

Welcome to Cerise’s documentation!

Cerise is a simple REST service that can run (many) CWL jobs on a remote
compute resource, such as a remote server or HPC compute cluster. This
documentation explains how to set it up and use it, and also how it works on the
inside.

The implementation is fairly complete, and the main things needed are some
real-world testing, bug fixing, and polish.

Contents:

	Introduction
	Installation

	Dependencies

	Example usage

	Contribution guide

	Cerise Configuration
	Introduction

	Main configuration file

	Compute resource configuration
	API configuration file

	Environment variables

	Specialising Cerise
	The API configuration file

	The Dockerfile

	Adding steps
	A simple step

	How Cerise installs the API

	Debugging a specialisation

	A more complex step

	Alternatives for installing software

	Versioning

	Making a step template

	Remote execution

	Developer documentation
	Releases
	Make release branch

	Update version

	Check documentation

	Run tests

	Commit the version update

	Merge into the master branch

	Add a Docker Hub build

	Requirements
	Introduction

	Overview

	Functionality
	User side functionality

	Computing

	Deployment

	Design overview
	Architecture

	Functionality

	Behaviour
	Normal execution

	Cancellation

	Errors

	Service shutdown

	Service start-up

	Multiprocess implementation
	Front end threads

	Back end threads

	Synchronisation

	Known issues/failure modes

	Source code
	cerise package
	Subpackages

	Submodules

	cerise.config module

	cerise.run_back_end module

	cerise.run_front_end module

	cerise.util module

	Module contents

	Indices and tables

Indices and tables

	Index

	Module Index

	Search Page

Introduction

Cerise is a generic service for running workflows on compute resources, such as
clusters, supercomputers, and simply remote machines. It tries to offer a
consistent environment for workflows, so that a workflow sent to resource A will
work unchanged on resource B as well.

To achieve this, and to offer a bit of safety and perhaps security, Cerise does
not allow running arbitrary command line tools. Instead, it expects the user
to submit a workflow document that refers to predefined steps built into the
service. Both workflows and steps are defined using the
Common Workflow Language [http://www.commonwl.org/v1.0/UserGuide.html] (CWL).

Defining these steps, and adding them to the service, is called specialising the
service. A specialisation of Cerise is always specific to a project and to a
compute resource. The project determines which steps are available and what
inputs and outputs they have. The compute resource determines how the steps are
implemented. Workflows are written using steps from a particular project, and
can then be sent to any specialisation to that project. Where the workflow runs
will differ depending on which specialisation is used, but the result should be
the same (assuming the calculation is deterministic!).

This site contains the documentation for Cerise.

Installation

Cerise can be run directly on a host, or in a Docker container. A local
installation is created as follows:

	clone the repository

	git clone git@github.com:MD-Studio/cerise.git

	change into the top-level directory

	cd cerise

	install using

	pip3 install .

Steps and supporting files may then be placed in the api/ directory to
specialise the service. For a detailed explanation, see
Specialising Cerise.

To build the Docker image, use

docker build -t cerise .

and then start a container using

docker run –name=cerise -p 29593:29593 cerise

Note that the docker image gets its config.yml from conf/docker-config.yml in
the source tree.

However, this will run a plain, unspecialised Cerise, which is not very
useful, as it runs jobs locally inside the container, and it doesn’t contain any
steps to execute. To use Cerise in Docker, you should make a new, specialised
Docker image based on the standard Cerise image, and start that instead.
Instructions for how to do so are also under Specialising Cerise

Dependencies

	Python 3.5 or up

	On the compute resource:

	
	Python 2.7 and CWLTool (or another CWL runner), or

	Python3 (using the built-in CWLTiny runner)

Example usage

In the examples/ directory, you will find some example Python scripts that
create jobs and execute them on the job running service.

Contribution guide

Cerise follows the Google Python style guide, with Sphinxdoc docstrings for module public functions. If you want to
contribute to the project please fork it, create a branch including your addition, and create a pull request.

The tests use relative imports and can be run directly after making
changes to the code. To run all tests use pytest in the main directory.
This will also run the integration tests, which take several minutes to complete
as a bunch of Docker containers is built, started, and stopped.

Before creating a pull request please ensure the following:

	You have written unit tests to test your additions

	All unit tests pass

	The examples still work and produce the same (or better) results

	The code is compatible with Python 3.5

	An entry about the change or addition is created in CHANGELOG.md

	You’ve added yourself as contributing author

Contributing authors so far:

	Lourens Veen

Cerise Configuration

Introduction

Cerise takes configuration information from various sources, with some
overriding others. This page describes the configuration files and what can be
configured in them.

Main configuration file

The main configuration file is located at conf/config.yml, and contains
general configuration information for the Cerise service in YAML format. It
looks as follows:

database:
 file: run/cerise.db

logging:
 file: /var/log/cerise/cerise_backend.log
 level: INFO

pidfile: run/cerise_backend.pid

client-file-exchange:
 store-location-service: file:///tmp/cerise_files
 store-location-client: file:///tmp/cerise_files

rest-service:
 base-url: http://localhost:29593
 hostname: 127.0.0.1
 port: 29593

Cerise uses SQLite to persistently store the jobs that have been submitted to
it. SQLite databases consist of a single file, the location of which is given by
the file key under database.

Logging output is configured under the logging key. Make sure that the user
that Cerise runs under has write access to the given path. If you want to log to
/var/log without giving Cerise root rights, making the specified log file on
beforehand and then giving ownership to the user Cerise runs under works well.
Or you can make a subdirectory and give the user access to that.

The pidfile key specifies a path to a file into which Cerise’s process
identifier (PID) is written. This can be used to shut down a running service,
i.e. kill <pid> will cleanly shut down Cerise.

Under client-file-exchange, the means of communicating files between Cerise
and its users is configured. Communication is done using a shared folder
accessible to both the users and the Cerise service. If Cerise is running
locally, both parties have access to the same file system, and see the shared
folder in the same location. Thus, store-location-service and
store-location-client both point to the same on-disk directory.

If the Cerise service does not share a file system with the client, then a
directory on the Cerise server must be made available to the client, e.g. via
WebDAV. In this case, client and service access the same directory using
different URLs, e.g.

client-file-exchange:
 store-location-service: file:///home/webdav/files
 store-location-client: http://localhost:29593/files

The user is expected to submit references to files that start with the URL in
store-location-client, Cerise will then fetch the corresponding files from
the directory specified in store-location-service.

store-location-client can be overridden by specifying the environment
variable CERISE_STORE_LOCATION_CLIENT. If you want to run multiple Cerise
instances in containers, simultaneously, then you need to remap the ports on
which they are available to avoid collisions. With this environment variable,
the port can be easily injected into the container, removing the need to have
a different image for each container. Cerise Client uses this functionality.

Finally, key rest-service has the hostname and port on which the REST
service should listen, as well as the external URL on which it is available.
If you want the service to be available to the outside
world, this should be the IP address of the network adaptor to listen on, or
0.0.0.0 to listen on all adaptors. Note that a service running inside a
Docker container needs to have 0.0.0.0 for it to be accessible from outside
the container.

Since the service needs to pass URLs to the client sometimes, it needs to know
at which URL it is available to the client. This is specified by base-url,
which should contain the first part of the URL to the REST API, before the
/jobs part. Alternatively, you can set the CERISE_BASE_URL environment
variable to this value.

Compute resource configuration

Information on which compute resource to connect to, and how to transfer files
and submit jobs to it, is stored separately from the main service configuration,
to make it easier to create specialisations. Furthermore, to enable different
users to use the same specialised Cerise installation (e.g. Docker image),
credentials can be specified using environment variables. (Cerise Client uses
the latter method.) If you are making a specialisation that is to be shared with
others, do not put your credentials in this file!

Note: this file is somewhat outdated, but well be updated prior to the 1.0 release.

API configuration file

The API configuration file is located in api/config.yml, and has the following
format:

compute-resource:
 credentials:
 username: None
 password: None
 certfile: None
 passphrase: None

 files:
 credentials:
 username: None
 password: None
 certfile: None
 passphrase: None

 protocol: local
 location: None
 path: /home/$CERISE_USERNAME/.cerise

 jobs:
 credentials:
 username: None
 password: None
 certfile: None
 passphrase: None

 protocol: local
 location: None
 scheduler: none

 queue-name: None # cluster default
 slots-per-node: None # cluster default
 cores-per-node: 32
 scheduler-options: None
 cwl-runner: $CERISE_API_FILES/cerise/cwltiny.py

 refresh: 10

This file describes the compute resource and how to connect to it. Under the
files key, file access (staging) is configured, while the jobs key has
settings on how to submit jobs. credentials, and keys username,
password, certfile and passphrase occurring throughout, refer to
credentials, and will be discussed below. Keys may be omitted if they are not
needed, e.g. location may be omitted if protocol is local, in which
case credentials may also me left out.

For file staging, a protocol, location and path may be specified. Supported
protocols are file, sftp, ftp, or webdav, where file refers
to direct access to the local file system.

location provides the host name to connect to; to run locally, this may be
omitted or empty. path configures the remote directory where Cerise will put
its files. It may contain the string $CERISE_USERNAME, which will be
replaced with the user account name that the service is using. This is useful if
you want to put Cerise’s files into the users home directory, e.g.
/home/$CERISE_USERNAME/.cerise (which is the default value). Note that
user’s home directories are not always in /home on compute clusters, so be
sure to check this.

Job management is configured under the jobs key. Here too a protocol may be
given, as well as a location, and a few other settings can be made.

For job management, the protocol can be local (default) or ssh. If the
local protocol is selected, location is ignored, and jobs are run
locally. For the ssh protocol, location is the name of the host,
optionally followed by a colon and a port number (e.g. example.com:2222).

Jobs can be run directly or via a scheduler. To run jobs directly, either on the
local machine or on some remote host via SSH, set the scheduler to none.
Other valid values for scheduler are slurm, torque and
gridengine to submit jobs to the respective job management system.

If jobs need to be sent to a particular queue, then you can pass the queue name
using the corresponding option; if it is not specified, the default queue is
used. If one or more of your steps start MPI jobs, then you may want to set the
number of MPI slots per node via slots-per-node for better performance. If
you need to specify additional scheduler options to e.g. select a GPU node, you
can do so using e.g. scheduler-options: "-C TitanX --gres=gpu:1". Ideally,
it would be possible to specify this in the CWL file for the step, but support
for this in CWL is partial and in-development, and Cerise does not currently
support this. Users can specify the number of cores to run on using a CWL
ResourceRequirement, but Cerise always allocates whole nodes. It therefore needs
to know the number of cores in each node, which you should specify using
cores-per-node.

Finally, cwl-runner specifies the remote path to the CWL runner. It defaults
to $CERISE_API_FILES/cerise/cwltiny.py, which is Cerise’s included simple
CWL runner. $CERISE_API_FILES will be substituted for the appropriate remote
directory by Cerise. See Specialising Cerise for more
information.

Cerise will regularly poll the compute resource it is connected to, to check if
any of the running jobs have finished. The refresh setting can be used to
set the minimum interval in seconds between checks, so as to avoid putting too
much load on the machine.

Credentials may be put into the configuration file as indicated. Valid
combinations are:

	No credentials at all (for running locally)

	Only a username

	A username and a password

	A username and a certificate file

	A username, a certificate file, and a passphrase

If the credentials to use for file access and job management are the same, then
you should list them under credentials and omit them in the other locations.
If different credentials are needed for files and jobs, then a credentials
block can be specified under files and jobs respectively. Credentials
listed here may be overridden by environment variables, as described below.

Environment variables

Cerise checks a set of environment variables for credentials. If found, they
override the settings in the configuration file. These variables are:

General credentials

	CERISE_USERNAME

	CERISE_PASSWORD

	CERISE_CERTFILE

	CERISE_PASSPHRASE

Credentials for file access

	CERISE_FILES_USERNAME

	CERISE_FILES_PASSWORD

	CERISE_FILES_CERTFILE

	CERISE_FILES_PASSPHRASE

Credentials for job management

	CERISE_JOBS_USERNAME

	CERISE_JOBS_PASSWORD

	CERISE_JOBS_CERTFILE

	CERISE_JOBS_PASSPHRASE

As in the configuration file, specific credentials go before general ones.
Cerise will first try a specific environment variable (e.g.
CERISE_JOBS_USERNAME), then the corresponding specific configuration file entry
(under jobs), then a generic environment variable (e.g. CERISE_USERNAME),
and finally the generic configuration file entry (under credentials).

It does this for each of the four credential components separately, then uses
the first complete combination from the top down to connect:

	username + certfile + passphrase

	username + certfile

	username + password

	username

	<no credentials>

Specialising Cerise

(This document assumes some knowledge of the Common Workflow Language. See the
CWL User Guide [http://www.commonwl.org/v1.0/UserGuide.html] for an introduction.)

Cerise works by letting users submit workflows to a REST API, and then executing
those workflows on some HPC compute resource. Users submit CWL Workflow
documents, which specify a number of steps to run. Step definitions are not
submitted by the user, but are part of the Cerise service. The base Cerise
service does not contain any steps, so those have to be added first, before
Cerise can be used in a project. This process of adding steps is known as
specialisation.

A Cerise specialisation is always specific to a particular project, and
to a specific compute resource. The project determines which steps are available
and what their inputs and outputs are. Since HPC resources are all different in
terms of which software is installed and how things are best set up, the
implementation of the steps will be different from machine to machine, and so a
separate specialisation will have to be made for each one. (Hopefully
Singularity will help, once it sees more use, and in the cloud you have more
freedom of course, but we’ll address the more difficult situation with
traditional HPC resources here.)

To specialise Cerise, you will have to make a configuration file that describes
how to connect to a compute resource, design steps, and implement them. The
easiest way to use the specialisation is to wrap it up into a Docker container
together with Cerise, so you’ll have a ready-to-run service.

These steps are described in more detail below, using an example that you can
find in
docs/examples/specialisation [https://github.com/MD-Studio/cerise/tree/master/docs/examples/] in the
source distribution. Note that you’ll need Docker installed, if you don’t have
it yet, see the Docker Community Edition documentation [https://docs.docker.com/install/] on how to install it.

The API configuration file

The main directory of a specialisation is called api/, because a
specialisation specifies what the CWL API looks like and how it’s implemented.
Inside of this directory is a configuration file named api/config.yml. The
example’s configuration file looks like this:

docs/examples/specialisation/api/config.yml

compute-resource:
 files:
 protocol: local
 path: /home/cerise/.cerise

 jobs:
 protocol: local

 refresh: 0.1

An API configuration file is a YAML file describing the compute resource to run
on. It has a single top-level key compute-resource, with below it keys for
files, jobs and refresh. There are many other options (see
Compute resource configuration), what you see here is the simplest possible
configuration.

Cerise needs two things from the compute resource it runs on: a place to store
files (including workflows, steps, input and output, as well as any files that
are installed by this specialisation), and a way of submitting jobs. The files
are stored in a directory on the remote system, given by path under files.
In this case, we’ll put them into /home/cerise/.cerise, and we recommend using
a .cerise directory in the user’s home directory. (This is fine even if your
user is also using a different specialisation that uses the same .cerise
directory.)

