
ccGains Documentation
Release 1.0.0 beta

Jürgen Probst

Jan 22, 2019

Contents:

1 ccgains package 3
1.1 Module contents . 3
1.2 ccgains.bags module . 3
1.3 ccgains.historic_data module . 7
1.4 ccgains.relations module . 9
1.5 ccgains.trades module . 10
1.6 ccgains.reports module . 16

2 Indices and tables 23

Python Module Index 25

i

ii

ccGains Documentation, Release 1.0.0 beta

The ccGains (cryptocurrency gains) package provides a python library for calculating capital gains made by trading
cryptocurrencies or foreign currencies.

Some of its features are:

• calculates the capital gains using the first-in/first out (FIFO) principle,

• creates capital gains reports as CSV, HTML or PDF (instantly ready to print out for the tax office),

• can create a more detailed capital gains report outlining the calculation and used bags,

• differs between short and long term gains (amounts held for less or more than a year),

• treats amounts held and traded on different exchanges separately,

• treats exchange fees and transaction fees directly resulting from trading properly as losses,

• provides methods to import your trading history from various exchanges,

• loads historic cryptocurrency prices from CSV files and/or

• loads historic prices from APIs provided by exchanges,

• caches historic price data on disk for quicker and offline retrieval and less traffic to exchanges,

• for highest accuracy, uses the decimal data type for all amounts

• supports saving and loading the state of your portfolio as JSON file for use in ccGains calculations in following
years

Contents: 1

https://docs.python.org/3/library/decimal.html

ccGains Documentation, Release 1.0.0 beta

2 Contents:

CHAPTER 1

ccgains package

1.1 Module contents

1.2 ccgains.bags module

class ccgains.bags.Bag(id, dtime, currency, amount, cost_currency, cost, price=None)
Create a bag which holds an amount of currency.

Parameters

• (integer) (id) – A unique number for each bag. Usually the first created bag receives
an id of 1, which increases for every bag created.

• dtime – The datetime when the currency was purchased.

• currency – The currency this bag holds, the currency that was bought.

• amount – The amount of currency that was bought. This is the amount that is available,
i.e. fees are already substracted.

• cost_currency – The base currency which was paid for the money in this bag. The base
value of this bag is recorded in this currency.

• cost – The amount of cost_currency paid for the money in this bag. This covers all ex-
penses, so fees are included.

• price – (optional, default: None): If price is given, cost will be ignored and calculated
from price: cost = amount * price.

is_empty()

spend(amount)
Spend some amount out of this bag. This updates the current amount and the base value, but leaves the
price constant.

Returns

3

ccGains Documentation, Release 1.0.0 beta

the tuple (spent_amount, bcost, remainder), where

• spent_amount is the amount taken out of the bag, in units of self.currency;

• bcost is the base cost of the spent amount, in units of self.cost_currency;

• remainder is the leftover of amount after the spent amount is substracted.

class ccgains.bags.BagQueue(base_currency, relation, mode=’FIFO’,
json_dump=’./precrash.json’)

Create a BagQueue object.

This is the class that processes trades, handles all bags (i.e. creating and spending them) and calculates the
capital gains. After calculation, the member BagQueue.report provides methods to create reports.

Parameters

• base_currency – The base currency (string, e.g. “EUR”). All bags’ base cost (the
money spent for them at buying time) will be recorded in units of this currency and finally
the capital gains will be calculated for this currency.

• relation – A CurrencyRelation object which serves exchange rates between all curren-
cies involved in trades which will later be added to this BagQueue. If solely trades involv-
ing base_currency will be processed, a CurrencyRelation object is not necessary and can be
None. In this case, if a trade between non-base currencies is encountered, an exception will
be raised.

• mode – (string) Inventory accounting method to use. The following methods are supported:
- “FIFO”: First In First Out - “LIFO”: Last In First Out - “LPFO”: Lowest Price First Out

• json_dump – (filename) If specified, the state of the BagQueue will be saved as JSON
formatted file with this file name just before an error is raised due to missing or conflicting
data. If the error is fixed, the state can be loaded from this file and the calculation might be
able to continue from that point.

buy_with_base_currency(dtime, amount, currency, cost, exchange)
Create a new bag with amount money in currency.

Creation time of the bag is the datetime dtime. The cost is paid in base currency, so no money is taken
out of another bag. Any fees for the transaction should already have been substracted from amount, but
included in cost.

deposit(dtime, currency, amount, fee, exchange)
Deposit amount monetary units of currency into an exchange for a fee (also given in currency), making it
available for trading. The fee is included in amount. The deposit happened at datetime dtime.

The pair of methods withdraw and deposit is used for transfers of the same currency from one exhange to
another.

If the amount is more than the amount withdrawn before (minus fees), a warning will be printed and a bag
created with a base cost of 0.

See also withdraw about the handling of fees.

Note that, currently, the fees for this deposit, if any, will be taken from the oldest funds on the exchange
after the deposit, which are not necessarily the deposited funds.

load(filepath_or_buffer)
Restore a previously saved state of a BagQueue and its list of bags from a JSON formatted file.

Everything from the current BagQueue object will be overwritten with the file’s contents.

Parameters filepath_or_buffer – The filename of the JSON formatted file or a general
buffer with a read() method streaming the JSON formatted string.

4 Chapter 1. ccgains package

ccGains Documentation, Release 1.0.0 beta

pay(dtime, currency, amount, exchange, fee_ratio=0, custom_rate=None, report_info=None)
Spend an amount of funds.

The money is taken out of the bag on the exchange with the proper currency according to self.mode first,
then from the next fitting bags in line each time a bag is emptied. The bags’ prices are not changed, but
their current amount and base value (original cost) are decreased proportionally.

This transaction and any profits or losses made will be logged and added to the capital gains report data.

If amount is higher than the available total amount, ValueError is raised.

Parameters

• dtime – (datetime) The date and time when the payment occured.

• amount – (number, decimal or parsable string) The amount being spent, including fees.

• currency – (string) The currency being spent.

• exchange – (string) The unique name of the exchange/wallet where the funds that are
being spent are taken from.

• fee_ratio – (number, decimal or parsable string), 0 <= fee_ratio <= 1; The ratio of
amount that are fees. Default: 0.

• custom_rate – (number, decimal or parsable string), Default: None; Provide a custom
rate for conversion of currency to the base currency. Usually (i.e. if this is None), the
rate is fetched from the CurrencyRelation object provided when this BagQueue object was
created. In some cases, one should rather provide a rate, for example when base currency
was bought with this payment, meaning a more specific rate for this trade can be provided
than relying on the averaged historic data used otherwise.

• report_info – dict, default None; Additional information that will be added to the
capital gains report data. Currently, the only keys looked for are: ‘kind’, ‘buy_currency’
and ‘buy_ratio’. For each one of them omitted in the dict, these default values will be
used:

{‘kind’: ‘payment’, ‘buy_currency’: ‘’, ‘buy_ratio’: 0},

This is also the default dict used when report_info is None.

– ’kind’ is the type of transaction, i.e. ‘sale’, ‘withdrawal fee’, ‘payment’ etc.;

– ’buy_currency’ is the currency bought in this trade;

– ’buy_ratio’ is the amount of ‘buy_currency’ bought with one unit of currency, i.e.
bought_amount / spent_amount; only used if ‘buy_currency’ is not empty.

