

Welcome to the ccGains documentation!

The ccGains (cryptocurrency gains) package provides a python library for calculating capital gains made by trading cryptocurrencies or foreign currencies.

Some of its features are:

	calculates the capital gains using the first-in/first out (FIFO) principle,

	creates capital gains reports as CSV, HTML or PDF (instantly ready to print out for the tax office),

	can create a more detailed capital gains report outlining the calculation and used bags,

	differs between short and long term gains (amounts held for less or more than a year),

	treats amounts held and traded on different exchanges separately,

	treats exchange fees and transaction fees directly resulting from trading properly as losses,

	provides methods to import your trading history from various exchanges,

	loads historic cryptocurrency prices from CSV files and/or

	loads historic prices from APIs provided by exchanges,

	caches historic price data on disk for quicker and offline retrieval and less traffic to exchanges,

	for highest accuracy, uses the decimal data type [https://docs.python.org/3/library/decimal.html] for all amounts

	supports saving and loading the state of your portfolio as JSON file for use in ccGains calculations in following years

Contents:

	ccgains package
	Module contents

	ccgains.bags module

	ccgains.historic_data module

	ccgains.relations module

	ccgains.trades module

	ccgains.reports module

Indices and tables

	Index

	Module Index

	Search Page

ccgains package

Module contents

ccgains.bags module

	
class ccgains.bags.Bag(id, dtime, currency, amount, cost_currency, cost, price=None)

	Create a bag which holds an amount of currency.

	Parameters

	
	(integer) (id) – A unique number for each bag. Usually the first created bag
receives an id of 1, which increases for every bag created.

	dtime – The datetime when the currency was purchased.

	currency – The currency this bag holds, the currency that was bought.

	amount – The amount of currency that was bought. This is the amount
that is available, i.e. fees are already substracted.

	cost_currency – The base currency which was paid for the money in this bag.
The base value of this bag is recorded in this currency.

	cost – The amount of cost_currency paid for the money in this
bag. This covers all expenses, so fees are included.

	price – (optional, default: None):
If price is given, cost will be ignored and calculated
from price: cost = amount * price.

	
is_empty()

	

	
spend(amount)

	Spend some amount out of this bag. This updates the current
amount and the base value, but leaves the price constant.

	Returns

	the tuple (spent_amount, bcost, remainder),
where

	spent_amount is the amount taken out of the bag, in
units of self.currency;

	bcost is the base cost of the spent amount, in
units of self.cost_currency;

	remainder is the leftover of amount after the
spent amount is substracted.

	
class ccgains.bags.BagQueue(base_currency, relation, mode='FIFO', json_dump='./precrash.json')

	Create a BagQueue object.

This is the class that processes trades, handles all bags (i.e.
creating and spending them) and calculates the capital gains.
After calculation, the member BagQueue.report provides methods
to create reports.

	Parameters

	
	base_currency – The base currency (string, e.g. “EUR”). All bags’ base cost
(the money spent for them at buying time) will be recorded
in units of this currency and finally the capital gains
will be calculated for this currency.

	relation – A CurrencyRelation object which serves exchange rates
between all currencies involved in trades which will later
be added to this BagQueue.
If solely trades involving base_currency will be processed,
a CurrencyRelation object is not necessary and can be
None. In this case, if a trade between non-base
currencies is encountered, an exception will be raised.

	mode – (string)
Inventory accounting method to use. The following methods are supported:
- “FIFO”: First In First Out
- “LIFO”: Last In First Out
- “LPFO”: Lowest Price First Out

	json_dump – (filename)
If specified, the state of the BagQueue will be saved as
JSON formatted file with this file name just before an error
is raised due to missing or conflicting data. If the error
is fixed, the state can be loaded from this file and the
calculation might be able to continue from that point.

	
buy_with_base_currency(dtime, amount, currency, cost, exchange)

	Create a new bag with amount money in currency.

Creation time of the bag is the datetime dtime. The cost is
paid in base currency, so no money is taken out of another bag.
Any fees for the transaction should already have been
substracted from amount, but included in cost.

	
deposit(dtime, currency, amount, fee, exchange)

	Deposit amount monetary units of currency into an
exchange for a fee (also given in currency), making it
available for trading. The fee is included in amount. The
deposit happened at datetime dtime.

The pair of methods withdraw and deposit is used for
transfers of the same currency from one exhange to another.

If the amount is more than the amount withdrawn before (minus
fees), a warning will be printed and a bag created with a base
cost of 0.

See also withdraw about the handling of fees.

Note that, currently, the fees for this deposit, if any, will
be taken from the oldest funds on the exchange after the deposit,
which are not necessarily the deposited funds.

	
load(filepath_or_buffer)

	Restore a previously saved state of a BagQueue and its list
of bags from a JSON formatted file.

Everything from the current BagQueue object will be overwritten
with the file’s contents.

	Parameters

	filepath_or_buffer – The filename of the JSON formatted file or a general buffer
with a read() method streaming the JSON formatted string.

	
pay(dtime, currency, amount, exchange, fee_ratio=0, custom_rate=None, report_info=None)

	Spend an amount of funds.

The money is taken out of the bag on the exchange with the proper
currency according to self.mode first, then from the next fitting bags
in line each time a bag is emptied. The bags’ prices are not changed,
but their current amount and base value (original cost) are decreased
proportionally.

This transaction and any profits or losses made will be logged
and added to the capital gains report data.

If amount is higher than the available total amount,
ValueError is raised.

	Parameters

	
	dtime – (datetime) The date and time when the payment
occured.

	amount – (number, decimal or parsable string)
The amount being spent, including fees.

	currency – (string) The currency being spent.

	exchange – (string) The unique name of the
exchange/wallet where the funds that are being spent are
taken from.

	fee_ratio – (number, decimal or parsable string),
0 <= fee_ratio <= 1; The ratio of amount that are fees.
Default: 0.

	custom_rate – (number, decimal or parsable string),
Default: None;
Provide a custom rate for conversion of currency to the
base currency. Usually (i.e. if this is None), the rate is
fetched from the CurrencyRelation object provided when this
BagQueue object was created. In some cases, one should rather
provide a rate, for example when base currency was bought
with this payment, meaning a more specific rate for this
trade can be provided than relying on the averaged historic
data used otherwise.

	report_info – dict, default None;
Additional information that will be added to the capital
gains report data. Currently, the only keys looked for are:
‘kind’, ‘buy_currency’ and ‘buy_ratio’. For each one of
them omitted in the dict, these default values will be used:

{‘kind’: ‘payment’, ‘buy_currency’: ‘’, ‘buy_ratio’: 0},

This is also the default dict used when report_info is
None.

