
Cerberus Documentation
Release 0.9.1

Nicola Iarocci

September 23, 2015

Contents

1 At a Glance 3

2 Table of Contents 5
2.1 Cerberus Installation . 5
2.2 Cerberus Usage . 6
2.3 Extending Cerberus . 17
2.4 How to Contribute . 18
2.5 API Documentation . 21
2.6 Frequently Asked Questions . 23
2.7 Changelog . 23
2.8 Authors . 27
2.9 Contact . 28
2.10 License . 29

3 Copyright Notice 31

i

ii

Cerberus Documentation, Release 0.9.1

Cerberus is a lightweight and extensible data validation library for Python.

CERBERUS, n. The watch-dog of Hades, whose duty it was to guard the entrance; everybody, sooner
or later, had to go there, and nobody wanted to carry off the entrance. - Ambrose Bierce, The Devil’s
Dictionary

Cerberus provides type checking and other base functionality out of the box and is designed to be easily extensible,
allowing for easy custom validation. It has no dependencies and is thoroughly tested under Python 2.6, Python 2.7,
Python 3.3, Python 3.4, PyPy and PyPy3.

Contents 1

Cerberus Documentation, Release 0.9.1

2 Contents

CHAPTER 1

At a Glance

You define a validation schema and pass it to an instance of the Validator class:

>>> schema = {'name': {'type': 'string'}}
>>> v = Validator(schema)

Then you simply invoke the validate() to validate a dictionary against the schema. If validation succeeds, True
is returned:

>>> document = {'name': 'john doe'}
>>> v.validate(document)
True

3

Cerberus Documentation, Release 0.9.1

4 Chapter 1. At a Glance

CHAPTER 2

Table of Contents

2.1 Cerberus Installation

This part of the documentation covers the installation of Cerberus. The first step to using any software package is
getting it properly installed.

2.1.1 Stable Version

Cerberus is on PyPI so all you need to do is:

pip install cerberus

2.1.2 Development Version

Cerberus is actively developed on GitHub, where the code is always available. If you want to work with the develop-
ment version, there are two ways: you can either let pip pull in the development version, or you can tell it to operate
on a git checkout. Either way, virtualenv is recommended.

Get the git checkout in a new virtualenv and run in development mode.

$ git clone http://github.com/nicolaiarocci/cerberus.git
Initialized empty Git repository in ~/dev/cerberus.git/
$ cd cerberus
$ virtualenv venv --distribute
New python executable in venv/bin/python
Installing distribute............done.
$. venv/bin/activate
$ python setup.py install
...
Finished processing dependencies for Cerberus

This will pull in the dependencies and activate the git head as the current version inside the virtualenv. Then all you
have to do is run git pull origin to update to the latest version.

To just get the development version without git, do this instead:

$ mkdir cerberus
$ cd cerberus
$ virtualenv venv --distribute
$. venv/bin/activate
New python executable in venv/bin/python

5

http://pypi.python.org/pypi/Cerberus
https://github.com/nicolaiarocci/cerberus

Cerberus Documentation, Release 0.9.1

Installing distribute............done.
$ pip install git+git://github.com/nicolaiarocci/cerberus.git
...
Cleaning up...

And you’re done!

2.2 Cerberus Usage

2.2.1 Basic Usage

You define a validation schema and pass it to an instance of the Validator class:

>>> schema = {'name': {'type': 'string'}}
>>> v = Validator(schema)

Then you simply invoke the validate() to validate a dictionary against the schema. If validation succeeds, True
is returned:

>>> document = {'name': 'john doe'}
>>> v.validate(document)
True

Alternatively, you can pass both the dictionary and the schema to the validate() method:

>>> v = Validator()
>>> v.validate(document, schema)
True

Which can be handy if your schema is changing through the life of the instance.

Unlike other validation tools, Cerberus will not halt and raise an exception on the first validation issue. The whole doc-
ument will always be processed, and False will be returned if validation failed. You can then access the errors()
method to obtain a list of issues.

>>> schema = {'name': {'type': 'string'}, 'age': {'type': 'integer', 'min': 10}}
>>> document = {'name': 1337, 'age': 5}
>>> v.validate(document, schema)
False
>>> v.errors
{'age': 'min value is 10', 'name': 'must be of string type'}

You will still get SchemaError and ValidationError exceptions.

Changed in version 0.4.1: The Validator class is callable, allowing for the following shorthand syntax:

>>> document = {'name': 'john doe'}
>>> v(document)
True

2.2.2 Validation Schema

A validation schema is a dictionary. Schema keys are the keys allowed in the target dictionary. Schema values express
the rules that must be matched by the corresponding target values.

6 Chapter 2. Table of Contents

Cerberus Documentation, Release 0.9.1

>>> schema = {'name': {'type': 'string', 'maxlength': 10}}

In the example above we define a target dictionary with only one key, name, which is expected to be a string not longer
than 10 characters. Something like {’name’: ’john doe’} would validate, while something like {’name’:
’a very long string’} or {’name’: 99} would not.

By definition all keys are optional unless the required rule is set for a key.

2.2.3 Validation Rules

The following rules are currently supported:

type

Data type allowed for the key value. Can be one of the following:

• string

• integer

• float

• number (integer or float)

• boolean

• datetime

• dict (formally collections.mapping)

• list (formally collections.sequence, excluding strings)

• set

A list of types can be used to allow different values:

>>> v = Validator({'quotes': {'type': ['string', 'list']}})
>>> v.validate({'quotes': 'Hello world!'})
True
>>> v.validate({'quotes': ['Do not disturb my circles!', 'Heureka!']})
True

>>> v = Validator({'quotes': {'type': ['string', 'list'], 'schema': {'type': 'string'}}})
>>> v.validate({'quotes': 'Hello world!'})
True
>>> v.validate({'quotes': [1, 'Heureka!']})
False
>>> v.errors
{'quotes': {0: 'must be of string type'}}

You can extend this list and support custom types, see Custom Data Types.