The other thing Cerise needs is a way to get files into and out of that
directory, a protocol. In this case, we’re using the file system inside of the
Docker container, so local is appropriate.

Next, we need to specify how to run jobs on the machine. This requires a
protocol key again, this time specifying the protocol to use to connect to the
machine when submitting jobs. We again use local here. Since there’s no
scheduler (like Slurm or Torque, as you’d find on a typical compute cluster)
inside of the Docker container, we don’t specify one. If no scheduler is
specified, Cerise will start jobs directly on the machine, in this case inside
of the Docker container.

Finally, we specify a refresh interval in seconds, which tells Cerise how often
to check on the progress of running jobs. When you’re submitting long-running
jobs to a cluster or HPC machine, something like half a minute or a minute is
appropriate. That will keep Cerise from hammering the head node with requests,
and for a long-running job it’s okay if it takes a bit longer for Cerise to
realise that the job is done. For our testing purposes it’s nice to have a
result quickly, and since we’re running locally we’re not bothering anyone by
updating more often, so in the example the refresh interval is set to 0.1
second.

The Dockerfile

The easiest way to run Cerise is inside of a Docker container. Note that this
does not mean that you need Docker support on the compute resource. Cerise runs
locally inside the container, and connects to the resource to run workflows
there. Docker containers are built using a Dockerfile, which describes the steps
needed to install the needed software and set up the system.

Cerise comes with its own Docker image, which is available on Dockerhub, and all
that’s really needed to specialise it is to copy your API into it. So all our
Dockerfile needs to do is to start with the Cerise image, and copy the api/
dir inside:

FROM cerise

COPY api /home/cerise/api

To build the test image, make sure you are inside the specialisation
directory, then type:

docker build -t cerise-example .

This will build a new Docker image with your API inside it and name it
cerise-example.

It’s possible to test the image by starting it manually and making HTTP requests
to it using curl, but it’s much easier to use Python and Cerise Client. We’ll
make a virtualenv and install Cerise Client in it first:

virtualenv -p python3 ./env
. ./env/bin/activate
pip install cerise_client

Next, you can start Python 3 interactively, or make a simple Python script
that starts a Cerise service and runs a job:

docs/examples/specialisation/test_script.py

#!/usr/bin/env python3

import cerise_client.service as cs
import time

srv = cs.require_managed_service('cerise-example-test', 29593, 'cerise-example')

If your specialisation is not working, the following will print the
Cerise server log. That should give you an error message describing
what went wrong.
print(srv.get_log())

job = srv.create_job('test_job')
job.set_workflow('test_workflow.cwl')
job.run()

while job.is_running():
 time.sleep(0.1)

If something goes wrong executing the job, this will print the job log.
print(job.log)

print(job.outputs['output'].text)

srv.destroy_job(job)
cs.destroy_managed_service(srv)

In this example, we run a test workflow that looks like this:

docs/examples/specialisation/test_workflow.cwl

#!/usr/bin/env cwl-runner

cwlVersion: v1.0

class: Workflow

inputs: []

outputs:
 output:
 type: File
 outputSource: hostname/output

steps:
 hostname:
 run: cerise/test/hostname.cwl
 in: []
 out:
 - output

This workflow runs a single step, the cerise/test/hostname.cwl step, which
is built in to the base Cerise image. This step takes no inputs, and produces a
single output named output, a file containing the output of the hostname
command. The test script prints its contents, which will be something like
aad7da47e423, because Docker containers by default have a random host name
that looks like that, and we’re running inside of the container.

Adding steps

So far, our specialisation only has a configuration file. For an actual project,
you will want to add one or more steps for running the software you need. Here,
we’ll add two steps, a very simple one that runs a program that is already
present on the target machine, and a more complex one that requires installing
some software remotely.

The Cerise API is organised by project. A project is simply a collection of CWL
steps, plus the additional files needed to make them work, wrapped up in a
directory. If multiple people work on specialisations for the same project, then
they’ll have to coordinate their efforts in order to avoid messing up each
other’s work, but developers on different projects can do their own thing
without getting into each other’s way. (Even if they use the same remote working
directory. You can run two specialisations for different projects and the same
machine simultaneously on the same account.)

While it’s possible to have multiple projects in a single specialisation, for
example in a Cerise-as-infrastructure case where you have a single Cerise
instance with a cluster behind it and multiple users that want to do different
things, in most cases you’ll have only one project per specialisation. So that
is what we’ll assume here.

A simple step

Let’s start with a simple step that returns the hostname of the machine it is
running on, like before, but this time as part of our own project, named
example. We’ll add a new CWL file to the specialisation, in
api/example/steps/example/hostname.cwl:

docs/examples/specialisation/api/example/steps/example/hostname.cwl

#!/usr/bin/env cwl-runner

cwlVersion: v1.0

class: CommandLineTool
baseCommand: hostname

inputs: []

stdout: output.txt
outputs:
 output:
 type: File
 outputBinding: { glob: output.txt }

Since the hostname command is available on any Linux machine, we don’t need to
do anything else for this step to work. To call it, just modify
test_workflow.cwl to use example/hostname.cwl instead of
cerise/test/hostname.cwl. Note that the name to use in the workflow is the
path relative to your steps/ directory.

This means that the submitted workflow does not contain the full path to the
step. This is good, because the full path changes per machine and per user (who
each have a home directory with a different name), and besides it being annoying
for the user if they have to look up the full path every time they write a
workflow, it would mean that workflows become machine- and user-specific. This
is something that Cerise is designed to avoid.

Instead, Cerise expects the user to give a relative path starting with the name
of the project. When it copies the user’s workflow to the compute resource in
preparation for running it, Cerise extracts the project name from the first part
in the path, and then prepends the path with the absolute path to the remote
steps/ directory for that project. As a result, the CWL runner that executes
the workflow can find the steps. It only works however if your steps are in
<project>/steps/<project>/, so be sure to follow that pattern!

How Cerise installs the API

In order to find out how to set up more complex steps that
require software installation, it’s good to know a bit about how Cerise installs
your API on the compute resource.

When Cerise is started, it logs in to the configured compute resource, and
checks to see if the API has been installed there already. If not, it will
create the configured base file path (from your config.yml), create an api/
directory inside it, and copy your project directory into that.

While copying the steps, Cerise will replace any occurrence of
$CERISE_PROJECT_FILES in the baseCommand or arguments with the location of
your files/ directory. This allows you to run programs in your files
directory, or pass locations of files in your files/ directory to programs
that you run.

After the steps and the files are copied, Cerise will check whether a file named
install.sh exists in your files/ directory. If it does, Cerise will run it
remotely. This script (or whatever you put there) will run with an environment
that has $CERISE_PROJECT_FILES set. It’s probably a bad idea to modify
anything outside of the files/ directory from this script, so don’t do that
(if you have a good reason to do so, we’d love to hear from you, please make an
issue on GitHub!).

Debugging a specialisation

The new steps you’re adding will likely not work immediately. Just like with any
kind of programming or configuring, it usually takes a few tries to get it
right. If there is something wrong with your install script or your steps, then
it may happen that Cerise fails to start. In this case, no jobs can be
submitted, and you need the server log to figure out what’s going on. You’ll
find a few commented-out lines in test_script.py that print the server log for
you. You can also get to the file by hand, provided that the container still
exists, using the command

docker cp cerise-example-test:/var/log/cerise/cerise_backend.log .

This will copy the log file cerise_backend.log to your current directory,
where you can open it to have a look (it’s plain text).

If you want to have a look around inside the running container, do

docker exec -ti cerise-examples-test bash

If the test script has stopped or crashed, and the container is still running,
then you will want to stop the container and remove it, before rebuilding it and
trying again. You can do that using

docker stop cerise-example-test
docker rm cerise-example-test

Finally, if the service starts correctly, but something goes wrong with running
the workflow, then you can request the job log to get an error message. There’s
another commented section in test_script.py showing how.

A more complex step

Our second step will run a custom script that will be uploaded by Cerise. The
CWL step looks like this:

docs/examples/specialisation/api/example/steps/example/custom_program.cwl

#!/usr/bin/env cwl-runner

cwlVersion: v1.0

class: CommandLineTool
baseCommand: $CERISE_PROJECT_FILES/add_heading.sh
arguments: [$CERISE_PROJECT_FILES]

inputs:
 in_text:
 type: File
 inputBinding:
 position: 1

stdout: output.txt
outputs:
 out_text:
 type: File
 outputBinding: { glob: output.txt }

Note how it uses $CERISE_PROJECT_FILES to refer to the files/ directory for
both the executable to be run, and for its first argument. The script itself is
in the files/ directory of course. This is a plain bash script that
concatenates two files together:

docs/examples/specialisation/api/example/files/add_heading.sh

#!/bin/bash

CERISE_PROJECT_FILES="$1"
INPUT_FILE="$2"

cat $CERISE_PROJECT_FILES/heading.txt $INPUT_FILE

Of course, you can put anything in here, including say compiled binaries for the
machine you’re specialising for. A bit of experience: it seems to happen fairly
often that you end up writing a shell script which is called from a step, and
those shell scripts can have many parameters. If it’s more than 9, make sure to
use ${10} rather than $10, because the latter will take the first argument and
append a 0.

When uploading, Cerise will copy permissions along, so that executable files
will remain executable and private files will remain private. Unfortunately,
there is a permission issue with Docker: when copying your API into the Docker
image, Docker will strip all permissions. In the Dockerfile for the example, we
manually make add_heading.sh executable again, but for more complex sets of
files this gets tedious to make and maintain. In that case, it’s probably better
to create an archive from the api/ dir, and use the ADD command in the
Dockerfile to extract it into the container.

docs/examples/specialisation/Dockerfile

FROM cerise

COPY api /home/cerise/api
RUN chown -R cerise:cerise /home/cerise/api && \
 chmod +x /home/cerise/api/example/files/add_heading.sh

There’s one thing missing in the above, the actual heading file, which
add_heading.sh expects to find at $CERISE_PROJECT_FILES/heading.txt. Of
course we could just put a heading.txt into the files/ directory, but here
we have the install script create the heading file just to show how that works:

docs/examples/specialisation/api/example/install.sh

#!/bin/bash

echo '=== Here is a heading! ===' >$CERISE_PROJECT_FILES/heading.txt

Since this is not a tutorial on shell programming, we keep it simple, printing a
one line message to the required file. Note that $CERISE_PROJECT_FILES is
automatically defined here. In practice, this script can be much more complex,
installing various libraries and programs as needed by your steps.

Alternatives for installing software

If the program you want to run is available by default on the compute resource,
then running it is as simple as providing an appropriate CWL CommandLineTool
definition for it, as we did with hostname. Often however, you’ll need to do a
bit or a lot of work to get there. There are at least four ways of making the
program you need available on the compute resource you are specialising for:

	Leave it to the user

	Ask the system’s administrator to install the software for you

	Install it yourself where others can access it

	Have Cerise stage the necessary files

Option 1 is the easiest of course, but you’ll have to provide very precise
instructions to your users to ensure that they’ll install the software exactly
where your step is expecting it. Also, the users may not be very happy about
having to jump through a bunch of hoops before being able to run their
calculations.

Option 2 is also pretty easy, but it may take a while for the system
administrator to get to your request, and they may refuse it for some reason. If
your request is granted, the software will typically be installed as a module,
so you’ll need a module load command to make it available. The best solution
for this seems to be to stage a small shell script that does just that, and then
calls the program, passing on any arguments.

It would be nice if a CWL SoftwareRequirement could be used here to specify
which modules to load. Support for SoftwareRequirements in cwltool is still
in beta however, and cwltiny (Cerise’s internal runner) does not support it
at all yet.

Option 3 can work if you have enough permissions, but has the downside that the
existence of the installation will probably depend on the existence of your
account. If your account is deleted, your users’ services will be stuck without
the software they need.

Option 4 is what we did above. It’s not any more work than option 3, but makes
the installation independent from your involvement; if you put your
specialisation in a public version control repository, then anyone can
contribute. At the same time, you don’t depend on external system
administrators’ whims, or on your users having a lot of knowledge of HPC.

Versioning

Your specialisation is effectively a library that gets used by the workflows
that your users submit. Like with any library, it is therefore a good idea to
put it into a version control system, and to give it a version number that
changes every time you change the steps, using semantic versioning [https://semver.org]. In fact, Cerise requires a version number.

If that sounds complicated and you want a simple way to get started that won’t
cause problems in the future, just put your steps into
myproject/steps/myproject/ and put a single line 0.0.0.dev in the
myproject/version file. Whenever you add or change a step, increment the
second number in the version file by one (going from 0.9.0 to 0.10.0 and
beyond if necessary).

The .dev part will make Cerise reinstall your API every time it starts. Note
that that means that it will wait for running jobs to finish, reinstall the API,
then start running newly submitted jobs. This is very useful for development and
debugging, but not when you’re running longer jobs, so in that case you will
want to remove the .dev postfix. If there is no .dev at the end of
the version number, Cerise will only reinstall if the version of the API on the
compute resource is lower than the local one, so be sure to increment the
version number if you make changes, otherwise you’ll end up mixing different
versions, and that will probably end badly.

The only issue with this simple solution is that if you change a step in an
incompatible way (for example, when you change the name or the type of an input
or an output), your users’ workflows will break. If it’s just one or two people,
you can sit down with them and help them modify their workflows and then upgrade
everything at a single point in time, but if you have many users or many
workflows, then you have to either avoid this situation (by making new steps
rather than changing existing ones), or communicate it clearly.

If you’re not the only one using your specialisation, then you should make sure
that they know what they can expect. Semantic Versioning is a standardised way
of doing this. A semantic version consists of three numbers, separated by
periods, and an optional postfix. The first number is incremented when an
incompatible change is made, i.e. one that may break things (workflows) that
depend on the versioned object (the steps). The second number is incremented
when new functionality is added in such a way that existing workflows keep
working, and the third number is incremented when there is no new functionality,
e.g. for bug fixes. The only postfix supported by Cerise is .dev, as
described above. Furthermore, there is a general rule that for version numbers
starting with 0, anything goes, and there are no guarantees.

To use semantic versioning, put a notice in your documentation saying that
you’re doing so, and whenever you make changes, update the version number
according to the above rules, both in the version file and in the
documentation. Now, if the users see that you’ve released a new major version
(e.g. 2.0.0), they’ll know that their workflow may break.

If you want to be really fancy and expect your project to live for a long time
and have many users, then you can version your steps API. You do this by putting
your steps in a directory myproject/steps/myproject/1/step.cwl. Now if you
want to make incompatible changes to your step, you can leave it in place, but
make a new version of it at myproject/steps/myproject/2/step.cwl. As long as
you maintain the old versions, all workflows will keep working. If at some point
you want to stop supporting old steps, you can remove them, but be sure to
update your major version when you do so, because that can break existing
workflows.