	’kind’ is the type of transaction, i.e. ‘sale’,
‘withdrawal fee’, ‘payment’ etc.;

	’buy_currency’ is the currency bought in this trade;

	’buy_ratio’ is the amount of ‘buy_currency’ bought with
one unit of currency, i.e. bought_amount / spent_amount;
only used if ‘buy_currency’ is not empty.

	Returns

	the tuple (short_term_profit, total_proceeds),
with each value given in units of the base currency, where:

	short_term_profit

is the taxable short term profit (or
loss if negative) made in this sale. This only takes into
account the part of amount which was acquired less than
a year prior to dtime (or whatever time period is used by
is_short_term). The short term profit equals the proceeds
made by liquidating this amount for its price at dtime
minus its original cost, with the fees already substracted
from these proceeds.

	total_proceeds

are the total proceeds returned from this
sale, i.e. it includes the full amount (held for any amount
of time) at its price at dtime, with fees already
substracted. This value equals the base cost of any new
currency purchased with this sale.

	
pick_bag(exchange, currency, start_index=None)

	Pick bag from bag queue according to self.mode

	Parameters

	
	exchange – (string) The unique name of the
exchange/wallet where the funds that are being spent are
taken from.

	currency – (string) The currency being spent.

	start_index – (int) List index to start from

	
process_trade(trade)

	Process the trade or transaction documented in a Trade object.

The trade must be newer than the last processed trade, otherwise
a ValueError is raised.

Pay attention to the definitions in Trade.__init__, especially
that buy_amount is given without transaction fees, while
sell_amount includes them.

	
save(filepath_or_buffer)

	Save the current state of this BagQueue and its list of bags
to a JSON formatted file, so that it can later be restored
with self.load.

As an external utility, self.relation will not be included in
this string.

	Parameters

	filepath_or_buffer – The destination file’s name, which
will be overwritten if existing, or a general buffer with
a write() method.

	
sort_bags(exchange)

	Sort bags according to self.mode

	Parameters

	exchange – (string) The unique name of the
exchange/wallet where the bags being sorted are.

	
to_data_frame()

	Put all bags from all exchanges in one big pandas.DataFrame.

	
to_json(**kwargs)

	Return a JSON formatted string representation of the current
state of this BagQueue and its list of bags.

As an external utility, self.relation will not be included in
this string.

	Parameters

	kwargs – Keyword arguments that will be forwarded to json.dumps.

	Returns

	JSON formatted string

	
withdraw(dtime, currency, amount, fee, exchange)

	Withdraw amount monetary units of currency from an
exchange for a fee (also given in currency). The fee is
included in amount. The withdrawal happened at datetime dtime.

The pair of methods withdraw and deposit is used for
transfers of the same currency from one exhange to another.

If the amount is more than the total available, a ValueError
will be raised.

—

Losses made by fees (which must be directly resulting from and
connected to short term trading activity!) are substracted from
the total taxable profit (recorded in base currency).

This approach can be logically justified by looking at what
happens to the amount of fiat money that leaves a bank account
solely for trading with cryptocurrencies, which in turn are sold
entirely for fiat money before the end of the year. If nothing
else was bought with the cryptocurrencies in between, the
difference between the amount of fiat before and after trading
is exactly the taxable profit. For simplicity, say we buy some
Bitcoin at one exchange for X fiat money (i.e. X fiat money is
leaving the bank account), then transfer it to another exchange
(paying withdrawal and/or deposit fees) where we sell it again
for fiat, e.g.:

	buy 1 BTC @ 1000 EUR at exchangeA;
now we own 1 BTC with base value 1000 EUR

	transfer 1 BTC to exchangeB for 0.1 BTC fees;
now we own 0.9 BTC with base value 900 EUR,
100 EUR for the fees are counted as loss

	Example 1: We sell 0.9 BTC at a better price than before:
we get exactly 1000 EUR. The immediate profit is 100 EUR
(1000 EUR proceeds minus 900 EUR base value), but minus
the 100 EUR fee loss from earlier we have exactly a
taxable profit of 0 EUR, which makes sense considering
we started with 1000 EUR and now still have only 1000 EUR.

	Example 2: We sell 0.9 BTC at a much better price:
we get exactly 2000 EUR. The immediate profit is 1100 EUR
(2000 EUR proceeds minus 900 EUR base value), but minus
the 100 EUR fee loss from earlier we have exactly a
taxable profit of 1000 EUR, which also makes sense since
we started with 1000 EUR and now have 2000 EUR.

Note: The exact way how withdrawal, deposit and in general
transaction fees are handled should be made user-configurable
in future.

	
exception ccgains.bags.CurrencyTypeException

	

	
ccgains.bags.is_short_term(adate, tdate)

	Return whether a transaction/trade done on tdate employing
currency acquired on adate is a short term activity, i.e. the
profits and/or losses made with it are taxable.

Currently, this simply returns whether the difference between the
two dates is less than one year, as is the rule in some countries,
e.g. Germany and the U.S.A.

TODO: This needs to be made user-configurable in future, to adapt
to laws in different countries.

ccgains.historic_data module

	
class ccgains.historic_data.HistoricData(unit)

	Bases: object

Create a HistoricData object with no data.
The unit must be a string given in the form
‘currency_one/currency_two’, e.g. ‘EUR/BTC’.

Only use this constructor if you want to manually set
the data, otherwise use one of the subclasses
HistoricDataCSV or HistoricDataAPI.

To manually set data, self.data must be a pandas time series
with a fixed frequency.

	
get_price(dtime)

	Return the price at datetime dtime

	
prepare_request(dtime)

	Return a Pandas DataFrame which contains the data at the
requested datetime dtime.

	
class ccgains.historic_data.HistoricDataAPI(cache_folder, unit, interval='H')

	Bases: ccgains.historic_data.HistoricData

Initialize a HistoricData object which tranparently fetch data
on request (get_price) from the public Poloniex API:
https://poloniex.com/public?command=returnTradeHistory

For faster loading times on future calls, a HDF5 file is created
from the requested data and used transparently the next time a
request for the same day and pair is made. These HDF5 files are
saved in cache_folder.

The unit must be a string given in the form
‘currency_one/currency_two’, e.g. ‘EUR/BTC’.