Note: Please note that type validation is performed before any other validation rule which might exist on the same
field (only exception being the nullable rule). In the occurrence of a type failure subsequent validation rules on the
field will be skipped and validation will continue on other fields. This allows to safely assume that field type is correct
when other (standard or custom) rules are invoked.

Changed in version 0.9: If a list of types is given, the key value must match any of them.

2.2. Cerberus Usage 7

Cerberus Documentation, Release 0.9.1

Changed in version 0.7.1: dict and list typechecking are now performed with the more generic Mapping and
Sequence types from the builtin collections module. This means that instances of custom types designed to
the same interface as the builtin dict and list types can be validated with Cerberus. We exclude strings when type
checking for list/Sequence because it in the validation situation it is almost certain the string was not the intended
data type for a sequence.

Changed in version 0.7: Added the set data type.

Changed in version 0.6: Added the number data type.

Changed in version 0.4.0: Type validation is always executed first, and blocks other field validation rules on failure.

Changed in version 0.3.0: Added the float data type.

required

If True the key/value pair is mandatory. Validation will fail when it is missing, unless validate() is called with
update=True:

>>> schema = {'name': {'required': True, 'type': 'string'}, 'age': {'type': 'integer'}}
>>> v = Validator(schema)
>>> document = {'age': 10}
>>> v.validate(document)
False
>>> v.errors
{'name': 'must be of string type'}

>>> v.validate(document, update=True)
True

Note: String fields with empty values will still be validated, even when required is set to True. If you don’t want
to accept empty values, see the empty rule. Also, if dependencies are declared for the field, its required rule will
only be validated if all dependencies are included with the document.

Changed in version 0.8: Check field dependencies.

readonly

If True the value is readonly. Validation will fail if this field is present in the target dictionary.

nullable

If True the field value can be set to None. It is essentially the functionality of the ignore_none_values param-
eter of the Validator Class, but allowing for more fine grained control down to the field level.

>>> schema = {'a_nullable_integer': {'nullable': True, 'type': 'integer'}, 'an_integer': {'type': 'integer'}}
>>> v = Validator(schema)

>>> v.validate({'a_nullable_integer': 3})
True
>>> v.validate({'a_nullable_integer': None})
True

>>> v.validate({'an_integer': 3})
True
>>> v.validate({'an_integer': None})

8 Chapter 2. Table of Contents

Cerberus Documentation, Release 0.9.1

False
>>> v.errors
{'an_integer': 'must be of integer type'}

Changed in version 0.7: nullable is valid on fields lacking type definition.

New in version 0.3.0.

minlength, maxlength

Minimum and maximum length allowed for string and list types.

min, max

Minimum and maximum value allowed for integer, float and number types.

Changed in version 0.7: Added support for float and number types.

allowed

Allowed values for string, list and int types. Validation will fail if target values are not included in the allowed
list.:

>>> schema = {'role': {'type': 'list', 'allowed': ['agent', 'client', 'supplier']}}
>>> v = Validator(schema)
>>> v.validate({'role': ['agent', 'supplier']})
True

>>> v.validate({'role': ['intern']})
False
>>> v.errors
{'role': "unallowed values ['intern']"}

>>> schema = {'role': {'type': 'string', 'allowed': ['agent', 'client', 'supplier']}}
>>> v = Validator(schema)
>>> v.validate({'role': 'supplier'})
True

>>> v.validate({'role': 'intern'})
False
>>> v.errors
{'role': 'unallowed value intern'}

>>> schema = {'a_restricted_integer': {'type': 'integer', 'allowed': [-1, 0, 1]}}
>>> v = Validator(schema)
>>> v.validate({'a_restricted_integer': -1})
True

>>> v.validate({'a_restricted_integer': 2})
False
>>> v.errors
{'a_restricted_unteger': 'unallowed value 2'}

Changed in version 0.5.1: Added support for the int type.

2.2. Cerberus Usage 9

Cerberus Documentation, Release 0.9.1

empty

Only applies to string fields. If False validation will fail if the value is empty. Defaults to True.

>>> schema = {'name': {'type': 'string', 'empty': False}}
>>> document = {'name': ''}
>>> v.validate(document, schema)
False

>>> v.errors
{'name': 'empty values not allowed'}

New in version 0.0.3.

items (dict)

Deprecated since version 0.0.3: Use schema (dict) instead.

When a dictionary, items defines the validation schema for items in a list type:

>>> schema = {'rows': {'type': 'list', 'items': {'sku': {'type': 'string'}, 'price': {'type': 'integer'}}}}
>>> document = {'rows': [{'sku': 'KT123', 'price': 100}]}
>>> v.validate(document, schema)
True

Note: The items (dict) rule is deprecated, and will be removed in a future release.

items (list)

When a list, items defines a list of values allowed in a list type of fixed length in the given order:

>>> schema = {'list_of_values': {'type': 'list', 'items': [{'type': 'string'}, {'type': 'integer'}]}}
>>> document = {'list_of_values': ['hello', 100]}
>>> v.validate(document, schema)
True
>>> document = {'list_of_values': [100, 'hello']}
>>> v.validate(document, schema)
False

See schema (dict) rule below for dealing with arbitrary length list types.

schema (dict)

Validation rules for dict fields.

>>> schema = {'a_dict': {'type': 'dict', 'schema': {'address': {'type': 'string'}, 'city': {'type': 'string', 'required': True}}}}
>>> document = {'a_dict': {'address': 'my address', 'city': 'my town'}}
>>> v.validate(document, schema)
True

Note: If all keys should share the same validation rules you probably want to use valueschema instead.

10 Chapter 2. Table of Contents

Cerberus Documentation, Release 0.9.1

schema (list)

You can also use this rule to validate arbitrary length list items.

>>> schema = {'a_list': {'type': 'list', 'schema': {'type': 'integer'}}}
>>> document = {'a_list': [3, 4, 5]}
>>> v.validate(document, schema)
True

The schema rule on list types is also the prefered method for defining and validating a list of dictionaries.

