

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Contribution

Any kind of contribution is encouraged, e.g., Jira items [https://jira.hyperledger.org/projects/CE/issues] or patchsets [https://gerrit.hyperledger.org/r/#/admin/projects/cello].

LF ID Application

All the tools require an Linux Foundation (LF) ID.

If you do not have an LF ID, can apply one [https://identity.linuxfoundation.org] for free.

Jira board usage

We are using Jira [https://jira.hyperledger.org/projects/CE] to track the project progress, and welcome to report bug issues or create to-do tasks there. Each item should try keeping simple and focused, hence easy to fix and review.

After login with your LF ID, you can see those task items with one of the following statuses:

	To Do: Available for picking and fix.

	In Progress: Some on already picked it (check the assignee) to work on.

	Under Review: Related patchset has been submitted for review, and added as comment under the Jira item.

	Done: Patchset merged, the item has been resolved.

In brief, if you want to contribute, create or find some To Do item, and assign it to yourself, then update its status to In Progress. After the item is fixed, remember to mark it as Under Review and Done when the patch is submitted and merged.

Questions and discussions

	RocketChat [https://chat.hyperledger.org/channel/cello]: technical discussions and questions, login with your LFID.

Code Commit Steps

The project employs Gerrit [https://gerrit.hyperledger.org] as the code commit/review system.

*Before committing code, please go to Jira [https://jira.hyperledger.org/projects/CE] to create a new task or check if there's related existing one, then assign yourself as the assignee. Notice each task will get a Jira number like CE-26 [https://jira.hyperledger.org/browse/CE-26].

	Clone the project to your working directory with your LFID.

$ git clone ssh://LFID@gerrit.hyperledger.org:29418/cello && scp -p -P 29418 LFID@gerrit.hyperledger.org:hooks/commit-msg cello/.git/hooks/

(Optionally) Config your git name and email if not setup previously.

$ git config user.name "your name"
$ git config user.email "your email"

(Optionally) Setup git-review by inputting your LFID. Notice this is only necessary once.

$ git review -s

	Assign yourself a To Do Jira task, mark it as In progress, then create a branch with the Jira task number off of your cloned repository, e.g., for CE-26, it can be:

$ cd cello
$ git checkout -b CE-26

	After modifying the code, run make check to make sure all the checking is passed. Then Commit your code with -s to sign-off, and -a to automatically add changes (or run git add . to include all changes manually).

$ make check
 ...
 py27: commands succeeded
 py30: commands succeeded
 py35: commands succeeded
 flake8: commands succeeded
 congratulations :)

$ git commit -s -a

Example commit msg may look like:

[CE-26] A short description of your change with no period at the end

You can add more details here in several paragraphs, but please keep each line
width less than 80 characters. A bug fix should include the issue number.

Fix https://jira.hyperledger.org/browse/CE-26.

Change-Id: If2e142ea1a21bc4b42f702f9a27d70d31edff20d
Signed-off-by: Your Name <committer@email.address>

	Submit your commit using git review, and mark the corresponding Jira item as Under Review.

$ git review
remote: Processing changes: new: 1, refs: 1, done
remote:
remote: New Changes:
remote: http://gerrit.hyperledger.org/r/7915 [CE-26] Update the contribution documentation
remote:
To ssh://gerrit.hyperledger.org:29418/cello
 * [new branch] HEAD -> refs/publish/master/CE-26
Switched to branch 'master'
Your branch is up-to-date with 'origin/master'.

Notice you will get a gerrit item url [http://gerrit.hyperledger.org/r/7915], open and check the status.

After the ci checking passed, add reviewers [https://wiki.hyperledger.org/projects/cello#contributors] to the reviewer list and also post the gerrit item url at the RocketChat channel [https://chat.hyperledger.org/channel/cello]. The patch will be merged into the master branch after passing the review, then mark the Jira item as Done.

	If you need to refine the patch further as the reviewers may suggest, you can change on the same branch, and commit the new code with git commit -a --amend, and then use the git review command again.

[image: Creative Commons License]
This work is licensed under a Creative Commons Attribution 4.0 International License.

Architecture Design

Here we discuss the architecture design for the mangement services on the Master node.

Philosophy and principles

The architecture will follow the following principles:

	Micro-service: Means we decouple various functions to individual micro services. No service will crash others whatever it does.

	Fault-resilience: Means the service should be tolerant for fault, such as database crash.

	Scalability: Try best to distribute the services, to mitigate centralized bottle neck.

Functional Layers

Following the decouple design, there are 3 layers in Cello.

	Access layer: including those Web UI dashboards operated by users.

	Orchestration layer: received the request form Access layer, and make call to correct agents to operate the blockchain resources.

	Agent layer: real workers that interact with underly infrastructures like Docker, Swarm, K8s.

Each layer should maintain stable APIs for upper layers, to achieve pluggability without changing upper layer code.

Agent layer APIs

	Host management: create, query/list, update, delete, fillup, clean, reset

	Cluster management: create, query/list, start/stop/restart, delete, reset

Components

[image: Architecture Overview]

	dashboard: Provide the dashboard for the pool administrator, also the core engine to automatically maintain everything.

	restserver: Provide the restful api for other system to apply/release/list chains.

	watchdog: Timely checking system status, keep everything healthy and clean.

Implementation

The restful related implementation is based on Flask, a Werkzeug based micro-framework for web service.

The reasons of choosing it include:

	Lightweight

	Good enough in performance

	Flexible for extending

	Stable in code

[image: Creative Commons License]
This work is licensed under a Creative Commons Attribution 4.0 International License.

Deploy Hyperledger Cello on AWS EC2

The following will show how to deploy Cello on AWS EC2 Ubuntu 14.04 instances.

AWS Setup

	If you dont have an Amazon AWS account, create one.

	After logging into AWS console, in the services section, select EC2.

	Create atleast 2 instances.One for master node and one for host. Click launch instance. Select Ubuntu 14.04 image as shown in figure [image: Select Image].

	Select the instance type depending on requirements as shown in figure [image: link].

	Add more configuration details as needed. Make sure that Auto-assign public IP is enabled. For your reference you can view the below image [image: IP setup].

	Add necessary storage.See image: [image: Image].

	Add tags as needed. [image: Image].

	Create a security group and define rules for instances.I have kept minimum security by allowing http,tcp and ssh available to internet. Try to make it as secure as possible.[image: Example settings for security rules].

	Download private key for ssh into the instances and launch instance. [image: Image].

	From terminal, you can ssh into the AWS Ubuntu instance using command- sudo ssh -i yourprivatekey.pem ubuntu@IP.

Cello Installation

	Install docker and docker-compose. Follow the Cello master node setup. In the host, follow the worker node setup. Other steps are the same for both master and worker node.

	Once done, in the master node, you should be able to run the command docker -H Worker_Node_IP:2375 version.

Example: You should get something like this in the master node-

ubuntu@ip-172-31-34-249:~$ docker -H 54.87.59.141:2375 version
Client:
 Version: 17.03.0-ce
 API version: 1.26
 Go version: go1.7.5
 Git commit: 3a232c8
 Built: Tue Feb 28 07:57:58 2017
 OS/Arch: linux/amd64

Server:
 Version: 17.03.0-ce
 API version: 1.26 (minimum version 1.12)
 Go version: go1.7.5
 Git commit: 3a232c8
 Built: Tue Feb 28 07:57:58 2017
 OS/Arch: linux/amd64
 Experimental: false

	You should be able to open the link http://MasternodeIP:8080 .You can login and add hosts. Once the hosts are added, you can create blockchains.

[image: Creative Commons License]
This work is licensed under a Creative Commons Attribution 4.0 International License.

Dashboard

By default, the dashboard will listen on port 8080 at the Master Node, and operators can login in with default admin:pass credential.

The left panel gives quick link to various functions, including overview, system status, Hosts, Active Clusters, Inused Clusters, Release History and About.

Name	URL	Function
Overview	/index	See a high-level overview on system status
System Status	/stat	See statistics on the system
Hosts	/hosts	Operate on the hosts managed by the system
Active Clusters	/clusters?type=active	Operate on existing running chains in the pool
Inused Clusters	/clusters?type=inused	Operate on user occupied chains in the system
Released History	/clusters?type=released	See cluster releasing history data

Overview

[image: Dashboard Overview]

The default overview page show the overall status of the system, e.g., how many hosts are deployed within the system, how many clusters are running on those hosts. And there are status numbers for both hosts and clusters.

System Status Page

[image: dashboard status]

The system status page shows the host and cluster statistics in terms of types and active/inactive in the system.

Hosts

[image: dashboard hosts]

In Host page, you can manage all the existing hosts in the pool, and add new hosts. The host shows its Type (e.g., SINGLE for Native Docker, or SWARM for Docker Swarm), Status (active or not) , Chains (How many chains running in the host), Cap (Capacity) and Log Config (level, receiver). Those non-schedulable host will have a grey line

In the Action dropdown menu, you can

	Fillup: Fill a host with chains till it's full capacity.

	Clean: Clean all unused chains at the host.