The data will be resampled by calculating the weighted price
for interval steps specified by interval. See:
http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases
for possible values.

	
prepare_request(dtime)

	Return a Pandas DataFrame which contains the data for the
requested datetime dtime.

	
class ccgains.historic_data.HistoricDataAPIBinance(cache_folder, unit, interval='H')

	Bases: ccgains.historic_data.HistoricData

Initialize a HistoricData object which will transparently fetch
data on request (get_price) from the public Binance API:
https://api.binance.com/api/v1/klines

For faster loading times on future calls, a HDF5 file is created
from the requested data and used transparently the next time a
request for the same day and pair is made. These HDF5 files are
saved in cache_folder.

The unit must be a string in the form
‘currency_one/currency_two’, e.g. ‘NEO/BTC’.

The data will be resampled by calculating the weighted price
for interval steps specified by interval. See:
http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases
for possible values.

	
prepare_request(dtime)

	Return a pandas DataFrame which contains the data for the
requested datetime dtime.

	
class ccgains.historic_data.HistoricDataAPICoinbase(cache_folder, unit, interval='H')

	Bases: ccgains.historic_data.HistoricData

Initialize a HistoricData object which transparently fetches data
on request (get_price) from the public Coinbase API:
‘https://api.pro.coinbase.com/products/:SYMBOL:/candles’

For faster loading times on future calls, a HDF5 file is created
from the requested data and used transparently the next time a
request for the same day and pair is made. These HDF5 files are
saved in cache_folder.

The unit must be a string given in the form
‘currency_one/currency_two’, e.g. ‘BTC/USD’.

The data will be resampled by calculating the weighted price
for interval steps specified by interval. See:
http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases
for possible values.

	
prepare_request(dtime)

	Return a pandas DataFrame which contains the data for the
requested datetime dtime.

	
class ccgains.historic_data.HistoricDataCSV(file_name, unit, interval='H')

	Bases: ccgains.historic_data.HistoricData

Initialize a HistoricData object with data loaded from a csv
file. The unit must be a string given in the form
‘currency_one/currency_two’, e.g. ‘EUR/BTC’.
The csv must consist of three columns: first a unix timestamp,
second the rate given in unit, third the amount traded.
(Such a csv can be downloaded from bitcoincharts.com)

The file may also be compressed and will be deflated on-the-fly;
allowed extensions are: ‘.gz’, ‘.bz2’, ‘.zip’ or ‘.xz’.

The data will be resampled by calculating the weighted price
for interval steps specified by interval. See:
http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases
for possible values.

For faster loading times, a HDF5 file is created from the csv
the first time it is loaded and used transparently the next
time an HistoricData object is created with the same csv. If
the csv file is newer than the HDF5 file, the latter will be
updated.

	
ccgains.historic_data.resample_weighted_average(df, freq, data_col, weight_col, include_weights=False)

	Resample a DataFrame with a DatetimeIndex. Return weighted
averages of groups.

	Parameters

	
	df – The pandas.DataFrame to be resampled

	freq – The new frequency of the resampled time series

	data_col – Column to take the average of

	weight_col – Column with the weights

	include_weights – (default False)
If True, include the summed weights in result

	Returns

	if include_weights:

pandas.DataFrame with two columns:

	data_col: the weighted averages,

	weight_col: the summed weights

else:

pandas.Series with weighted averages

Source: ErnestScribbler, https://stackoverflow.com/a/44683506

ccgains.relations module

	
class ccgains.relations.CurrencyPair(base, quote)

	Create new instance of CurrencyPair(base, quote)

	
reversed()

	Swap base(from) for quote(to) currencies

	
class ccgains.relations.CurrencyRelation(*args)

	Create a CurrencyRelation object. This object allows
exchanging values between currencies, using historical
exchange rates at specific times.

	Parameters

	args – Any number of HistoricData objects. If multiple HistoricData
objects are given with the same unit, only the last one will
be used. More/updated HistoricData objects can be supplied
later with add_historic_data method.

	
add_historic_data(hist_data)

	Add an HistoricData object. If a HistoricData object with
the same unit has already been added, it will be updated.

	
get_rate(dtime, from_currency, to_currency)

	Return the rate for conversion of from_currency to
to_currency at the datetime dtime.

If a direct relation of the currency pair has not been added with
add_historic_data before, an indirect route using multiple
added pairs is tried. If this also fails, a KeyError is raised.

	
update_available_pairs(update_pair=None)

	Update internal list of pairs with available historical rate.

	Parameters

	update_pair – tuple (from_currency, to_currency);
If supplied, updates existing recipes with pair supplied.
Default (None) will force rebuild of pairs list from scratch
based on supplied historical data sets.

	
class ccgains.relations.Recipe

	A conversion recipe made up of num_steps steps which are given in
recipe_steps, showing how to convert from recipe_steps[0].base to
recipe_steps[-1].quote

Create new instance of Recipe(num_steps, recipe_steps)

	
reversed()

	A reversed recipe has RecipeSteps in the reversed order, and the
opposite value for reciprocal for each step

	
class ccgains.relations.RecipeStep

	One step in a conversion recipe, indicating base (from) currency, quote (to)
currency, and whether the reciprocal of the price should be used for this step.

Create new instance of RecipeStep(base, quote, reciprocal)

	
as_recipe()

	Create a Recipe (with one step) from this RecipeStep

	
reversed()

	Return a copy of this recipe step with reciprocal set opposite

ccgains.trades module

	
class ccgains.trades.Trade(kind, dtime, buy_currency, buy_amount, sell_currency, sell_amount, fee_currency='', fee_amount=0, exchange='', mark='', comment='', default_timezone=None)

	This class holds details about a single transaction, like a trade
between two currencies or a withdrawal of a single currency.

Create a Trade object.

All parameters may be strings, the numerical values will be
converted to decimal.Decimal values, dtime to a datetime.

	Parameters

	
	kind – a string denoting the kind of transaction, which
may be e.g. “trade”, “withdrawal”, “deposit”. Not currently
used, so it can be any comment.

	dtime – a string, number or datetime object:
The date and time of the transaction. A string will be
parsed with pandas.Timestamp; a number will be interpreted
as the elapsed seconds since the epoch (unix timestamp),
in UTC timezone.

	buy_amount – The amount of buy_currency bought. This value excludes any
transaction fees, i.e. it is the amount that is fully
available after the transaction.

	sell_amount – The amount of sell_currency sold. This value includes fees
that may have been paid for the transaction, i.e. it is the
total amount that left the account for the transaction.

buy_amount and sell_amount may be given in any order if
exactly one of the two values is negative, which will then be
identified as the sell amount. In that case, buy_currency and
sell_currency will be swapped accordingly, so the currency
will always stay with the amount. It’s an error if both values
are negative.