>>> schema = {'rows': {'type': 'list', 'schema': {'type': 'dict', 'schema': {'sku': {'type': 'string'}, 'price': {'type': 'integer'}}}}}
>>> document = {'rows': [{'sku': 'KT123', 'price': 100}]}
>>> v.validate(document, schema)
True

Changed in version 0.0.3: Schema rule for list types of arbitrary length

valueschema

Validation schema for all values of a dict. The dict can have arbitrary keys, the values for all of which must
validate with given schema:

>>> schema = {'numbers': {'type': 'dict', 'valueschema': {'type': 'integer', min: 10}}}
>>> document = {'numbers': {'an integer': 10, 'another integer': 100}}
>>> v.validate(document, schema)
True

>>> document = {'numbers': {'an integer': 9}}
>>> v.validate(document, schema)
False

>>> v.errors
{'numbers': {'an integer': 'min value is 10'}}

New in version 0.7.

Changed in version 0.9: renamed keyschema to valueschema

propertyschema

This is the counterpart to valueschema that validates the keys of a dict. For historical reasons it is not named
keyschema.

>>> schema = 'a_dict': {'type': 'dict', 'propertyschema': {'type': 'string', 'regex': '[a-z]+'}}
>>> document = {'a_dict': {'key': 'value'}}
>>> v.validate(document, schema)
True

>>> document = {'a_dict': {'KEY': 'value'}}
>>> v.validate(document, schema)
False

New in version 0.9.

2.2. Cerberus Usage 11

Cerberus Documentation, Release 0.9.1

regex

Validation will fail if field value does not match the provided regex rule. Only applies to string fiels.

>>> schema = {'email': {'type': 'string', 'regex': '^[a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+$'}}
>>> document = {'email': 'john@example.com'}
>>> v.validate(document, schema)
True

>>> document = {'email': 'john_at_example_dot_com'}
>>> v.validate(document, schema)
False

>>> v.errors
{'email': 'value does not match regex "^[a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+$"}

For details on regex rules, see Regular Expressions Syntax on Python official site.

New in version 0.7.

dependencies

This rule allows for either a list or dict of dependencies. When a list is provided, all listed fields must be present in
order for the target field to be validated.

>>> schema = {'field1': {'required': False}, 'field2': {'required': False, 'dependencies': ['field1']}}
>>> document = {'field1': 7}
>>> v.validate(document, schema)
True

>>> document = {'field2': 7}
>>> v.validate(document, schema)
False

>>> v.errors
{'field2': 'field "field1" is required'}

When a dictionary is provided, then not only all dependencies must be present, but also any of their allowed values
must be matched.

>>> schema = {'field1': {'required': False}, 'field2': {'required': True, 'dependencies': {'field1': ['one', 'two']}}}
>>> document = {'field1': 'one', 'field2': 7}
>>> v.validate(document, schema)
True

>>> document = {'field1': 'three', 'field2': 7}
False

>>> v.errors
{'field2': "field 'field1' is required with values: ['one', 'two']"}

>>> # same as using a dependencies list
>>> document = {'field2': 7}
>>> v.validate(document, schema)
{'field2': "field 'field1' is required"}

>>> # one can also pass a single dependency value

12 Chapter 2. Table of Contents

https://docs.python.org/2/library/re.html#regular-expression-syntax

Cerberus Documentation, Release 0.9.1

>>> schema = {'field1': {'required': False}, 'field2': {'dependencies': {'field1': 'one'}}}
>>> document = {'field1': 'one', 'field2': 7}
>>> v.validate(document, schema)
True

>>> document = {'field1': 'two', 'field2': 7}
False

>>> v.errors
{'field2': "field 'field1' is required with values: one"}

Dependencies on sub-document fields are also supported:

>>> schema = {
... 'test_field': {'dependencies': ['a_dict.foo', 'a_dict.bar']},
... 'a_dict': {
... 'type': 'dict',
... 'schema': {
... 'foo': {'type': 'string'},
... 'bar': {'type': 'string'}
... }
... }
... }

>>> document = {'test_field': 'foobar', 'a_dict': {'foo': 'foo'}}
>>> v.validate(document, schema)
False

>>> v.errors
{'test_field': "field 'a_dict.bar' is required"}

Changed in version 0.8.1: Support for sub-document fields as dependencies.

Changed in version 0.8: Support for dependencies as a dictionary.

New in version 0.7.

anyof

This rule allows you to list multiple sets of rules to validate against. The field will be considered valid if it validates
against one set in the list. For example, to verify that a property is a number between 0 and 10 or 100 and 110, you
could do the following:

>>> schema = {'prop1':
... {'type': 'number',
... 'anyof':
... [{'min': 0, 'max': 10}, {'min': 100, 'max': 110}]}}
>>> doc = {'prop1': 5}
>>> v.validate(document, schema)
True
>>> doc = {'prop1': 105}
>>> v.validate(document, schema)
True
>>> doc = {'prop1': 55}
>>> v.validate(document, schema)
False
>>> print v.errors
{'prop1': {'anyof': 'no definitions validated', 'definition 1': 'min value is 100', 'definition 0': 'max value is 10'}}

2.2. Cerberus Usage 13

Cerberus Documentation, Release 0.9.1

New in version 0.9.

The anyof rule works by creating a new instance of a schema for each item in the list. The above schema is equivalent
to creating two separate schemas,

>>> schema1 = {'prop1': {'type': 'number', 'min': 0, 'max': 10}}
>>> schema2 = {'prop1': {'type': 'number', 'min': 100, 'max': 110}}
>>> doc = {'prop1': 5}
>>> valid = v.validate(document, schema1) or v.validate(document, schema2)
>>> valid
True
>>> doc = {'prop1': 105}
>>> valid = v.validate(document, schema1) or v.validate(document, schema2)
>>> valid
True
True
>>> doc = {'prop1': 55}
>>> valid = v.validate(document, schema1) or v.validate(document, schema2)
>>> valid
False

allof

Same as anyof, except that all rule collections in the list must validate.

New in version 0.9.

noneof

Same as anyof, except that it requires no rule collections in the list to validate.