Returns

the tuple (short_term_profit, total_proceeds), with each value given in units of the base cur-
rency, where:

• short_term_profit

is the taxable short term profit (or loss if negative) made in this sale. This only
takes into account the part of amount which was acquired less than a year prior
to dtime (or whatever time period is used by is_short_term). The short term profit
equals the proceeds made by liquidating this amount for its price at dtime minus
its original cost, with the fees already substracted from these proceeds.

• total_proceeds

1.2. ccgains.bags module 5

ccGains Documentation, Release 1.0.0 beta

are the total proceeds returned from this sale, i.e. it includes the full amount (held
for any amount of time) at its price at dtime, with fees already substracted. This
value equals the base cost of any new currency purchased with this sale.

pick_bag(exchange, currency, start_index=None)
Pick bag from bag queue according to self.mode

Parameters

• exchange – (string) The unique name of the exchange/wallet where the funds that are
being spent are taken from.

• currency – (string) The currency being spent.

• start_index – (int) List index to start from

process_trade(trade)
Process the trade or transaction documented in a Trade object.

The trade must be newer than the last processed trade, otherwise a ValueError is raised.

Pay attention to the definitions in Trade.__init__, especially that buy_amount is given without transaction
fees, while sell_amount includes them.

save(filepath_or_buffer)
Save the current state of this BagQueue and its list of bags to a JSON formatted file, so that it can later be
restored with self.load.

As an external utility, self.relation will not be included in this string.

Parameters filepath_or_buffer – The destination file’s name, which will be overwritten
if existing, or a general buffer with a write() method.

sort_bags(exchange)
Sort bags according to self.mode

Parameters exchange – (string) The unique name of the exchange/wallet where the bags
being sorted are.

to_data_frame()
Put all bags from all exchanges in one big pandas.DataFrame.

to_json(**kwargs)
Return a JSON formatted string representation of the current state of this BagQueue and its list of bags.

As an external utility, self.relation will not be included in this string.

Parameters kwargs – Keyword arguments that will be forwarded to json.dumps.

Returns JSON formatted string

withdraw(dtime, currency, amount, fee, exchange)
Withdraw amount monetary units of currency from an exchange for a fee (also given in currency). The fee
is included in amount. The withdrawal happened at datetime dtime.

The pair of methods withdraw and deposit is used for transfers of the same currency from one exhange to
another.

If the amount is more than the total available, a ValueError will be raised.

—

Losses made by fees (which must be directly resulting from and connected to short term trading activity!)
are substracted from the total taxable profit (recorded in base currency).

6 Chapter 1. ccgains package

ccGains Documentation, Release 1.0.0 beta

This approach can be logically justified by looking at what happens to the amount of fiat money that leaves
a bank account solely for trading with cryptocurrencies, which in turn are sold entirely for fiat money
before the end of the year. If nothing else was bought with the cryptocurrencies in between, the difference
between the amount of fiat before and after trading is exactly the taxable profit. For simplicity, say we
buy some Bitcoin at one exchange for X fiat money (i.e. X fiat money is leaving the bank account), then
transfer it to another exchange (paying withdrawal and/or deposit fees) where we sell it again for fiat, e.g.:

• buy 1 BTC @ 1000 EUR at exchangeA; now we own 1 BTC with base value 1000 EUR

• transfer 1 BTC to exchangeB for 0.1 BTC fees; now we own 0.9 BTC with base value 900 EUR, 100
EUR for the fees are counted as loss

• Example 1: We sell 0.9 BTC at a better price than before: we get exactly 1000 EUR. The immediate
profit is 100 EUR (1000 EUR proceeds minus 900 EUR base value), but minus the 100 EUR fee loss
from earlier we have exactly a taxable profit of 0 EUR, which makes sense considering we started
with 1000 EUR and now still have only 1000 EUR.

• Example 2: We sell 0.9 BTC at a much better price: we get exactly 2000 EUR. The immediate profit
is 1100 EUR (2000 EUR proceeds minus 900 EUR base value), but minus the 100 EUR fee loss from
earlier we have exactly a taxable profit of 1000 EUR, which also makes sense since we started with
1000 EUR and now have 2000 EUR.

Note: The exact way how withdrawal, deposit and in general transaction fees are handled should be made
user-configurable in future.

exception ccgains.bags.CurrencyTypeException

ccgains.bags.is_short_term(adate, tdate)
Return whether a transaction/trade done on tdate employing currency acquired on adate is a short term activity,
i.e. the profits and/or losses made with it are taxable.

Currently, this simply returns whether the difference between the two dates is less than one year, as is the rule
in some countries, e.g. Germany and the U.S.A.

TODO: This needs to be made user-configurable in future, to adapt to laws in different countries.

1.3 ccgains.historic_data module

class ccgains.historic_data.HistoricData(unit)
Bases: object

Create a HistoricData object with no data. The unit must be a string given in the form ‘cur-
rency_one/currency_two’, e.g. ‘EUR/BTC’.

Only use this constructor if you want to manually set the data, otherwise use one of the subclasses HistoricDat-
aCSV or HistoricDataAPI.

To manually set data, self.data must be a pandas time series with a fixed frequency.

get_price(dtime)
Return the price at datetime dtime

prepare_request(dtime)
Return a Pandas DataFrame which contains the data at the requested datetime dtime.

class ccgains.historic_data.HistoricDataAPI(cache_folder, unit, interval=’H’)
Bases: ccgains.historic_data.HistoricData

Initialize a HistoricData object which tranparently fetch data on request (get_price) from the public Poloniex
API: https://poloniex.com/public?command=returnTradeHistory

1.3. ccgains.historic_data module 7

https://poloniex.com/public?command=returnTradeHistory

ccGains Documentation, Release 1.0.0 beta

For faster loading times on future calls, a HDF5 file is created from the requested data and used transparently
the next time a request for the same day and pair is made. These HDF5 files are saved in cache_folder.

The unit must be a string given in the form ‘currency_one/currency_two’, e.g. ‘EUR/BTC’.

The data will be resampled by calculating the weighted price for interval steps specified by interval. See:
http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases for possible values.

prepare_request(dtime)
Return a Pandas DataFrame which contains the data for the requested datetime dtime.

class ccgains.historic_data.HistoricDataAPIBinance(cache_folder, unit, interval=’H’)
Bases: ccgains.historic_data.HistoricData

Initialize a HistoricData object which will transparently fetch data on request (get_price) from the public Bi-
nance API: https://api.binance.com/api/v1/klines

For faster loading times on future calls, a HDF5 file is created from the requested data and used transparently
the next time a request for the same day and pair is made. These HDF5 files are saved in cache_folder.

The unit must be a string in the form ‘currency_one/currency_two’, e.g. ‘NEO/BTC’.

The data will be resampled by calculating the weighted price for interval steps specified by interval. See:
http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases for possible values.

prepare_request(dtime)
Return a pandas DataFrame which contains the data for the requested datetime dtime.

class ccgains.historic_data.HistoricDataAPICoinbase(cache_folder, unit, inter-
val=’H’)

Bases: ccgains.historic_data.HistoricData

Initialize a HistoricData object which transparently fetches data on request (get_price) from the public Coinbase
API: ‘https://api.pro.coinbase.com/products/:SYMBOL:/candles’

For faster loading times on future calls, a HDF5 file is created from the requested data and used transparently
the next time a request for the same day and pair is made. These HDF5 files are saved in cache_folder.

The unit must be a string given in the form ‘currency_one/currency_two’, e.g. ‘BTC/USD’.