	Parameters

	
	fee_amount – The fees paid, given in fee_currency. May have any sign,
the absolute value will be taken as fee amount regardless.

	default_timezone – This parameter is ignored if there is timezone data included
in dtime, or if dtime is a number (unix timestamp), in
which case the timezone will always be UTC. Otherwise, if
default_timezone=None (default), the time data in dtime
will be interpreted as time in the local timezone according
to the locale setting; or it must be a tzinfo subclass
(from dateutil.tz or pytz), which will be added to dtime.

	
to_csv_line(delimiter=', ', endl='\n')

	

	
class ccgains.trades.TradeHistory

	The TradeHistory class is a container for a sorted list of
Trade objects, but most importantly it provides methods for
importing transactions exported from various exchanges, programs
and web applications.

TradeHistory() creates a TradeHistory object.

self.tlist is a sorted list of trades available after
some trades have been imported.

	
add_missing_transaction_fees(raise_on_error=True)

	Some exchanges do not include withdrawal fees in their
exported csv files. This will try to add these missing fees
by comparing withdrawn amounts with amounts deposited on other
exchanges shortly after withdrawal. Call this only after all
transactions from every involved exchange and wallet were
imported.

This uses a really simple algorithm, so it is not guaranteed to
work in every case. Basically, it finds the first deposit
following each withdrawal and compares the withdrawn amount
with the deposited amount. The difference (withdrawn - deposited)
is then assigned as the fee for the withdrawal, if this fee
is greater than zero. This might not work if there are
withdrawals in tight succession whose deposits register in a
different order than the withdrawals.

If raise_on_error is True (which is the default), a ValueError
will be raised if a pair is found that cannot possibly match
(higher deposit than withdrawal), otherwise only a warning
is logged and the withdrawal skipped (which will be tried to be
matched with the next deposit) while the deposit is tried
to be matched with another withdrawal that came before it.

	
append_binance_csv(file_name, which_data='trades', delimiter=', ', skiprows=1, default_timezone=<Mock name='mock.tz.tzutc()' id='139871222977088'>)

	Import trades or transfers from a csv file from Binance and add them
to this TradeHistory.

Afterwards, all trades will be sorted by date and time.

	Parameters

	
	which_data – (string)
Must be one of “trades”, “withdrawals”, “deposits”, or
“distributions”. Binance separates generated CSV histories into
these four categories; specify which is being imported here.

	default_timezone – This parameter is ignored if there is timezone data in the csv
string; by default Binance does not. Otherwise, if None, the time
data in the csv will be interpreted as the time in the local timezone
according to the locale setting; or it must be a tzinfo subclass
(from dateutil.tz or pytz);
The default is UTC time, which is what Binance exports at the time
of writing, but it may change in the future

	
append_bisq_csv(trade_file_name, transactions_file_name, delimiter=', ', skiprows=1, default_timezone=None)

	Import trades from the csv files exported from Bisq (former
Bitsquare) and add them to this TradeHistory.

Afterwards, all trades will be sorted by date and time.

From the Bisq program, two kinds of csv files can be exported:
One with the trading history and one with the transaction
history. Because of how Bisq works, these two histories are
intertwined and in order to properly connect the fees to
trades, both files must be imported together.

	Parameters

	
	trade_file_name – The csv file name with the trading history.
In case you only made transactions and no trades, this
may be an empty string: “”

	transaction_file_name – The csv file name with the transaction history

	default_timezone – This parameter is ignored if there is timezone data in the
csv string. Otherwise, if None, the time data in the csv
will be interpreted as time in the local timezone
according to the locale setting; or it must be a tzinfo
subclass (from dateutil.tz or pytz);
The default is None, i.e. the local timezone,
which is what Bitsquare exports at time of writing this,
but it might change in future.

	
append_bitcoin_de_csv(file_name, delimiter=';', skiprows=1, default_timezone=None)

	Import trades from a csv file exported from Bitcoin.de
and add them to this TradeHistory.

Afterwards, all trades will be sorted by date and time.

	Parameters

	default_timezone – This parameter is ignored if there is timezone data in the
csv string. Otherwise, if None, the time data in the csv
will be interpreted as time in the local timezone
according to the locale setting; or it must be a tzinfo
subclass (from dateutil.tz or pytz);
The default is None, i.e. the local timezone,
which is what Bitcoin.de exports at time of writing, but
it might change in future.

	
append_bitsquare_csv(trade_file_name, transactions_file_name, delimiter=', ', skiprows=1, default_timezone=None)

	Import trades from the csv files exported from Bisq (former
Bitsquare) and add them to this TradeHistory.

Afterwards, all trades will be sorted by date and time.

From the Bisq program, two kinds of csv files can be exported:
One with the trading history and one with the transaction
history. Because of how Bisq works, these two histories are
intertwined and in order to properly connect the fees to
trades, both files must be imported together.

	Parameters

	
	trade_file_name – The csv file name with the trading history.
In case you only made transactions and no trades, this
may be an empty string: “”

	transaction_file_name – The csv file name with the transaction history

	default_timezone – This parameter is ignored if there is timezone data in the
csv string. Otherwise, if None, the time data in the csv
will be interpreted as time in the local timezone
according to the locale setting; or it must be a tzinfo
subclass (from dateutil.tz or pytz);
The default is None, i.e. the local timezone,
which is what Bitsquare exports at time of writing this,
but it might change in future.

	
append_bittrex_csv(file_name, which_data='trades', skiprows=1, delimiter=', ', default_timezone=None)

	Import trades from a csv file exported from Bittrex.com and
add them to this TradeHistory.

Afterward, all trades will be sorted by date and time.

	Parameters

	
	which_data – (string)
Must be one of “trades” or “transfers”. Bittrex only exports
trade history, but displays transfer history in a table that can be
pasted into a csv file manually. This parser assumes the same column
layout as is shown on the Bittrex transfer history page.”

	default_timezone – This parameter is ignored if there is timezone data in the
csv string. Otherwise, if None, the time data in the csv
will be interpreted as time in the local timezone
according to the locale setting; or it must be a tzinfo
subclass (from dateutil.tz or pytz);
The default is None, as Bittrex (at the time of writing) outputs
local time (at the time of purchase) with transaction history

	
append_ccgains_csv(file_name, delimiter=', ', skiprows=1, default_timezone=None)

	Import trades from a csv file exported from
ccgains.TradeHistory.export_to_csv() and add them to this
TradeHistory.

Afterwards, all trades will be sorted by date and time.