New in version 0.9.

oneof

Same as anyof, except that only one rule collections in the list can validate.

New in version 0.9.

2.2.4 Allowing the Unknown

By default only keys defined in the schema are allowed:

>>> schema = {'name': {'type': 'string', 'maxlength': 10}}
>>> v.validate({'name': 'john', 'sex': 'M'})
False
>>> v.errors
{'sex': 'unknown field'}

However, you can allow unknown key/value pairs by either setting allow_unknown to True:

>>> v = Validator(schema={})
>>> v.allow_unknown = True
>>> v.validate({'name': 'john', 'sex': 'M'})
True

14 Chapter 2. Table of Contents

Cerberus Documentation, Release 0.9.1

Or you can set allow_unknown to a validation schema, in which case unknown fields will be validated against it:

>>> v = Validator(schema={})
>>> v.allow_unknown = {'type': 'string'}
>>> v.validate({'an_unknown_field': 'john'})
True
>>> v.validate({'an_unknown_field': 1})
False
>>> v.errors
{'an_unknown_field': 'must be of string type'}

allow_unknown can also be set at initialization:

>>> v = Validator(schema=schema, allow_unknown=True)
>>> v.validate({'name': 'john', 'sex': 'M'})
True

allow_unknown can also be set for nested dictionaries

>>> # by default allow_unknown is False for the whole document.
>>> v = Validator()
>>> v.allow_unknown
False

>>> # we can switch it on (or set it to a validation schema) for individual subdocuments
>>> schema = {
... 'name': {'type': 'string'},
... 'a_dict': {
... 'type': 'dict',
... 'allow_unknown': True,
... 'schema': {
... 'address': {'type': 'string'}
... }
... }
... }

>>> v.validate({'name': 'john', 'a_dict':{'an_unknown_field': 'is allowed'}}, schema)
True

>>> # this fails as allow_unknown is still False for the parent document.
>>> v.validate({'name': 'john', 'an_unknown_field': 'is not allowed', 'a_dict':{'an_unknown_field': 'is allowed'}}, schema)
False

>>> v.errors
{'an_unknown_field': 'unknown field'}

Changed in version 0.9: allow_unknown can also be set for nested dict fields.

Changed in version 0.8: allow_unknown can also be set to a validation schema.

2.2.5 Type Coercion

Type coercion allows you to apply a callable to a value before any other validators run. The return value of the callable
replaces the new value in the document. This can be used to convert values or sanitize data before it is validated.

>>> v = Validator({'amount': {'type': 'integer'}})
>>> v.validate({'amount': '1'})
False

2.2. Cerberus Usage 15

Cerberus Documentation, Release 0.9.1

>>> v = Validator({'amount': {'type': 'integer', 'coerce': int}})
>>> v.validate({'amount': '1'})
True
>>> v.document
{'amount': 1}

>>> to_bool = lambda v: v.lower() in ['true', '1']
>>> v = Validator({'flag': {'type': 'boolean', 'coerce': to_bool}})
>>> v.validate({'flag': 'true'})
True
>>> v.document
{'flag': True}

New in version 0.9.

2.2.6 Validated Method

There’s a wrapper-method validated that returns the validated document. It can be useful for flows like this:

v = Validator(schema)
valid_documents = [x for x in [v.validated(y) for y in documents] if x is not None]

If a coercion callable raises a TypeError or ValueError then the exception will be caught and the validation with
fail. All other exception pass through.

New in version 0.9.

2.2.7 Vanilla Python

Cerberus schemas are built with vanilla Python types: dict, list, string, etc. Even user-defined validation rules are
invoked in the schema by name, as a string. A useful side effect of this design is that schemas can be defined in a
number of ways, for example with YAML.

>>> import yaml
>>> schema_text = '''
...name:
... type: string
...age':
... type: integer
... min: 10
...'''
>>> schema = yaml.load(schema_text)
>>> document = {'name': 1337, 'age': 5}
>>> v.validate(document, schema)
False
>>> v.errors
{'age': 'min value is 10', 'name': 'must be of string type'}

You don’t have to use YAML of course, you can use your favorate serializer. JSON for example. As long as there is a
decoder thant can produce a nested dict, you can use it to define a schema.

16 Chapter 2. Table of Contents

Cerberus Documentation, Release 0.9.1

2.3 Extending Cerberus

2.3.1 Custom Validators

Cerberus supports custom validation in two styles:

• Class-based Custom Validators

• Function-based Custom Validation

As a general rule, when you are customizing validators in your application, Class-based style is more suitable
for common validators, which are also more human-readable (since the rule name is defined by yourself), while
Function-based style is more suitable for special and one-off ones.

Class-based Custom Validators

Suppose that in our use case some values can only be expressed as odd integers, therefore we decide to add support
for a new isodd rule to our validation schema:

>>> schema = {'oddity': {'isodd': True, 'type': 'integer'}, 'another': {'isodd': True}}

This is how we would go to implement that:

from cerberus import Validator

class MyValidator(Validator):
def _validate_isodd(self, isodd, field, value):

if isodd and not bool(value & 1):
self._error(field, "Must be an odd number")

By subclassing Cerberus Validator class and adding the custom _validate_<rulename> function, we just
enhanced Cerberus to suit our needs. The custom rule isodd is now available in our schema and, what really matters,
we can use it to validate all odd values:

>>> v = MyValidator(schema)
>>> v.validate({'oddity': 10, 'another': 12})
False
>>> v.errors
{'oddity': 'Must be an odd number', 'another': 'Must be an odd number'}

>>> v.validate({'oddity': 9, 'another': 11})
True

New in version 0.7.1: Custom validators also have access to a special self.document variable that allows valida-
tion of a field to happen in context of the rest of the document.

To make use of additional contextual information in a sub-class of Validator, use a pattern like this:

class MyValidator(Validator):
def __init__(self, *args, **kwargs):

if 'additional_context' in kwargs:
self.additional_context = kwargs['additional_context']

super(InheritedValidator, self).__init__(*args, **kwargs)

def _validate_type_foo(self, field, value):
make_use_of(self.additional_context)
...