The data will be resampled by calculating the weighted price for interval steps specified by interval. See:
http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases for possible values.

prepare_request(dtime)
Return a pandas DataFrame which contains the data for the requested datetime dtime.

class ccgains.historic_data.HistoricDataCSV(file_name, unit, interval=’H’)
Bases: ccgains.historic_data.HistoricData

Initialize a HistoricData object with data loaded from a csv file. The unit must be a string given in the form
‘currency_one/currency_two’, e.g. ‘EUR/BTC’. The csv must consist of three columns: first a unix timestamp,
second the rate given in unit, third the amount traded. (Such a csv can be downloaded from bitcoincharts.com)

The file may also be compressed and will be deflated on-the-fly; allowed extensions are: ‘.gz’, ‘.bz2’, ‘.zip’ or
‘.xz’.

The data will be resampled by calculating the weighted price for interval steps specified by interval. See:
http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases for possible values.

For faster loading times, a HDF5 file is created from the csv the first time it is loaded and used transparently the
next time an HistoricData object is created with the same csv. If the csv file is newer than the HDF5 file, the
latter will be updated.

8 Chapter 1. ccgains package

http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases
https://api.binance.com/api/v1/klines
http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases
https://api.pro.coinbase.com/products/:SYMBOL:/candles
http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases
http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases

ccGains Documentation, Release 1.0.0 beta

ccgains.historic_data.resample_weighted_average(df, freq, data_col, weight_col, in-
clude_weights=False)

Resample a DataFrame with a DatetimeIndex. Return weighted averages of groups.

Parameters

• df – The pandas.DataFrame to be resampled

• freq – The new frequency of the resampled time series

• data_col – Column to take the average of

• weight_col – Column with the weights

• include_weights – (default False) If True, include the summed weights in result

Returns

if include_weights:

pandas.DataFrame with two columns:

• data_col: the weighted averages,

• weight_col: the summed weights

else:

pandas.Series with weighted averages

Source: ErnestScribbler, https://stackoverflow.com/a/44683506

1.4 ccgains.relations module

class ccgains.relations.CurrencyPair(base, quote)
Create new instance of CurrencyPair(base, quote)

reversed()
Swap base(from) for quote(to) currencies

class ccgains.relations.CurrencyRelation(*args)
Create a CurrencyRelation object. This object allows exchanging values between currencies, using historical
exchange rates at specific times.

Parameters args – Any number of HistoricData objects. If multiple HistoricData objects are given
with the same unit, only the last one will be used. More/updated HistoricData objects can be
supplied later with add_historic_data method.

add_historic_data(hist_data)
Add an HistoricData object. If a HistoricData object with the same unit has already been added, it will be
updated.

get_rate(dtime, from_currency, to_currency)
Return the rate for conversion of from_currency to to_currency at the datetime dtime.

If a direct relation of the currency pair has not been added with add_historic_data before, an indirect route
using multiple added pairs is tried. If this also fails, a KeyError is raised.

update_available_pairs(update_pair=None)
Update internal list of pairs with available historical rate.

1.4. ccgains.relations module 9

https://stackoverflow.com/a/44683506

ccGains Documentation, Release 1.0.0 beta

Parameters update_pair – tuple (from_currency, to_currency); If supplied, updates existing
recipes with pair supplied. Default (None) will force rebuild of pairs list from scratch based
on supplied historical data sets.

class ccgains.relations.Recipe
A conversion recipe made up of num_steps steps which are given in recipe_steps, showing how to convert from
recipe_steps[0].base to recipe_steps[-1].quote

Create new instance of Recipe(num_steps, recipe_steps)

reversed()
A reversed recipe has RecipeSteps in the reversed order, and the opposite value for reciprocal for each step

class ccgains.relations.RecipeStep
One step in a conversion recipe, indicating base (from) currency, quote (to) currency, and whether the reciprocal
of the price should be used for this step.

Create new instance of RecipeStep(base, quote, reciprocal)

as_recipe()
Create a Recipe (with one step) from this RecipeStep

reversed()
Return a copy of this recipe step with reciprocal set opposite

1.5 ccgains.trades module

class ccgains.trades.Trade(kind, dtime, buy_currency, buy_amount, sell_currency, sell_amount,
fee_currency=”, fee_amount=0, exchange=”, mark=”, comment=”,
default_timezone=None)

This class holds details about a single transaction, like a trade between two currencies or a withdrawal of a single
currency.

Create a Trade object.

All parameters may be strings, the numerical values will be converted to decimal.Decimal values, dtime to a
datetime.

Parameters

• kind – a string denoting the kind of transaction, which may be e.g. “trade”, “withdrawal”,
“deposit”. Not currently used, so it can be any comment.

• dtime – a string, number or datetime object: The date and time of the transaction. A string
will be parsed with pandas.Timestamp; a number will be interpreted as the elapsed seconds
since the epoch (unix timestamp), in UTC timezone.

• buy_amount – The amount of buy_currency bought. This value excludes any transaction
fees, i.e. it is the amount that is fully available after the transaction.

• sell_amount – The amount of sell_currency sold. This value includes fees that may
have been paid for the transaction, i.e. it is the total amount that left the account for the
transaction.

buy_amount and sell_amount may be given in any order if exactly one of the two values is negative, which will
then be identified as the sell amount. In that case, buy_currency and sell_currency will be swapped accordingly,
so the currency will always stay with the amount. It’s an error if both values are negative.

Parameters

10 Chapter 1. ccgains package

ccGains Documentation, Release 1.0.0 beta

• fee_amount – The fees paid, given in fee_currency. May have any sign, the absolute
value will be taken as fee amount regardless.

• default_timezone – This parameter is ignored if there is timezone data included in
dtime, or if dtime is a number (unix timestamp), in which case the timezone will always
be UTC. Otherwise, if default_timezone=None (default), the time data in dtime will be
interpreted as time in the local timezone according to the locale setting; or it must be a
tzinfo subclass (from dateutil.tz or pytz), which will be added to dtime.

to_csv_line(delimiter=’, ’, endl=’\n’)

class ccgains.trades.TradeHistory
The TradeHistory class is a container for a sorted list of Trade objects, but most importantly it provides methods
for importing transactions exported from various exchanges, programs and web applications.

TradeHistory() creates a TradeHistory object.

self.tlist is a sorted list of trades available after some trades have been imported.

add_missing_transaction_fees(raise_on_error=True)
Some exchanges do not include withdrawal fees in their exported csv files. This will try to add these
missing fees by comparing withdrawn amounts with amounts deposited on other exchanges shortly after
withdrawal. Call this only after all transactions from every involved exchange and wallet were imported.

This uses a really simple algorithm, so it is not guaranteed to work in every case. Basically, it finds the
first deposit following each withdrawal and compares the withdrawn amount with the deposited amount.
The difference (withdrawn - deposited) is then assigned as the fee for the withdrawal, if this fee is greater
than zero. This might not work if there are withdrawals in tight succession whose deposits register in a
different order than the withdrawals.

If raise_on_error is True (which is the default), a ValueError will be raised if a pair is found that cannot
possibly match (higher deposit than withdrawal), otherwise only a warning is logged and the withdrawal
skipped (which will be tried to be matched with the next deposit) while the deposit is tried to be matched
with another withdrawal that came before it.

append_binance_csv(file_name, which_data=’trades’, delimiter=’, ’, skiprows=1, de-
fault_timezone=<Mock name=’mock.tz.tzutc()’ id=’140455774214408’>)

Import trades or transfers from a csv file from Binance and add them to this TradeHistory.

Afterwards, all trades will be sorted by date and time.