Making a step template

Once you have a specialisation with a few steps and an implementation for your
favourite compute resource, you may want to support other machines as well. To
do this, you’ll need other specialisations, of the same project but for
different machines. Also, some way of keeping them in sync is a very good idea,
to ensure that any workflow designed for your project will run on any of the
specialisations.

The best way to do this is to make a step template. A step template is
basically just the steps directory of your specialisation, but containing
partially-defined steps. The steps are partially-defined because exactly
how a program is executed depends on the machine on which it’s running, and
since the step template is the same for all specialisations, we don’t know that
yet. What is important is that the inputs and outputs of each step are defined,
that there is a description of what it does exactly, and perhaps you can already
specify how to build the command line arguments from them.

The recommended layout of a step template is this:

myproject
├── steps
│ └── myproject
│ ├── step1.cwl
│ └── step2.cwl
└── version

The version file will contain the version of the step template. This will be
a two-place version, major.minor, where the major number is incremented when
there are incompatible changes to the step definitions, and the minor number is
incremented when there are compatible additions. There is no third number,
because there is no implementation to patch.

New specialisations can now start from this step template, and add a third
number to their version. Every time the implementation changes, but the step
definitions remain the same, only the third number is incremented. To change the
step definitoins, you change the template, increment its first or second number,
then update the specialisations to match, resetting them to x.y.0, where
x.y comes from the step template.

If you’re now thinking that all this stuff is a bit complicated, well,
unfortunately, it can be. When you make a Cerise specialisation, you’re making
software for others to use, and that’s always a bit more complex than making
something only for yourself. On the other hand, if you have only a single
specialisation and set the version to 0.0.0.dev, then to 0.1.0 once
you’re more or less done, then you can still use Cerise just fine by yourself
without ever thinking about versions. So how complex it gets depends on how many
features you want.

Remote execution

In the above example, we have set up Cerise to run in a Docker container, and to
execute jobs inside of the container. One way of using Cerise is to set it up
this way, then run the container on a compute server, and have users connect to
the REST API to submit and retrieve jobs. However, chances are you’ll want to
use a compute cluster or supercomputer that you cannot just install software on.
In that case, it’s better to run the Cerise container on your local machine, and
configure it to talk to the compute resource via the network. Here is an example
of such a configuration:

docs/examples/specialisation/config_remote.yml

compute-resource:
 refresh: 30
 files:
 protocol: sftp
 location: fs0.das5.cs.vu.nl
 path: /home/$CERISE_USERNAME/.cerise

 jobs:
 protocol: ssh
 location: fs0.das5.cs.vu.nl
 scheduler: slurm

This configuration is for the DAS-5 supercomputer, a development system in The
Netherlands. We connect to it via SSH for starting jobs, and SFTP for file
transfer. Both protocols require a location to connect to. The remote path
contains another special string, $CERISE_USERNAME, which gets substituted by the
user name used to connect to the cluster. This way, each user will have their
own directory in their own home directory for Cerise to use. For submitting
jobs, the scheduler in use has to be specified, which is Slurm in case of the
DAS-5. Cerise also supports Torque/PBS, for which you should specify torque.
There are some more options in this file, for which we refer to the
Cerise Configuration.

One thing should be pointed out here though: while it’s possible to put
credentials (e.g. usernames and passwords) in the configuration file, this is a
really bad idea for a public multi-user system such as the DAS-5. If you’re
running your own cluster or compute server behind your firewall, and run a
single instance of the specialisation that connects to the compute resource
using a special account, then you can use that functionality, but for a public
machine, this is a really bad idea, and almost always against the terms of
service. Instead, every user should start their own instance of the
specialisation, which runs on their behalf, with their credentials. Those can be
injected into the Docker container via environment variables, and Cerise Client
will do this automatically. See the Cerise Client documentation [https://cerise-client.readthedocs.io] for how to do
that.

Developer documentation

Contents:

	Releases
	Make release branch

	Update version

	Check documentation

	Run tests

	Commit the version update

	Merge into the master branch

	Add a Docker Hub build

	Requirements
	Introduction

	Overview

	Functionality
	User side functionality

	Computing

	Deployment

	Design overview
	Architecture

	Functionality

	Behaviour
	Normal execution

	Cancellation

	Errors

	Service shutdown

	Service start-up

	Multiprocess implementation
	Front end threads

	Back end threads

	Synchronisation

	Known issues/failure modes

	Source code
	cerise package
	Subpackages
	cerise.back_end package

	cerise.front_end package

	cerise.job_store package

	cerise.test package

	Submodules

	cerise.config module

	cerise.run_back_end module

	cerise.run_front_end module

	cerise.util module

	Module contents

Indices and tables

	Index

	Module Index

	Search Page

Releases

Cerise uses Git on GitHub for version management, using the Git Flow [http://nvie.com/posts/a-successful-git-branching-model/]
branching model. Making a release involves quite a few steps, so they’re listed
here to help make the process more reliable. Cerise is not yet on PyPI, so for
now it’s only a Git branch and a Docker image on DockerHub that are involved.

Make release branch

To start the release process, make a release branch

git checkout -b release-x.y.z develop

Cerise uses Semantic Versioning [http://www.semver.org], so name the new version accordingly.

Update version

Next, the version should be updated. There is a version tag in setup.py and
two for the documentation in docs/source/conf.py (search for version and
release). On the development branch, these should be set to develop. On the
release branch, they should be set to x.y.z (or rather, the actual number of
this release of course).

Check documentation

Since we’ve just changed the documentation build configuration, the buil should
be run locally to test:

make docs

It may give some warnings about missing references; they should disappear if you
run the command a second time. Next, point your web browser to
docs/build/index.html and verify that the documentation built correctly. In
particular, the new version number should be in the browser’s title bar as well
as in the blue box on the top left of the page.

Run tests

Before we make a commit, the tests should be run, and this is a good idea anyway
if we’re making a release. So run make test and check that everything is
in order.

Commit the version update

That’s easy:

git commit -m 'Set release version'
git push

This will trigger the Continuous Integration, so check that that’s not giving
any errors while we’re at it.

Merge into the master branch

If all seems to be well, then we can merge the release branch into the master
branch and tag it, thus making a release, at least as far as Git Flow is
concerned.

git checkout master
git merge --no-ff release-x.y.z
git tag -a x.y.z
git push

Add a Docker Hub build

Finally, we need Docker Hub to build a properly tagged Docker image of the new
release. To get it do do this, follow these steps:

	Log in to Docker Hub

	Go to Organizations

	Go to mdstudio/cerise

	Go to Build Settings

	Add a new Tag-based build with the x.y.z tag you just made

Next, pull the image to check that it works:

docker pull mdstudio/cerise:x.y.z

Requirements

Introduction

This document describes the requirements placed on Cerise. The aim of this
project is to implement all these features. Most of them are currently there,
but Cerise is not yet completely done (and new features will probably keep
coming up).

Overview

Cerise provides a REST interface through which CWL workflows can be submitted
for execution on a compute resource. The particulars of the compute resource are
configurable, with support for local execution as well as SSH-accessed remote
machines, and compute clusters using SLURM or TORQUE as their resource manager.
There will not be complete support for all possible CWL workflows.

The requirements below are categorised using the MoSCoW system: as either a
Must have, Should have, Could have or Won’t have requirement.

Functionality

User side functionality

	Job management

	[M] A user can submit a CWL workflow for execution using the
Netherlands eScience Center version of the GA4GH workflow execution
schema [https://github.com/NLeSC/workflow-execution-schemas]
(the REST API).

	[M] Multiple workflows can be submitted and executing at the same time.

	[M] The service will execute the submitted workflow on a compute
resource.

	[M] The status of the job, and eventual results of the workflow will be
available through the REST API.

	[M] Running jobs can be cancelled (aborted).

	[M] Results may be left on the compute resource by copying them to a
storage location on the compute resource using explicit commands that
are part of the CWL workflow.

	[M] It must be easy to do the above things from a Python program.

	[W] Only a subset of CWL files will be supported. The exact subset is
currently undefined, but custom input and output types will not be
supported.

	[W] Inputs and outputs are small, on the order of megabytes, not
gigabytes. The system does not have to support parallel up/downloads, or
ones that take days to complete.

	Workflow definition

	[M] The workflow will be defined in domain terms, not in terms of
command line statements, core hours, or other low-level technical
constructs. Different runs requiring different amounts of resources will
be dealt with by offering steps for different scenarios, e.g. “run an
LIE simulation efficiently using Gromacs for a protein in water” or “run
an LIE simulation quickly using Gromacs for a protein in water” or “run
a very long simulation of a protein using Gromacs”. Thus, submitted
workflow definitions are not compute resource specific.

	[M] Steps for specific scenarios can be configured into the software
without changing the software itself.

	[M] It must be possible to specify multiple related files as an input
(secondaryFiles in CWL terms), to have array-valued inputs (including
arrays of files), and to have optional inputs and outputs (with default
values for inputs).

Computing

	Workflow execution

	[C] Serial execution of workflow steps is acceptable, with parallelism
achieved through running many jobs. However, as there are typically
limits to how many jobs can be submitted to a scheduler, parallel
execution within a workflow would be nice to have.

	[C] On busy compute resources, queueing times can be long. Support for
something like STOPOS (if available, such as on SURFsara Lisa) or pilot
jobs could be considered.

	Configuration

	[M] Configurations may (or should) be compute-resource specific. We will
not attempt grid-style resource abstraction, but instead rely on an
administrator or developer to set up steps for each compute resource.

	[M] It must be possible to configure the service to select one compute
resource on which submitted CWL workflows are to be run.

	[M] Given a desired set of workflow steps, it should be easy to
configure these into the service. No superfluous hoops to jump through,
and good documentation.

	[M] It should be possible to share configuration that is the same for
different compute resources, to avoid duplication.

	Resource type support

	[M] Remote execution on a compute resource using either SLURM or
TORQUE must be supported.

	[M] It must be possible to select specific resources within a cluster,
e.g. GPUs, by submitting to a particular queue, or by specifying a
resource constraint. These constraints are to be specified in a step.

	[S] Remote machines accessible through SSH should be supported

	[S] Local execution (on the machine the service runs on) should be
supported.

	[S] With an eye towards the future, cloud resources should be supported.

	[C] With an eye towards the past, grid resources could be supported.

	[W] It would be nice to be able to distribute work across all available
resources, but this is better done in a front-end accessing multiple
resources, rather than by having a single service do both access and
load balancing.

Deployment

	At least the following deployment configurations must be supported:

	[S] Client, this service, and workflow execution all on the same machine

	[S] Client on one machine, service and execution on another, where the
client can connect to the service, but not vice versa.

	[M] Client, this service, and workflow execution each on a different
machine or resource, where the client can connect to the service, and the
service can connect to the compute resource, but no other connections are
possible.

Design overview

This file describes the high level design of Cerise, covering the architecture, functionality,and behaviour of the system. The general principle of operation is to run the standard CWLTool on some remote resource, feeding it the job given to the service by the user. To allow the job to run correctly, input must be staged to the remote resource, and output must be staged back to some location where the user of the service can access it.

As the implementation is not yet complete, this is a description of how I’d like it to eventually be, not of how it currently is (although most pieces are already in place).

Architecture

Cerise has a simple architecture.

[image: _images/architecture_diagram.png]
Architecture of Cerise. Arrows show the direction of calls.

The front end of the system is provided by server-side Python bindings for the REST API, as generated by Swagger (which uses connexion). In the middle is the job store, in which the currently known jobs are registered, and which takes care of synchronisation between the front end and the back end. The back end takes care of staging and running jobs, using the Cerulean library to connect to the compute resource.

Functionality

The front end is mostly generated code. It takes requests from the client, and calls the job store to add or change jobs, or obtain their current status. (See below under Behaviour.)

The job store is a simple SQLite database that stores the list of jobs that are currently known to the system. It implements the basic create-read-update-delete cycle for jobs. A job in the Job Store holds all the available information about the job, with the exception of the input and output files, which are stored on disk or in a separate WebDAV service.

The back end comprises four components: Local Files, Remote Files, the Job Runner, and the Execution Manager.

The Local Files component manages the local storage area. This local storage area is used for communicating files with the client. Before submitting a job, the client may upload or copy a file to this area, and then pass a file:// URL to the service referring to it. Alternatively, http:// URLs may be used, which LocalFiles can also access. The local storage area may be a directory on a local file system, or a directory on a WebDAV.

Local Files contains functionality for opening input files for staging, creating directories for job output, and publishing job output.

The Remote Files component manages a remote storage area, presumably on the compute resource, or at least accessible from there. This is used for communication with the compute resource. The remote storage area is simply a directory on a file system that is accessible through any of the Cerulean-supported access methods. Inside this directory, Remote Files keeps one directory per job. It will stage input there, and retrieve output from there. Remote Files also contains functionality for interpreting the job’s output, and updating the state of the job based on this.

The Job Runner component contains the functionality for starting jobs on the compute resource, getting the current status (waiting to run, running, done) of remote jobs, and for cancelling them. It does not interpret the result of the job, and cannot tell whether it completed successfully or not, it only knows whether a job is running or not.

The Execution Manager contains the main loop of the back end. It calls the other components to stage in submitted jobs, start jobs that are ready to run, monitor their progress, destage them when done, and cancel or delete them on request.

Behaviour

Jobs in Cerise go through a sequence of operations as they are being processed. The behaviour of the system as it processes a job can be described as executing the following state machine:

[image: _images/job_state_machine.png]
Internal job states and components that act on them. Black and blue states are rest states, blue states are final states, in purple states the back end is active, and in orange states the compute resource is active (and being observed by the back end).

This state machine is not only used to keep track of where a job is in the process of being executed, but also as a way of synchronising between different threads of execution within the service, through atomic state transitions. More on this below.

In total, there are fifteen internal states that a job may be in:

	State

	Type

	CWL State

	Category

	SUBMITTED

	Rest

	Waiting

	

	STAGING_IN

	Active

	Waiting

	

	WAITING

	Remote Active

	Waiting

	

	RUNNING

	Remote Active

	Running

	

	FINISHED

	Rest

	Running

	

	STAGING_OUT

	Active

	Running

	

	SUCCESS

	Rest

	Success

	Final

	STAGING_IN_CR

	Active

	Waiting

	Cancellation pending

	WAITING_CR

	Remote Active

	Waiting

	Cancellation pending

	RUNNING_CR

	Remote Active

	Running

	Cancellation pending

	STAGING_OUT_CR

	Active

	Running

	Cancellation pending

	CANCELLED

	Rest

	Cancelled

	Final

	PERMANENT_FAILURE

	Rest

	PermanentFailure

	Final

	TEMPORARY_FAILURE

	Rest

	TemporaryFailure

	Final

	SYSTEM_ERROR

	Rest

	SystemError

	Final

Normal execution

When a job is submitted to the system, an entry is added to the job store representing the job, in state SUBMITTED. The job is then moved to the STAGING_IN state, and staging in commences. In general this may take a while, depending on network speeds and data volumes. Once all files are copied, the job is submitted to the remote resource, and the job is moved into the WAITING state.