New in version 0.9.

2.3. Extending Cerberus 17

Cerberus Documentation, Release 0.9.1

Custom Data Types

Cerberus supports and validates several standard data types (see type). When building Class-based Custom Valida-
tors you can add and validate your own data types. For example Eve (a tool for quickly building and deploying
RESTful Web Services) supports a custom objectid type, which is used to validate that field values conform to the
BSON/MongoDB ObjectId format.

You extend the supported set of data types by adding a _validate_type_<typename> method to your own
Validator subclass. This snippet, directly from Eve source, shows how the objectid has been implemented:

def _validate_type_objectid(self, field, value):
""" Enables validation for `objectid` schema attribute.

:param field: field name.
:param value: field value.
"""
if not re.match('[a-f0-9]{24}', value):

self._error(field, ERROR_BAD_TYPE % 'ObjectId')

New in version 0.0.2.

Function-based Custom Validation

With a special rule validator, you can customize validators by defining your own functions with the following
prototype:

def validate_<fieldname>(field, value, error):
pass

As a contrast, if the odd value is a special case, you may want to make the above rule isodd into Function-based
style, which is a more lightweight alternative:

def validate_oddity(field, value, error):
if not bool(value & 1):

error(field, "Must be an odd number")

Then, you can validate an odd value like this:

>>> schema = {'oddity': {'validator': validate_oddity}}
>>> v = Validator(schema)
>>> v.validate({'oddity': 10})
False
>>> v.errors
{'oddity': 'Must be an odd number'}

>>> v.validate({'oddity': 9})
True

New in version 0.8.

2.4 How to Contribute

Contributions are welcome! Not familiar with the codebase yet? No problem! There are many ways to contribute to
open source projects: reporting bugs, helping with the documentation, spreading the word and of course, adding new
features and patches.

18 Chapter 2. Table of Contents

http://python-eve.org

Cerberus Documentation, Release 0.9.1

2.4.1 Getting Started

1. Make sure you have a GitHub account.

2. Open a new issue, assuming one does not already exist.

3. Clearly describe the issue including steps to reproduce when it is a bug.

2.4.2 Making Changes

• Fork the repository on GitHub.

• Create a topic branch from where you want to base your work.

• This is usually the master branch.

• Please avoid working directly on master branch.

• Make commits of logical units (if needed rebase your feature branch before submitting it).

• Check for unnecessary whitespace with git diff --check before committing.

• Make sure your commit messages are in the proper format.

• If your commit fixes an open issue, reference it in the commit message (#15).

• Make sure your code comforms to PEP8.

• Make sure you have added the necessary tests for your changes.

• Run all the tests to assure nothing else was accidentally broken.

• Don’t forget to add yourself to AUTHORS.

These guidelines also apply when helping with documentation (actually, for typos and minor additions you might
choose to fork and edit).

2.4.3 Submitting Changes

• Push your changes to a topic branch in your fork of the repository.

• Submit a Pull Request.

• Wait for maintainer feedback.

2.4.4 First time contributor?

It’s alright. We’ve all been there.

2.4.5 Dont’ know where to start?

There are usually several TODO comments scattered around the codebase, maybe check them out and see if you have
ideas, or can help with them. Also, check the open issues in case there’s something that sparks your interest. What
about documentation? I suck at english so if you’re fluent with it (or notice any error), why not help with that? In any
case, other than GitHub help pages, you might want to check this excellent Effective Guide to Pull Requests

2.4. How to Contribute 19

https://github.com/nicolaiarocci/cerberus/issues/new
https://help.github.com/articles/fork-a-repo
http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html
http://www.python.org/dev/peps/pep-0008/
https://github.com/nicolaiarocci/cerberus/blob/master/AUTHORS
https://github.com/blog/844-forking-with-the-edit-button
https://help.github.com/articles/creating-a-pull-request
https://github.com/nicolaiarocci/cerberus/issues
https://help.github.com/
http://codeinthehole.com/writing/pull-requests-and-other-good-practices-for-teams-using-github/

Cerberus Documentation, Release 0.9.1

2.4.6 Running the Tests

Cerberus runs under Python 2.6, 2.7, Python 3.3, Python 3.4 and PyPy. Therefore tests will be run in those four
platforms in our continuous integration server.

The easiest way to get started is to run the tests in your local environment with:

$ python setup.py test

Testing with other Python versions

Before you submit a pull request, make sure your tests and changes run in all supported python versions: 2.6, 2.7, 3.3,
3.4 and PyPy. Instead of creating all those environments by hand, Cerberus uses tox.

Make sure you have all required python versions installed and run:

$ pip install tox # First time only
$ tox

This might take some time the first run as the different virtual environments are created and dependencies are installed.
If everything is ok, you will see the following:

_________ summary _________
py26: commands succeeded
py27: commands succeeded
py33: commands succeeded
py34: commands succeeded
pypy: commands succeeded
flake8: commands succeeded
congratulations :)

If something goes wrong and one test fails, you might need to run that test in the specific python version. You can use
the created environments to run some specific tests. For example, if a test suite fails in Python 3.4:

From the project folder
$ tox -e py34

Using Pytest

You also choose to run the whole test suite using pytest:

Run the whole test suite
$ py.test

Continuous Integration

Each time code is pushed to the master branch the whole test-suite is executed on Travis-CI. This is also the case for
pull-requests. When a pull request is submitted and the CI run fails two things happen: a ‘the build is broken’ email
is sent to the submitter; the request is rejected. The contributor can then fix the code, add one or more commits as
needed, and push again.

The CI will also run flake8 so make sure that your code complies to PEP8 before submitting a pull request, or be
prepared to be mail-spammed by CI.

20 Chapter 2. Table of Contents

https://travis-ci.org/nicolaiarocci/cerberus/
http://tox.readthedocs.org/en/latest/
http://pytest.org

Cerberus Documentation, Release 0.9.1

2.4.7 Source Code

Source code is available at GitHub.