Parameters

• which_data – (string) Must be one of “trades”, “withdrawals”, “deposits”, or “dis-
tributions”. Binance separates generated CSV histories into these four categories; specify
which is being imported here.

• default_timezone – This parameter is ignored if there is timezone data in the csv
string; by default Binance does not. Otherwise, if None, the time data in the csv will be
interpreted as the time in the local timezone according to the locale setting; or it must be a
tzinfo subclass (from dateutil.tz or pytz); The default is UTC time, which is what Binance
exports at the time of writing, but it may change in the future

append_bisq_csv(trade_file_name, transactions_file_name, delimiter=’, ’, skiprows=1, de-
fault_timezone=None)

Import trades from the csv files exported from Bisq (former Bitsquare) and add them to this TradeHistory.

Afterwards, all trades will be sorted by date and time.

From the Bisq program, two kinds of csv files can be exported: One with the trading history and one with
the transaction history. Because of how Bisq works, these two histories are intertwined and in order to
properly connect the fees to trades, both files must be imported together.

1.5. ccgains.trades module 11

ccGains Documentation, Release 1.0.0 beta

Parameters

• trade_file_name – The csv file name with the trading history. In case you only made
transactions and no trades, this may be an empty string: “”

• transaction_file_name – The csv file name with the transaction history

• default_timezone – This parameter is ignored if there is timezone data in the csv
string. Otherwise, if None, the time data in the csv will be interpreted as time in the local
timezone according to the locale setting; or it must be a tzinfo subclass (from dateutil.tz
or pytz); The default is None, i.e. the local timezone, which is what Bitsquare exports at
time of writing this, but it might change in future.

append_bitcoin_de_csv(file_name, delimiter=’;’, skiprows=1, default_timezone=None)
Import trades from a csv file exported from Bitcoin.de and add them to this TradeHistory.

Afterwards, all trades will be sorted by date and time.

Parameters default_timezone – This parameter is ignored if there is timezone data in the
csv string. Otherwise, if None, the time data in the csv will be interpreted as time in the local
timezone according to the locale setting; or it must be a tzinfo subclass (from dateutil.tz or
pytz); The default is None, i.e. the local timezone, which is what Bitcoin.de exports at time
of writing, but it might change in future.

append_bitsquare_csv(trade_file_name, transactions_file_name, delimiter=’, ’, skiprows=1, de-
fault_timezone=None)

Import trades from the csv files exported from Bisq (former Bitsquare) and add them to this TradeHistory.

Afterwards, all trades will be sorted by date and time.

From the Bisq program, two kinds of csv files can be exported: One with the trading history and one with
the transaction history. Because of how Bisq works, these two histories are intertwined and in order to
properly connect the fees to trades, both files must be imported together.

Parameters

• trade_file_name – The csv file name with the trading history. In case you only made
transactions and no trades, this may be an empty string: “”

• transaction_file_name – The csv file name with the transaction history

• default_timezone – This parameter is ignored if there is timezone data in the csv
string. Otherwise, if None, the time data in the csv will be interpreted as time in the local
timezone according to the locale setting; or it must be a tzinfo subclass (from dateutil.tz
or pytz); The default is None, i.e. the local timezone, which is what Bitsquare exports at
time of writing this, but it might change in future.

append_bittrex_csv(file_name, which_data=’trades’, skiprows=1, delimiter=’, ’, de-
fault_timezone=None)

Import trades from a csv file exported from Bittrex.com and add them to this TradeHistory.

Afterward, all trades will be sorted by date and time.

Parameters

• which_data – (string) Must be one of “trades” or “transfers”. Bittrex only exports
trade history, but displays transfer history in a table that can be pasted into a csv file
manually. This parser assumes the same column layout as is shown on the Bittrex transfer
history page.”

• default_timezone – This parameter is ignored if there is timezone data in the csv
string. Otherwise, if None, the time data in the csv will be interpreted as time in the local
timezone according to the locale setting; or it must be a tzinfo subclass (from dateutil.tz

12 Chapter 1. ccgains package

ccGains Documentation, Release 1.0.0 beta

or pytz); The default is None, as Bittrex (at the time of writing) outputs local time (at the
time of purchase) with transaction history

append_ccgains_csv(file_name, delimiter=’, ’, skiprows=1, default_timezone=None)
Import trades from a csv file exported from ccgains.TradeHistory.export_to_csv() and add them to this
TradeHistory.

Afterwards, all trades will be sorted by date and time.

Parameters default_timezone – This parameter is ignored if there is timezone data in the
csv string. Otherwise, if None (default) the time data in the csv will be interpreted as time
in the local timezone according to the locale setting; or it must be a tzinfo subclass (from
dateutil.tz or pytz)

append_coinbase_csv(file_name, currency=None, skiprows=4, delimiter=’, ’, de-
fault_timezone=None)

Import trades from a csv file exported from Coinbase.com for all wallets (Tools > History > Download
History) and adds them to this TradeHistory.

Afterwards, all trades will be sorted by date and time

Parameters

• currency – (string) The quote currency used for transactions (e.g. USD/EUR). If not
provided, will attempt to determine currency from the csv file, but this may not always be
accurate.

• default_timezone – This parameter is ignored if there is timezone data in the csv
string. Otherwise, if None, the time data in the csv will be interpreted as time in the local
timezone according to the locale setting; or it must be a tzinfo subclass (from dateutil.tz or
pytz); The default is None, as Coinbase (at the time of writing) outputs local time (at the
time of purchase) with transaction history

append_csv(file_name, param_locs=range(0, 11), delimiter=’, ’, skiprows=1, de-
fault_timezone=None)

Import trades from a csv file and add them to this TradeHistory.

Afterwards, all trades will be sorted by date and time.

Parameters

• param_locs – (list or dict): Locations of Trade’s parameters in csv-file. Each entry
denotes the column number where a Trade-parameter can be found in the csv (Columns
are counted starting with 0). If the value is not in the csv, use -1 to use an empty value, a
string for a constant value to fill the parameter with, or a function of one parameter (which
will be called for each row with a list of the splitted strings in the row as parameter). Note
that buy and sell values may be given in reverse order if one of them is negative.

• default_timezone – This parameter is ignored if there is timezone data in the csv
string. Otherwise, if None (default) the time data in the csv will be interpreted as time in
the local timezone according to the locale setting; or it must be a tzinfo subclass (from
dateutil.tz or pytz)

append_electrum_csv(file_name, skiprows=1, default_timezone=None)
Import trades from a csv file exported from the Electrum Wallet and add them to this TradeHistory.

It wolrks with exported files from the original Electrum Wallet (BTC) as well as for the Electrum Litecoin
Wallet (LTC), as the format is exactly the same.

Afterwards, all trades will be sorted by date and time.

Parameters default_timezone – This parameter is ignored if there is timezone data in the
csv string. Otherwise, if None, the time data in the csv will be interpreted as time in the local

1.5. ccgains.trades module 13

ccGains Documentation, Release 1.0.0 beta

timezone according to the locale setting; or it must be a tzinfo subclass (from dateutil.tz or
pytz); The default is None, i.e. the local timezone, which is what Bitcoin.de exports at time
of writing, but it might change in future.

append_poloniex_csv(file_name, which_data=’trades’, condense_trades=False, delimiter=’,
’, skiprows=1, default_timezone=<Mock name=’mock.tz.tzutc()’
id=’140455774214408’>)

Import trades from a csv file exported from Poloniex.com and add them to this TradeHistory.

Afterwards, all trades will be sorted by date and time.