At some point, resources will become available at the remote compute resource, and the job is started, putting it into the RUNNING state. When it stops running, it moves on to FINISHED, from where the service will move it into STAGING_OUT and start the staging out process. When that is complete, and assuming all went well, the job ends up in stage SUCCESS.

While the job is being processed, the user may request its status via the REST API. The REST API defines a more limited set of states, to which the internal states are mapped (third column in the table). The mapping is such that the Success state signals that the job finished successfully and results are available, while Waiting and Running signal that the user will have to wait a bit longer.

Cancellation

If the user submits a cancel request for a job, processing needs to be stopped. How this is to happen depends on the current state of the job. If the state is a Rest state (second column, black and blue in the diagram), then it is not actively being processed, and it can simply be moved to the CANCELLED state.

If the job is in an Active state (purple in the diagram), it is moved to the corresponding _CR state, processing is stopped, and it is then moved to the CANCELLED state (this to synchronise front end and back end, see below). If it is in a Remote Active state (orange in the diagram), it is moved to the corresponding _CR state, and a cancellation request is sent to the compute resource (purple circular arcs). Once the compute resource has stopped the job, it moves into the CANCELLED state.

Note that all activities done by the remote compute resource are observed by the service’s back end, and any state changes are propagated to the service’s job store periodically.

Errors

If an error occurs during processing, the job will be in an Active or Remote Active state (since in a Rest state nothing happens, and so nothing can go wrong).

During staging in, in state STAGING_IN, permanent errors may occur if an input file is not available (e.g. due to a mistyped URI). Temporary failures are also possible, e.g. if an http URI returns error 503 Resource Temporarily Unavailable. In this case, staging is aborted, and the job moved to the corresponding error state. If an internal error occurs (which it shouldn’t, but no program is perfect) the job is put into the SYSTEM_ERROR state.

Unsuccessful workflow runs will result in a CWL error of type PermanentFailure or TemporaryFailure, as signalled by the remote CWL runner. Once a job is in the FINISHED state, this output will be examined, and if an error has occurred it will be moved into PERMANENT_FAILURE, or TEMPORARY_FAILURE as appropriate. If the remote CWL runner does not produce usable output, a SYSTEM_ERROR results.

If an error occurs during staging out, in state STAGING_OUT, then like for staging in, the process is aborted and the job moved into an appropriate error state (PERMANENT_FAILURE, TEMPORARY_FAILURE or SYSTEM_ERROR).

Service shutdown

The service may be shut down while it is processing jobs. If this happens, then the shutdown process must ensure that running activities are stopped, and that the jobs are put into a state from where processing may recommence when the service is started again. This is achieved as follows:

	For all jobs in the STAGING_IN state, staging is aborted, and the job is moved into the SUBMITTED state.

	For all jobs in the STAGING_OUT state, staging is aborted, and the job is moved into the FINISHED state.

	For all jobs in the STAGING_IN_CR state, staging is aborted, and the job is moved into the CANCELLED state.

	For all jobs in the STAGING_OUT_CR state, staging is aborted, and the job is moved into the CANCELLED state.

Service start-up

On service start-up, the jobs database is checked. If the service was shut down cleanly, all jobs will be in a Rest state, and the service may start up as normal and start processing.

If any jobs are found to be in an Active state, they will be moved to the corresponding Rest state as per the shutdown procedure above. If staging is idempotent (and they should be) this should allow the system to continue processing where it left off. Ideally, staging will check whether a file already exists on the target side, and not upload or download it a second time.

If any jobs are in WAITING_CR or RUNNING_CR and are still running, a cancellation request will be sent for them, as the service may have crashed after transitioning the state, but before sending the cancellation request, or the cancellation request may have failed for some other reason.

Multiprocess implementation

Since this is a web service, multiple clients may access it concurrently. Staging may take a significant amount of time, during which we would like to be able to service requests. Also, even for a single client, a job submission request should not have to wait for completion of staging in to return. Therefore, staging should be done in the background. Furthermore, the remote compute resource should be polled regularly to update the status of running jobs, so that their results can be staged out shortly after they are done.

The service therefore has a front end, which communicates with the user, and a back end, which does most of the work. In the diagram above, state transitions done by the front end are coloured teal, while the ones done by the back end are coloured purple. State transitions performed by the remote resource are coloured orange. These are observed by the back end, and propagated to the job store periodically, since the remote resource cannot access the job store.

Front end threads

Front end threads are responsible for state transitions that are made in response to user input. If a client submits a job, the job is created and put into the SUBMITTED state. If a cancellation request is received, and the job is in a Rest state, it will be moved into CANCELLED by the front-end thread. If it is in an Active state, it is moved into the corresponding _CR state (if not already there). If the job is in a Remote Active state, a cancellation request is sent to the remote resource, and the job is moved into the corresponding _CR state (also, if not already there).

Deletion requests are signalled from the front end to the back end via a separate job property, outside of the job state machine. A cancel operation is done first, then deletion is requested.

Back end threads

The back end is responsible for staging and job submission. It operates in a loop, finding a job in the SUBMITTED state, moving it into STAGING_IN, and starting the staging process. If during staging the job is moved into STAGING_IN_CR (by a front-end thread), staging is aborted, and the job is moved to CANCELLED. If a shutdown is signalled, staging is aborted and the job is moved back into SUBMITTED.

The back end also regularly polls the remote compute resource, requesting the status of running jobs. Any jobs in the WAITING state that according to the retrieved information are running, are moved into the RUNNING state. Jobs in WAITING_CR go to RUNNING_CR.

If a job is in a Remote Active state, but is found to no longer be running, then if it was in a Cancellation pending state (named _CR) it is moved to CANCELLED. Otherwise, the output is checked to see if the job was successful, and it is moved into an appropriate error state if it was not. If it was successful, is is put into FINISHED.

If the back end finds a job in the FINISHED state, it checks the result. If the job finished successfully, it moves it to the STAGING_OUT state and begins staging out the results. If during staging the job is moved into STAGING_OUT_CR, staging is aborted and the job is moved to CANCELLED. If a shutdown is signalled, staging is aborted and the job is moved back into FINISHED.

Synchronisation

To avoid data corruption, there must be a mechanism that keeps multiple threads from working on the same job at the same time. Also, we can’t have multiple state transitions occurring at the same time and interfering with each other. Thus, there must be some synchronisation mechanism between the threads.

In the Rest states, no processing is done, and any thread can safely move the job to another state as long as the state transitions are atomic. This can be implemented in the form of a try_transition(from_state, to_state) -> bool function. If two threads try to transition a job simultaneously, one from A to B and the other from A to C, one will succeed, while the other will fail because its from_state does not match the current state. (A transactional system with optimistic concurrency control.)

Jobs are moved into Active states (STAGING_IN or STAGING_OUT) by the back end, which subsequently owns it until it moves it into another state. The only exception is that during this process, the job may be moved into STAGING_IN_CR or STAGING_OUT_CR by a front-end thread. Effectively, the state machine functions here as a compare-and-exchange based mutual exclusion mechanism.

Known issues/failure modes

If the service crashes or is killed while a job is being staged, and this happens just after submission of the job to the compute resource, but before the transition from STAGING_IN to WAITING, the job will be started again on start-up of the service. This may be undesirable; maybe the service could check as part of error recovery whether the job is already running, or has run anyway.

All synchronisation goes via a single job store component, which means that it may become a bottleneck. However, jobs only spend a fraction of their time in state transitions, jobs are independent of one another, and the total amount of data stored is small (kilobytes per job, at most), so this is unlikely to affect scalability.

Source code

	cerise package
	Subpackages
	cerise.back_end package
	Subpackages

	Submodules

	cerise.back_end.cwl module

	cerise.back_end.execution_manager module

	cerise.back_end.file module

	cerise.back_end.job_planner module

	cerise.back_end.job_runner module

	cerise.back_end.local_files module

	cerise.back_end.remote_api module

	cerise.back_end.remote_job_files module

	Module contents

	cerise.front_end package
	Subpackages

	Submodules

	cerise.front_end.encoder module

	cerise.front_end.util module

	Module contents

	cerise.job_store package
	Submodules

	cerise.job_store.job_state module

	cerise.job_store.sqlite_job module

	cerise.job_store.sqlite_job_store module

	Module contents

	cerise.test package
	Submodules

	cerise.test.fixture_jobs module

	cerise.test.test_config module

	cerise.test.test_service module

	Module contents

	Submodules

	cerise.config module

	cerise.run_back_end module

	cerise.run_front_end module

	cerise.util module

	Module contents

cerise package

Subpackages

	cerise.back_end package
	Subpackages
	cerise.back_end.test package
	Submodules

	cerise.back_end.test.conftest module

	cerise.back_end.test.mock_job module

	cerise.back_end.test.test_cwl module

	cerise.back_end.test.test_job_planner module

	cerise.back_end.test.test_job_runner module

	cerise.back_end.test.test_local_files module

	cerise.back_end.test.test_remote_api module

	cerise.back_end.test.test_remote_job_files module

	Module contents

	Submodules

	cerise.back_end.cwl module

	cerise.back_end.execution_manager module

	cerise.back_end.file module

	cerise.back_end.job_planner module

	cerise.back_end.job_runner module

	cerise.back_end.local_files module

	cerise.back_end.remote_api module

	cerise.back_end.remote_job_files module

	Module contents

	cerise.front_end package
	Subpackages
	cerise.front_end.controllers package
	Submodules

	cerise.front_end.controllers.default_controller module

	Module contents

	cerise.front_end.models package
	Submodules

	cerise.front_end.models.base_model_ module

	cerise.front_end.models.job module

	cerise.front_end.models.job_description module

	cerise.front_end.models.workflow_binding module

	Module contents

	Submodules

	cerise.front_end.encoder module

	cerise.front_end.util module

	Module contents

	cerise.job_store package
	Submodules

	cerise.job_store.job_state module

	cerise.job_store.sqlite_job module

	cerise.job_store.sqlite_job_store module

	Module contents

	cerise.test package
	Submodules

	cerise.test.fixture_jobs module

	cerise.test.test_config module

	cerise.test.test_service module

	Module contents

Submodules

cerise.config module

	
class cerise.config.Config(config: Dict[str, Any], api_config: Dict[str, Any])

	Bases: object

Create a configuration object.

	Parameters

	
	config (dict) – A main configuration dict.

	api_config (dict) – An API configuration dict.

	
close_file_systems() → None

	Close any open connections and free resources.

This function is to be called on shutdown, to ensure that the
remote file system managed by Config is shut down properly.

	
get_base_url() → str

	Returns the service’s base url.

This is the URL of the REST API, before the /jobs part, e.g. if
listing jobs is done by a GET to http://localhost/jobs, then
this should be set to http://localhost. Obtained from the
configuration file or the CERISE_BASE_URL environment variable.

	
get_basedir() → cerulean.path.Path

	Returns the configured remote base directory to use.

	Returns

	The remote path to the base directory.

	Return type

	(str)

	
get_cores_per_node() → int

	Returns the number of cores per node.

This depends on the available compute hardware, and should be
configured in the specialisation. The incoming workflow
specifies a number of cores, but we reserve nodes, so we need
to convert.

The default is 32, which is probably more than what you have,
as a result of which we’ll allocate fewer nodes than the user
specified if no value is given. That’ll slow things down, but
at least we won’t be burning core hours needlessly.

	Returns

	The number of cores per node on this machine.

	Return type

	(int)

	
get_database_location() → str

	Returns the local path to the database file.

	Returns

	The path.

	Return type

	(str)

	Raises

	KeyError – No database path was set.

	
get_file_system() → cerulean.file_system.FileSystem

	Returns a remote file system as configured by the user.

	Returns

	(cerulean.FileSystem) A new filesystem

	
get_log_file() → str

	Returns the configured path for the log file. Use has_logging()
to see if logging has been configured first.

	Returns

	The path.

	Return type

	(str)

	
get_log_level() → int

	Returns the configured log level. Use has_logging() to see if
logging has been configured first.

	Returns

	The log level, following Python’s built-in logging library.

	Return type

	(int)

	
get_pid_file() → Optional[str]

	Returns the location of the PID file, if any.

	Returns

	The configured path, or None

	Return type

	(Union[str,None])

	
get_queue_name() → Optional[str]

	Returns the name of the queue to submit jobs to, or None if no
queue name was configured.

	Returns

	The queue name.

	Return type

	(Union[str,None])

	
get_remote_cwl_runner() → str

	Returns the configured remote path to the CWL runner to use.

No macro substitution is done; this gives the configured path as-is.

	Returns

	The path.

	Return type

	(str)

	
get_remote_refresh() → float

	Returns the interval in between checks of the remote job status, in seconds.

	Returns

	How often to check remote job status.

	Return type

	(float)

	
get_scheduler(run_on_head_node: bool = False) → cerulean.scheduler.Scheduler

	Returns a scheduler as configured by the user.

	Parameters

	run_on_head_node (bool) – If True, will create a scheduler using the ssh adaptor instead of the configured one if the configured adaptor is a cluster scheduler (i.e. slurm, torque or gridengine).

	Returns

	A new scheduler

	Return type

	(cerulean.Scheduler)

	
get_scheduler_options() → Optional[str]

	Returns the additional scheduler options to use.

	Returns

	The options as a single string.

	Return type

	(str)

	
get_service_host() → str

	Return the host interface Cerise should listen on.

	Returns

	The IP address of the interface to listen on.

	Return type

	str

	
get_service_port() → int

	Return the port on which Cerise should listen.

	Returns

	The port number to listen on.

	Return type

	int

	
get_slots_per_node() → int

	Returns the configured number of MPI slots per node.

	Returns

	The number of slots to use.

	Return type

	(int)

	
get_store_location_client() → str

	Returns the file exchange location access point for the client.

	Returns

	A URL.

	Return type

	(str)

	Raises

	KeyError – The location was not set.

	
get_store_location_service() → cerulean.path.Path

	Returns the file exchange location access point for the service.

	Returns

	The local base directory for file exchange with the client.

	Raises

	KeyError – The location was not set.

	
get_username(kind: str) → Optional[str]

	Return the username used to connect to the specified kind of resource.

	Parameters

	kind (str) – Either ‘files’ or ‘jobs’

	Returns

	The configured username

	Return type

	(str)

	
has_logging() → bool

	Returns if logging is configured.

	Returns

	True iff a logging section is available in the configuration.

	
cerise.config.make_config() → cerise.config.Config

	Make a configuration object.

Uses the configuration files and environment variables to determine
the configuration.

	Returns

	The Cerise configuration.