2.5 API Documentation

2.5.1 Validator Class

class cerberus.Validator(*args, **kwargs)
Validator class. Validates any Python dict against a validation schema,

which is provided as an argument at class instantiation, or upon calling the validate() method.

Parameters

• schema – optional validation schema.

• transparent_schema_rules – if True unknown schema rules will be ignored (no
SchemaError will be raised). Defaults to False. Useful you need to extend the schema
grammar beyond Cerberus’ domain.

• ignore_none_values – If True it will ignore None values for type checking. (no Un-
knownType error will be added). Defaults to False. Useful if your document is composed
from function kwargs with defaults.

• allow_unknown – if True unknown key/value pairs (not present in the schema) will be
ignored, and validation will pass. Defaults to False, returning an ‘unknown field error’ un
validation.

Changed in version 0.9.1: ‘required’ will always be validated, regardless of any dependencies.

New in version 0.9: ‘anyof’, ‘noneof’, ‘allof’, ‘anyof’ validation rules. PyPy support. ‘coerce’ rule. ‘proper-
tyschema’ validation rule. ‘validator.validated’ takes a document as argument and returns a Validated document
or ‘None’ if validation failed.

Changed in version 0.9: Use ‘str.format’ in error messages so if someone wants to override them does not get
an excpetion if arguments are not passed. ‘keyschema’ is renamed to ‘valueschema’. Closes #92. ‘type’ can
be a list of valid types. Usages of ‘document’ to ‘self.document’ in ‘_validate’. When ‘items’ is applied to
a list, field name is used as key for ‘validator.errors’, and offending field indexes are used as keys for Field
errors ({‘a_list_of_strings’: {1: ‘not a string’}}) Additional kwargs that are passed to the __init__-method of an
Instance of Validator-(sub-)class are passed to child-validators. Ensure that additional **kwargs of a subclass
persist through validation Improve failure message when testing against multiple types. Ignore ‘keyschema’
when not a mapping. Ignore ‘schema’ when not a sequence. ‘allow_unknown’ can also be set for nested dicts.
Closes #75. Raise SchemaError when an unallowed ‘type’ is used in conjunction with ‘schema’ rule.

Changed in version 0.8.1: ‘dependencies’ for sub-document fields. Closes #64. ‘readonly’ should be validated
before any other validation. Closes #63. ‘allow_unknown’ does not apply to sub-dictionaries in a list. Closes
#67. update mode does not ignore required fields in subdocuments. Closes #72. ‘allow_unknown’ does not
respect custom rules. Closes #66.

New in version 0.8: ‘dependencies’ also support a dict of dependencies. ‘allow_unknown’ can be a schema used
to validate unknown fields. Support for function-based validation mode.

Changed in version 0.7.2: Successfully validate int as a float type.

Changed in version 0.7.1: Validator options like ‘allow_unknown’ and ‘ignore_none_values’ are now taken into
consideration when validating sub-dictionaries. Make self.document always the root level document. Up-front
validation for schemas.

2.5. API Documentation 21

https://github.com/nicolaiarocci/cerberus

Cerberus Documentation, Release 0.9.1

New in version 0.7: ‘keyschema’ validation rule. ‘regex’ validation rule. ‘dependencies’ validation rule. ‘mix’,
‘max’ now apply on floats and numbers too. Closes #30. ‘set’ data type.

New in version 0.6: ‘number’ (integer or float) validator.

Changed in version 0.5.0: validator.errors returns a dict where keys are document fields and values are
validation errors.

Changed in version 0.4.0: validate_update() is deprecated. Use validate() with update=True
instead. Type validation is always performed first (only exception being nullable). On failure, it blocks other
rules on the same field. Closes #18.

New in version 0.2.0: self.errors returns an empty list when validate() has not been called. Option so allow
nullable field values. Option to allow unknown key/value pairs.

New in version 0.1.0: Option to ignore None values for type checking.

New in version 0.0.3: Support for transparent schema rules. Added new ‘empty’ rule for string fields.

New in version 0.0.2: Support for addition and validation of custom data types.

current
Get the current document being validated.

When validating, the current (sub)document will be available via this property.

errors

Return type a list of validation errors. Will be empty if no errors were found during. Resets
after each call to validate().

validate(document, schema=None, update=False, context=None)
Validates a Python dictionary against a validation schema.

Parameters

• document – the dict to validate.

• schema – the validation schema. Defaults to None. If not provided here, the schema
must have been provided at class instantiation.

• update – If True validation of required fields won’t be performed.

• context – the document in which context validation should be performed. Defaults to
None.

Returns True if validation succeeds, False otherwise. Check the errors() property for a list
of validation errors.

Changed in version 0.4.0: Support for update mode.

validate_schema(schema)
Validates a schema against supported rules.

Parameters schema – the schema to be validated as a legal cerberus schema according to the
rules of this Validator object.

New in version 0.7.1.

validate_update(document, schema=None, context=None)
Validates a Python dictionary against a validation schema. The difference with validate() is that the
required rule will be ignored here.

Parameters

22 Chapter 2. Table of Contents

Cerberus Documentation, Release 0.9.1

• schema – optional validation schema. Defaults to None. If not provided here, the schema
must have been provided at class instantiation.

• context – the context in which the document should be validated. Defaults to None.

Returns True if validation succeeds, False otherwise. Check the errors() property for a list
of validation errors.

Deprecated since version 0.4.0: Use validate() with update=True instead.

validated(*args, **kwargs)
Wrapper around Validator.validate that returns the validated document or None if validation
failed.

2.5.2 Exceptions

class cerberus.SchemaError
Raised when the validation schema is missing, has the wrong format or contains errors.

class cerberus.ValidationError
Raised when the target dictionary is missing or has the wrong format

2.6 Frequently Asked Questions

2.6.1 Can I use Cerberus to validate objectis?

Yes. See Validating user objects with Cerberus.

2.7 Changelog

Here you can see the full list of changes between each Cerberus release.