Parameters

• which_data – (string) Must be one of “trades”, “withdrawals” or “deposits”. Poloniex
only allows exporting the three categories ‘trading history’, ‘withdrawal history’ and ‘de-
posit history’ in separate csv files. Specify which type is loaded here. Default is ‘trades’.

• condense_trades – (bool) Merge consecutive trades with identical order number?
The time of the last merged trade will be used for the resulting trade. Only has an effect if
which_data == ‘trades’.

• default_timezone – This parameter is ignored if there is timezone data in the csv
string. Otherwise, if None, the time data in the csv will be interpreted as time in the local
timezone according to the locale setting; or it must be a tzinfo subclass (from dateutil.tz
or pytz); The default is UTC time, which is what Poloniex exports at time of writing, but
it might change in future.

append_trezor_csv(file_name, currency, skiprows=1, default_timezone=None)
Import trades from a csv file exported from the Trezor wallet and add them to this TradeHistory.

Afterwards, all trades will be sorted by date and time.

Parameters

• default_timezone – This parameter is ignored if there is timezone data in the csv
string. Otherwise, if None, the time data in the csv will be interpreted as time in the local
timezone according to the locale setting; or it must be a tzinfo subclass (from dateutil.tz
or pytz); The default is None, i.e. the local timezone, which is what Bitcoin.de exports at
time of writing, but it might change in future.

• currency – The currency corresponding to the file to be imported. The Trezor wallet
exports the information of each wallet separately, but the information of the currency is
not supplied. Therefore, the user has to supply the crypto currency accordingly when
importing the csv file.

export_to_csv(path_or_buf=None, year=None, convert_timezone=True, **kwargs)
Write the list of trades to a csv file.

The csv table will contain the columns: ‘kind’, ‘dtime’, ‘buy_currency’, ‘buy_amount’, ‘sell_currency’,
‘sell_amount’, ‘fee_currency’, ‘fee_amount’, ‘exchange’, ‘mark’ and ‘comment’.

Parameters

• path_or_buf – File path (string) or file handle, default None; If None is provided the
result is returned as a string.

• year – None or 4-digit integer, default: None; Leave None to export all trades or choose
a specific year to export.

• convert_timezone – string, pytz.timezone, dateutil.tz.tzfile, True or False; All dates
will be converted to this timezone. The default value, True, will lead to a conversion to the
locale timezone according to the system’s locale setting. False keeps all dates at UTC time.
Otherwise, specify a parameter that will be forwarded to pandas.Timestamp.tz_convert().

14 Chapter 1. ccgains package

ccGains Documentation, Release 1.0.0 beta

export_to_pdf(file_name, year=None, convert_timezone=True, font_size=11, tem-
plate_file=’generic_landscape_table.html’, caption=’Digital currency trades
%(year)s’, intro=’<h4>Listing of all transactions between %(fromdate)s and
%(todate)s</h4>’, drop_columns=None, custom_column_names=None, cus-
tom_formatters=None, locale=None)

Export the trade history to a pdf file.

Parameters

• file_name – string; Destination file name.

• year – None or 4-digit integer, default: None; Leave None to export all trades or choose
a specific year to export.

• convert_timezone – string, pytz.timezone, dateutil.tz.tzfile, True or False; All dates
will be converted to this timezone. The default value, True, will lead to a conversion to the
locale timezone according to the system’s locale setting. False keeps all dates at UTC time.
Otherwise, specify a parameter that will be forwarded to pandas.Timestamp.tz_convert().

• template_file – file name of html template inside package folder: ccgains/templates.
Default: ‘generic_landscape_table.html’

• drop_columns – None or list of strings; Column names specified here (as returned from
to_data_frame) will be omitted from output.

• custom_column_names – None or list of strings; If None (default), the column names
of the DataFrame returned from to_data_frame() will be used. To rename them, supply a
list of length 11-len(drop_columns).

• custom_formatters – None or dict of one-parameter functions; If None (default),
a set of default formatters for each column will be used, using babel.numbers and ba-
bel.dates. Individual formatting functions can be supplied with the (renamed) column
names as keys. The result of each function must be a unicode string.

• locale – None or locale identifier, e.g. ‘de_DE’ or ‘en_US’; The locale used for for-
matting numeric and date values with babel. If None (default), the locale will be taken
from the LC_NUMERIC or LC_TIME environment variables on your system, for numeric
or date values, respectively.

to_data_frame(year=None, convert_timezone=True)
Put all trades in one big pandas.DataFrame.

Parameters

• year – None or 4-digit integer, default: None; Leave None to export all trades or choose
a specific year to export.

• convert_timezone – string, pytz.timezone, dateutil.tz.tzfile, True or False; All dates
will be converted to this timezone. The default value, True, will lead to a conversion to the
locale timezone according to the system’s locale setting. False keeps all dates at UTC time.
Otherwise, specify a parameter that will be forwarded to pandas.Timestamp.tz_convert().

to_html(year=None, convert_timezone=True, font_size=11, tem-
plate_file=’generic_landscape_table.html’, caption=’Digital currency trades %(year)s’,
intro=’<h4>Listing of all transactions between %(fromdate)s and %(todate)s</h4>’,
merge_currencies=True, drop_columns=None, custom_column_names=None, cus-
tom_formatters=None, locale=None)

Return the trade history as HTML-formatted string.

Parameters

1.5. ccgains.trades module 15

ccGains Documentation, Release 1.0.0 beta

• year – None or 4-digit integer, default: None; Leave None to export all trades or choose
a specific year to export.

• convert_timezone – string, pytz.timezone, dateutil.tz.tzfile, True or False; All dates
will be converted to this timezone. The default value, True, will lead to a conversion to the
locale timezone according to the system’s locale setting. False keeps all dates at UTC time.
Otherwise, specify a parameter that will be forwarded to pandas.Timestamp.tz_convert().

• template_file – file name of html template inside package folder: ccgains/templates.
Default: ‘generic_landscape_table.html’

• merge_currencies – Boolean, default True; If True, the three currency columns (e.g.
‘buy_currency’) will be dropped, with the currency names added to the amount columns
(e.g. added to ‘buy_amount’).

• drop_columns – None or list of strings; Column names specified here (as returned from
to_data_frame) will be omitted from output. If merge_currencies is True, don’t specify
the currency columns here, only the amount column that you want removed.

• custom_column_names – None or list of strings; If None (default), the column names
of the DataFrame returned from to_data_frame() will be used. To rename them, supply
a list of proper length (that is, 11 - len(drop_columns) if merge_currencies is False or 8 -
len(drop_columns) otherwise).

• custom_formatters – None or dict of one-parameter functions; If None (default),
a set of default formatters for each column will be used, using babel.numbers and ba-
bel.dates. Individual formatting functions can be supplied with the (renamed) column
names as keys. The result of each function must be a unicode string.

• locale – None or locale identifier, e.g. ‘de_DE’ or ‘en_US’; The locale used for for-
matting numeric and date values with babel. If None (default), the locale will be taken
from the LC_NUMERIC or LC_TIME environment variables on your system, for numeric
or date values, respectively.

Returns HTML-formatted string

update_ticker_names(changes=None)
Update the names of a ticker previously imported into this TradeHistory.

Coins occasionally change ticker symbols, but older history files may not include the change, and instead
still refer to the coin by its old name, although pricing history has changed all data to the new name. This
method allows for in-place swapping to the new name.

Parameters changes – (dict{string: string}) A dictionary in the form {‘old ticker’: ‘new
ticker}. All occurrences of ‘old ticker’ in this TradeHistory will be updated to ‘new ticker’
Price, cost, amount data will remain unchanged.