	Return type

	Config

cerise.run_back_end module

cerise.run_front_end module

cerise.util module

Module contents

cerise.back_end package

Subpackages

	cerise.back_end.test package
	Submodules

	cerise.back_end.test.conftest module

	cerise.back_end.test.mock_job module

	cerise.back_end.test.test_cwl module

	cerise.back_end.test.test_job_planner module

	cerise.back_end.test.test_job_runner module

	cerise.back_end.test.test_local_files module

	cerise.back_end.test.test_remote_api module

	cerise.back_end.test.test_remote_job_files module

	Module contents

Submodules

cerise.back_end.cwl module

	
cerise.back_end.cwl.get_cwltool_result(cwltool_log: str) → cerise.job_store.job_state.JobState

	Parses cwltool log output and returns a JobState object
describing the outcome of the cwl execution.

	Parameters

	cwltool_log – The standard error output of cwltool

	Returns

	Any of JobState.PERMANENT_FAILURE, JobState.TEMPORARY_FAILURE or
JobState.SUCCESS, or JobState.SYSTEM_ERROR if the output could
not be interpreted.

	
cerise.back_end.cwl.get_files_from_binding(cwl_binding: Dict[str, Any]) → List[cerise.back_end.file.File]

	Parses a CWL input or output binding an returns a list
containing name: path pairs. Any non-File objects are
omitted.

	Parameters

	cwl_binding – A dict structure parsed from a JSON CWL binding

	Returns

	
	A list of File objects describing the input files described

	in the binding.

	
cerise.back_end.cwl.get_required_num_cores(cwl_content: bytes) → int

	Takes a CWL file contents and extracts number of cores required.

	Parameters

	cwl_content – The contents of a CWL file.

	Returns

	The number of cores required, or 0 if not specified.

	
cerise.back_end.cwl.get_secondary_files(secondary_files: List[Dict[str, Any]]) → List[cerise.back_end.file.File]

	Parses a list of secondary files, recursively.

	Parameters

	secondary_files – A list of values from a CWL secondaryFiles
attribute.

	Returns

	A list of secondary input files.

	
cerise.back_end.cwl.get_time_limit(cwl_content: bytes) → int

	Takes a CWL file contents and extracts cwl1.1-dev1 time limit.

Supports only two of three possible ways of writing this. Returns
0 if no value was specified, in which case the default should be
used.

	Parameters

	cwl_content – The contents of a CWL file.

	Returns

	Time to reserve in seconds.

	
cerise.back_end.cwl.get_workflow_step_names(workflow_content: bytes) → List[str]

	Takes a CWL workflow and extracts names of steps.

This assumes that the steps are not inlined, but referenced by
name, as we require for workflows submitted to Cerise. Also, this
is not the name of the step in the workflow document, but the name
of the step in the API to run. It’s the content of the run
attribute, not that of the id attribute.

	Parameters

	workflow_content – The contents of the workflow file.

	Returns

	A list of step names.

	
cerise.back_end.cwl.is_workflow(workflow_content: bytes) → bool

	Takes CWL file contents and checks whether it is a CWL Workflow
(and not an ExpressionTool or CommandLineTool).

	Parameters

	workflow_content – a dict structure parsed from a CWL file.

	Returns

	
	True iff the top-level Process in this CWL file is an

	instance of Workflow.

cerise.back_end.execution_manager module

	
class cerise.back_end.execution_manager.ExecutionManager(config: cerise.config.Config, local_api_dir: cerulean.path.Path)

	Bases: object

Handles the execution of jobs on the remote resource.
The execution manager monitors the job store for files that are
ready to be staged in, started, cancelled, staged out, or deleted,
and performs the required activity. It also monitors the remote
resource, ensuring that any remote state changes are propagated to
the job store correctly.

Set up the execution manager.

	Parameters

	
	config – The configuration.

	local_api_dir – The path to the local API directory.

	
execute_jobs() → None

	Run the main backend execution loop.

This repeatedly processes jobs, but does not check the remote
compute resource more often than specified in the
remote_refresh configuration parameter.

	
shutdown() → None

	Requests the execution manager to execute a clean shutdown.

cerise.back_end.file module

	
class cerise.back_end.file.File(name: Optional[str], index: Optional[int], location: str, secondary_files: List[File])

	Bases: object

Create a File object.

This describes a file, and is the result of resolving input files from the user-submitted input description, or output generated by the CWL runner. It is used by the staging machinery to stage these files, and update the input description with remote paths.

	Parameters

	
	name – The name of the input for which this file is.

	index – The index of this file into an array of Files.

	location – A URL with the (local) location of the file.

	secondary_files – A list of secondary files.

	
index = None

	The index of this file, if it is in an array of files.

	
location = None

	Local URL of the file.

	
name = None

	The input name for which this file is.

	
secondary_files = None

	CWL secondary files.

	
source = None

	The source of the file.

cerise.back_end.job_planner module

	
exception cerise.back_end.job_planner.InvalidJobError

	Bases: RuntimeError

	
class cerise.back_end.job_planner.JobPlanner(job_store: cerise.job_store.sqlite_job_store.SQLiteJobStore, local_api_dir: cerulean.path.Path)

	Bases: object

Handles workflow execution requirements.

This class keeps track of which hardware is needed for each
available step, then analyses a workflow and decides which
resources it needs based on this.

Create a JobPlanner.

	Parameters

	
	job_store – The job store to act on.

	local_api_dir – Path of local api directory.

	
plan_job(job_id: str) → None

	Figures out which resources a job needs.

Resources are identified by strings. Currently, there is
num_cores, the number of cores to run on, and
time_limit, the amount of time to reserve in seconds.

	Parameters

	job_id – Id of the job to plan.

cerise.back_end.job_runner module

	
class cerise.back_end.job_runner.JobRunner(job_store: cerise.job_store.sqlite_job_store.SQLiteJobStore, config: cerise.config.Config, remote_cwlrunner: str)

	Bases: object

Create a JobRunner object.

	Parameters

	
	job_store – The job store to get jobs from.

	config – The configuration.

	remote_cwlrunner – The location of the CWL runner to use.

	
cancel_job(job_id: str) → bool

	Cancel a running job.

Job must be cancellable, i.e. in JobState.RUNNING or
JobState.WAITING. If it isn’t cancellable, this
function does nothing.

Cancellation may not happen immediately. If the cancellation
request has been executed immediately and the job is now gone,
this function returns False. If the job will be cancelled soon,
it returns True.

	Parameters

	job_id – The id of the job to cancel.

	Returns

	Whether the job is still running.

	
start_job(job_id: str) → None

	Get a job from the job store and start it on the compute resource.

	Parameters

	job_id – The id of the job to start.

	
update_job(job_id: str) → None

	Get status from compute resource and update store.

	Parameters

	job_id – ID of the job to get the status of.

cerise.back_end.local_files module

	
class cerise.back_end.local_files.LocalFiles(job_store: cerise.job_store.sqlite_job_store.SQLiteJobStore, config: cerise.config.Config)

	Bases: object

Create a LocalFiles object.
Sets up local directory structure as well.

	Parameters

	
	job_store – The job store to use

	config – The configuration.

	
create_output_dir(job_id: str) → None

	Create an output directory for a job.

	Parameters

	job_id – The id of the job to make a work directory for.

	
delete_output_dir(job_id: str) → None

	Delete the output directory for a job.
This will remove the directory and everything in it.

	Parameters

	job_id – The id of the job whose output directory to delete.

	
publish_job_output(job_id: str, output_files: List[cerise.back_end.file.File]) → None

	Write output files to the local output dir for this job.

Uses the .output_files property of the job to get data, and
updates its .output property with URLs pointing to the newly
published files, then sets .output_files to None.

	Parameters

	
	job_id – The id of the job whose output to publish.

	output_files – List of output files to publish.

	
resolve_input(job_id: str) → List[cerise.back_end.file.File]

	Resolves input (workflow and input files) for a job.

This function will read the job from the database, add a
.workflow_content attribute with the contents of the
workflow, and return a list of File objects describing the
input files.

This function will accept local file:// URLs as well as
remote http:// URLs.

	Parameters

	job_id – The id of the job whose input to resolve.

	Returns

	A list of File objects to stage.

	
resolve_secondary_files(secondary_files: List[cerise.back_end.file.File]) → None

	Makes a File object for each secondary file.

Works recursively, so nested secondaryFiles work.

	Parameters

	secondary_files – List of secondary files.

	Returns

	Resulting Files, with contents.

cerise.back_end.remote_api module

	
class cerise.back_end.remote_api.RemoteApi(config: cerise.config.Config, local_api_dir: cerulean.path.Path)

	Bases: object

Manages the remote API installation.

This class manages the remote directories in which the CWL API is
installed, which is <basedir>/api/

Within this, there is a directory per project, with entries

<project>/version
<project>/steps/…
<project>/files/…
<project>/install.sh

Create a RemoteApiFiles object.
Sets up remote directory structure as well, but refuses to
create the top-level directory.

	Parameters

	
	config – The configuration.

	local_api_dir – The path to the local API dir to install from.

	
get_projects() → List[str]

	Return names and versions of the installed projects.

	Returns

	
	A list of strings, one for each project, with name and

	version.

	
install() → None

	Install the API onto the compute resource.

Copies subdirectories steps/ and files/ of the given local api
dir to the compute resource, copies files/ to the compute
resource, and runs the install script.

	
translate_runner_location(runner_location: str) → str

	Perform macro substitution on CWL runner location.

This replaces $CERISE_API with the API base dir.

	Parameters

	runner_location (str) – Location of the runner as configured
by the user.

	Returns

	(str) A remote path with variables substituted.

	
translate_workflow(workflow_content: bytes) → bytes

	Parse workflow content, check that it calls steps, and
insert the location of the steps on the remote resource so that
the remote runner can find them.

Also converts YAML to JSON, for cwltiny compatibility.

	Parameters

	workflow_content – The raw workflow data

	Returns

	The modified workflow data, serialised as JSON

	
update_available() → bool

	Returns whether the remote API is older than the local one.

	Returns

	True iff an update is available/required.

cerise.back_end.remote_job_files module

	
class cerise.back_end.remote_job_files.RemoteJobFiles(job_store: cerise.job_store.sqlite_job_store.SQLiteJobStore, config: cerise.config.Config)

	Bases: object

Manages a remote directory structure.
Expects to be given a remote dir to work within. Inside this
directory, it makes a jobs/ directory, and inside that there
is a directory for every job.

Within each job directory are the following files:

	jobs/<job_id>/name.txt contains the user-given name of the job

	jobs/<job_id>/workflow.cwl contains the workflow to run

	jobs/<job_id>/work/ contains input and output files, and is the
working directory for the job.

	jobs/<job_id>/stdout.txt is the standard output of the CWL runner

	jobs/<job_id>/stderr.txt is the standard error of the CWL runner

Create a RemoteJobFiles object.
Sets up remote directory structure as well, but refuses to
create the top-level directory.

	Parameters

	
	job_store – The job store to use.

	config – The configuration.

	
delete_job(job_id: str) → None

	Remove the work directory for a job.
This will remove the directory and everything in it, if it exists.

	Parameters

	job_id – The id of the job whose work directory to delete.

	
destage_job_output(job_id: str) → List[cerise.back_end.file.File]

	Download results of the given job from the compute resource.

	Parameters

	job_id – The id of the job to download results of.

	Returns

	A list of (name, path, content) tuples.

	
stage_job(job_id: str, input_files: List[cerise.back_end.file.File], workflow_content: bytes) → None

	Stage a job. Copies any necessary files to
the remote resource.

	Parameters

	
	job_id – The id of the job to stage

	input_files – A list of input files to stage.

	workflow_content – Translated contents of the workflow to be
run.

	
update_job(job_id: str) → None

	Get status from remote resource and update store.

	Parameters

	job_id – ID of the job to get the status of.

Module contents

cerise.back_end.test package

Submodules

cerise.back_end.test.conftest module

cerise.back_end.test.mock_job module

	
class cerise.back_end.test.mock_job.MockJob(job_id, name, workflow, job_input)

	Bases: object

This class provides an in-memory implementation of a job.

It’s used for testing, so that we don’t need to bother with a
database there.

Creates a new Job object.

The state of a newly created job is JobState.SUBMITTED.

	Parameters

	
	id (str) – The id of the job, a string containing a GUID

	name (str) – The name of the job, as given by the user

	workflow (str) – The URI of the workflow file

	job_input (str) – An input definition for the job

	
add_log(level, message)

	Add a message to the job’s log.

	Parameters

	
	level (logging.LogLevel) – Level of importance

	message (str) – The log message.

	
critical(message)

	Add a message to the job’s log at level CRITICAL.

	Parameters

	message (str) – The log message.

	
debug(message)

	Add a message to the job’s log at level DEBUG.

	Parameters

	message (str) – The log message.

	
error(message)

	Add a message to the job’s log at level ERROR.

	Parameters

	message (str) – The log message.

	
id = None

	Job id, a string containing a UUID.

	Type

	str

	
info(message)

	Add a message to the job’s log at level INFO.

	Parameters

	message (str) – The log message.

	
local_input = None

	Input JSON string, as specified by the submitter.

	Type

	str

	
local_output = None

	The serialised JSON output object describing the
destaged outputs.

	Type

	str

	
log = None

	Log output as of last update.

	Type

	str

	
name = None

	Name, as specified by the submitter.

	Type

	str

	
please_delete = None

	Whether deletion of the job has been requested.

	Type

	bool

	
remote_error = None

	cwl-runner stderr output as of last update.

	Type

	str

	
remote_input_path = None

	The absolute remote path of the input description file.

	Type

	str

	
remote_job_id = None

	The id the remote scheduler gave to this job.

	Type

	str

	
remote_output = None

	cwl-runner output as of last update.

	Type

	str

	
remote_stderr_path = None

	The absolute remote path of the standard error dump.

	Type

	str

	
remote_stdout_path = None

	The absolute remote path of the standard output dump.

	Type

	str

	
remote_system_err_path = None

	The absolute remote path of the standard error dump.

	Type

	str

	
remote_system_out_path = None

	The absolute remote path of the system output dump.

	Type

	str

	
remote_workdir_path = None

	The absolute remote path of the working directory.

	Type

	str

	
remote_workflow_path = None

	The absolute remote path of the CWL workflow file.

	Type

	str

	
required_num_cores = None

	The number of cores to reserve for this workflow.
If 0, use cluster default.

	
resolve_retry_count = None

	Number of times we’ve tried to resolve inputs.

	Type

	int

	
state = None

	Current state of the job.

	Type

	JobState

	
time_limit = None

	The time to reserve, in seconds.
If 0, use cluster default.

	
try_transition(from_state, to_state)

	Attempts to transition the job’s state to a new one.

If the current state equals from_state, it is set to to_state,
and True is returned, otherwise False is returned and the
current state remains what it was.

	Parameters

	
	from_state (JobState) – The expected current state

	to_state (JobState) – The desired next state

	Returns

	True iff the transition was successful.

	
warning(message)

	Add a message to the job’s log at level WARNING.

	Parameters

	message (str) – The log message.

	
workflow = None

	Workflow file URI, as specified by the submitter.

	Type

	str

	
workflow_content = None

	The content of the workflow
description file, or None if it has not been resolved yet.