	Parameters

	default_timezone – This parameter is ignored if there is timezone data in the
csv string. Otherwise, if None (default) the time data in
the csv will be interpreted as time in the local timezone
according to the locale setting; or it must be a tzinfo
subclass (from dateutil.tz or pytz)

	
append_coinbase_csv(file_name, currency=None, skiprows=4, delimiter=', ', default_timezone=None)

	Import trades from a csv file exported from Coinbase.com for all
wallets (Tools > History > Download History) and adds them to this
TradeHistory.

Afterwards, all trades will be sorted by date and time

	Parameters

	
	currency – (string)
The quote currency used for transactions (e.g. USD/EUR). If not
provided, will attempt to determine currency from the csv file,
but this may not always be accurate.

	default_timezone – This parameter is ignored if there is timezone data in the
csv string. Otherwise, if None, the time data in the csv
will be interpreted as time in the local timezone
according to the locale setting; or it must be a tzinfo
subclass (from dateutil.tz or pytz);
The default is None, as Coinbase (at the time of writing) outputs
local time (at the time of purchase) with transaction history

	
append_csv(file_name, param_locs=range(0, 11), delimiter=', ', skiprows=1, default_timezone=None)

	Import trades from a csv file and add them to this
TradeHistory.

Afterwards, all trades will be sorted by date and time.

	Parameters

	
	param_locs – (list or dict):
Locations of Trade’s parameters in csv-file.
Each entry denotes the column number where a Trade-parameter
can be found in the csv (Columns are counted starting with 0).
If the value is not in the csv, use -1 to use an empty value,
a string for a constant value to fill the parameter with,
or a function of one parameter (which will be called for
each row with a list of the splitted strings in the row as
parameter).
Note that buy and sell values may be given in reverse order
if one of them is negative.

	default_timezone – This parameter is ignored if there is timezone data in the
csv string. Otherwise, if None (default) the time data in
the csv will be interpreted as time in the local timezone
according to the locale setting; or it must be a tzinfo
subclass (from dateutil.tz or pytz)

	
append_electrum_csv(file_name, skiprows=1, default_timezone=None)

	Import trades from a csv file exported from the Electrum Wallet
and add them to this TradeHistory.

It wolrks with exported files from the original Electrum Wallet (BTC)
as well as for the Electrum Litecoin Wallet (LTC), as the format is
exactly the same.

Afterwards, all trades will be sorted by date and time.

	Parameters

	default_timezone – This parameter is ignored if there is timezone data in the
csv string. Otherwise, if None, the time data in the csv
will be interpreted as time in the local timezone
according to the locale setting; or it must be a tzinfo
subclass (from dateutil.tz or pytz);
The default is None, i.e. the local timezone,
which is what Bitcoin.de exports at time of writing, but
it might change in future.

	
append_poloniex_csv(file_name, which_data='trades', condense_trades=False, delimiter=', ', skiprows=1, default_timezone=<Mock name='mock.tz.tzutc()' id='139871222977088'>)

	Import trades from a csv file exported from Poloniex.com and
add them to this TradeHistory.

Afterwards, all trades will be sorted by date and time.

	Parameters

	
	which_data – (string)
Must be one of “trades”, “withdrawals” or “deposits”.
Poloniex only allows exporting the three categories
‘trading history’, ‘withdrawal history’ and ‘deposit history’
in separate csv files. Specify which type is loaded here.
Default is ‘trades’.

	condense_trades – (bool)
Merge consecutive trades with identical order number? The
time of the last merged trade will be used for the resulting
trade. Only has an effect if which_data == ‘trades’.

	default_timezone – This parameter is ignored if there is timezone data in the
csv string. Otherwise, if None, the time data in the csv
will be interpreted as time in the local timezone
according to the locale setting; or it must be a tzinfo
subclass (from dateutil.tz or pytz);
The default is UTC time, which is what Poloniex exports
at time of writing, but it might change in future.

	
append_trezor_csv(file_name, currency, skiprows=1, default_timezone=None)

	Import trades from a csv file exported from the Trezor wallet
and add them to this TradeHistory.

Afterwards, all trades will be sorted by date and time.

	Parameters

	
	default_timezone – This parameter is ignored if there is timezone data in the
csv string. Otherwise, if None, the time data in the csv
will be interpreted as time in the local timezone
according to the locale setting; or it must be a tzinfo
subclass (from dateutil.tz or pytz);
The default is None, i.e. the local timezone,
which is what Bitcoin.de exports at time of writing, but
it might change in future.

	currency – The currency corresponding to the file to be imported.
The Trezor wallet exports the information of each wallet
separately, but the information of the currency is not supplied.
Therefore, the user has to supply the crypto currency accordingly
when importing the csv file.

	
export_to_csv(path_or_buf=None, year=None, convert_timezone=True, **kwargs)

	Write the list of trades to a csv file.

The csv table will contain the columns:
‘kind’, ‘dtime’, ‘buy_currency’, ‘buy_amount’, ‘sell_currency’,
‘sell_amount’, ‘fee_currency’, ‘fee_amount’, ‘exchange’,
‘mark’ and ‘comment’.

	Parameters

	
	path_or_buf – File path (string) or file handle,
default None;
If None is provided the result is returned as a string.

	year – None or 4-digit integer, default: None;
Leave None to export all trades or choose a specific
year to export.

	convert_timezone – string, pytz.timezone, dateutil.tz.tzfile, True or False;
All dates will be converted to this timezone. The default
value, True, will lead to a conversion to the locale
timezone according to the system’s locale setting.
False keeps all dates at UTC time. Otherwise, specify a
parameter that will be forwarded to
pandas.Timestamp.tz_convert().

	
export_to_pdf(file_name, year=None, convert_timezone=True, font_size=11, template_file='generic_landscape_table.html', caption='Digital currency trades %(year)s', intro='<h4>Listing of all transactions between %(fromdate)s and %(todate)s</h4>', drop_columns=None, custom_column_names=None, custom_formatters=None, locale=None)

	Export the trade history to a pdf file.