1.6 ccgains.reports module

class ccgains.reports.CapitalGainsReport(data=[])
This class facilitates the collecting of data like price, proceeds, profit etc. that accrue when processing payments,
sales etc. with foreign or digital currencies. Afterwards, provided methods for creating reports from the gathered
data can be used. Capital gains reports created from the gathered data can then be exported to csv, html, pdf
etc., using the provided methods.

Create a CaptitalGainsReport object.

Then, with every processed payment, you should add data with add_payment.

16 Chapter 1. ccgains package

ccGains Documentation, Release 1.0.0 beta

Parameters data – list of PaymentReport objects or list of lists/tuples with entries corresponding
to PaymentReport._fields, default: empty list; The internal report data will be initialized with
the payment reports in the list.

add_payment(payment_report)
Add payment data.

Parameters payment_report – PaymentReport object; Contains the data to be collected
from a processed payment.

export_extended_report_to_pdf(file_name, year=None, date_precision=’D’, com-
bine=True, convert_timezone=True, font_size=10,
template_file=’fullreport_en.html’, pay-
ment_kind_translation=None, locale=None)

Export the extended capital gains report to a pdf file.

Parameters

• file_name – string; Destination file name.

• year – None or 4-digit integer, default: None; Leave None to export all sales or choose a
specific year to export.

• date_precision – one of ‘D’, ‘H’ or ‘T’ for daily, hourly or minutely, respectively
(may also be multiplied, e.g.: ‘5T’ for 5-minutely), default: ‘D’; Floors all datetimes to
the specified frequency. Does nothing if date_precision is False.

• combine – boolean, default True; Combines consecutive transactions which only differ
in the ‘amount’, ‘cost’, ‘proceeds’ and ‘profit’. Such transactions will be combined by
summing up the values in these columns. This is only useful if date_precision is set,
since otherwise consecutive dates will very seldomly match. Therefore, does nothing if
date_precision is False.

• convert_timezone – string, pytz.timezone, dateutil.tz.tzfile, True or False; All dates
(i.e. purchase_date and sell_date entries) will be converted to this timezone. The default
value, True, will lead to a conversion to the locale timezone according to the system’s
locale setting. False keeps all dates at UTC time. Otherwise, specify a parameter that will
be forwarded to pandas.Timestamp.tz_convert().

• template_file – file name of html template inside package folder: ccgains/templates.
Default: ‘fullreport_en.html’

• payment_kind_translation – None (default) or dictionary; This allows for the
payment kind (one out of [‘sale’, ‘withdrawal fee’, ‘deposit fee’, ‘exchange fee’]) to be
translated (the dict keys must be the mentioned english strings, the values are the transla-
tions used in the output).

• locale – None or locale identifier, e.g. ‘de_DE’ or ‘en_US’; The locale used for for-
matting numeric and date values with babel. If None (default), the locale will be taken
from the LC_NUMERIC or LC_TIME environment variables on your system, for numeric
or date values, respectively.

export_report_to_pdf(file_name, year=None, date_precision=’D’, combine=True, con-
vert_timezone=True, font_size=12, template_file=’shortreport_en.html’,
custom_column_names=None, custom_formatters=None, locale=None)

Export the capital gains report to a pdf file.

Parameters

• file_name – string; Destination file name.

1.6. ccgains.reports module 17

ccGains Documentation, Release 1.0.0 beta

• year – None or 4-digit integer, default: None; Leave None to export all sales or choose a
specific year to export.

• date_precision – one of ‘D’, ‘H’ or ‘T’ for daily, hourly or minutely, respectively
(may also be multiplied, e.g.: ‘5T’ for 5-minutely), default: ‘D’; Floors all datetimes to
the specified frequency. Does nothing if date_precision is False.

• combine – boolean, default True; Combines consecutive transactions which only differ
in the ‘amount’, ‘cost’, ‘proceeds’ and ‘profit’. Such transactions will be combined by
summing up the values in these columns. This is only useful if date_precision is set,
since otherwise consecutive dates will very seldomly match. Therefore, does nothing if
date_precision is False.

• convert_timezone – string, pytz.timezone, dateutil.tz.tzfile, True or False; All dates
(i.e. purchase_date and sell_date entries) will be converted to this timezone. The default
value, True, will lead to a conversion to the locale timezone according to the system’s
locale setting. False keeps all dates at UTC time. Otherwise, specify a parameter that will
be forwarded to pandas.Timestamp.tz_convert().

• template_file – file name of html template inside package folder: ccgains/templates.
Default: ‘shortreport_en.html’

• custom_column_names – None or list of strings; If None (default), the column names
of the DataFrame returned from get_report_data(extended=False) will be used. To rename
them, supply a list of length 10.

• custom_formatters – None or dict of one-parameter functions; If None (default),
a set of default formatters for each column will be used, using babel.numbers and ba-
bel.dates. Individual formatting functions can be supplied with the (renamed) column
names as keys. The result of each function must be a unicode string.

• locale – None or locale identifier, e.g. ‘de_DE’ or ‘en_US’; The locale used for for-
matting numeric and date values with babel. If None (default), the locale will be taken
from the LC_NUMERIC or LC_TIME environment variables on your system, for numeric
or date values, respectively.

export_short_report_to_csv(path_or_buf=None, year=None, date_precision=’D’, com-
bine=True, convert_timezone=True, strip_timezone=True,
custom_column_names=None, **kwargs)

Write the capital gains table to a csv file.

The csv table will contain the columns: ‘kind’, ‘amount’, ‘currency’, ‘purchase_date’, ‘sell_date’, ‘ex-
change’, ‘short_term’, ‘cost’, ‘proceeds’ and ‘profit’.

Parameters

• path_or_buf – File path (string) or file handle, default None; If None is provided the
result is returned as a string.

• year – None or 4-digit integer, default: None; Leave None to export all sales or choose a
specific year to export.

• date_precision – one of ‘D’, ‘H’ or ‘T’ for daily, hourly or minutely, respectively
(may also be multiplied, e.g.: ‘5T’ for 5-minutely), default: ‘D’; Floors all datetimes to
the specified frequency. Does nothing if date_precision is False.

• combine – boolean, default True; Combines consecutive transactions which only differ
in the ‘amount’, ‘cost’, ‘proceeds’ and ‘profit’. Such transactions will be combined by
summing up the values in these columns. This is only useful if date_precision is set,
since otherwise consecutive dates will very seldomly match. Therefore, does nothing if
date_precision is False.

18 Chapter 1. ccgains package

ccGains Documentation, Release 1.0.0 beta

• convert_timezone – string, pytz.timezone, dateutil.tz.tzfile, True or False; All dates
(i.e. purchase_date and sell_date entries) will be converted to this timezone. The default
value, True, will lead to a conversion to the locale timezone according to the system’s
locale setting. False keeps all dates at UTC time. Otherwise, specify a parameter that will
be forwarded to pandas.Timestamp.tz_convert().

• strip_timezone – boolean, default True; After conversion, the timezone info will be
removed from all dates.

• custom_column_names – None or list of strings; If None (default), the column
names will be: [‘kind’, ‘amount’, ‘currency’, ‘purchase_date’, ‘sell_date’, ‘exchange’,
‘short_term’, ‘cost’, ‘proceeds’, ‘profit’]. To rename them, supply a list of length 10.

get_extended_report_html(year=None, date_precision=’D’, combine=True,
convert_timezone=True, font_size=10, tem-
plate_file=’fullreport_en.html’, payment_kind_translation=None,
locale=None)

Return an extended capital gains report as HTML-formatted string.

