff is slow!

	How can I help?

	Contributing

	Requirements

	Precision

	Changelog
	1.4.1

	1.4.0

	1.3.0

	1.2.0

	1.1.0

	1.0.0

	Licensing

	Module API
	Data computation

	Date utilities

	HTTP API

Indices and tables

	Index

	Module Index

	Search Page

Demo server

Take a good look first! :-)

You can check out a demo of the JSON API at this address:

http://cerridwen.bluemagician.vc/api/v1/moon

This should work with your browser as well.

The current implementation of this API endpoint caches data for 10 seconds.
In any case please let me know if you intend to use this for more than testing.

Starting with version 1.1.0 there’s also another endpoint with sun data:

http://cerridwen.bluemagician.vc/api/v1/sun

Quickstart

Are you hooked by now? ;-)

Installation via pip is very simple. Here are some command
lines to get you started:

pip install cerridwen

This will install Cerridwen and its dependencies. Flask
will be installed when you start cerridwen-server for the
first time.

To test Cerridwen’s data on the console, invoke:

cerridwen

If everything is to your satisfaction you can then
start the API server if you wish:

cerridwen-server

It will start up in the foreground and listen on port 2828,
serving moon data via HTTP in JSON format at the URI /v1/moon.

You can test it as follows:

curl http://localhost:2828/v1/moon

This should give you a proper JSON response with
the current moon data.

Change the listen port by passing the -p switch to
cerridwen-server, followed by the desired port.

Setup from source

Install dependencies

This can be different for every Unix distribution/OS.

This approach should work most of the time:

pip3 install cerridwen

This will install Cerridwen’s release version and its dependencies.

Alternatively, run the following from the toplevel source dir:

pip3 -r requirements.txt

Afterwards, try to run the CLI applications directly from source:

python3 cerridwen/cli.py

This should print basic information.

FAQ

	What zodiac is used for the longitudes?

	What about other planetary bodies?

	Will you add more moon data?

	What’s the precision of the generated data?

	Hey, some of this stuff is slow!

	How can I help?

What zodiac is used for the longitudes?

All longitudes whether absolute or relative are based on the tropical
zodiac. In this system of reference zero degrees refers to zero degrees
tropical Aries, which in turn corresponds to the sun’s position at the
vernal equinox of the year in question.

What about other planetary bodies?

Cerridwen’s source code is designed to be easily extensible to other
planets and points. The goal is to add more planets in the future,
probably starting with Mercury.

Will you add more moon data?

Yes! For example equatorial latitude and lunation numbers.

What’s the precision of the generated data?

Please see the documentation on Precision.

Hey, some of this stuff is slow!

You’re right! At the moment the new and full moons are computed anew
everytime, which is hard on CPU power. This will change radically with
the next version of the module which will have a separate lookup table
generation stage for these and other events. This will also pave the
way for certain new features like the lunation number.

How can I help?

First and foremost: use it! Also: tell your friends and fellow
astronomers/astrologers!

You can also help write docs, contribute source code and tell me what
you’d like to see in the project.

Donations are also welcome, they help me eat and pay my rent! :-)
Even 1$ helps.

Contributing

Cerridwen’s codebase is on GitHub, at skypher/cerridwen [https://github.com/skypher/cerridwen].

Feel free to browse, fork and submit patches and bug reports.

Feature requests are also welcome!

If you need help, you can also write to me at <leslie.polzer@gmx.net>.

Requirements

Cerridwen depends on Python 3. You might be able to make
it work with Python 2 as well. Patches welcome! Please let
me know if there’s a version of Python 3 that does not
run Cerridwen properly.

It also depends on these packages:

	pyswisseph, the Python interface to the Swiss Ephemeris library

	numpy, which Cerridwen uses for its ephemeris calculations

	Flask, if you wish to run Cerridwen’s API server

These dependencies will be installed automatically as needed.

Precision

There are two main data sources in Cerridwen with slightly different
precision characteristics.

Most data, like planetary position and rise/set times, is pulled directly
from the Swiss Ephemeris library, whose authors claim a precision of
0.001 arc seconds, or less than 2.8x10-7 degrees.

Other data like new and full moon events are generated by Cerridwen’s
algorithms. The results of these algorithms are guaranteed to be exact
within 2*10-6 degrees, or 0.0072 arc seconds. This is in fact
ensured by an assertion in the code.

Detection of the next sign change is accurate within
4*10-6 degrees, or 0.0144 arc seconds.

It follows that Cerridwen’s calculations are precise enough to get event
times down to the correct second.