	Config: Set configurations of the host, e.g., name or capacity.

	Reset: Reset everything on the host, useful when u meet problems of running chains on the host. Notice a host can be reset only when there's no inused chains on it.

	Delete: Remove the host from the pool, then the system will not care about it.

Add Host

You can click the Add Host button to add more hosts into the pool.

[image: dashboard add-host]

Active Chains

The Active Chains page shows all existing running chains in the system, with their Name, Type, Status, Health, Size and Host. Those inused chains will have a grey line.

[image: dashboard clusters]

In the Action dropdown menu, you can

	Start: Start a chain that is not running.

	Stop: Stop a running chain to stopped status.

	Restart: Restart a chain.

	Delete: Delete the chain.

	Release: Release a user-occupuied chain back to the pool, which will be deleted later.

You can click the Add Chain button to add more chains into the pool if there are non-full hosts.

[image: dashboard add-cluster]

Inused Chains

Filter out those running chains that are occupied by users.

Release History

Record all the user releasing chain history.

[image: Creative Commons License]
This work is licensed under a Creative Commons Attribution 4.0 International License.

Database Design

We have several collections, as follows.

Host

Track the information of a Host.

A typical host may look like:

id	name	worker_api	create_ts	capacity	status	clusters	type	log_level	log_type	log_server	autofill	schedulable
xxx | host_0 | tcp://10.0.0.1:2375 | 20160430101010 | 20 | active | [c1,c2,c3] | single | debug | syslog | udp://10.0.0.2:5000 | true | true

	id (str): uuid of the host instance

	name (str): human-readable name

	worker_api (str): Through which url to access the Docker/Swarm Daemon

	create_ts (datetime): When to add the host

	capacity (int): Maximum number of chains on that host

	status (str): 'active' (Can access daemon service) or 'inactive' (disconnected from daemon service)

	clusters (list): List of the ids of those chains on that host

	type (str): 'singe' (single Docker host) or 'swarm' (Docker Swarm cluster)

	log_level (str): logging level for chains on the host, e.g., 'debug', 'info', 'warn', 'error'

	log_type (str): logging type for chains on the host, 'local' or 'syslog'

	log_server (str): log server address, only valid when log_type is 'syslog'

	autofill (str): whether to autofill the server to its capacity with chains, 'true' or 'false'

	schedulable (str): whether to schedule a chain request to that host, 'true' or 'false', useful when maintain the host

Cluster

Track information of one blockchain.

A typical cluster may look like:

id	service_url	name	user_id	host_id	worker_api	consensus_plugin	consensus_mode	create_ts	apply_ts	release_ts	duration	size	containers	health
xxx | {} | cluster_A | "" | host_xx | tcp://10.0.0.1:2375 | pbft | batch | 20160430101010 | 20160430101010 | | | 4 | [vp0,vp1,vp2,vp3] | OK

	id (str): uuid of the host instance

	service_url (dict): urls to access the services on the chain, e.g., {'rest':10.0.0.1:7050, 'grpc':10.0.0.1:7051}

	name (str): human-readable name

	user_id (str): Which user occupies this chain, empty for no occupation

	host_id (str): Where the chain exists

	worker_api (str): Through which url to access the Docker/Swarm Daemon

	consensus_plugin (str): Consensus plugin name

	consensus_mode (str): Consensus plugin mode name

	create_ts (datetime): When to create the chain

	apply_ts (datetime): When the chain is applied

	release_ts (datetime): When to release the chain

	duration (str): How long the chain lives

	size (int): Peer nodes number of the chain

	containers (list): List of the ids of those containers for the chain

	health (str): 'OK' (healthy status) or 'Fail' (Not healthy)

[image: Creative Commons License]
This work is licensed under a Creative Commons Attribution 4.0 International License.

Supported Make Commands

The following opperations are supported by Make [https://en.wikipedia.org/wiki/Makefile] command. Prepend the following commands with make.

These commands should be run in cello directory, for example: /cello $ make all.

all

Default to run the testing cases.

build-js

Builds js files for react.

check

CI checking. Runs the following commands. This runs the following commands for you.

$ tox
$ make start && sleep 10 && make stop

clean

Cleans up the environment and removes temp files like .cache, .tox, .pyc.
It runs the following commands for you.

$ rm -rf .tox .cache *.egg-info
$ find . -name "*.pyc" -o -name "__pycache__" -exec rm -rf "{}" \;

doc

Starts a doc server locally. It runs the following commands for you.

$ pip install mkdocs
$ mkdocs serve

help

Show help.

image-clean

Cleans up all cello related docker images. It runs the following commands for you.

$ docker images | grep "cello-" | awk '{print $1}' | xargs docker rmi -f
$ docker rmi $(docker images -f dangling=true -q)

log

Shows logs of specified service. To view logs from Dashboard service, use: make log service=dashboard.

logs

Shows logs of all services.

setup-master

Sets up the master node. Run on Master node. It runs the following command for you.

$ cd scripts/master_node && bash setup.sh

setup-worker

Sets up the worker node. Run on Worker node. It runs the following commands for you.

$ cd scripts/worker_node && bash setup.sh

redeploy

Redeploys specified service(s). To redeploy Dashboard service, use: make redeploy service=dashboard.

start

Starts all services. Runs following command for you.

$ docker-compose up -d --no-recreate

restart

Restarts all services.

stop

Stops all services and removes stopped service containers.
Runs the following commands for you.
docker-compose stop, docker-compose rm -f -a.

watch-mode

Runs watch mode with js files for react.

npm-install

Installs modules with npm package management.

 #Monitoring services

The monitoring services build in real time an archive of observations obtained from the analisys of the communication flows of the Cello application services.

The observations could be checked in real time (directly in memory) against attacks, anomalies or errors.

The observations, once processed in real time, are stored into a persistent archive for statistic analisys and reports generation.

Config the port to be monitored

Admin can configure the tcp ports to be monitored by the monitoring services, by adding the following two lines:

the monitoring services will have to monitor the following ports
PORTS_TO_BE_MONITORED = list(PEER_SERVICE_PORTS.items()) + list(CA_SERVICE_PORTS.items())
to the configuration file: /src/common/utils.py

Config the monitoring level

Admin can add to the file /src/monitoring/config.py the following flags:

	MONITOR_DB=[file name or network path where to store the persistent archive]

	MONITOR_LEVEL=FULL | SIMPLE | NONE

[image: Creative Commons License]
This work is licensed under a Creative Commons Attribution 4.0 International License.

Production Configurations

In order to optimize the system performance in production environment, these system configurations can be set.

/etc/sysctl.conf

Don't ask why, this is a solid answer.
vm.swappiness=10
fs.file-max = 2000000
kernel.threads-max = 2091845
kernel.pty.max = 210000
kernel.keys.root_maxkeys = 20000
kernel.keys.maxkeys = 20000
net.ipv4.ip_local_port_range = 30000 65535
net.ipv4.tcp_tw_reuse = 0
net.ipv4.tcp_tw_recycle = 0
net.ipv4.tcp_max_tw_buckets = 5000
net.ipv4.tcp_fin_timeout = 30
net.ipv4.tcp_max_syn_backlog = 8192

Then, need to run sysctl -p for enabling.

/etc/security/limits.conf

* hard nofile 1048576
* soft nofile 1048576
* soft nproc 10485760
* hard nproc 10485760
* soft stack 32768
* hard stack 32768

Other Configurations

	Use the code from release branch.

	Configuration: Set all parameters to production, including image, compose, and application.

	Security: Use firewall to filter traffic, enable TLS and authentication.

	Backup: Enable automatic data backup.

	Monitoring: Enable monitoring services.out and login, then check with ulimit -n.

[image: Creative Commons License]
This work is licensed under a Creative Commons Attribution 4.0 International License.

 ** **This is another Front-end implementation for cello dashboard, if you want to use this version, must change the theme into reactjs.

How to start service with react theme?

$ THEME=react make start

If you want to develop original js code for react, you must install node modules, and rebuild js after you change the js code.

In the initialized state, must install node modules, the command is

$ make npm-install

If you want to add extra node modules, you need change the package.json file in src/themes/react/static directory, then rerun the command “make npm-install”.

How to build react js?

In the development phase

$ make watch-mode

In the production environment

$ make build-js

[image: Creative Commons License]
This work is licensed under a Creative Commons Attribution 4.0 International License.

Release Notes

v0.7 [https://github.com/hyperledger/cello/releases/tag/v0.7] October 20, 2017

Add new features:

	Support fabric 1.0 network;

	Support ansible-based fabric deployment on baremetal and Cloud env;

	Support user management api and dashboard;

	Start vSphere & Kubernetes Agent support.

	Add vue theme.

	Make agent layer pluggable

Improvement:

	Improve RESTful api code for admin dashboard.

Known Vulnerabilities

none

Resolved Vulnerabilities

none

Known Issues & Workarounds

When using Cello on MacOS, the mongodb container may fail to start. This is
because the container will try to mount /opt/cello/mongo path. To resolve
the problem, users need to add /opt/cello to Docker's sharing path.