Parameters

• year – None or 4-digit integer, default: None; Leave None to export all sales or choose a
specific year to export.

• date_precision – one of ‘D’, ‘H’ or ‘T’ for daily, hourly or minutely, respectively
(may also be multiplied, e.g.: ‘5T’ for 5-minutely), default: ‘D’; Floors all datetimes to
the specified frequency. Does nothing if date_precision is False.

• combine – boolean, default True; Combines consecutive transactions which only differ
in the ‘amount’, ‘cost’, ‘proceeds’ and ‘profit’. Such transactions will be combined by
summing up the values in these columns. This is only useful if date_precision is set,
since otherwise consecutive dates will very seldomly match. Therefore, does nothing if
date_precision is False.

• convert_timezone – string, pytz.timezone, dateutil.tz.tzfile, True or False; All dates
(i.e. purchase_date and sell_date entries) will be converted to this timezone. The default
value, True, will lead to a conversion to the locale timezone according to the system’s
locale setting. False keeps all dates at UTC time. Otherwise, specify a parameter that will
be forwarded to pandas.Timestamp.tz_convert().

• template_file – file name of html template inside package folder: ccgains/templates.
Default: ‘fullreport_en.html’

• payment_kind_translation – None (default) or dictionary; This allows for the
payment kind (one out of [‘sale’, ‘withdrawal fee’, ‘deposit fee’, ‘exchange fee’]) to be
translated (the dict keys must be the mentioned english strings, the values are the transla-
tions used in the output).

• locale – None or locale identifier, e.g. ‘de_DE’ or ‘en_US’; The locale used for for-
matting numeric and date values with babel. If None (default), the locale will be taken
from the LC_NUMERIC or LC_TIME environment variables on your system, for numeric
or date values, respectively.

Returns HTML-formatted string

get_report_data(year=None, date_precision=’D’, combine=True, convert_timezone=True,
strip_timezone=True, extended=False, custom_column_names=None)

Return a pandas.DataFrame listing the capital gains made with the processed trades.

Parameters

1.6. ccgains.reports module 19

ccGains Documentation, Release 1.0.0 beta

• year – None or 4-digit integer, default: None; Leave None to return all sales or choose a
specific year to return.

• date_precision – one of ‘D’, ‘H’ or ‘T’ for daily, hourly or minutely, respectively
(may also be multiplied, e.g.: ‘5T’ for 5-minutely), default: ‘D’; Floors all datetimes to
the specified frequency. Does nothing if date_precision is False.

• combine – boolean, default True; Combines consecutive transactions which only differ
in the amounts ‘to_pay’, ‘bag_amount’, ‘bag_spent’, ‘spent_cost’, ‘proceeds’ and ‘profit’.
Such transactions will be combined by summing up the values in these columns. This is
only useful if date_precision is set, since otherwise consecutive dates will very seldomly
match. Therefore, does nothing if date_precision is False.

• convert_timezone – string, pytz.timezone, dateutil.tz.tzfile, True or False; All dates
(i.e. purchase_date and sell_date entries) will be converted to this timezone. The default
value, True, will lead to a conversion to the locale timezone according to the system’s
locale setting. False keeps all dates at UTC time. Otherwise, specify a parameter that will
be forwarded to pandas.Timestamp.tz_convert().

• strip_timezone – boolean, default True; After conversion, the timezone info will be
removed from all dates.

• extended – boolean, default False;

By default, the returned DataFrame contains the columns:

[‘kind’, ‘bag_spent’, ‘currency’, ‘bag_date’, ‘sell_date’, ‘exchange’, ‘short_term’,
‘spent_cost’, ‘proceeds’, ‘profit’];

If extended is True, these columns will be returned:

[‘kind’, ‘exchange’, ‘sell_date’, ‘currency’, ‘to_pay’,’fee_ratio’, ‘bag_date’,
‘bag_amount’, ‘bag_spent’, ‘cost_currency’, ‘spent_cost’, ‘short_term’, ‘ex_rate’,
‘proceeds’, ‘profit’, ‘buy_currency, buy_ratio’]

Note the reordering of columns in the small dataset.

• custom_column_names – None or list of strings; If None (default), the column names
will be as described above, depending on extended. To rename them, supply a list of proper
length, either 10 if not extended or 17 otherwise.

Returns A pandas.DataFrame with the requested data.

get_report_html(year=None, date_precision=’D’, combine=True, convert_timezone=True,
font_size=12, template_file=’shortreport_en.html’, cus-
tom_column_names=None, custom_formatters=None, locale=None, ex-
tended_data=False)

Return the capital gains report as HTML-formatted string.

Parameters

• year – None or 4-digit integer, default: None; Leave None to export all sales or choose a
specific year to export.

• date_precision – one of ‘D’, ‘H’ or ‘T’ for daily, hourly or minutely, respectively
(may also be multiplied, e.g.: ‘5T’ for 5-minutely), default: ‘D’; Floors all datetimes to
the specified frequency. Does nothing if date_precision is False.

• combine – boolean, default True; Combines consecutive transactions which only differ
in the ‘amount’, ‘cost’, ‘proceeds’ and ‘profit’. Such transactions will be combined by
summing up the values in these columns. This is only useful if date_precision is set,
since otherwise consecutive dates will very seldomly match. Therefore, does nothing if
date_precision is False.

20 Chapter 1. ccgains package

ccGains Documentation, Release 1.0.0 beta

• convert_timezone – string, pytz.timezone, dateutil.tz.tzfile, True or False; All dates
(i.e. purchase_date and sell_date entries) will be converted to this timezone. The default
value, True, will lead to a conversion to the locale timezone according to the system’s
locale setting. False keeps all dates at UTC time. Otherwise, specify a parameter that will
be forwarded to pandas.Timestamp.tz_convert().

• template_file – file name of html template inside package folder: ccgains/templates.
Default: ‘shortreport_en.html’

• custom_column_names – None or list of strings; If None (default), the column names
of the DataFrame returned from get_report_data(extended=extended_data) will be used.
To rename them, supply a list with same length than number of columns (depending on
extended_data).

• custom_formatters – None or dict of one-parameter functions; If None (default),
a set of default formatters for each column will be used, using babel.numbers and ba-
bel.dates. Individual formatting functions can be supplied with the (renamed) column
names as keys. The result of each function must be a unicode string.

• locale – None or locale identifier, e.g. ‘de_DE’ or ‘en_US’; The locale used for for-
matting numeric and date values with babel. If None (default), the locale will be taken
from the LC_NUMERIC or LC_TIME environment variables on your system, for numeric
or date values, respectively.

• extended_data – Boolean, default: False; If the template_file makes use of some of the
extended data returned from get_report_data when called with parameter extended=True,
this must also be True. See documentation of get_report_data for extended data fields.

Returns HTML-formatted string

to_json(**kwargs)
Convert the collected data to a JSON formatted string.

Parameters kwargs – Keyword arguments that will be forwarded to json.dumps.

Returns JSON formatted string

class ccgains.reports.PaymentReport(kind, exchange, sell_date, currency, to_pay, fee_ratio,
bag_date, bag_amount, bag_spent, cost_currency,
spent_cost, short_term, ex_rate, proceeds, profit,
buy_currency, buy_ratio)

This is a container for a couple of values that are gathered at every payment, which will be needed for creating
a capital gains report.