	Type

	Union[bytes, NoneType]

cerise.back_end.test.test_cwl module

cerise.back_end.test.test_job_planner module

	
cerise.back_end.test.test_job_planner.test_job_planner_init(mock_config, mock_store_resolved, local_api_dir)

	

	
cerise.back_end.test.test_job_planner.test_plan_job(mock_config, mock_store_resolved, local_api_dir)

	

cerise.back_end.test.test_job_runner module

cerise.back_end.test.test_local_files module

cerise.back_end.test.test_remote_api module

cerise.back_end.test.test_remote_job_files module

Module contents

cerise.front_end package

Subpackages

	cerise.front_end.controllers package
	Submodules

	cerise.front_end.controllers.default_controller module

	Module contents

	cerise.front_end.models package
	Submodules

	cerise.front_end.models.base_model_ module

	cerise.front_end.models.job module

	cerise.front_end.models.job_description module

	cerise.front_end.models.workflow_binding module

	Module contents

Submodules

cerise.front_end.encoder module

cerise.front_end.util module

Module contents

cerise.front_end.controllers package

Submodules

cerise.front_end.controllers.default_controller module

Module contents

cerise.front_end.models package

Submodules

cerise.front_end.models.base_model_ module

cerise.front_end.models.job module

cerise.front_end.models.job_description module

cerise.front_end.models.workflow_binding module

Module contents

cerise.job_store package

Submodules

cerise.job_store.job_state module

	
class cerise.job_store.job_state.JobState

	Bases: enum.Enum

Enum JobState

	
CANCELLED = 'Cancelled'

	

	
FINISHED = 'Finished'

	

	
PERMANENT_FAILURE = 'PermanentFailure'

	

	
RUNNING = 'Running'

	

	
RUNNING_CR = 'RunningCR'

	

	
STAGING_IN = 'StagingIn'

	

	
STAGING_IN_CR = 'StagingCR'

	

	
STAGING_OUT = 'Destaging'

	

	
STAGING_OUT_CR = 'DestagingCR'

	

	
SUBMITTED = 'Submitted'

	

	
SUCCESS = 'Success'

	

	
SYSTEM_ERROR = 'SystemError'

	

	
TEMPORARY_FAILURE = 'TemporaryFailure'

	

	
WAITING = 'Waiting'

	

	
WAITING_CR = 'WaitingCR'

	

	
cancellation_active = <function JobState.cancellation_active>

	

	
is_final = <function JobState.is_final>

	

	
is_remote = <function JobState.is_remote>

	

	
to_cwl_state_string = <function JobState.to_cwl_state_string>

	

cerise.job_store.sqlite_job module

	
class cerise.job_store.sqlite_job.SQLiteJob(store: Any, job_id: str)

	Bases: object

This class provides the internal representation of a job. These
are stored inside the service. Note that there is also a JobDescription,
which is defined in the Swagger definition and part of the REST API,
and a Cerulean JobDescription class, which describes a job to start on
a remote compute resource.

Creates a new SQLiteJob object.

This contains only a job id and a reference to the store; the
data about the job are in the database.

	Parameters

	
	store (SQLiteJobStore) – The store this job is stored by

	id – The id of the job, a string containing a GUID

	
add_log(level: int, message: Union[str, List[str]]) → None

	Add a message to the job’s log.

	Parameters

	
	level – Level of importance

	message – The log message.

	
critical(message: Union[str, List[str]]) → None

	Add a message to the job’s log at level CRITICAL.

	Parameters

	message – The log message.

	
debug(message: Union[str, List[str]]) → None

	Add a message to the job’s log at level DEBUG.

	Parameters

	message – The log message.

	
error(message: Union[str, List[str]]) → None

	Add a message to the job’s log at level ERROR.

	Parameters

	message – The log message.

	
id = None

	Job id, a string containing a UUID.

	Type

	str

	
info(message: Union[str, List[str]]) → None

	Add a message to the job’s log at level INFO.

	Parameters

	message – The log message.

	
local_input

	Input JSON string, as specified by the submitter.

	
local_output

	The serialised JSON output object describing the
destaged outputs.

	
log

	Log output as of last update.

	
name

	Name, as specified by the submitter.

	
please_delete

	Whether the job should be deleted.

	
remote_error

	cwl-runner stderr output as of last update.

	
remote_input_path

	The absolute remote path of the input description file.

	
remote_job_id

	The id the remote scheduler gave to this job.

	
remote_output

	cwl-runner output as of last update.

	
remote_stderr_path

	The absolute remote path of the standard error dump.

	
remote_stdout_path

	The absolute remote path of the standard output dump.

	
remote_system_err_path

	The absolute remote path of the system error dump.

	
remote_system_out_path

	The absolute remote path of the system out dump.

	
remote_workdir_path

	The absolute remote path of the working directory.

	
remote_workflow_path

	The absolute remote path of the CWL workflow file.

	
required_num_cores

	The number of cores to reserve for this workflow.

	
resolve_retry_count

	How many times we’ve tried to resolve.

	
state

	Current state of the job.

	
time_limit

	The time to reserve, in seconds. If 0, use cluster default.

	
try_transition(from_state: cerise.job_store.job_state.JobState, to_state: cerise.job_store.job_state.JobState) → bool

	Attempts to transition the job’s state to a new one.

If the current state equals from_state, it is set to to_state,
and True is returned, otherwise False is returned and the
current state remains what it was.

	Parameters

	
	from_state – The expected current state

	to_state – The desired next state

	Returns

	True iff the transition was successful.

	
warning(message: Union[str, List[str]]) → None

	Add a message to the job’s log at level WARNING.

	Parameters

	message – The log message.

	
workflow

	Workflow file URI, as specified by the submitter.

	
workflow_content

	The content of the workflow description file, or None if it has not
been resolved yet.

cerise.job_store.sqlite_job_store module

	
exception cerise.job_store.sqlite_job_store.JobNotFound

	Bases: RuntimeError

	
class cerise.job_store.sqlite_job_store.SQLiteJobStore(dbfile: str)

	Bases: object

A JobStore that stores jobs in a SQLite database.
You must acquire the store to do anything with it or
the jobs stored in it. It’s a context manager, so
use a with statement:

	with self._store:

	job = self._store.get_job(id)
go ahead and modify job

don’t touch self._store or keep any references to jobs

Having multiple nested with statements is okay, so you
can call other functions that use the store and acquire
it themselves without incident.

	Parameters

	dbfile (str) – The path to the file storing the database.

	
create_job(name: str, workflow: str, job_input: str) → str

	Create a job.

	Parameters

	
	name – The user-assigned name of the job

	workflow – A string containing a URL pointing to the
workflow

	job_input – A string containing a json description of
a json string.

	Returns

	A string containing the job id.

	
delete_job(job_id: str) → None

	Delete the job with the given id.

	Parameters

	job_id – A string containing the id of the job to be deleted.

	
get_job(job_id: str) → cerise.job_store.sqlite_job.SQLiteJob

	Return the job with the given id.

	Parameters

	job_id – A string containing a job id, as obtained from
create_job() or list_jobs().

	Returns

	The job object corresponding to the given id.

	
list_jobs() → List[cerise.job_store.sqlite_job.SQLiteJob]

	Return a list of all currently known jobs.

	Returns

	A list of SQLiteJob objects.

Module contents

cerise.test package

Submodules

cerise.test.fixture_jobs module

	
class cerise.test.fixture_jobs.BrokenJob

	Bases: object

A simple job with no inputs or outputs, and an invalid command.
And an invalid scheme in the input description.

	
input_content = {}

	

	
local_input()

	

	
local_input_files = []

	

	
output_content = {}

	

	
output_files = []

	

	
remote_input()

	

	
remote_input_files = []

	

	
remote_output()

	

	
required_num_cores = 0

	

	
time_limit = 0

	

	
workflow = b'#!/usr/bin/env cwl-runner\n\ncwlVersion: v1.0\nclass: CommandLineTool\nbaseCommand: this_comamnd_does_not_exist\ninputs: []\noutputs: []\n'

	

	
class cerise.test.fixture_jobs.FileArrayJob

	Bases: object

A simple job with an array of input files.

	
input_content = {'hello_world.2nd': b'Hello, file arrays!', 'hello_world.txt': b'Hello, World!\n\nHere is a test file for the staging test.\n\n'}

	

	
local_input()

	

	
local_input_files = [<cerise.back_end.file.File object>, <cerise.back_end.file.File object>]

	

	
local_output = '{{ "counts": {{ "class": "File", "location": "output.txt" }} }}\n'

	

	
output_content = {'output.txt': b' 4 11 58 hello_world.txt'}

	

	
output_files = [<cerise.back_end.file.File object>]

	

	
remote_input()

	

	
remote_input_files = [('files', '01_hello_world.txt', b'Hello, World!\n\nHere is a test file for the staging test.\n\n'), ('files', '02_hello_world.2nd', b'Hello, file arrays!')]

	

	
remote_output()

	

	
required_num_cores = 0

	

	
time_limit = 60

	

	
workflow = b'#!/usr/bin/env cwl-runner\n\ncwlVersion: v1.0\nclass: Workflow\ninputs:\n files:\n type: File[]\n\noutputs:\n counts:\n type: File\n outputSource: wc/output\n\nsteps:\n wc:\n run: test/file_array.cwl\n in:\n files: files\n out:\n [output]\n'

	

	
class cerise.test.fixture_jobs.HostnameJob

	Bases: object

A simple job with no inputs and one output.

	
input_content = {}

	

	
local_input()

	

	
local_input_files = []

	

	
local_output = '{ "host": { "class": "File", "location": "output.txt" }}\n'

	

	
output_content = {'output.txt': b'hostname\n'}

	

	
output_files = [<cerise.back_end.file.File object>]

	

	
remote_input()

	

	
remote_input_files = []

	

	
remote_output()

	

	
required_num_cores = 2

	

	
time_limit = 101

	

	
workflow = b'#!/usr/bin/env cwl-runner\n\ncwlVersion: v1.0\nclass: Workflow\ninputs: []\noutputs:\n host:\n type: File\n outputSource: hostname/output\n\nsteps:\n hostname:\n run: test/hostname.cwl\n out:\n [output]\nhints:\n TimeLimit: 101\n'

	

	
class cerise.test.fixture_jobs.InstallScriptTestJob

	Bases: object

	
input_content = {}

	

	
local_input()

	

	
local_input_files = []

	

	
local_output = '{ "host": { "class": "File", "location": "output.txt" } }\n'

	

	
output_content = [('output.txt', b'Testing API installation\n')]

	

	
output_files = [<cerise.back_end.file.File object>]

	

	
remote_output()

	

	
required_num_cores = 0

	

	
time_limit = 0

	

	
workflow = b'#!/usr/bin/env cwl-runner\n\ncwlVersion: v1.0\nclass: Workflow\nsteps:\n test_install:\n run: test/test_install_script.cwl\n out: [output]\n\ninputs: []\n\noutputs:\n output:\n type: File\n outputSource: test_install/output\n\n'

	

	
class cerise.test.fixture_jobs.LongRunningJob

	Bases: object

	
local_input()

	

	
local_input_files = []

	

	
local_output = '{}\n'

	

	
output_content = {}

	

	
output_files = []

	

	
required_num_cores = 0

	

	
time_limit = 0

	

	
workflow = b'#!/usr/bin/env cwl-runner\n\ncwlVersion: v1.0\nclass: Workflow\nsteps:\n sleep:\n run: test/sleep.cwl\n in:\n delay:\n default: 60\n\ninputs: []\n\noutputs: []\n'

	

	
class cerise.test.fixture_jobs.MissingInputJob

	Bases: object

A broken job that references an input file that doesn’t exist.

	
input_content = {}

	

	
local_input()

	

	
local_input_files = [<cerise.back_end.file.File object>]

	

	
remote_input()

	

	
remote_input_files = []

	

	
required_num_cores = 0

	

	
time_limit = 60

	

	
workflow = b'#!/usr/bin/env cwl-runner\n\ncwlVersion: v1.0\nclass: Workflow\ninputs:\n file:\n type: File\n\noutputs:\n counts:\n type: File\n outputSource: wc/output\n\nsteps:\n wc:\n run: test/wc.cwl\n in:\n file: file\n out:\n [output]\n'

	

	
class cerise.test.fixture_jobs.NoSuchStepJob

	Bases: object

	
input_content = {}

	

	
local_input()

	

	
local_input_files = []

	

	
local_output = '{}\n'

	

	
output_content = {}

	

	
output_files = []

	

	
remote_input()

	

	
remote_input_files = []

	

	
remote_output()

	

	
required_num_cores = 0

	

	
time_limit = 0

	

	
workflow = b'#!/usr/bin/env cwl-runner\n\ncwlVersion: v1.0\nclass: Workflow\nsteps:\n sleep:\n run: test/no_such_step.cwl\n in:\n delay:\n default: 120\n\ninputs: []\n\noutputs: []\n'

	

	
class cerise.test.fixture_jobs.NoWorkflowJob

	Bases: object

A job without a workflow.

	
input_content = {}

	

	
local_input()

	

	
local_input_files = []

	

	
output_content = {}

	

	
output_files = []

	

	
remote_input()

	

	
remote_input_files = []

	

	
remote_output()

	

	
required_num_cores = 0

	

	
time_limit = 0

	

	
workflow = None

	

	
class cerise.test.fixture_jobs.PartiallyFailingJob

	Bases: object

	
input_content = {}

	

	
local_input()

	

	
local_input_files = []

	

	
local_output = '{ "output": { "class": "File", "location": "output.txt" }, "missing_output": null }\n'

	

	
output_content = [('output.txt', b'Running on host: hostname\n')]

	

	
output_files = [<cerise.back_end.file.File object>]

	

	
remote_input()

	

	
remote_input_files = []

	

	
remote_output()

	

	
required_num_cores = 0

	

	
time_limit = 0

	

	
workflow = b'#!/usr/bin/env cwl-runner\n\ncwlVersion: v1.0\nclass: Workflow\ninputs: []\noutputs:\n output:\n type: File\n outputSource: failing/output\n missing_output:\n type: File\n outputSource: failing/missing_output\n\nsteps:\n failing:\n run: test/partially_failing_step.cwl\n in: []\n out:\n [output, missing_output]\n'

	

	
class cerise.test.fixture_jobs.PassJob

	Bases: object

A simple job with no inputs or outputs.

	
input_content = {}

	

	
local_input()

	Argument is local input dir for this job.