Change Log

https://github.com/hyperledger/cello/blob/master/CHANGELOG.md#v07

v0.6 [https://github.com/hyperledger/cello/releases/tag/v0.6] June 24, 2017

Add new features:

	Support fabric 0.6 network;

	Support docker swarm;

	Add admin dashboard;

	Add core engine;

Improvement:

none

Known Vulnerabilities

none

Resolved Vulnerabilities

none

Known Issues & Workarounds

none

Change Log

https://github.com/hyperledger/cello/blob/master/CHANGELOG.md#v06

Scenarios

Admin Scenario

After start up, Cello provides a dashboar for administrators, which listens on localhost:8080.

The default login user name and password are admin:pass, you can modify this by changing the variables USERNAME and PASSWORD in the nginx section of the docker-compose file.

Add/Delete a host

Admin can add a host (a single Docker host or a Swarm cluster) into the resource pool.

Then Cello will check and setup it with given configurations, e.g., if enabling autofill, then will fill the host with chains to the capacity.

Admin can also delete a host from the resource pool if it has no running chains.

Config a host

Admin can manually update the host configuration, including:

	name: Human readable name alias.

	capacity: Maximum chain number on that host.

	schedulable: Whether to distribute chains on that host to users.

	autofill: Whether to keep host with running chains to its capacity.

	log_type: local or syslog.

Operate a host

Admin can run several operations on a host, including:

	fill: Fill the host with chains to its capacity.

	clean: Clean up the free chains on that host.

	reset: Re-setup a host, e.g., cleaning useless docker containers.

Add/Delete chains

Admin can also manually add some specific chain to a host, or delete one.

Automatic way

When the autofill box is checked on a host, then watchdog will automatically keep there are capacity number of healthy chains on that host.

e.g., if the capacity of one host is set to 10, then the host will be filled with 10 chains quickly. When 2 chains are broken, they will be replaced by healthy ones soon.

Users Scenario

apply a cluster

User sends request to apply a cluster, Cello will try to find available chains in the pool, to see if it can match the request.

If found one, construct the response, otherwise, construct an error response.

release a cluster

User sends request to release a cluster, Cello will check if the request is valid.

If found applied chain, then release and recreate it with the same name, at the same host, and potentially move it to released db collections.

If not found, then just ignore or response.

[image: Creative Commons License]
This work is licensed under a Creative Commons Attribution 4.0 International License.

Service Management

Main Cello services are running in the Master Node.

Services

After starting cello services using make start, there will generate several service containers as the following:

$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
fdf4b8465d14 yeasy/nginx "/bin/bash /tmp/do..." 12 seconds ago Up 11 seconds 0.0.0.0:80->80/tcp, 0.0.0.0:8080->8080/tcp, 443/tcp nginx
80c3962867ff mongo:3.2 "docker-entrypoint..." 12 seconds ago Up 11 seconds 127.0.0.1:27017-27018->27017-27018/tcp mongo
91df95a11229 cello-dashboard "python dashboard.py" 12 seconds ago Up 11 seconds 8080/tcp dashboard
051efd511066 cello-watchdog "python watchdog.py" 12 seconds ago Up 11 seconds watchdog
a66bb112a21f cello-restserver "python restserver.py" 12 seconds ago Up 12 seconds 80/tcp restserver

	nginx: Nginx [https://nginx.org] is used as a reverse proxy to improve web performance.

	mongo: MongoDB [https://www.mongodb.com] is used as the backend database.

	dashboard: Provides the admin dashboard using Flask [http://flask.pocoo.org/].

	watchdog: Monitors the status of the system (e.g., chains' health).

	restserver: Core engine to do the provision, orchestration and management tasks.

Make Command

A Makefile [https://en.wikipedia.org/wiki/Makefile] is provided to help setup and manage the master node, please refer to the make_support page.

[image: Creative Commons License]
This work is licensed under a Creative Commons Attribution 4.0 International License.

Setup Cello Platform

Cello follows a typical Master-Worker architecture. There are two types of Nodes in the cluster.

	Master Node: Holds Cello services to manage (e.g., create/delete) the chains inside Worker Nodes through Worker's management APIs. Usually, Master Node provides web dashboard (port 8080) and RESTful APIs (port 80). It is recommended to use Linux (e.g., Ubuntu 16.04+) or MacOS;

	Worker Node: Nodes to hold blockchains. Cello support several types of worker node from single server to cluster. Take Docker host or Swarm cluster for example, the Worker's management APIs (i.e., Docker daemon APIs) should be accessible (typically on port 2375) from the Master Node.

[image: Deployment topology]

Master Node

See Setup a Master Node.

Worker Node

Currently we support Docker Host or Swarm Cluster as Worker Node. More types will be added soon.

	Docker Host: Setup Docker Host as a Worker Node.

	Docker Swarm: Create a Docker Swarm [https://docs.docker.com/engine/swarm/swarm-tutorial/create-swarm/].

	Kubernetes: Kubernetes Setup [https://kubernetes.io/docs/setup/].

	vSphere: Setup vSphere as a Worker Node.

	Ansible: Setup Ansible as a Worker Node.

Special Configuration for Production

Here we describe the setups for development usage. If you want to deploy Cello for production, please also refer to the Production Configuration.

[image: Creative Commons License]
This work is licensed under a Creative Commons Attribution 4.0 International License.

Master Node Setup

The Master Node includes several services:

	dashboard: Provide Web UI for operators.

	restserver: Provide RESTful APIs for chain consumers.

	watchdog: Watch for health checking.

More details can be found at the Architecture Design.

System Requirement

	Hardware: 8c16g100g

	Docker engine: 1.10.0~1.13.0 (Docker 17.0+ support is experimental)

	docker-compose: 1.8.0~1.12.0

The Master Node can be deployed by in 2 steps.

	Clone code

	Run setup script

Clone Code

You may check git and make are installed to clone the code.

$ sudo aptitude install git make -y
$ git clone http://gerrit.hyperledger.org/r/cello && cd cello

Run Setup

For the first time running, please setup the master node with the setup.sh [https://github.com/hyperledger/cello/blob/master/scripts/master_node/setup.sh].

Just run (safe to repeat it):

$ make setup-master

Make sure there is no error during the setup. Otherwise, please check the log msgs with make logs.

Usage

Start/Stop/Restart

To start the whole services, please run

$ make start

To stop or restart the whole services, run make stop or make restart.

Redeploy a service

To redeploy one specific service, e.g., dashboard, please run

$ make redeploy service=dashboard

Check Logs

To check the logs for all the services, please run

$ make logs

To check the logs for one specific service, please run

$ make log service=watchdog

Now you can access the MASTER_NODE_IP:8080 to open the Web-based operational dashboard.

Configuration

The application configuration can be imported from file named CELLO_CONFIG_FILE.

By default, it also loads the config.py file as the configurations.

Data Storage

The mongo container will use local /opt/cello/mongo path (Must exist locally) for persistent storage.

Please keep it safe by backups or using more high-available solutions.

Work with MacOS

In MacOS, Docker cannot mount local path from host by default. Hence for mongo container data volume, users need to:

	Make sure the /opt/cello path exists locally, and it is writable for the current user account. Simply just run make setup-master.

	Add the path to File Sharing list in the preference of Docker for MacOS [https://docs.docker.com/docker-for-mac/install/], to make it mountable by container.

Cello Baseimage

[image: BaseImage]

The purpose of this baseimage is to act as a bridge between a raw ubuntu/xenial configuration and the customizations
required for supporting a Hyperledger Cello environment. The build process is generally expensive so it is fairly
inefficient to JIT assemble these components on demand. Hence bundled into baseimage and subsequently cached on
the public repositories, so they can be simply consumed without requiring a local build cycle.

Usage

	"make docker" will build the docker images and commit it to your local environment; e.g. "hyperledger/cello-baseimage".
The docker image is also tagged with architecture and release details.

More Commands using make

To know more what the following make commands does please refer make_support page.

[image: Creative Commons License]
This work is licensed under a Creative Commons Attribution 4.0 International License.

Cello Ansible Worker Node

Cello supports to deploy hybperledger fabric onto multiple physical or virtual servers using ansible [https://ansible.com], and achieve:

	Provision virtual servers to participate in fabric network

	Install necessary hyperledger dependent libraries and packages

	Setup kubernetes 1.7.0 or overlay network so that containers can communicate cross multiple docker hosts

	Install registrator and dns services so that containers can be referenced by name

	Build hyperledger fabric artifacts (optional)

	Run hyperledger fabric tests (optional)

	Generate fabric network certificats, genesis block, transaction blocks

	Push new or tagged fabric images onto all docker hosts

	Deploy fabric network

	Join peers to channels, instantiate chaincode

Requirements for ansible controller

	Install Ansible [http://docs.ansible.com/ansible/intro_installation.html]

	[Ubuntu 16.04 machines] (https://cloud-images.ubuntu.com/releases/16.04/)

	Install cloud platform dependent packages such as OpenStack shade or AWS boto

	Ansible 2.3.0.0 or above

Here is an example on how to make a clean ubuntu system as your ansible controller
If you have other system as your Ansible controller, you can do similar steps to setup
the environment, the command may not be exact the same but the steps you
need to do should be identical.

sudo apt-get update
sudo apt-get install python-dev python-pip libssl-dev libffi-dev -y
sudo pip install --upgrade pip
sudo pip install 'ansible>=2.3.0.0'
git clone https://gerrit.hyperledger.org/r/cello

All the following work assumed that you are in cello/src/agent/ansible directory

Supported ansible versions are 2.3.0.0 or greater.