	Parameters

	
	file_name – string;
Destination file name.

	year – None or 4-digit integer, default: None;
Leave None to export all trades or choose a specific
year to export.

	convert_timezone – string, pytz.timezone, dateutil.tz.tzfile, True or False;
All dates will be converted to this timezone. The default
value, True, will lead to a conversion to the locale
timezone according to the system’s locale setting.
False keeps all dates at UTC time. Otherwise, specify a
parameter that will be forwarded to
pandas.Timestamp.tz_convert().

	template_file – file name of html template inside package
folder: ccgains/templates.
Default: ‘generic_landscape_table.html’

	drop_columns – None or list of strings;
Column names specified here (as returned from
to_data_frame) will be omitted from output.

	custom_column_names – None or list of strings;
If None (default), the column names of the DataFrame
returned from to_data_frame() will be used.
To rename them, supply a list of length 11-len(drop_columns).

	custom_formatters – None or dict of one-parameter functions;
If None (default), a set of default formatters for each
column will be used, using babel.numbers and babel.dates.
Individual formatting functions can be supplied with the
(renamed) column names as keys. The result of each function
must be a unicode string.

	locale – None or locale identifier, e.g. ‘de_DE’ or ‘en_US’;
The locale used for formatting numeric and date values with
babel. If None (default), the locale will be taken from the
LC_NUMERIC or LC_TIME environment variables on your
system, for numeric or date values, respectively.

	
to_data_frame(year=None, convert_timezone=True)

	Put all trades in one big pandas.DataFrame.

	Parameters

	
	year – None or 4-digit integer, default: None;
Leave None to export all trades or choose a specific
year to export.

	convert_timezone – string, pytz.timezone, dateutil.tz.tzfile, True or False;
All dates will be converted to this timezone. The default
value, True, will lead to a conversion to the locale
timezone according to the system’s locale setting.
False keeps all dates at UTC time. Otherwise, specify a
parameter that will be forwarded to
pandas.Timestamp.tz_convert().

	
to_html(year=None, convert_timezone=True, font_size=11, template_file='generic_landscape_table.html', caption='Digital currency trades %(year)s', intro='<h4>Listing of all transactions between %(fromdate)s and %(todate)s</h4>', merge_currencies=True, drop_columns=None, custom_column_names=None, custom_formatters=None, locale=None)

	Return the trade history as HTML-formatted string.

	Parameters

	
	year – None or 4-digit integer, default: None;
Leave None to export all trades or choose a specific
year to export.

	convert_timezone – string, pytz.timezone, dateutil.tz.tzfile, True or False;
All dates will be converted to this timezone. The default
value, True, will lead to a conversion to the locale
timezone according to the system’s locale setting.
False keeps all dates at UTC time. Otherwise, specify a
parameter that will be forwarded to
pandas.Timestamp.tz_convert().

	template_file – file name of html template inside package
folder: ccgains/templates.
Default: ‘generic_landscape_table.html’

	merge_currencies – Boolean, default True;
If True, the three currency columns (e.g. ‘buy_currency’)
will be dropped, with the currency names added to the
amount columns (e.g. added to ‘buy_amount’).

	drop_columns – None or list of strings;
Column names specified here (as returned from
to_data_frame) will be omitted from output.
If merge_currencies is True, don’t specify the currency
columns here, only the amount column that you want removed.

	custom_column_names – None or list of strings;
If None (default), the column names of the DataFrame
returned from to_data_frame() will be used.
To rename them, supply a list of proper length (that is,
11 - len(drop_columns) if merge_currencies is False or
8 - len(drop_columns) otherwise).

	custom_formatters – None or dict of one-parameter functions;
If None (default), a set of default formatters for each
column will be used, using babel.numbers and babel.dates.
Individual formatting functions can be supplied with the
(renamed) column names as keys. The result of each function
must be a unicode string.

	locale – None or locale identifier, e.g. ‘de_DE’ or ‘en_US’;
The locale used for formatting numeric and date values with
babel. If None (default), the locale will be taken from the
LC_NUMERIC or LC_TIME environment variables on your
system, for numeric or date values, respectively.

	Returns

	HTML-formatted string

	
update_ticker_names(changes=None)

	Update the names of a ticker previously imported into this
TradeHistory.

Coins occasionally change ticker symbols, but older history files may
not include the change, and instead still refer to the coin by its
old name, although pricing history has changed all data to the new name.
This method allows for in-place swapping to the new name.

	Parameters

	changes – (dict{string: string})
A dictionary in the form {‘old ticker’: ‘new ticker}. All occurrences
of ‘old ticker’ in this TradeHistory will be updated to ‘new ticker’
Price, cost, amount data will remain unchanged.

ccgains.reports module

	
class ccgains.reports.CapitalGainsReport(data=[])

	This class facilitates the collecting of data like price,
proceeds, profit etc. that accrue when processing payments,
sales etc. with foreign or digital currencies. Afterwards, provided
methods for creating reports from the gathered data can be used.
Capital gains reports created from the gathered data can then be
exported to csv, html, pdf etc., using the provided methods.

Create a CaptitalGainsReport object.

Then, with every processed payment, you should add data
with add_payment.

	Parameters

	data – list of PaymentReport objects or list of
lists/tuples with entries corresponding to
PaymentReport._fields, default: empty list;
The internal report data will be initialized with the
payment reports in the list.

	
add_payment(payment_report)

	Add payment data.

	Parameters

	payment_report – PaymentReport object;
Contains the data to be collected from a processed payment.

	
export_extended_report_to_pdf(file_name, year=None, date_precision='D', combine=True, convert_timezone=True, font_size=10, template_file='fullreport_en.html', payment_kind_translation=None, locale=None)

	Export the extended capital gains report to a pdf file.

	Parameters

	
	file_name – string;
Destination file name.

	year – None or 4-digit integer, default: None;
Leave None to export all sales or choose a specific
year to export.

	date_precision – one of ‘D’, ‘H’ or ‘T’ for daily, hourly
or minutely, respectively (may also be multiplied, e.g.:
‘5T’ for 5-minutely), default: ‘D’;
Floors all datetimes to the specified frequency.
Does nothing if date_precision is False.

	combine – boolean, default True;
Combines consecutive transactions which only differ in
the ‘amount’, ‘cost’, ‘proceeds’ and ‘profit’. Such
transactions will be combined by summing up the values
in these columns. This is only useful if date_precision
is set, since otherwise consecutive dates will very
seldomly match. Therefore, does nothing if
date_precision is False.

	convert_timezone – string, pytz.timezone, dateutil.tz.tzfile, True or False;
All dates (i.e. purchase_date and sell_date entries) will
be converted to this timezone. The default value, True,
will lead to a conversion to the locale timezone according
to the system’s locale setting. False keeps all dates at
UTC time. Otherwise, specify a parameter that will be
forwarded to pandas.Timestamp.tz_convert().

	template_file – file name of html template inside package
folder: ccgains/templates. Default: ‘fullreport_en.html’

	payment_kind_translation – None (default) or dictionary;
This allows for the payment kind (one out of
[‘sale’, ‘withdrawal fee’, ‘deposit fee’, ‘exchange fee’])
to be translated (the dict keys must be the mentioned english
strings, the values are the translations used in the output).

	locale – None or locale identifier, e.g. ‘de_DE’ or ‘en_US’;
The locale used for formatting numeric and date values with
babel. If None (default), the locale will be taken from the
LC_NUMERIC or LC_TIME environment variables on your
system, for numeric or date values, respectively.

	
export_report_to_pdf(file_name, year=None, date_precision='D', combine=True, convert_timezone=True, font_size=12, template_file='shortreport_en.html', custom_column_names=None, custom_formatters=None, locale=None)

	Export the capital gains report to a pdf file.