2.7.1 Version 0.9.1

Released on July 7 2015

• Fix: ‘required’ is always evaluated, independent of eventual missing dependencies. This changes the pre-
vious behaviour whereas a required field with dependencies would only be reported as missing if all de-
pendencies were met. A missing required field will always be reported. Also see the discussion in
https://github.com/nicolaiarocci/eve/pull/665.

2.7.2 Version 0.9

Released on June 24 2015. Codename: ‘Mastrolindo’.

• New: ‘oneof’ rule which provides a list of definitions in which only one should validate (C.D. Clark III).

• New: ‘noneof’ rule which provides a list of definitions that should all not validate (C.D. Clark III).

• New: ‘anyof’ rule accepts a list of definitions and checks that one definition validates (C.D. Clark III).

• New: ‘allof’ rule validates if if all definitions validate (C.D. Clark III).

2.6. Frequently Asked Questions 23

http://nicolaiarocci.com/validating-user-objects-cerberus/
https://github.com/nicolaiarocci/eve/pull/665

Cerberus Documentation, Release 0.9.1

• New: ‘validator.validated’ takes a document as argument and returns a validated document or ‘None’ if valida-
tion failed (Frank Sachsenheim).

• New: PyPy support (Frank Sachsenheim).

• New: Type coercion (Brett).

• New: Added ‘propertyschema’ validation rule (Frank Sachsenheim).

• Change: Use ‘str.format’ in error messages so if someone wants to override them does not get an excpetion if
arguments are not passed. Closes #105 (Brett).

• Change: ‘keyschema’ renamed to ‘valueschema’, print a deprecation warning (Frank Sachsenheim).

• Change: ‘type’ can also be a list of types (Frank Sachsenheim).

• Fix: useages of ‘document’ to ‘self.document’ in ‘_validate’ (Frank Sachsenheim).

• Fix: when ‘items’ is applied to a list, field name is used as key for ‘validator.errors’, and offending field indexes
are used as keys for field errors ({‘a_list_of_strings’: {1: ‘not a string’}}) ‘type’ can be a list of valid types.

• Fix: Ensure that additional **kwargs of a subclass persist through validation (Frank Sachsenheim).

• Fix: improve failure message when testing against multiple types (Frank Sachsenheim).

• Fix: ignore ‘keyschema’ when not a mapping (Frank Sachsenheim).

• Fix: ignore ‘schema’ when not a sequence (Frank Sachsenheim).

• Fix: allow_unknown can also be set for nested dicts. Closes #75 (Tobias Betz).

• Fix: raise SchemaError when an unallowed ‘type’ is used in conjunction with ‘schema’ rule (Tobias Betz).

• Docs: added section that points out that YAML, JSON, etc. can be used to define schemas (C.D. Clark III).

• Docs: Improve ‘allow_unknown’ documentation (Frank Sachsenheim).

2.7.3 Version 0.8.1

Released on Mar 16 2015.

• Fix: dependency on a sub-document field does not work. Closes #64.

• Fix: readonly validation should happen before any other validation. Closes #63.

• Fix: allow_unknown does not apply to sub-dictionaries in a list. Closes #67.

• Fix: two tests being ignored because of name typo.

• Fix: update mode does not ignore required fields in subdocuments. Closes #72.

• Fix: allow_unknown does not respect custom rules. Closes #66.

• Fix typo in docstrings (Riccardo).

2.7.4 Version 0.8

Released on Jan 7 2015.

• ‘dependencies’ also supports dependency values.

• ‘allow_unknown’ can also be set to a validation schema, in which case unknown fields will be validated against
it. Closes nicolaiarocci/eve#405.

• New function-based custom validation mode (Luo Peng).

24 Chapter 2. Table of Contents

Cerberus Documentation, Release 0.9.1

• Fields with empty definitions in schema were reported as non-existent. Now they are considered as valid,
whatever their value is (Jaroslav Semančík).

• If dependencies are precised for a ‘required’ field, then the presence of the field is only validated if all depen-
dencies are present (Trong Hieu HA).

• Documentation typo (Nikita Vlaznev #55).

• [CI] Add travis_retry to pip install in case of network issues (Helgi Þormar Þorbjörnsson #49)

2.7.5 Version 0.7.2

Released on Jun 19 2014.

• Successfully validate int as float type (Florian Rathgeber).

2.7.6 Version 0.7.1

Released on Jun 17 2014.

• Validation schemas are now validated up-front. When you pass a Schema to the Validator it will be validated
against the supported ruleset (Paul Weaver). Closes #39.

• Custom validators also have access to a special ‘self.document’ variable that allows validation of a field to
happen in context of the rest of the document (Josh Villbrandt).

• Validator options like ‘allow_unknown’ and ‘ignore_none_values’ are now taken into consideration when vali-
dating sub-dictionaries. Closes #40.

2.7.7 Version 0.7

Released on May 16 2014.

• Python 3.4 is now supported.

• tox support.

• Added ‘dependencies’ validation rule (Lujeni).

• Added ‘keyschema’ validation rule (Florian Rathgeber).

• Added ‘regex’ validation rule. Closes #29.

• Added ‘set’ as a core data type. Closes #31.

• Not-nullable fields are validated independetly of their type definition (Jaroslav Semančík).

• Python trove classifiers added to setup.py. Closes #32.

• ‘min’ and ‘max’ now apply to floats and numbers too. Closes #30.

2.7.8 Version 0.6

Released on February 10 2014

• Added ‘number’ data type, which validates against both float and integer values (Brandon Aubie).

• Added support for running tests with py.test

• Fix non-blocking problem introduced with 0.5 (Martin Ortbauer).

2.7. Changelog 25

Cerberus Documentation, Release 0.9.1

• Fix bug when _error() is calld twice for a field (Jaroslav Semančík).

• More precise error message in rule ‘schema’ validation (Jaroslav Semančík).

• Use ‘allowed’ field for integer just like for string (Peter Demin).

2.7.9 Version 0.5

Released on December 4 2013

• ‘validator.errors’ now returns a dictionary where keys are document fields and values are lists of validation errors
for the field.

• Validator instances are now callable. Instead of validated = validator.validate(document) you can now choose
to do ‘validated = validator(document)’ (Eelke Hermens).