Deploy hyperledger fabric onto different environment

On VirtualBox::

1. make changes to vars/vb.yml according to your VirtualBox environment
2. export password="your password to vb env"
3. To stand up the fabric network::
 ansible-playbook -e "mode=apply" vb.yml
4. To tear down the fabric network::
 ansible-playbook -e "mode=destroy" vb.yml

On OpenStack cloud::

1. make changes to vars/os.yml according to your OpenStack cloud
2. export password="your password of your OpenStack cloud account"
3. To stand up the fabric network::
 ansible-playbook -e "mode=apply" os.yml
4. To tear down the fabric network::
 ansible-playbook -e "mode=destroy" os.yml

On AWS cloud::

1. make changes to vars/aws.yml according to your aws cloud
2. export AWS_SECRET_KEY="your secret key of your aws account"
3. To stand up the fabric network::
 ansible-playbook -e "mode=apply" aws.yml
4. To tear down the fabric network::
 ansible-playbook -e "mode=destroy" aws.yml

Run fabric network on a single ubuntu server

Please follow instructions in document ansible worker usage to
setup fabric network on one clean ubuntu 16.04 server.

More Usage

Please refer to ansible worker how to.

[image: Creative Commons License]

This work is licensed under a

Creative Commons Attribution 4.0 International License.

Run everything on one clean Ubuntu server

As a developer, you might like to run everything on one machine by following
the steps below to stand up a fabric network. At present, Ubuntu servers are
the target operating systems that Fabric uses. For any other operating
system, you may have to resolve some issues related to installation commands.
The following steps work on Ubuntu 17.04 server. If you are using a different
version of Ubuntu server, the steps should be very similar other than some
dependency differences; for example, earlier Ubuntu server versions do not
have git installed, so you may have to install git as well.

Please follow the below steps to stand up an all-in-one fabric system

Install dependencies and clone cello

Use a clean Ubuntu system, login as a user who can do sudo su without
prompting password, and run the following comamnds to install necessary
dependencies, grant current user docker permissions and clone the cello
project into the current user home directory::

 sudo apt-get update
 sudo apt-get install python-dev python-pip libssl-dev libffi-dev docker.io -y
 sudo pip install 'ansible>=2.3.0.0'
 sudo gpasswd -a $USER docker
 cd ~ && git clone https://gerrit.hyperledger.org/r/cello

Setup ssh key pair and key ssh login

 mkdir -p ~/.ssh && cd ~/.ssh && ssh-keygen -t rsa -f fd -P ""
 cat ~/.ssh/fd.pub >> ~/.ssh/authorized_keys

The above commands create a key pair named fd and fd.pub. If you choose
to use other names, you will need to make sure these names are used in
~/cello/src/agent/ansible/vars/vb.yml and bc2nd.yml file in steps below.
Files vb.yml and bc2nd.yml use fd and fd.pub as the default value for ssh
key pairs.

Log out, log back in and setup ssh agent

 eval $(ssh-agent -s) && ssh-add ~/.ssh/fd

The above command create a ssh-agent so that you do not have to provide
ssh keys in your current session when you try to establish a ssh connection,
Notice that this only establish a ssh-agent for current session. If you log
out and back in, you will have to run the above command again.

Create runhosts file

Create a run directory ~/cello/src/agent/ansible

 mkdir -p ~/cello/src/agent/ansible/run

Create file ~/cello/src/agent/ansible/run/runhosts.tpl with the following content

 cloud ansible_host=127.0.0.1 ansible_python_interpreter=python
 $ip private_ip=$ip public_ip=$ip inter_name=fabric001

 [allnodes]
 $ip

 [etcdnodes]
 $ip

 [builders]
 $ip

Change your working directory to ~/cello/src/agent/ansible and run the
followng commands to create runhosts file for your environment.

 ipaddr=$(ip -4 addr show | awk -F '/' '/inet / {print $1}' | grep -v '127.0.0.1' | awk -F ' ' '{print $2;exit}')
 sed "s/\$ip/$ipaddr/g" run/runhosts.tpl > run/runhosts

Stand up the fabric network

Then run the following two commands to stand up fabric network. If you are
using different user id, then you will need to change the ssh_user in both
vb.yml and vb2nd.yml file in ~/cello/src/agent/ansible directory to match
your user id::

 ansible-playbook -i run/runhosts -e "mode=apply env=vb" initcluster.yml --skip-tags="resetconn"
 ansible-playbook -i run/runhosts -e "mode=apply env=bc2nd" setupfabric.yml

Destroy the fabric network

To get rid of the fabric network, you can simply do the following:

 ansible-playbook -i run/runhosts -e "mode=destroy env=bc2nd" setupfabric.yml
 ansible-playbook -i run/runhosts -e "mode=destroy env=vb" initcluster.yml

Notice that the commands are in reverse order of the commands in previous step.

[image: Creative Commons License]

This work is licensed under a

Creative Commons Attribution 4.0 International License.

Setup Docker Host as a Worker Node

For the Worker Node with meeting the system requirements, three steps are required:

	Docker daemon setup

	Docker images pulling

	Firewall Setup

System Requirements

	Hardware: 8c16g100g

	Docker engine:

	1.10.0~1.13.0

	aufs-tools (optional): Only required on ubuntu 14.04.

Docker Daemon Setup

Let Docker daemon listen on port 2375, and make sure Master can reach Worker Node through this port.

Ubuntu 14.04

Simple add this line into your Docker config file /etc/default/docker.

DOCKER_OPTS="$DOCKER_OPTS -H tcp://0.0.0.0:2375 -H unix:///var/run/docker.sock --api-cors-header='*' --default-ulimit=nofile=8192:16384 --default-ulimit=nproc=8192:16384"

Then restart the docker daemon with:

$ sudo service docker restart

Ubuntu 16.04

Update /lib/systemd/system/docker.service like

[Service]
DOCKER_OPTS="$DOCKER_OPTS -H tcp://0.0.0.0:2375 -H unix:///var/run/docker.sock --api-cors-header='*' --default-ulimit=nofile=8192:16384 --default-ulimit=nproc=8192:16384"
EnvironmentFile=-/etc/default/docker
ExecStart=
ExecStart=/usr/bin/dockerd -H fd:// $DOCKER_OPTS

Regenerate the docker service script and restart the docker engine:

$ sudo systemctl daemon-reload
$ sudo systemctl restart docker.service

Alternatively (for all Linux distro):

This will run the docker-daemon on port 2375 as long as the system is restarted or docker-daemon is killed.

$ sudo systemctl stop docker.service
$ sudo dockerd -H tcp://0.0.0.0:2375 -H unix:///var/run/docker.sock --api-cors-header='*' --default-ulimit=nofile=8192:16384 --default-ulimit=nproc=8192:16384 -D &

At last, run the follow test at Master node and get OK response, to make sure it can access Worker node successfully.

[Master] $ docker -H Worker_Node_IP:2375 info

Setup

Run the following cmd to pull the necessary images and copy required artifacts.

$ make setup-worker

Firewall Setup

Make sure ip forward is enabled, you can simply run the follow command.

$ sysctl -w net.ipv4.ip_forward=1

And check the os iptables config, to make sure host ports are open (e.g., 2375, 7050~10000)

Work with MacOS

In MacOS, Docker [https://docs.docker.com/docker-for-mac/networking/#known-limitations-use-cases-and-workarounds] currently provides no support to config the daemon to listen from network.

Users need to use some tools to config Docker daemon to listen at network manually, e.g., to config Docker daemon to listen on 127.0.0.1:2375,

$ docker run -d -v /var/run/docker.sock:/var/run/docker.sock -p 127.0.0.1:2375:2375 bobrik/socat TCP-LISTEN:2375,fork UNIX-CONNECT:/var/run/docker.sock
$ docker -H 127.0.0.1:2375 info

[image: Creative Commons License]
This work is licensed under a Creative Commons Attribution 4.0 International License.

vSphere type host creation guide

Prerequisites

	Make sure time is in sync on all esxi hosts in the cluster will be used by Cello otherwise deployment may fail due to certificate expiry check.

	Cello vSphere agent is tested on vSphere deployments with vCenter, single node vSphere without vCenter is not supported.

	Deployment requires DHCP server in the VM network.(If you create VM that use VM network and it can get IP automatically which mean it has a DHCP server)

	vCenter user with following minimal set of privileges is required.