Warning

Please note that the current implementation of the API server uses
memoization for the moon data, generating a new response every 10 seconds
only due to efficiency considerations. You can easily turn this off
or modify this if you run your own API server, or just wait for the next
version of Cerridwen that will be able to calculate new and full moons
in a more efficient manner.

Changelog

Only major releases are documented here.

1.4.1

	Recover from bitrot.

	Amend documentation

1.4.0

	Rework package structure, picking apart
the mudball that was __init__.py.

	Add planets Uranus, Neptune and Pluto.
Very basic interface only.

	Add planets Mercury, Venus, Mars, Jupiter, Saturn.
Their interface is yet incomplete though.

	Add new Planet methods max_speed, mean_orbital_period,
relative_orbital_velocity, average_motion_per_year,
aspect_lookahead, default_sample_interval.

	Add sign change detection via Planet.next_sign_change().

	Add Moon.last_new_or_full_moon()

	Precision lowered to 0.0072 arc seconds (was 0.0036),
it was needed for proper ingress calculation.

	Update code for astropy 0.4 (rewrote one test case).

	Various bugfixes.

1.3.0

	Add arc seconds to relative position

	Add right ascension, declination and ecliptical latitude

	Refurbish cli.py

1.2.0

	Use astropy for time conversions

	Vast documentation update

	Extend test suite

	Remove sun data from moon endpoint response

1.1.0

	Swiss Ephemeris data files are now included in the package

	Use nose instead of doctest for quick sanity tests

	Add a lot of functions (e.g. rise/set times)

	cerridwen-server: new switch –test/-t for quick testing

	Various minor amendments and changes

	New sun data computation function and API endpoint

1.0.0

Initial release.

Licensing

Cerridwen is distributed under the MIT license:

License for Cerridwen

Copyright (c) 2014 Leslie P. Polzer <leslie.polzer@gmx.net>

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Module API

Much of this is still missing docstrings, so this is just
a rough overview.

If you need help, just shoot me a quick mail to <leslie.polzer@gmx.net>
with questions.

Data computation

These functions take an optional Julian day (defaulting to the current
point in time) and optional longitudes and latitudes, the latter of
which are used for rise/set calculations. You only need to pass
latitude and longitude if you want the function’s result to include
rise/set data. If you do so, you must pass both latitude and longitude.

The return value of these functions is an OrderedDict.

	
cerridwen.compute_sun_data(jd=None, observer=None)

	Collect data for the sun.

	Parameters

	
	jd (float or None [https://docs.python.org/3.3/library/constants.html#None]) – reference date as Julian day, defaults to jd_now()

	observer (LatLong or None [https://docs.python.org/3.3/library/constants.html#None]) – pass the observer position to have the output
include rise and set times.

	Returns

	a collection of sun data

	Return type

	OrderedDict

	
cerridwen.compute_moon_data(jd=None, observer=None)

	Collect data for the moon.

	Parameters

	
	jd (float or None [https://docs.python.org/3.3/library/constants.html#None]) – reference date as Julian day, defaults to jd_now()

	observer (LatLong or None [https://docs.python.org/3.3/library/constants.html#None]) – pass the observer position to have the output
include rise and set times.

	Returns

	a collection of sun data

	Return type

	OrderedDict

Date utilities

These functions provide Julian day conversions and printable output.

	
cerridwen.jd_now()

	

	
cerridwen.jd2iso(jd)

	Convert a Julian date into an ISO 8601 date string representation

HTTP API

 Python Module Index

 c

 		 	

 		
 c	

 	
 	
 cerridwen	

Index

 C
 | J

C

 	
 	cerridwen (module)

 	
 	compute_moon_data() (in module cerridwen)

 	compute_sun_data() (in module cerridwen)

J

 	
 	jd2iso() (in module cerridwen)

 	
 	jd_now() (in module cerridwen)

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Cerridwen

 		
 Demo server

 		
 Quickstart

 		
 Setup from source

 		
 FAQ

 		
 What zodiac is used for the longitudes?

 		
 What about other planetary bodies?

 		
 Will you add more moon data?

 		
 What’s the precision of the generated data?

 		
 Hey, some of this stuff is slow!

 		
 How can I help?

 		
 Contributing

 		
 Requirements

 		
 Precision

 		
 Changelog

 		
 1.4.1

 		
 1.4.0

 		
 1.3.0

 		
 1.2.0

 		
 1.1.0

 		
 1.0.0

 		
 Licensing

 		
 Module API

 		
 Data computation

 		
 Date utilities

 		
 HTTP API

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