That’s normally local_exchange / input / job_name.

	
local_input_files = []

	

	
local_output = '{}'

	

	
output_content = {}

	

	
output_files = []

	

	
remote_input()

	

	
remote_input_files = []

	

	
remote_output()

	Argument is remote work dir for this job.

	
required_num_cores = 0

	

	
time_limit = 0

	

	
workflow = b'#!/usr/bin/env cwl-runner\n\ncwlVersion: v1.0\nclass: CommandLineTool\nbaseCommand: echo\ninputs: []\noutputs: []\n'

	

	
class cerise.test.fixture_jobs.SecondaryFilesJob

	Bases: object

A simple job with an input file with a secondary file.

	
input_content = {'hello_world.2nd': b'Hello, secondaryFiles!', 'hello_world.txt': b'Hello, World!\n\nHere is a test file for the staging test.\n\n'}

	

	
local_input()

	

	
local_input_files = [<cerise.back_end.file.File object>]

	

	
local_output = '{ "counts": { "class": "File", "location": "output.txt" } }\n'

	

	
output_content = {'output.txt': b' 4 11 58 hello_world.txt'}

	

	
output_files = [<cerise.back_end.file.File object>]

	

	
remote_input()

	

	
remote_input_files = [('file', '01_hello_world.txt', b'Hello, World!\n\nHere is a test file for the staging test.\n\n'), ('file', '02_hello_world.2nd', b'Hello, secondaryFiles!')]

	

	
remote_output()

	

	
required_num_cores = 0

	

	
time_limit = 0

	

	
workflow = b'#!/usr/bin/env cwl-runner\n\ncwlVersion: v1.0\nclass: Workflow\ninputs:\n file:\n type: File\n\noutputs:\n counts:\n type: File\n outputSource: wc/output\n\nsteps:\n wc:\n run: test/secondary_files.cwl\n in:\n textfile: file\n out:\n [output]\n'

	

	
class cerise.test.fixture_jobs.SlowJob

	Bases: object

	
input_content = {}

	

	
local_input()

	

	
local_input_files = []

	

	
local_output = '{}'

	

	
output_content = {}

	

	
output_files = []

	

	
remote_input()

	

	
remote_input_files = []

	

	
remote_output()

	

	
required_num_cores = 0

	

	
time_limit = 0

	

	
workflow = b'#!/usr/bin/env cwl-runner\n\ncwlVersion: v1.0\nclass: Workflow\nsteps:\n sleep:\n run: test/sleep.cwl\n in:\n delay:\n default: 1\n\ninputs: []\n\noutputs: []\n'

	

	
class cerise.test.fixture_jobs.WcJob

	Bases: object

A simple job with an input file and an output file.

	
input_content = {'hello_world.txt': b'Hello, World!\n\nHere is a test file for the staging test.\n\n'}

	

	
local_input()

	

	
local_input_files = [<cerise.back_end.file.File object>]

	

	
local_output = '{ "output": { "class": "File", "location": "output.txt" } }\n'

	

	
output_content = {'output.txt': b' 4 11 58 hello_world.txt'}

	

	
output_files = [<cerise.back_end.file.File object>]

	

	
remote_input()

	

	
remote_input_files = [('file', '01_hello_world.txt', b'Hello, World!\n\nHere is a test file for the staging test.\n\n')]

	

	
remote_output()

	

	
required_num_cores = 3

	

	
time_limit = 60

	

	
workflow = b'#!/usr/bin/env cwl-runner\n\ncwlVersion: v1.0\nclass: Workflow\ninputs:\n file:\n type: File\n\noutputs:\n counts:\n type: File\n outputSource: wc/output\n\nsteps:\n wc:\n run: test/wc.cwl\n in:\n file: file\n out:\n [output]\n\nhints:\n ResourceRequirement:\n coresMin: 3\n'

	

cerise.test.test_config module

cerise.test.test_service module

Module contents

 Python Module Index

 c

 		 	

 		
 c	

 	[image: -]
 	
 cerise	

 	
 	
 cerise.back_end	

 	
 	
 cerise.back_end.cwl	

 	
 	
 cerise.back_end.execution_manager	

 	
 	
 cerise.back_end.file	

 	
 	
 cerise.back_end.job_planner	

 	
 	
 cerise.back_end.job_runner	

 	
 	
 cerise.back_end.local_files	

 	
 	
 cerise.back_end.remote_api	

 	
 	
 cerise.back_end.remote_job_files	

 	
 	
 cerise.back_end.test	

 	
 	
 cerise.back_end.test.mock_job	

 	
 	
 cerise.back_end.test.test_job_planner	

 	
 	
 cerise.config	

 	
 	
 cerise.front_end	

 	
 	
 cerise.front_end.controllers	

 	
 	
 cerise.job_store	

 	
 	
 cerise.job_store.job_state	

 	
 	
 cerise.job_store.sqlite_job	

 	
 	
 cerise.job_store.sqlite_job_store	

 	
 	
 cerise.run_back_end	

 	
 	
 cerise.test	

 	
 	
 cerise.test.fixture_jobs	

 	
 	
 cerise.util	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | W

A

 	
 	add_log() (cerise.back_end.test.mock_job.MockJob method)

 	(cerise.job_store.sqlite_job.SQLiteJob method)

B

 	
 	BrokenJob (class in cerise.test.fixture_jobs)

C

 	
 	cancel_job() (cerise.back_end.job_runner.JobRunner method)

 	cancellation_active (cerise.job_store.job_state.JobState attribute)

 	CANCELLED (cerise.job_store.job_state.JobState attribute)

 	cerise (module)

 	cerise.back_end (module)

 	cerise.back_end.cwl (module)

 	cerise.back_end.execution_manager (module)

 	cerise.back_end.file (module)

 	cerise.back_end.job_planner (module)

 	cerise.back_end.job_runner (module)

 	cerise.back_end.local_files (module)

 	cerise.back_end.remote_api (module)

 	cerise.back_end.remote_job_files (module)

 	cerise.back_end.test (module)

 	cerise.back_end.test.mock_job (module)

 	cerise.back_end.test.test_job_planner (module)

 	
 	cerise.config (module)

 	cerise.front_end (module)

 	cerise.front_end.controllers (module)

 	cerise.job_store (module)

 	cerise.job_store.job_state (module)

 	cerise.job_store.sqlite_job (module)

 	cerise.job_store.sqlite_job_store (module)

 	cerise.run_back_end (module)

 	cerise.test (module)

 	cerise.test.fixture_jobs (module)

 	cerise.util (module)

 	close_file_systems() (cerise.config.Config method)

 	Config (class in cerise.config)

 	create_job() (cerise.job_store.sqlite_job_store.SQLiteJobStore method)

 	create_output_dir() (cerise.back_end.local_files.LocalFiles method)

 	critical() (cerise.back_end.test.mock_job.MockJob method)

 	(cerise.job_store.sqlite_job.SQLiteJob method)

D

 	
 	debug() (cerise.back_end.test.mock_job.MockJob method)

 	(cerise.job_store.sqlite_job.SQLiteJob method)

 	delete_job() (cerise.back_end.remote_job_files.RemoteJobFiles method)

 	(cerise.job_store.sqlite_job_store.SQLiteJobStore method)

 	
 	delete_output_dir() (cerise.back_end.local_files.LocalFiles method)

 	destage_job_output() (cerise.back_end.remote_job_files.RemoteJobFiles method)

E

 	
 	error() (cerise.back_end.test.mock_job.MockJob method)

 	(cerise.job_store.sqlite_job.SQLiteJob method)

 	
 	execute_jobs() (cerise.back_end.execution_manager.ExecutionManager method)

 	ExecutionManager (class in cerise.back_end.execution_manager)

F

 	
 	File (class in cerise.back_end.file)

 	
 	FileArrayJob (class in cerise.test.fixture_jobs)

 	FINISHED (cerise.job_store.job_state.JobState attribute)

G

 	
 	get_base_url() (cerise.config.Config method)

 	get_basedir() (cerise.config.Config method)

 	get_cores_per_node() (cerise.config.Config method)

 	get_cwltool_result() (in module cerise.back_end.cwl)

 	get_database_location() (cerise.config.Config method)

 	get_file_system() (cerise.config.Config method)

 	get_files_from_binding() (in module cerise.back_end.cwl)

 	get_job() (cerise.job_store.sqlite_job_store.SQLiteJobStore method)

 	get_log_file() (cerise.config.Config method)

 	get_log_level() (cerise.config.Config method)

 	get_pid_file() (cerise.config.Config method)

 	get_projects() (cerise.back_end.remote_api.RemoteApi method)

 	get_queue_name() (cerise.config.Config method)

 	
 	get_remote_cwl_runner() (cerise.config.Config method)

 	get_remote_refresh() (cerise.config.Config method)

 	get_required_num_cores() (in module cerise.back_end.cwl)

 	get_scheduler() (cerise.config.Config method)

 	get_scheduler_options() (cerise.config.Config method)

 	get_secondary_files() (in module cerise.back_end.cwl)

 	get_service_host() (cerise.config.Config method)

 	get_service_port() (cerise.config.Config method)

 	get_slots_per_node() (cerise.config.Config method)

 	get_store_location_client() (cerise.config.Config method)

 	get_store_location_service() (cerise.config.Config method)

 	get_time_limit() (in module cerise.back_end.cwl)

 	get_username() (cerise.config.Config method)

 	get_workflow_step_names() (in module cerise.back_end.cwl)

H

 	
 	has_logging() (cerise.config.Config method)

 	
 	HostnameJob (class in cerise.test.fixture_jobs)

I

 	
 	id (cerise.back_end.test.mock_job.MockJob attribute)

 	(cerise.job_store.sqlite_job.SQLiteJob attribute)

 	index (cerise.back_end.file.File attribute)

 	info() (cerise.back_end.test.mock_job.MockJob method)

 	(cerise.job_store.sqlite_job.SQLiteJob method)

 	input_content (cerise.test.fixture_jobs.BrokenJob attribute)

 	(cerise.test.fixture_jobs.FileArrayJob attribute)

 	(cerise.test.fixture_jobs.HostnameJob attribute)

 	(cerise.test.fixture_jobs.InstallScriptTestJob attribute)

 	(cerise.test.fixture_jobs.MissingInputJob attribute)

 	(cerise.test.fixture_jobs.NoSuchStepJob attribute)

 	(cerise.test.fixture_jobs.NoWorkflowJob attribute)

 	(cerise.test.fixture_jobs.PartiallyFailingJob attribute)

 	(cerise.test.fixture_jobs.PassJob attribute)

 	(cerise.test.fixture_jobs.SecondaryFilesJob attribute)

 	(cerise.test.fixture_jobs.SlowJob attribute)

 	(cerise.test.fixture_jobs.WcJob attribute)

 	
 	install() (cerise.back_end.remote_api.RemoteApi method)

 	InstallScriptTestJob (class in cerise.test.fixture_jobs)

 	InvalidJobError

 	is_final (cerise.job_store.job_state.JobState attribute)

 	is_remote (cerise.job_store.job_state.JobState attribute)

 	is_workflow() (in module cerise.back_end.cwl)

J

 	
 	JobNotFound

 	JobPlanner (class in cerise.back_end.job_planner)

 	
 	JobRunner (class in cerise.back_end.job_runner)

 	JobState (class in cerise.job_store.job_state)

L

 	
 	list_jobs() (cerise.job_store.sqlite_job_store.SQLiteJobStore method)

 	local_input (cerise.back_end.test.mock_job.MockJob attribute)

 	(cerise.job_store.sqlite_job.SQLiteJob attribute)

 	local_input() (cerise.test.fixture_jobs.BrokenJob method)

 	(cerise.test.fixture_jobs.FileArrayJob method)

 	(cerise.test.fixture_jobs.HostnameJob method)

 	(cerise.test.fixture_jobs.InstallScriptTestJob method)

 	(cerise.test.fixture_jobs.LongRunningJob method)

 	(cerise.test.fixture_jobs.MissingInputJob method)

 	(cerise.test.fixture_jobs.NoSuchStepJob method)

 	(cerise.test.fixture_jobs.NoWorkflowJob method)

 	(cerise.test.fixture_jobs.PartiallyFailingJob method)

 	(cerise.test.fixture_jobs.PassJob method)

 	(cerise.test.fixture_jobs.SecondaryFilesJob method)

 	(cerise.test.fixture_jobs.SlowJob method)

 	(cerise.test.fixture_jobs.WcJob method)

 	local_input_files (cerise.test.fixture_jobs.BrokenJob attribute)

 	(cerise.test.fixture_jobs.FileArrayJob attribute)

 	(cerise.test.fixture_jobs.HostnameJob attribute)

 	(cerise.test.fixture_jobs.InstallScriptTestJob attribute)

 	(cerise.test.fixture_jobs.LongRunningJob attribute)

 	(cerise.test.fixture_jobs.MissingInputJob attribute)

 	(cerise.test.fixture_jobs.NoSuchStepJob attribute)

 	(cerise.test.fixture_jobs.NoWorkflowJob attribute)

 	(cerise.test.fixture_jobs.PartiallyFailingJob attribute)

 	(cerise.test.fixture_jobs.PassJob attribute)

 	(cerise.test.fixture_jobs.SecondaryFilesJob attribute)

 	(cerise.test.fixture_jobs.SlowJob attribute)

 	(cerise.test.fixture_jobs.WcJob attribute)

 	
 	local_output (cerise.back_end.test.mock_job.MockJob attribute)

 	(cerise.job_store.sqlite_job.SQLiteJob attribute)

 	(cerise.test.fixture_jobs.FileArrayJob attribute)

 	(cerise.test.fixture_jobs.HostnameJob attribute)

 	(cerise.test.fixture_jobs.InstallScriptTestJob attribute)

 	(cerise.test.fixture_jobs.LongRunningJob attribute)

 	(cerise.test.fixture_jobs.NoSuchStepJob attribute)

 	(cerise.test.fixture_jobs.PartiallyFailingJob attribute)

 	(cerise.test.fixture_jobs.PassJob attribute)

 	(cerise.test.fixture_jobs.SecondaryFilesJob attribute)

 	(cerise.test.fixture_jobs.SlowJob attribute)

 	(cerise.test.fixture_jobs.WcJob attribute)

 	LocalFiles (class in cerise.back_end.local_files)

 	location (cerise.back_end.file.File attribute)

 	log (cerise.back_end.test.mock_job.MockJob attribute)

 	(cerise.job_store.sqlite_job.SQLiteJob attribute)

 	LongRunningJob (class in cerise.test.fixture_jobs)

M

 	
 	make_config() (in module cerise.config)

 	
 	MissingInputJob (class in cerise.test.fixture_jobs)

 	MockJob (class in cerise.back_end.test.mock_job)

N

 	
 	name (cerise.back_end.file.File attribute)

 	(cerise.back_end.test.mock_job.MockJob attribute)

 	(cerise.job_store.sqlite_job.SQLiteJob attribute)

 	
 	NoSuchStepJob (class in cerise.test.fixture_jobs)

 	NoWorkflowJob (class in cerise.test.fixture_jobs)

O

 	
 	output_content (cerise.test.fixture_jobs.BrokenJob attribute)

 	(cerise.test.fixture_jobs.FileArrayJob attribute)

 	(cerise.test.fixture_jobs.HostnameJob attribute)

 	(cerise.test.fixture_jobs.InstallScriptTestJob attribute)

 	(cerise.test.fixture_jobs.LongRunningJob attribute)

 	(cerise.test.fixture_jobs.NoSuchStepJob attribute)