	Datastore >

 Allocate space

	Datastore >

 Low level file Operations

	Folder >

 Create Folder

	Folder >

 Delete Folder

	Network >

 Assign network

	Resource >

 Assign virtual machine to resource pool

	Virtual machine >

 Configuration >

 Add new disk

	Virtual Machine >

 Configuration >

 Add existing disk

	Virtual Machine >

 Configuration >

 Add or remove device

	Virtual Machine >

 Configuration >

 Change CPU count

	Virtual Machine >

 Configuration >

 Change resource

	Virtual Machine >

 Configuration >

 Memory

	Virtual Machine >

 Configuration >

 Modify device settings

	Virtual Machine >

 Configuration >

 Remove disk

	Virtual Machine >

 Configuration >

 Rename

	Virtual Machine >

 Configuration >

 Settings

	Virtual machine >

 Configuration >

 Advanced

	Virtual Machine >

 Interaction >

 Power off

	Virtual Machine >

 Interaction >

 Power on

	Virtual Machine >

 Inventory >

 Create from existing

	Virtual Machine >

 Inventory >

 Create new

	Virtual Machine >

 Inventory >

 Remove

	Virtual Machine >

 Provisioning >

 Clone virtual machine

	Virtual Machine >

 Provisioning >

 Customize

	Virtual Machine >

 Provisioning >

 Read customization specifications

	vApp >

 ImportProfile-driven

	storage ->

 Profile-driven storage view

Deployment

Note :

The vSphere agent is tested on vCenter 6.0 and vCenter 6.5

Upload VM image to be used to vSphere:

Upload the template OS OVA to vCenter before create vSphere type host in Cello. The work nodes that run the fabric workloads will be cloned from this VM template.

Upload using vSphere Client.

	Login to vSphere Client.

	Right-Click on ESX host on which you want to deploy template.

	Select Deploy OVF template.

	Copy and paste URL for OVA for Cello [https://drive.google.com/file/d/0B4Ioua6jjCH9b0ROOE14SUlqUk0/view?usp=sharing]

	Please deploy the ova on the same cluster which will be planned to be used by cello later

	Check the name of the VM created , this will be used to create vSphere type host in Cello later. (Should default to PhotonOSTemplate.ova)

This OVA is based on Photon OS(v2.0)

NOTE: DO NOT POWER ON THE IMPORTED VM.

If you do power it on, future clones of this VM will end up getting the same IP as the imported VM [https://github.com/vmware/photon/wiki/Frequently-Asked-Questions#q-why-do-all-of-my-cloned-photon-os-instances-have-the-same-ip-address-when-using-dhcp]. To work around this run the following command before powering the VM off.

echo -n >

 /etc/machine-id

Add vSphere type host

Login to Cello and navigate to the Hosts->

Add Host

In the "

Add a host"

 page select "

Host Type"

 as VSPHERE

[image: select vsphere]

Give a name of the vSphere host like "

cello-vsphere"

, you can specify a capacity number, this number can be configured later. Click "

Next"

[image: basic setting]

In the VC address field input your VC IP address, if your VC use some port other than 443, you should add the port eg. 10.112.125.53:8443

In the VC user field input a username with the privileges as described in Prerequisites.

In the VC network field enter the network name.

In the Datacenter field enter the datacenter name.

In the Cluster field enter the cluster name that will be used for Cello, this cluster need to belong to the datacenter entered in the Datacenter field.

In the datastore field, enter a datastore that all the esxi hosts in the cluster can be reachable.

[image: vc setting]

In the VM IP field enter a static IP address that belong to the VM network.

In the VM Gateway filed enter the VM network gateway.

In the VM Netmask field enter the network mask for the VM network.

In the VM DNS filed enter the DNS for the VM network.

In the VM template field enter the template name (If you don'

t change the name it will be PhotonOSTemplate.ova by default)

[image: vm setting]

Click Create. You will see the follow page.

. [image: vc pending]

This means that the vSphere agent is trying to create a new work node. This will take several minutes which is depend on your esxi host'

s resource and network speed. After the node created it will automatically download the farbic 1.0 images to the work node. When everything is ready the new host will be in active state.

[image: vc active]

Terminology

Overview

The Cello system is suggested to be deployed on multiple servers, at least 1 Master Node + 1 Worker Node.

	Master Node: Running Cello services, which will manage the worker nodes.

	Worker Node: The servers to have blockchains running inside. The worker nodes will be managed by the master node.

	Host: Host is a resource pool managed by a unique control point, which consists of several compute nodes. Typically it can be a naive Docker host, a Swarm cluster or other bare-metal/virtual/container clusters.

	Chain (Cluster): A blockchain network including numbers of peer nodes. E.g., a Hyperledger Fabric network, a SawthoothLake or Iroha chain.

Master

The Master Node will hold the main Cello services.

This node is the control point of the whole Cello cluster, and most of the management work should be taken here.

Master node will manage the blockchain networks running inside the Worker nodes.

Worker

Worker nodes will be managed by the Host's control service, and hold the blockchains.

Hosts

A host is a group of worker nodes managed by the same resource controller, which can be a native Docker Host or a Swarm Cluster currently.

Usually a host has several properties:

	Name: Alias name for human read convenience.

	Daemon URL: The url for Docker/Swarm Access.

	Capacity: How many chains the host can have at most.

	Logging Level: The default logging level for the chains at this host.

	Logging Type: How to handle those logging messages.

	Schedulable: The chains on this hosts are available to be scheduled to users.

	Autofill: Always automatically fill the hosts full with chains.

Chain

A chain is typically a blockchain cluster, e.g., a fabric network.

A Chain has several properties:

	Name: Alias name for human readiness.

	Host: Which host the chain locates.

	Size: How number nodes does the chain have.

	Consensus: What kind of consensus does the chain adopts, depending on the blockchain technology.

[image: Creative Commons License]
This work is licensed under a Creative Commons Attribution 4.0 International License.

Tutorial

Basic Concepts

Have a look at the terminology to understand the basic concepts.

Setup a Cello Cluster

Following the setup steps to start a Cello cluster.

After that, operators can interact with Cello through dashboard.

By default, the dashboard will listen on port 8080 at the Master Node, you can login with default administrator account of admin:pass.

Add a Host

The first time you start Cello, there will be no hosts in the pool. There are two methods to add more hosts into the pool.

	Through the Overview page: Click the + button after the Working Host keyword;

	Through the Hosts page: Click the Add Host button at the top right corner.

Then you will see a jumped-out dialog to input the setup info.

[image: dashboard add host]

Suppose it's a Native Docker server to import as a host, input those fields

	Name: docker_host

	Daemon URL: 192.168.7.220:2375 (replace this with your docker host address)

	Capacity: 5

After successful adding, you can find the docker_host shown in the Host page, with 0 chains and Cap is 5.

Create a Chain

Now we have the free host in the pool, new chains can be create.

Open the Active Chain page, it should be empty now, click the Add Chain button on the top right corner, input those fields:

	Name: test_chain

And select the host with the docker_host.

[image: dashboard add chain]

Click the create button to add a new chain with name test_chain into the pool.

Then you can see it at the Active Chain page.

Enable auto-mode

It will be difficult if you have a numbers of chains to create manually. Cello provides automated ways to save time.

	Use the host action dropdown menu: The Fillup button will fill the host full with chains until its at capacity, while the Clean button will clean all unused chains from the host.

	Use the Autofill checkbox: In the host configuration, you can find a Autofill checkbox, which will automatically watch the host and keep it full with chains to the capacity.

Try these methods as you like.

If you want to know more advanced operational skills, please continue to the Dashboard.

[image: Creative Commons License]
This work is licensed under a Creative Commons Attribution 4.0 International License.

Cello Ansible agent how to

Recently added ansible agent is a cello agent which allows developers and fabric
network operators to stand up fabric network on cloud environment, physical
machines or virtual machines by using ansible.

To use the cello ansible agent (the agent), you will need to install ansible
version 2.3.0.0 or above and some ansible could modules based on which cloud
you may use, for example, if you like to use OpenStack cloud to deploy fabric
network, in addition to ansible, you will also need to install OpenStack Shade
which is the ansible OpenStack cloud module. If you choose to use AWS, then in
addition to ansible, you will need to install boto and boto3 which are Ansible
AWS cloud modules.

The general steps of using the agent::

	Install Ansible and necessary cloud modules, the machine you install ansible and cloud modules is normally called ansible controller.

	Use ssh-keygen to generate a key pair which you will be using to access virtual machines provisioned against a cloud, or virtual or physical machines that you already have.

	According to your choice of environment, create a cloud configuration file and a fabric network layout configuration file.

	Provision the servers

	Initialize and prepare the servers

	Setup fabric network

	Verify that the fabric network is working correctly

	Cleanup

This document goes into great details to describe these files. If you choose
to use some existing servers regardless they are physical or virtual, you will
need to manually create a runhosts file and inject the ssh public key into
echo server so that ansible controller can access them. These servers will also
need to be made sure having python installed, otherwise, ansible cannot work
appropriately.

The following sections describe in details about each step

Setup ansible controller

Ansible controller can be any machine, as long as you can install ansible
2.3.0.0 or above onto, it can be a small virtualbox VM or your own laptop.
Please follow offical ansible installation instructions from ansible if you
have questions on how to install ansible on a specific platform.