2.7.10 Version 0.4.0

Released on September 24 2013.

• ‘validate_update’ is deprecated and will be removed with next release. Use ‘validate’ with ‘update=True’ in-
stead. Closes #21.

• Fixed a minor encoding issue which made installing on Windows/Python3 impossible. Closes #19 (Arsh Singh).

• Fix documentation typo (Daniele Pizzolli).

• ‘type’ validation is always performed first (only exception being ‘nullable’). On failure, subsequent rules on the
same field are skipped. Closes #18.

2.7.11 Version 0.3.0

Released on July 9 2013.

• docstrings now conform to PEP8.

• self.errors returns an empty list if validate() has not been called.

• added validation for the ‘float’ data type.

• ‘nullable’ rule added to allow for null field values to be accepted in validations. This is different than re-
quired in that you can actively change a value to None instead of omitting or ignoring it. It is essentially the
ignore_none_values, allowing for more fine grained control down to the field level (Kaleb Pomeroy).

2.7.12 Version 0.2.0

Released on April 18 2013.

• ‘allow_unknown’ option added.

2.7.13 Version 0.1.0

Released on March 15 2013. Codename: ‘Claw’.

• entering beta phase.

• support for Python 3.

26 Chapter 2. Table of Contents

Cerberus Documentation, Release 0.9.1

• pep8 and pyflakes fixes (Harro van der Klauw).

• removed superflous typecheck for empty validator (Harro van der Klauw).

• ‘ignore_none_values’ option to ignore None values when type checking (Harro van der Klauw).

• ‘minlenght’ and ‘maxlength’ now apply to lists as well (Harro van der Klauw).

2.7.14 Version 0.0.3

Released on January 29 2013

• when a list item fails, its offset is now returned along with the list name.

• ‘transparent_schema_rules’ option added.

• ‘empty’ rule for string fields.

• ‘schema’ rule on lists of arbitrary lenght (Martjin Vermaat).

• ‘allowed’ rule on strings (Martjin Vermaat).

• ‘items’ (dict) is now deprecated. Use the upgraded ‘schema’ rule instead.

• AUTHORS file added to sources.

• CHANGES file added to sources.

2.7.15 Version 0.0.2

Released on November 22 2012.

• Added support for addition and validation of custom data types.

• Several documentation improvements.

2.7.16 Version 0.0.1

Released on October 16 2012.

First public preview release.

2.8 Authors

Cerberus is written and maintained by Nicola Iarocci and various contributors:

2.8.1 Development Lead

• Nicola Iarocci <nicola@nicolaiarocci.com>

2.8. Authors 27

mailto:nicola@nicolaiarocci.com

Cerberus Documentation, Release 0.9.1

2.8.2 Patches and Suggestions

• Arsh Singh

• Brandon Aubie

• Brett

• C.D. Clark III

• Danielle Pizzolli

• Denis Carriere

• Eelke Hermens

• Florian Rathgeber

• Frank Sachsenheim

• Harro van der Klauw

• Jaroslav Semančík

• Kaleb Pomeroy

• Kirill Pavlov

• Lujeni

• Luo Peng

• Martijn Vermaat

• Martin Ortbauer

• Nikita Vlaznev

• Paul Weaver

• Peter Demin

• Riccardo

• Tobias Betz

• Trong Hieu HA

2.9 Contact

If you’ve scoured the prose and API documentation and still can’t find an answer to your question, below are various
support resources that should help. We do request that you do at least skim the documentation before posting tickets
or mailing list questions, however!

If you’d like to stay up to date on the community and development of Cerberus, there are several options:

2.9.1 Blog

New releases are usually announced on my Website.

28 Chapter 2. Table of Contents

http://nicolaiarocci.com/tag/cerberus

Cerberus Documentation, Release 0.9.1

2.9.2 Twitter

I often tweet about new features and releases of Cerberus. Follow @nicolaiarocci.

2.9.3 Mailing List

The mailing list is intended to be a low traffic resource for users, developers and contributors of both the Cerberus and
Eve projects.

2.9.4 Bugs/ticket tracker

To file new bugs or search existing ones, you may visit Issues page. This does require a (free, easy to set up) Github
account.

2.9.5 GitHub

Of course the best way to track the development of Cerberus is through the GitHub repo.

2.10 License

Cerberus is an open source project by Nicola Iarocci.

Copyright (c) 2012-2015 Nicola Iarocci.

Permission to use, copy, modify, and/or distribute this software for any purpose with or without fee is hereby granted,
provided that the above copyright notice and this permission notice appear in all copies.

THE SOFTWARE IS PROVIDED “AS IS” AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH RE-
GARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FIT-
NESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CON-
SEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA
OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

2.10. License 29

https://twitter.com/nicolaiarocci
https://groups.google.com/forum/#!forum/python-eve
https://github.com/nicolaiarocci/cerberus/issues
https://github.com/nicolaiarocci/cerberus
http://nicolaiarocci.com

Cerberus Documentation, Release 0.9.1

30 Chapter 2. Table of Contents

CHAPTER 3

Copyright Notice

Cerberus is an open source project by Nicola Iarocci. See the original LICENSE for more information.

31

http://nicolaiarocci.com
https://github.com/nicolaiarocci/cerberus/blob/master/LICENSE

Cerberus Documentation, Release 0.9.1

32 Chapter 3. Copyright Notice

Index

C
current (cerberus.Validator attribute), 22

E
errors (cerberus.Validator attribute), 22

S
SchemaError (class in cerberus), 23

V
validate() (cerberus.Validator method), 22
validate_schema() (cerberus.Validator method), 22
validate_update() (cerberus.Validator method), 22
validated() (cerberus.Validator method), 23
ValidationError (class in cerberus), 23
Validator (class in cerberus), 21

33

	At a Glance
	Table of Contents
	Cerberus Installation
	Cerberus Usage
	Extending Cerberus
	How to Contribute
	API Documentation
	Frequently Asked Questions
	Changelog
	Authors
	Contact
	License

	Copyright Notice