Create new instance of PaymentReport(kind, exchange, sell_date, currency, to_pay, fee_ratio, bag_date,
bag_amount, bag_spent, cost_currency, spent_cost, short_term, ex_rate, proceeds, profit, buy_currency,
buy_ratio)

bag_amount
Alias for field number 7

bag_date
Alias for field number 6

bag_spent
Alias for field number 8

buy_currency
Alias for field number 15

buy_ratio
Alias for field number 16

1.6. ccgains.reports module 21

ccGains Documentation, Release 1.0.0 beta

cost_currency
Alias for field number 9

currency
Alias for field number 3

ex_rate
Alias for field number 12

exchange
Alias for field number 1

fee_ratio
Alias for field number 5

kind
Alias for field number 0

proceeds
Alias for field number 13

profit
Alias for field number 14

sell_date
Alias for field number 2

short_term
Alias for field number 11

spent_cost
Alias for field number 10

to_pay
Alias for field number 4

22 Chapter 1. ccgains package

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

23

ccGains Documentation, Release 1.0.0 beta

24 Chapter 2. Indices and tables

Python Module Index

c
ccgains, 3
ccgains.bags, 3
ccgains.historic_data, 7
ccgains.relations, 9
ccgains.reports, 16
ccgains.trades, 10

25

ccGains Documentation, Release 1.0.0 beta

26 Python Module Index

Index

A
add_historic_data() (ccgains.relations.CurrencyRelation

method), 9
add_missing_transaction_fees() (cc-

gains.trades.TradeHistory method), 11
add_payment() (ccgains.reports.CapitalGainsReport

method), 17
append_binance_csv() (ccgains.trades.TradeHistory

method), 11
append_bisq_csv() (ccgains.trades.TradeHistory

method), 11
append_bitcoin_de_csv() (ccgains.trades.TradeHistory

method), 12
append_bitsquare_csv() (ccgains.trades.TradeHistory

method), 12
append_bittrex_csv() (ccgains.trades.TradeHistory

method), 12
append_ccgains_csv() (ccgains.trades.TradeHistory

method), 13
append_coinbase_csv() (ccgains.trades.TradeHistory

method), 13
append_csv() (ccgains.trades.TradeHistory method), 13
append_electrum_csv() (ccgains.trades.TradeHistory

method), 13
append_poloniex_csv() (ccgains.trades.TradeHistory

method), 14
append_trezor_csv() (ccgains.trades.TradeHistory

method), 14
as_recipe() (ccgains.relations.RecipeStep method), 10

B
Bag (class in ccgains.bags), 3
bag_amount (ccgains.reports.PaymentReport attribute),

21
bag_date (ccgains.reports.PaymentReport attribute), 21
bag_spent (ccgains.reports.PaymentReport attribute), 21
BagQueue (class in ccgains.bags), 4
buy_currency (ccgains.reports.PaymentReport attribute),

21

buy_ratio (ccgains.reports.PaymentReport attribute), 21
buy_with_base_currency() (ccgains.bags.BagQueue

method), 4

C
CapitalGainsReport (class in ccgains.reports), 16
ccgains (module), 3
ccgains.bags (module), 3
ccgains.historic_data (module), 7
ccgains.relations (module), 9
ccgains.reports (module), 16
ccgains.trades (module), 10
cost_currency (ccgains.reports.PaymentReport attribute),

21
currency (ccgains.reports.PaymentReport attribute), 22
CurrencyPair (class in ccgains.relations), 9
CurrencyRelation (class in ccgains.relations), 9
CurrencyTypeException, 7

D
deposit() (ccgains.bags.BagQueue method), 4

E
ex_rate (ccgains.reports.PaymentReport attribute), 22
exchange (ccgains.reports.PaymentReport attribute), 22
export_extended_report_to_pdf() (cc-

gains.reports.CapitalGainsReport method),
17

export_report_to_pdf() (cc-
gains.reports.CapitalGainsReport method),
17

export_short_report_to_csv() (cc-
gains.reports.CapitalGainsReport method),
18

export_to_csv() (ccgains.trades.TradeHistory method),
14

export_to_pdf() (ccgains.trades.TradeHistory method),
15

27

ccGains Documentation, Release 1.0.0 beta

F
fee_ratio (ccgains.reports.PaymentReport attribute), 22

G
get_extended_report_html() (cc-

gains.reports.CapitalGainsReport method),
19

get_price() (ccgains.historic_data.HistoricData method),
7

get_rate() (ccgains.relations.CurrencyRelation method), 9
get_report_data() (ccgains.reports.CapitalGainsReport

method), 19
get_report_html() (ccgains.reports.CapitalGainsReport

method), 20

H
HistoricData (class in ccgains.historic_data), 7
HistoricDataAPI (class in ccgains.historic_data), 7
HistoricDataAPIBinance (class in ccgains.historic_data),

8
HistoricDataAPICoinbase (class in cc-

gains.historic_data), 8
HistoricDataCSV (class in ccgains.historic_data), 8

I
is_empty() (ccgains.bags.Bag method), 3
is_short_term() (in module ccgains.bags), 7

K
kind (ccgains.reports.PaymentReport attribute), 22

L
load() (ccgains.bags.BagQueue method), 4

P
pay() (ccgains.bags.BagQueue method), 4
PaymentReport (class in ccgains.reports), 21
pick_bag() (ccgains.bags.BagQueue method), 6
prepare_request() (ccgains.historic_data.HistoricData

method), 7
prepare_request() (ccgains.historic_data.HistoricDataAPI

method), 8
prepare_request() (ccgains.historic_data.HistoricDataAPIBinance

method), 8
prepare_request() (ccgains.historic_data.HistoricDataAPICoinbase

method), 8
proceeds (ccgains.reports.PaymentReport attribute), 22
process_trade() (ccgains.bags.BagQueue method), 6
profit (ccgains.reports.PaymentReport attribute), 22

R
Recipe (class in ccgains.relations), 10
RecipeStep (class in ccgains.relations), 10

resample_weighted_average() (in module cc-
gains.historic_data), 8

reversed() (ccgains.relations.CurrencyPair method), 9
reversed() (ccgains.relations.Recipe method), 10
reversed() (ccgains.relations.RecipeStep method), 10

S
save() (ccgains.bags.BagQueue method), 6
sell_date (ccgains.reports.PaymentReport attribute), 22
short_term (ccgains.reports.PaymentReport attribute), 22
sort_bags() (ccgains.bags.BagQueue method), 6
spend() (ccgains.bags.Bag method), 3
spent_cost (ccgains.reports.PaymentReport attribute), 22

T
to_csv_line() (ccgains.trades.Trade method), 11
to_data_frame() (ccgains.bags.BagQueue method), 6
to_data_frame() (ccgains.trades.TradeHistory method),

15
to_html() (ccgains.trades.TradeHistory method), 15
to_json() (ccgains.bags.BagQueue method), 6
to_json() (ccgains.reports.CapitalGainsReport method),

21
to_pay (ccgains.reports.PaymentReport attribute), 22
Trade (class in ccgains.trades), 10
TradeHistory (class in ccgains.trades), 11

U
update_available_pairs() (cc-

gains.relations.CurrencyRelation method),
9

update_ticker_names() (ccgains.trades.TradeHistory
method), 16

W
withdraw() (ccgains.bags.BagQueue method), 6

28 Index

	ccgains package
	Module contents
	ccgains.bags module
	ccgains.historic_data module
	ccgains.relations module
	ccgains.trades module
	ccgains.reports module

	Indices and tables
	Python Module Index