Use ssh-keygen to create a key pair for ansible to work with servers

Ansible heavily rely on ssh to work with virtual or physical machines. When
you have a cloud such as OpenStack, AWS, the ssh public key is automatically
injected into the severs, when you are working with servers not setup by the
provisioning modules of the agent, you will have to manually inject the public
key into each machine. But in any case, you will need a pair of key.

To generate a ssh key pair, you just need to run ssh-keygen.
To inject a ssh public key into a server, you will need to add the public key
onto ~/.ssh/authorized_keys in the user's home directory. That user should be
the user that you use to access the machine.

Create cloud configuration file and fabric layout configuration file

To work with a cloud, you will need to have an account from a cloud. To create
a set of machines from a cloud, you will also need to tell a cloud a bit more
about your desire on how the machines will be created. All the information needed
to accomplish this is specified in the cloud configuration file. Examples of
these files can be found in src/agent/ansible/vars directory. Cloud
configuration file is used to access your cloud, provide credentials, specify
network attributes and virtual machine specs (flavor) etc. For pupular clouds
such as OpenStack, AWS and Azure, you can see examples in the directory, files
os.yml, aws.yml and azure.yml are examples for OpenStack, AWS and Azure cloud
environment.

To stand up a fabric network, you will need to specify how many organizations
participating in the network, how many fabric components such as peers,
orderers in each organization, and how the kafka and zookeeper cluster should
look like. All the information needed to accomplish this is specified in
fabric network layout configuration file. A typical fabric network will be
comprised of orderers, peers, kafka, zookeeper, and ca nodes. For details on
what each component does and how they interact with each other, please see
the Hyperledger Fabric docs [https://hyperledger-fabric.readthedocs.io/en/release/]
Layout configuration file specifies how you want to layout your fabric network
components cross the servers that you have, for example, how many organizations,
how many peers, ordereres from each org, how many kafka, zookeeper nodes in
the cluster. The examles of this kind configuration file can be found in
src/agent/ansible/vars directory, files bc1st.yml, vb1st.yml are examples for
multiple nodes fabric network, file bc2nd.yml is an example for a single node
fabric network.

Provision the servers

This step is to provision a set of virtual servers from an OpenStack cloud.
Before you run the following command, you will need to either make a copy
of the vars/os.yml file or make changes to that file to reflect your cloud
settings. If you already have a set of servers (such as a set of VirtualBox
virtual machines), you can skip this step, but you will need to follow the
instructions below to manually create a runhosts file.

With the correct cloud environment settings in vars/os.yml, run the script
to provision a set of virtual machines::

ansible-playbook -e "mode=apply cloud_type=os env=os password=XXXXX" provcluster.yml

The above command will provision (prov is short for provision) a cluster of
virtual machines on your OpenStack cloud the environment defined in vars/os.yml
file. Replace xxxxx with your own password from your cloud provider. Replace
os with your own cloud environment file if you decided to create a new one.
If you like to provision from other cloud, you will need to specify the
cloud_type to be aws, azure, or other cloud (plan to support aws).

This step produces a set of servers and an ansible host file named run/runhosts.

Manually create a runhosts file with servers already available

If you already have a set of servers available that you wish to use, then you
can create a file by following the example below. And also make sure these
server's hostname get setup as XXXXX001, XXXXX002, etc and they can can see
each other by their hostnames. The XXXXX should be replaced with your own
perference which gets used in the later configuration. In this example, the
word "fabric" is used, but it can be anything that you prefer, make sure
they are consistent.

cloud ansible_host=127.0.0.1 ansible_python_interpreter=python
169.45.102.186 private_ip=10.0.10.246 public_ip=169.45.102.186 inter_name=fabric001
169.45.102.187 private_ip=10.0.10.247 public_ip=169.45.102.187 inter_name=fabric002
169.45.102.188 private_ip=10.0.10.248 public_ip=169.45.102.188 inter_name=fabric003

[allnodes]
169.45.102.186
169.45.102.187
169.45.102.188

[etcdnodes]
169.45.102.186
169.45.102.187
169.45.102.188

[builders]
169.45.102.186

The above file is a typical ansible host file. The cloud ansible_host should be your ansible
controller server, you should not change that line. All other lines in the file represent
a server, private_ip and public_ip are the concept for cloud, if your servers are not in
a cloud, then you can use the server's IP address for both private_ip and public_ip field,
but you can not remove these two fields. The inter_name is also important, you should name
the server sequentially and these names will be used in later configuration to allocate
hyperledger fabric components. Group allnodes should list all the servers other than the
ansible controller node. Group etcdnodes should list all the servers that you wish to install
etcd services on. Group builders should list all the servers that you wish to use to build
hyperledger fabric artifacts such as executables and docker images.

Initialize and prepare the servers

ansible-playbook -i run/runhosts -e "mode=apply env=os env_type=flanneld" initcluster.yml

The above command will initilize the cluster using flanneld overlay network. It installs
flanneld network, dns and registrator services. Plan to support kubernetes in future.

Setup the fabric network

ansible-playbook -i run/runhosts -e "mode=apply env=bc1st deploy_type=compose" setupfabric.yml

The env value in the command indicates which fabric network configuration to use.
Variable deploy_type needs to be set to compose. If it is set to k8s, it means
that you choose to use kubernetes environment. In above example, ansible looks
file bc1st.yml in vars directory, you can create as many files in that directory
to reflect your own fabric network.

Verify that the fabric network is working correctly

ansible-playbook -i run/runhosts -e "mode=verify env=bc1st" verify.yml

The above command should acess the server and display all the container status
in your next work.

Cleanup

Once you're done with it, don't forget to nuke the whole thing::

ansible-playbook -e "mode=destroy env=bc1st deploy_type=compose" setupfabric.yml

The above command will destroy all the fabric resources created such as
the executables on the build machines and all the fabric containers on
all the servers.

If you created the entire environment on your cloud, and you do not
want these machines any more, execute the following command to get rid
of all the servers::

ansible-playbook -e "mode=destroy env=os password=XXXXX cloud_type=os" provcluster.yml

Details about the cloud configuration file

Here is the os.yml file in cello/src/agent/ansible/vars directory.

auth: {
 auth_url: "https://salesdemo-sjc.openstack.blueboxgrid.com:5000/v2.0",
 username: "litong01",
 password: "{{ password | default(lookup('env', 'password')) }}",
 project_name: "Interop"
}

This variable defines cloud provision attributes
cluster: {
 target_os: "ubuntu",
 image_name: "Ubuntu 16.04",
 region_name: "",
 ssh_user: "ubuntu",
 availability_zone: "compute_enterprise",
 validate_certs: True,
 private_net_name: "demonet",
 flavor_name: "m1.medium",
 public_key_file: "/home/ubuntu/.ssh/fd.pub",
 private_key_file: "/home/ubuntu/.ssh/fd",
 # This variable indicate what IP should be used, only valid values are
 # private_ip or public_ip
 node_ip: "public_ip",

 container_network: {
 Network: "172.16.0.0/16",
 SubnetLen: 24,
 SubnetMin: "172.16.0.0",
 SubnetMax: "172.16.255.0",
 Backend: {
 Type: "udp",
 Port: 8285
 }
 },

 service_ip_range: "172.15.0.0/16",
 dns_service_ip: "172.15.0.4",

 # the section defines preallocated IP addresses for each node, if there is no
 # preallocated IPs, leave it blank
 node_ips: ["169.45.102.186", "169.45.102.187", "169.45.102.188"],

 # fabric network node names expect to be using a clear pattern, this defines
 # the prefix for the node names.
 name_prefix: "fabric",
 domain: "fabricnet",

 # stack_size determines how many virtual or physical machines we will have
 # each machine will be named ${name_prefix}001 to ${name_prefix}${stack_size}
 stack_size: 3,

 etcdnodes: ["fabric001", "fabric002", "fabric003"],
 builders: ["fabric001"],

 flannel_repo: "https://github.com/coreos/flannel/releases/download/v0.7.1/flannel-v0.7.1-linux-amd64.tar.gz",
 etcd_repo: "https://github.com/coreos/etcd/releases/download/v3.2.0/etcd-v3.2.0-linux-amd64.tar.gz",
 k8s_repo: "https://storage.googleapis.com/kubernetes-release/release/v1.7.0/bin/linux/amd64/",

 go_ver: "1.8.3",
 # If volume want to be used, specify a size in GB, make volume size 0 if wish
 # not to use volume from your cloud
 volume_size: 0,
 # cloud block device name presented on virtual machines.
 block_device_name: "/dev/vdb"
}

auth section specifies the credentials to access your cloud. cluster section
provides more detailed information how virtual machines will be created on
OpenStack cloud. private_key_file and public_key_file should point to the
ssh key pair that you may have created in step #2. stack_size in this example
was set to 3, that means you will create 3 VMs in your cloud, their names
will be fabric001, fabric002 and fabric003 since the name_prefix field was
set to "fabric". domain field specifies the fabric network domain, it can be
anything you like, it is just a string. etcdnodes field indicates on which
nodes that you want to setup etcd services which is required by overlay
network and also kuberenetes. builders field specifies on which node you
like to build fabric binaries such as cryotogen, configtxgen, docker images.
Remember that the name fabric001, fabric002 etc are logic names. They do not
have to be set to your machine's hostname. When you do things in the OpenStack
or AWS, these logic name will be alos be used as hostnames of the virtual
machines, but they do not have to be. Other fields such as flanneld_repo,
etcd_repo, k8s_repo, go_ver are the fields indicate where to download needed
binaries.