	Parameters

	
	file_name – string;
Destination file name.

	year – None or 4-digit integer, default: None;
Leave None to export all sales or choose a specific
year to export.

	date_precision – one of ‘D’, ‘H’ or ‘T’ for daily, hourly
or minutely, respectively (may also be multiplied, e.g.:
‘5T’ for 5-minutely), default: ‘D’;
Floors all datetimes to the specified frequency.
Does nothing if date_precision is False.

	combine – boolean, default True;
Combines consecutive transactions which only differ in
the ‘amount’, ‘cost’, ‘proceeds’ and ‘profit’. Such
transactions will be combined by summing up the values
in these columns. This is only useful if date_precision
is set, since otherwise consecutive dates will very
seldomly match. Therefore, does nothing if
date_precision is False.

	convert_timezone – string, pytz.timezone, dateutil.tz.tzfile, True or False;
All dates (i.e. purchase_date and sell_date entries) will
be converted to this timezone. The default value, True,
will lead to a conversion to the locale timezone according
to the system’s locale setting. False keeps all dates at
UTC time. Otherwise, specify a parameter that will be
forwarded to pandas.Timestamp.tz_convert().

	template_file – file name of html template inside package
folder: ccgains/templates. Default: ‘shortreport_en.html’

	custom_column_names – None or list of strings;
If None (default), the column names of the DataFrame
returned from get_report_data(extended=False) will be
used. To rename them, supply a list of length 10.

	custom_formatters – None or dict of one-parameter functions;
If None (default), a set of default formatters for each
column will be used, using babel.numbers and babel.dates.
Individual formatting functions can be supplied with the
(renamed) column names as keys. The result of each function
must be a unicode string.

	locale – None or locale identifier, e.g. ‘de_DE’ or ‘en_US’;
The locale used for formatting numeric and date values with
babel. If None (default), the locale will be taken from the
LC_NUMERIC or LC_TIME environment variables on your
system, for numeric or date values, respectively.

	
export_short_report_to_csv(path_or_buf=None, year=None, date_precision='D', combine=True, convert_timezone=True, strip_timezone=True, custom_column_names=None, **kwargs)

	Write the capital gains table to a csv file.

The csv table will contain the columns:
‘kind’, ‘amount’, ‘currency’, ‘purchase_date’, ‘sell_date’,
‘exchange’, ‘short_term’, ‘cost’, ‘proceeds’ and ‘profit’.

	Parameters

	
	path_or_buf – File path (string) or file handle,
default None;
If None is provided the result is returned as a string.

	year – None or 4-digit integer, default: None;
Leave None to export all sales or choose a specific
year to export.

	date_precision – one of ‘D’, ‘H’ or ‘T’ for daily, hourly
or minutely, respectively (may also be multiplied, e.g.:
‘5T’ for 5-minutely), default: ‘D’;
Floors all datetimes to the specified frequency.
Does nothing if date_precision is False.

	combine – boolean, default True;
Combines consecutive transactions which only differ in
the ‘amount’, ‘cost’, ‘proceeds’ and ‘profit’. Such
transactions will be combined by summing up the values
in these columns. This is only useful if date_precision
is set, since otherwise consecutive dates will very
seldomly match. Therefore, does nothing if
date_precision is False.

	convert_timezone – string, pytz.timezone, dateutil.tz.tzfile, True or False;
All dates (i.e. purchase_date and sell_date entries) will
be converted to this timezone. The default value, True,
will lead to a conversion to the locale timezone according
to the system’s locale setting. False keeps all dates at
UTC time. Otherwise, specify a parameter that will be
forwarded to pandas.Timestamp.tz_convert().

	strip_timezone – boolean, default True;
After conversion, the timezone info will be removed from
all dates.

	custom_column_names – None or list of strings;
If None (default), the column names will be:
[‘kind’, ‘amount’, ‘currency’, ‘purchase_date’, ‘sell_date’,
‘exchange’, ‘short_term’, ‘cost’, ‘proceeds’, ‘profit’].
To rename them, supply a list of length 10.

	
get_extended_report_html(year=None, date_precision='D', combine=True, convert_timezone=True, font_size=10, template_file='fullreport_en.html', payment_kind_translation=None, locale=None)

	Return an extended capital gains report as HTML-formatted
string.

	Parameters

	
	year – None or 4-digit integer, default: None;
Leave None to export all sales or choose a specific
year to export.

	date_precision – one of ‘D’, ‘H’ or ‘T’ for daily, hourly
or minutely, respectively (may also be multiplied, e.g.:
‘5T’ for 5-minutely), default: ‘D’;
Floors all datetimes to the specified frequency.
Does nothing if date_precision is False.

	combine – boolean, default True;
Combines consecutive transactions which only differ in
the ‘amount’, ‘cost’, ‘proceeds’ and ‘profit’. Such
transactions will be combined by summing up the values
in these columns. This is only useful if date_precision
is set, since otherwise consecutive dates will very
seldomly match. Therefore, does nothing if
date_precision is False.

	convert_timezone – string, pytz.timezone, dateutil.tz.tzfile, True or False;
All dates (i.e. purchase_date and sell_date entries) will
be converted to this timezone. The default value, True,
will lead to a conversion to the locale timezone according
to the system’s locale setting. False keeps all dates at
UTC time. Otherwise, specify a parameter that will be
forwarded to pandas.Timestamp.tz_convert().

	template_file – file name of html template inside package
folder: ccgains/templates. Default: ‘fullreport_en.html’

	payment_kind_translation – None (default) or dictionary;
This allows for the payment kind (one out of
[‘sale’, ‘withdrawal fee’, ‘deposit fee’, ‘exchange fee’])
to be translated (the dict keys must be the mentioned english
strings, the values are the translations used in the output).

	locale – None or locale identifier, e.g. ‘de_DE’ or ‘en_US’;
The locale used for formatting numeric and date values with
babel. If None (default), the locale will be taken from the
LC_NUMERIC or LC_TIME environment variables on your
system, for numeric or date values, respectively.