 	(cerise.test.fixture_jobs.NoWorkflowJob attribute)

 	(cerise.test.fixture_jobs.PartiallyFailingJob attribute)

 	(cerise.test.fixture_jobs.PassJob attribute)

 	(cerise.test.fixture_jobs.SecondaryFilesJob attribute)

 	(cerise.test.fixture_jobs.SlowJob attribute)

 	(cerise.test.fixture_jobs.WcJob attribute)

 	
 	output_files (cerise.test.fixture_jobs.BrokenJob attribute)

 	(cerise.test.fixture_jobs.FileArrayJob attribute)

 	(cerise.test.fixture_jobs.HostnameJob attribute)

 	(cerise.test.fixture_jobs.InstallScriptTestJob attribute)

 	(cerise.test.fixture_jobs.LongRunningJob attribute)

 	(cerise.test.fixture_jobs.NoSuchStepJob attribute)

 	(cerise.test.fixture_jobs.NoWorkflowJob attribute)

 	(cerise.test.fixture_jobs.PartiallyFailingJob attribute)

 	(cerise.test.fixture_jobs.PassJob attribute)

 	(cerise.test.fixture_jobs.SecondaryFilesJob attribute)

 	(cerise.test.fixture_jobs.SlowJob attribute)

 	(cerise.test.fixture_jobs.WcJob attribute)

P

 	
 	PartiallyFailingJob (class in cerise.test.fixture_jobs)

 	PassJob (class in cerise.test.fixture_jobs)

 	PERMANENT_FAILURE (cerise.job_store.job_state.JobState attribute)

 	
 	plan_job() (cerise.back_end.job_planner.JobPlanner method)

 	please_delete (cerise.back_end.test.mock_job.MockJob attribute)

 	(cerise.job_store.sqlite_job.SQLiteJob attribute)

 	publish_job_output() (cerise.back_end.local_files.LocalFiles method)

R

 	
 	remote_error (cerise.back_end.test.mock_job.MockJob attribute)

 	(cerise.job_store.sqlite_job.SQLiteJob attribute)

 	remote_input() (cerise.test.fixture_jobs.BrokenJob method)

 	(cerise.test.fixture_jobs.FileArrayJob method)

 	(cerise.test.fixture_jobs.HostnameJob method)

 	(cerise.test.fixture_jobs.MissingInputJob method)

 	(cerise.test.fixture_jobs.NoSuchStepJob method)

 	(cerise.test.fixture_jobs.NoWorkflowJob method)

 	(cerise.test.fixture_jobs.PartiallyFailingJob method)

 	(cerise.test.fixture_jobs.PassJob method)

 	(cerise.test.fixture_jobs.SecondaryFilesJob method)

 	(cerise.test.fixture_jobs.SlowJob method)

 	(cerise.test.fixture_jobs.WcJob method)

 	remote_input_files (cerise.test.fixture_jobs.BrokenJob attribute)

 	(cerise.test.fixture_jobs.FileArrayJob attribute)

 	(cerise.test.fixture_jobs.HostnameJob attribute)

 	(cerise.test.fixture_jobs.MissingInputJob attribute)

 	(cerise.test.fixture_jobs.NoSuchStepJob attribute)

 	(cerise.test.fixture_jobs.NoWorkflowJob attribute)

 	(cerise.test.fixture_jobs.PartiallyFailingJob attribute)

 	(cerise.test.fixture_jobs.PassJob attribute)

 	(cerise.test.fixture_jobs.SecondaryFilesJob attribute)

 	(cerise.test.fixture_jobs.SlowJob attribute)

 	(cerise.test.fixture_jobs.WcJob attribute)

 	remote_input_path (cerise.back_end.test.mock_job.MockJob attribute)

 	(cerise.job_store.sqlite_job.SQLiteJob attribute)

 	remote_job_id (cerise.back_end.test.mock_job.MockJob attribute)

 	(cerise.job_store.sqlite_job.SQLiteJob attribute)

 	remote_output (cerise.back_end.test.mock_job.MockJob attribute)

 	(cerise.job_store.sqlite_job.SQLiteJob attribute)

 	remote_output() (cerise.test.fixture_jobs.BrokenJob method)

 	(cerise.test.fixture_jobs.FileArrayJob method)

 	(cerise.test.fixture_jobs.HostnameJob method)

 	(cerise.test.fixture_jobs.InstallScriptTestJob method)

 	(cerise.test.fixture_jobs.NoSuchStepJob method)

 	(cerise.test.fixture_jobs.NoWorkflowJob method)

 	(cerise.test.fixture_jobs.PartiallyFailingJob method)

 	(cerise.test.fixture_jobs.PassJob method)

 	(cerise.test.fixture_jobs.SecondaryFilesJob method)

 	(cerise.test.fixture_jobs.SlowJob method)

 	(cerise.test.fixture_jobs.WcJob method)

 	
 	remote_stderr_path (cerise.back_end.test.mock_job.MockJob attribute)

 	(cerise.job_store.sqlite_job.SQLiteJob attribute)

 	remote_stdout_path (cerise.back_end.test.mock_job.MockJob attribute)

 	(cerise.job_store.sqlite_job.SQLiteJob attribute)

 	remote_system_err_path (cerise.back_end.test.mock_job.MockJob attribute)

 	(cerise.job_store.sqlite_job.SQLiteJob attribute)

 	remote_system_out_path (cerise.back_end.test.mock_job.MockJob attribute)

 	(cerise.job_store.sqlite_job.SQLiteJob attribute)

 	remote_workdir_path (cerise.back_end.test.mock_job.MockJob attribute)

 	(cerise.job_store.sqlite_job.SQLiteJob attribute)

 	remote_workflow_path (cerise.back_end.test.mock_job.MockJob attribute)

 	(cerise.job_store.sqlite_job.SQLiteJob attribute)

 	RemoteApi (class in cerise.back_end.remote_api)

 	RemoteJobFiles (class in cerise.back_end.remote_job_files)

 	required_num_cores (cerise.back_end.test.mock_job.MockJob attribute)

 	(cerise.job_store.sqlite_job.SQLiteJob attribute)

 	(cerise.test.fixture_jobs.BrokenJob attribute)

 	(cerise.test.fixture_jobs.FileArrayJob attribute)

 	(cerise.test.fixture_jobs.HostnameJob attribute)

 	(cerise.test.fixture_jobs.InstallScriptTestJob attribute)

 	(cerise.test.fixture_jobs.LongRunningJob attribute)

 	(cerise.test.fixture_jobs.MissingInputJob attribute)

 	(cerise.test.fixture_jobs.NoSuchStepJob attribute)

 	(cerise.test.fixture_jobs.NoWorkflowJob attribute)

 	(cerise.test.fixture_jobs.PartiallyFailingJob attribute)

 	(cerise.test.fixture_jobs.PassJob attribute)

 	(cerise.test.fixture_jobs.SecondaryFilesJob attribute)

 	(cerise.test.fixture_jobs.SlowJob attribute)

 	(cerise.test.fixture_jobs.WcJob attribute)

 	resolve_input() (cerise.back_end.local_files.LocalFiles method)

 	resolve_retry_count (cerise.back_end.test.mock_job.MockJob attribute)

 	(cerise.job_store.sqlite_job.SQLiteJob attribute)

 	resolve_secondary_files() (cerise.back_end.local_files.LocalFiles method)

 	RUNNING (cerise.job_store.job_state.JobState attribute)

 	RUNNING_CR (cerise.job_store.job_state.JobState attribute)

S

 	
 	secondary_files (cerise.back_end.file.File attribute)

 	SecondaryFilesJob (class in cerise.test.fixture_jobs)

 	shutdown() (cerise.back_end.execution_manager.ExecutionManager method)

 	SlowJob (class in cerise.test.fixture_jobs)

 	source (cerise.back_end.file.File attribute)

 	SQLiteJob (class in cerise.job_store.sqlite_job)

 	SQLiteJobStore (class in cerise.job_store.sqlite_job_store)

 	stage_job() (cerise.back_end.remote_job_files.RemoteJobFiles method)

 	STAGING_IN (cerise.job_store.job_state.JobState attribute)

 	
 	STAGING_IN_CR (cerise.job_store.job_state.JobState attribute)

 	STAGING_OUT (cerise.job_store.job_state.JobState attribute)

 	STAGING_OUT_CR (cerise.job_store.job_state.JobState attribute)

 	start_job() (cerise.back_end.job_runner.JobRunner method)

 	state (cerise.back_end.test.mock_job.MockJob attribute)

 	(cerise.job_store.sqlite_job.SQLiteJob attribute)

 	SUBMITTED (cerise.job_store.job_state.JobState attribute)

 	SUCCESS (cerise.job_store.job_state.JobState attribute)

 	SYSTEM_ERROR (cerise.job_store.job_state.JobState attribute)

T

 	
 	TEMPORARY_FAILURE (cerise.job_store.job_state.JobState attribute)

 	test_job_planner_init() (in module cerise.back_end.test.test_job_planner)

 	test_plan_job() (in module cerise.back_end.test.test_job_planner)

 	time_limit (cerise.back_end.test.mock_job.MockJob attribute)

 	(cerise.job_store.sqlite_job.SQLiteJob attribute)

 	(cerise.test.fixture_jobs.BrokenJob attribute)

 	(cerise.test.fixture_jobs.FileArrayJob attribute)

 	(cerise.test.fixture_jobs.HostnameJob attribute)

 	(cerise.test.fixture_jobs.InstallScriptTestJob attribute)

 	(cerise.test.fixture_jobs.LongRunningJob attribute)

 	(cerise.test.fixture_jobs.MissingInputJob attribute)

 	(cerise.test.fixture_jobs.NoSuchStepJob attribute)

 	(cerise.test.fixture_jobs.NoWorkflowJob attribute)

 	(cerise.test.fixture_jobs.PartiallyFailingJob attribute)

 	(cerise.test.fixture_jobs.PassJob attribute)

 	(cerise.test.fixture_jobs.SecondaryFilesJob attribute)

 	(cerise.test.fixture_jobs.SlowJob attribute)

 	(cerise.test.fixture_jobs.WcJob attribute)

 	
 	to_cwl_state_string (cerise.job_store.job_state.JobState attribute)

 	translate_runner_location() (cerise.back_end.remote_api.RemoteApi method)

 	translate_workflow() (cerise.back_end.remote_api.RemoteApi method)

 	try_transition() (cerise.back_end.test.mock_job.MockJob method)

 	(cerise.job_store.sqlite_job.SQLiteJob method)

U

 	
 	update_available() (cerise.back_end.remote_api.RemoteApi method)

 	
 	update_job() (cerise.back_end.job_runner.JobRunner method)

 	(cerise.back_end.remote_job_files.RemoteJobFiles method)

W

 	
 	WAITING (cerise.job_store.job_state.JobState attribute)

 	WAITING_CR (cerise.job_store.job_state.JobState attribute)

 	warning() (cerise.back_end.test.mock_job.MockJob method)

 	(cerise.job_store.sqlite_job.SQLiteJob method)

 	WcJob (class in cerise.test.fixture_jobs)

 	workflow (cerise.back_end.test.mock_job.MockJob attribute)

 	(cerise.job_store.sqlite_job.SQLiteJob attribute)

 	(cerise.test.fixture_jobs.BrokenJob attribute)

 	(cerise.test.fixture_jobs.FileArrayJob attribute)

 	(cerise.test.fixture_jobs.HostnameJob attribute)

 	(cerise.test.fixture_jobs.InstallScriptTestJob attribute)

 	(cerise.test.fixture_jobs.LongRunningJob attribute)

 	(cerise.test.fixture_jobs.MissingInputJob attribute)

 	(cerise.test.fixture_jobs.NoSuchStepJob attribute)

 	(cerise.test.fixture_jobs.NoWorkflowJob attribute)

 	(cerise.test.fixture_jobs.PartiallyFailingJob attribute)

 	(cerise.test.fixture_jobs.PassJob attribute)

 	(cerise.test.fixture_jobs.SecondaryFilesJob attribute)

 	(cerise.test.fixture_jobs.SlowJob attribute)

 	(cerise.test.fixture_jobs.WcJob attribute)

 	
 	workflow_content (cerise.back_end.test.mock_job.MockJob attribute)

 	(cerise.job_store.sqlite_job.SQLiteJob attribute)

cerise

	cerise package
	Subpackages
	cerise.back_end package
	Subpackages

	Submodules

	cerise.back_end.cwl module

	cerise.back_end.execution_manager module

	cerise.back_end.file module

	cerise.back_end.job_planner module

	cerise.back_end.job_runner module

	cerise.back_end.local_files module

	cerise.back_end.remote_api module

	cerise.back_end.remote_job_files module

	Module contents

	cerise.front_end package
	Subpackages

	Submodules

	cerise.front_end.encoder module

	cerise.front_end.util module

	Module contents

	cerise.job_store package
	Submodules

	cerise.job_store.job_state module

	cerise.job_store.sqlite_job module

	cerise.job_store.sqlite_job_store module

	Module contents

	cerise.test package
	Submodules

	cerise.test.fixture_jobs module

	cerise.test.test_config module

	cerise.test.test_service module

	Module contents

	Submodules

	cerise.config module

	cerise.run_back_end module

	cerise.run_front_end module

	cerise.util module

	Module contents

 _images/job_state_machine.png
SUBMITTED —> front end

—> back end

Y
TEMPORARY_

PERMANENT_
FAILURE
Y
—(STAGINGiouHSTAGINGiouTicR
SUCCESS

NG_IN)—>{ STAGING_IN_CR > compute
resource
'
ERROR (WAITING)—)(WAITING_CR

_static/ajax-loader.gif

_images/architecture_diagram.png
Web

client

front

DAV

job

back

cerulean

end

store

end

compute
resource

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Welcome to Cerise’s documentation!

 		
 Introduction

 		
 Installation

 		
 Dependencies

 		
 Example usage

 		
 Contribution guide

 		
 Cerise Configuration

 		
 Introduction

 		
 Main configuration file

 		
 Compute resource configuration

 		
 API configuration file

 		
 Environment variables

 		
 Specialising Cerise

 		
 The API configuration file

 		
 The Dockerfile

 		
 Adding steps

 		
 A simple step

 		
 How Cerise installs the API

 		
 Debugging a specialisation

 		
 A more complex step

 		
 Alternatives for installing software

 		
 Versioning

 		
 Making a step template

 		
 Remote execution

 		
 Developer documentation

 		
 Releases

 		
 Make release branch

 		
 Update version

 		
 Check documentation

 		
 Run tests

 		
 Commit the version update

 		
 Merge into the master branch

 		
 Add a Docker Hub build

 		
 Requirements

 		
 Introduction

 		
 Overview

 		
 Functionality

 		
 Design overview

 		
 Architecture

 		
 Functionality

 		
 Behaviour

 		
 Multiprocess implementation

 		
 Known issues/failure modes

 		
 Source code

 		
 cerise package

 		
 Indices and tables

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