A bit more information for each field::

target_os: operating system that your servers will be using
image_name: cloud image you like to use to create virtual servers.
ssh_user: user id used by ssh to log in each server,
availability_zone: OpenStack availability zone
validate_certs: if validate the certificates when access servers.
private_net_name: private network name where servers being created on
flavor_name: virtual server specs
public_key_file: ssh public key file
private_key_file: ssh private key file
node_ip: use either private_ip or public_ip when access the servers
node_ips: preallocated ip addresses for each server
container_network: overlay network settings, do not change this
 unless you absolutely know what you are doing
name_prefix: how to name virtual servers, can be any character except dot
domain: the fabric network domain name, can be any character except dot
stack_size: how many virtual servers to create,

etcdnodes: which servers to install etcd services
builders: which server to be used for building hyperledger fabric

flannel_repo: where to download flanneld
etcd_repo: where to download etcd

go_ver: version of golang to be installed
volume_size: future use
block_device_name: future use

Details about the fabric netowkr layout configuration file

Here is the bc1st.yml (short for block chain 1st network)::

The url to the fabric source repository
GIT_URL: "http://gerrit.hyperledger.org/r/fabric"

The gerrit patch set reference, should be automatically set by gerrit
GERRIT_REFSPEC: "refs/tags/v1.0.0-rc1"

This variable defines fabric network attributes
fabric: {
 ssh_user: "ubuntu",
 network: {
 fabric001: {
 cas: ["ca.orga", "ca.orgb"],
 peers: ["leader@1stpeer.orga", "leader@1stpeer.orgb"],
 orderers: ["1storderer.orgc", "1storderer.orgd"],
 zookeepers: ["zookeeper1st"],
 kafkas: ["kafka1st"]
 },
 fabric002: {
 cas: ["ca.orgc", "ca.orgd"],
 peers: ["anchor@2ndpeer.orga", "anchor@2ndpeer.orgb"],
 orderers: ["2ndorderer.orgc", "2ndorderer.orgd"],
 zookeepers: ["zookeeper2nd"],
 kafkas: ["kafka2nd"]
 },
 fabric003: {
 peers: ["worker@3rdpeer.orga", "worker@3rdpeer.orgb"],
 zookeepers: ["zookeeper3rd"],
 kafkas: ["kafka3rd", "kafka4th"]
 }
 },
 baseimage_tag: "1.0.0-rc1"
}

In above configuration, the fabric network will use 3 servers. The ansible
controller will use ssh_user value to ssh connect to these servers to setup
various components. baseimage_tag dictates what container images will be
used to start fabric containers. If you intend to build images from the
source code, you can happily leave the value of baseimage_tag to be blank,
ansible controller will extract the source code using variables GERRIT_REFSPEC
and GIT_URL to get the code, then compile and build all artifacts. These
artifacts will be eventually pushed onto all the nodes and containers will
be started using these images. If you just want to build from the latest
code, then you can leave GERRIT_REFSPEC to be also blank. Other fields in
the configuration file is self explanatory. Make changes according to your
desire. The example bc1st.yml file defined 3 zookeeper nodes, 4 kafka nodes,
4 organizations, peers and orderers. Peers also being defined as anchor peer,
leader peer or just simply worker peer. For your own configuration, you
should create similar file to reflect your own fabric network setups, then
use the file name in the place of bc1st in the ansible command to ultimately
setup your fabric network.

Extra information about cello ansible agent

The method for running just a play, not the entire playbook

The script will create an ansible inventory file named runhosts at the very
first time you run the playbook, the inventory file will be place at a
directory named "run" at the root directory of the playbook. This file will be
updated in later runs if there are changes such as adding or removing hosts.
With this file, if you like to run only few plays, you will be able to do
that by following the example below:

ansible-playbook -i run/runhosts -e "mode=apply env=bc1st deploy_type=compose" setupfabric.yml
 --<skip->tags "certsetup"

The above command will use the runhosts inventory file and only run play
named certsetup, all other plays in the play books will be skipped. All
available plays can be found in roles directory, each directory name is
a name can be used in either --tags to be executed or --skip-tags not to
be executed.

ssh-agent to help ansible

Since ansible access either the virtual machines that you create on a
cloud or machines that you may already have by using ssh, setting up
ssh-agent on the ansible controller is very important, without doing
this most likely, the script will fail to connect to your servers.
Follow the steps below to setting your ssh-agent on ansible controller
which should be always the machine that you run the ansible script.

	Create a ssh key pair (only do this once)::

 ssh-keygen -t rsa -f ~/.ssh/fd

	Run the command once in a session in which you run the ansible script::

 eval $(ssh-agent -s)
 ssh-add ~/.ssh/fd

	For the servers created in the cloud, this step is already done for
you. For the existing servers, you will need to make sure that the fd.pub
key is in the file ~/.ssh/authorized_keys. Otherwise, the servers will
reject the ssh connection from ansible controller.

Security rule references when you setup fabric network on a cloud

When you work with a cloud, often it is important to open or close certain
ports for the security and communication reasons. The following port are
used by flanneld overlay network and other services of fabric network, you
will need to make sure that the ports are open. The following example assumes
that the overlay network is 10.17.0.0/16 and the docker host network is
172.31.16.0/20, you should make changes based on your network::

Custom UDP Rule UDP 8285 10.17.0.0/16
Custom UDP Rule UDP 8285 172.31.16.0/20
SSH TCP 22 0.0.0.0/0
Custom TCP Rule TCP 2000 - 60000 10.17.0.0/16
Custom TCP Rule TCP 2000 - 60000 172.31.16.0/20
DNS (UDP) UDP 53 172.31.16.0/20
DNS (UDP) UDP 53 10.17.0.0/16
All ICMP - IPv4 All N/A 0.0.0.0/0

[image: Creative Commons License]

This work is licensed under a

Creative Commons Attribution 4.0 International License.

API V1

Deprecated.

Front

These APIs will be called by front web services.

Latest version please see restserver.yaml.

cluster_apply

Find an available cluster in the pool for a user.

GET /v1/cluster_apply?user_id=xxx&consensus_plugin=pbft&consensus_mode
=classic&size=4&new=0

if add new=1, then ignore matched clusters that user already occupy.

When cluster_apply request arrives, the server will try checking available cluster in the pool.

Accordingly, the server will return a json response (succeed or fail).

cluster_release

Declare the id to release a cluster.

GET /v1/cluster_release?cluster_id=xxxxxxxx

Rlease all clusters under a user account.

GET /v1/cluster_release?user_id=xxxxxxxx

The server will drop the corresponding cluster, recreate it and put into available pool for future requests.

Admin

Those APIs should not be called by outside applications. Just for
information, please see api-admin.yaml

[image: Creative Commons License]
This work is licensed under a Creative Commons Attribution 4.0 International License.

API V2

Each url should have the /v2 prefix, e.g., /cluster_op should be /v2/cluster_op.

Rest Server

These APIs will be called by front web services.

Latest version please see restserver.yaml.

Cluster

Basic request may looks like:

POST /cluster_op
{
action:xxx,
key:value
}

Or

GET /cluster_op?action=xxx&key=value

The supported actions can be

	apply: apply a chain

	release: release a chain, possibly only one peer

	start: start a chain, possibly only one peer

	stop: stop a chain, possibly only one peer

	restart: restart a chain, possibly only one peer

We may show only one of the GET or POST request in the following sections.

Cluster apply

Apply an available cluster for a user, support multiple filters like consensus_plugin, size.

POST /cluster_op
{
action:apply,
user_id:xxx,
allow_multiple:False,
consensus_plugin:pbft,
consensus_mode:batch,
size:4
}

if allow_multiple:True, then ignore matched clusters that user already occupied.

When apply request arrives, the server will try checking available cluster in the pool.

Accordingly, the server will return a json response (succeed or fail).

{
 "code": 200,
 "data": {
 "api_url": "http://192.168.7.62:5004",
 "consensus_mode": "batch",
 "consensus_plugin": "pbft",
 "worker_api": "tcp://192.168.7.62:2375",
 "id": "576ba021414b0502864d0306",
 "name": "compute2_4",
 "size": 4,
 "user_id": "xxx"
 },
 "error": "",
 "status": "OK"
}

Cluster release

Release a specific cluster.

POST /cluster_op
{
action:release,
cluster_id:xxxxxxxx
}

Return json object may look like

{
 "code": 200,
 "data": "",
 "error": "",
 "status": "OK"
}

Release all clusters under a user account.

POST /cluster_op
{
action:release,
user_id:xxxxxxxx
}

The server will drop the corresponding cluster, recreate it and put into available pool for future requests.

Cluster Start, Stop or Restart

Take start for example, you can specify the node_id if to operate one node.

POST /cluster_op
{
action:start,
cluster_id:xxx,
node_id:vp0
}

Clusters List

Return the json object whose data may contain list of cluster ids.

List all available cluster of given type.

POST /clusters
{
consensus_plugin:pbft,
consensus_mode:classic,
size:4,
user_id:""
}

Query all cluster of given type

POST /clusters
{
consensus_plugin:pbft,
consensus_mode:classic,
size:4,
}

Query the clusters for a user.

POST /clusters
{
user_id:xxx
}

Get object of a cluster

GET /cluster/xxxxxxx

Will return the json object whose data may contain detailed information of cluster.

[image: Creative Commons License]
This work is licensed under a Creative Commons Attribution 4.0 International License.

Vue Theme

This theme is written in vue framework, and ui framework is based on iView [https://www.iviewui.com].

	Introduction

	Project Structure

[image: Creative Commons License]
This work is licensed under a Creative Commons Attribution 4.0 International License.

Introduction

This theme is designed to provide a single-page application with a high performance and better user experience.

Quick start

How to launch the service under vue theme? It's very simple. Go into root directory of project.

$ THEME=vue make start

That's ok.

How to develop on vue theme? After you change the vue code, you can run

$ THEME=vue make build-js

The newest html and js is built out now.

[image: Creative Commons License]
This work is licensed under a Creative Commons Attribution 4.0 International License.

Project Sturcture

├── static
│ ├── buildfiles # build files for build vue theme
│ │ ├── build.js
│ │ ├── check-versions.js
│ │ ├── dev-client.js
│ │ ├── dev-server.js
│ │ ├── utils.js
│ │ ├── vue-loader.conf.js
│ │ ├── webpack.base.conf.js
│ │ ├── webpack.dev.conf.js
│ │ └── webpack.prod.conf.js
│ ├── config
│ │ ├── dev.env.js
│ │ ├── index.js
│ │ ├── prod.env.js
│ │ └── test.env.js
│ ├── index.html # origin html for insert built out js path
│ ├── login
│ │ ├── login.css
│ │ ├── login.less
│ │ └── particles.min.js
│ ├── package.json # package requirement and scripts
│ └── src # main source code for vue theme
│ ├── App.vue # main app component
│ ├── api # api files for communicate with backend service
│ │ ├── cluster.js
│ │ ├── host.js
│ │ ├── status.js
│ │ └── user.js
│ ├── components # common components
│ │ ├── EChart.vue
│ │ ├── HeaderBar.vue
│ │ └── LeftNav.vue
│ ├── config # global configuration
│ │ ├── Menus.js
│ │ └── Urls.js
│ ├── main.js # app entry file
│ ├── pages # all router pages
│ │ ├── Chains
│ │ │ ├── ChainModal.vue
│ │ │ ├── ExpandRow.vue
│ │ │ ├── Operation.vue
│ │ │ └── index.vue
│ │ ├── HomePage.vue
│ │ ├── Host
│ │ │ ├── HostModal.vue
│ │ │ ├── Operation.vue
│ │ │ └── index.vue
│ │ └── UserManagement
│ │ ├── Operation.vue
│ │ ├── UserModal.vue
│ │ └── index.vue
│ ├── router
│ │ └── index.js # router configration file
│ └── store # global storage files
│ ├── clusters.js
│ ├── hosts.js
│ ├── index.js
│ ├── stats.js
│ └── users.js
└── templates # html files built out
 ├── index.html
 └── login.html

static/build/

This directory holds the actual configurations for both the development server and the production webpack build. Normally you don't need to touch these files unless you want to customize Webpack loaders, in which case you should probably look at build/webpack.base.conf.js

static/src/

This is where most of your application code will live in. How to structure everything inside this directory is largely up to you.

static/index.html

This is the template index.html for our single page application. During development and builds, Webpack will generate assets, and the URLs for those generated assets will be automatically injected into this template to render the final HTML.

static/package.json

The NPM package meta file that contains all the build dependencies and build commands.

[image: Creative Commons License]
This work is licensed under a Creative Commons Attribution 4.0 International License.

 _static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_images/architecture.png
Restful Server Operation Dashboard

o Orchestration ; Health
Monitoring Logging

Engine Watcher

_images/cello_baseimage.png
" N Upstream
ongo! FOSS

hyperledger/
cello-baseimage

v

docker: hyperledger/cello-
baseimage

Dockerfile

docker environment

_images/dashboard_clusters.png
Search.

Ry Chains active: 15 .

System Status

Hosts Show 10 4 entries Search:

Active Chains Name Type Status Health size Host

Inused Chains compute3 0 noops running oK 4 582d7ec2f113a90255082ded m

Release History » Start
compute3 1 pbft/batch running oK 6 582d7ec2f113a90255082ded ‘

About W Stop
compute3_2 pbft/batch running oK 4 582d7ec2f113a90255082ded ‘ C Restart

i Delete:

compute3 3 | pbftbatch running oK 6 582d7ec2f113a90255082ded ‘ 2 Release
compute3 4 noops running oK 4 582d7ec2f113a90255082ded m
compute3 5 pbftbatch running oK 6 582d7ec2f113a90255082ded m
compute3 6 noops running OK 6 582d7ec2f113a90255082ded m
compute3 7 pbftbatch running oK 4 582d7ec2f113a90255082ded m
compute3 8 pbftbatch running 4 582d7ec2f113a90255082ded m
compute3 9 pbftbatch running oK 4 582d7ec2f113a90255082ded m

Previous

Showing 1 to 10 of 15 entries.
- 2 Next

_images/dashboard_hosts.png
Cello Dashboart

Overview
System Status
Active Chains
Inused Chains
Release History

About

Hosts: 4

Add Host
Show 10 ¢ entries Search:
Name Type Status Chains Ccap Log Config
computel SINGLE active 0 0 DEBUG/Iocal @
compute2 SINGLE active 0 0 DEBUG/Iocal ‘ A Fillup
¥ Clean
compute3 SINGLE active 10 10 DEBUG/local ‘ % Config
< Reset
computed SINGLE active 5 5 DEBUGHIocal ‘ i Delete
Showing 1t 4 of 4 entries
Previous . Next

_images/dashboard_add_cluster.png
Create a cluster

*Name Cluster Name
Select a Host | computet [

Cluster Size < [J

Consensus Plugin [perT 3

Consensus Mode saTcH [

_images/dashboard_add_host.png
Add a host

*Name ‘ Host_Name(1~16 char)

*DaemonURL 192.168.0.1:2375

Capacity
Logging Level oesue [

Logging Type Local [

) Fillup with cluster) Schedulable

_images/dashboard_overview.png
System Status

Hosts

Active Chains

Inused Chains

Release History

About

System Overview

(B Working Hosts “
(B Active Chains n

[E2) Released Chains

Host Status

Active: compute! compute2 compute3 computed

Inactive:

Chain Status

Utilization: 9/15

In Processing:

_images/dashboard_status.png
Overview

Hosts Host Type Host Status Chain Type Chain
Status

Platform Status

Active Chains.
Inused Chains
Release History

About

single: 4 active: 4 noops: 6 free: s
I swarm: 0 M inactive: 0 I pbit/batch: 9 I used: 10

_images/deploy_arch.png
Master Nodes

Cello Services

||||||||||||||||||

Baremetal

||||||||||||||||||

vSphere

||||||||||||||||||

K8s

||||||||||||||||||

Swarm

||||||||||||||||||

Docker

Host #2 Host #3 Host #4 Host #5

Host #1

_images/vsphere-active.png
Hosts: 1 1o

o 0 . Ll J

Name L T | Sws | Cmms [Cap | LogContg || I

Showing 1101 of 1 enties
Previous . Next

_images/vsphere-basicSetting.png
Add a host

oO— 2

2 2,
o

LogoingLevel [DEBUG v|
LogoimgType [LOCAL v

) Schecuiabl forcuster request -] Keep fled i custer

VM Sating

_images/tutorial_add_chain.png
Create a cluster

Select a Host docker_host &
Chain Size| 4 &

Consensus Plugin [NOOPS %

=

_images/tutorial_add_host.png
Add a host

*Name docker_host

*DaemonURL | 192.168.7.220:2375

Capacity

i

Logging Level | DEBUG 4|
Logging Type | LOCAL 3]

) Schedulable for cluster request) Keep filled with cluster

=

_images/vsphere-vcSetting.png
Add a host x

“VC Adaress.
Ve user

g ———
g ——

“Cluster

_images/vsphere-vmSetting.png
Add a host

10112123136

il

cello-vsphere-template.

WM Sating

_images/vsphere-pending.png
Hosts: 1 [1o |

o0 rlow san
Mmool W S Cwm G Ll () (I
‘Showing 1101 0f 1 entes. I

Previous. Next

_images/vsphere-select.png
- .

oy .
ostoe
oot SO0

Logging Type.

53 Scheduable for luster request) Keep fled win custer

[B

_static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

_static/down.png