	Returns

	HTML-formatted string

	
get_report_data(year=None, date_precision='D', combine=True, convert_timezone=True, strip_timezone=True, extended=False, custom_column_names=None)

	Return a pandas.DataFrame listing the capital gains made
with the processed trades.

	Parameters

	
	year – None or 4-digit integer, default: None;
Leave None to return all sales or choose a specific
year to return.

	date_precision – one of ‘D’, ‘H’ or ‘T’ for daily, hourly
or minutely, respectively (may also be multiplied, e.g.:
‘5T’ for 5-minutely), default: ‘D’;
Floors all datetimes to the specified frequency.
Does nothing if date_precision is False.

	combine – boolean, default True;
Combines consecutive transactions which only differ in
the amounts ‘to_pay’, ‘bag_amount’, ‘bag_spent’,
‘spent_cost’, ‘proceeds’ and ‘profit’. Such transactions
will be combined by summing up the values in these columns.
This is only useful if date_precision is set, since
otherwise consecutive dates will very seldomly match.
Therefore, does nothing if date_precision is False.

	convert_timezone – string, pytz.timezone, dateutil.tz.tzfile, True or False;
All dates (i.e. purchase_date and sell_date entries) will
be converted to this timezone. The default value, True,
will lead to a conversion to the locale timezone according
to the system’s locale setting. False keeps all dates at
UTC time. Otherwise, specify a parameter that will be
forwarded to pandas.Timestamp.tz_convert().

	strip_timezone – boolean, default True;
After conversion, the timezone info will be removed from
all dates.

	extended – boolean, default False;

By default, the returned DataFrame contains the columns:

[‘kind’, ‘bag_spent’, ‘currency’, ‘bag_date’,
‘sell_date’, ‘exchange’, ‘short_term’,
‘spent_cost’, ‘proceeds’, ‘profit’];

If extended is True, these columns will be returned:

[‘kind’, ‘exchange’, ‘sell_date’,
‘currency’, ‘to_pay’,’fee_ratio’,
‘bag_date’, ‘bag_amount’, ‘bag_spent’,
‘cost_currency’, ‘spent_cost’, ‘short_term’,
‘ex_rate’, ‘proceeds’, ‘profit’,
‘buy_currency, buy_ratio’]

Note the reordering of columns in the small dataset.

	custom_column_names – None or list of strings;
If None (default), the column names will be as described
above, depending on extended. To rename them, supply a
list of proper length, either 10 if not extended or 17
otherwise.

	Returns

	A pandas.DataFrame with the requested data.

	
get_report_html(year=None, date_precision='D', combine=True, convert_timezone=True, font_size=12, template_file='shortreport_en.html', custom_column_names=None, custom_formatters=None, locale=None, extended_data=False)

	Return the capital gains report as HTML-formatted string.

	Parameters

	
	year – None or 4-digit integer, default: None;
Leave None to export all sales or choose a specific
year to export.

	date_precision – one of ‘D’, ‘H’ or ‘T’ for daily, hourly
or minutely, respectively (may also be multiplied, e.g.:
‘5T’ for 5-minutely), default: ‘D’;
Floors all datetimes to the specified frequency.
Does nothing if date_precision is False.

	combine – boolean, default True;
Combines consecutive transactions which only differ in
the ‘amount’, ‘cost’, ‘proceeds’ and ‘profit’. Such
transactions will be combined by summing up the values
in these columns. This is only useful if date_precision
is set, since otherwise consecutive dates will very
seldomly match. Therefore, does nothing if
date_precision is False.

	convert_timezone – string, pytz.timezone, dateutil.tz.tzfile, True or False;
All dates (i.e. purchase_date and sell_date entries) will
be converted to this timezone. The default value, True,
will lead to a conversion to the locale timezone according
to the system’s locale setting. False keeps all dates at
UTC time. Otherwise, specify a parameter that will be
forwarded to pandas.Timestamp.tz_convert().

	template_file – file name of html template inside package
folder: ccgains/templates. Default: ‘shortreport_en.html’

	custom_column_names – None or list of strings;
If None (default), the column names of the DataFrame
returned from get_report_data(extended=extended_data)
will be used. To rename them, supply a list with same length
than number of columns (depending on extended_data).

	custom_formatters – None or dict of one-parameter functions;
If None (default), a set of default formatters for each
column will be used, using babel.numbers and babel.dates.
Individual formatting functions can be supplied with the
(renamed) column names as keys. The result of each function
must be a unicode string.

	locale – None or locale identifier, e.g. ‘de_DE’ or ‘en_US’;
The locale used for formatting numeric and date values with
babel. If None (default), the locale will be taken from the
LC_NUMERIC or LC_TIME environment variables on your
system, for numeric or date values, respectively.

	extended_data – Boolean, default: False;
If the template_file makes use of some of the extended data
returned from get_report_data when called with parameter
extended=True, this must also be True. See documentation
of get_report_data for extended data fields.

	Returns

	HTML-formatted string

	
to_json(**kwargs)

	Convert the collected data to a JSON formatted string.

	Parameters

	kwargs – Keyword arguments that will be forwarded to json.dumps.

	Returns

	JSON formatted string

	
class ccgains.reports.PaymentReport(kind, exchange, sell_date, currency, to_pay, fee_ratio, bag_date, bag_amount, bag_spent, cost_currency, spent_cost, short_term, ex_rate, proceeds, profit, buy_currency, buy_ratio)

	This is a container for a couple of values that are gathered at every payment, which will be needed for creating a capital gains report.

Create new instance of PaymentReport(kind, exchange, sell_date, currency, to_pay, fee_ratio, bag_date, bag_amount, bag_spent, cost_currency, spent_cost, short_term, ex_rate, proceeds, profit, buy_currency, buy_ratio)

	
bag_amount

	Alias for field number 7

	
bag_date

	Alias for field number 6

	
bag_spent

	Alias for field number 8

	
buy_currency

	Alias for field number 15

	
buy_ratio

	Alias for field number 16

	
cost_currency

	Alias for field number 9

	
currency

	Alias for field number 3

	
ex_rate

	Alias for field number 12

	
exchange

	Alias for field number 1

	
fee_ratio

	Alias for field number 5

	
kind

	Alias for field number 0

	
proceeds

	Alias for field number 13

	
profit

	Alias for field number 14

	
sell_date

	Alias for field number 2

	
short_term

	Alias for field number 11

	
spent_cost

	Alias for field number 10

	
to_pay

	Alias for field number 4

 Python Module Index

 c

 		 	

 		
 c	

 	[image: -]
 	
 ccgains	

 	
 	
 ccgains.bags	

 	
 	
 ccgains.historic_data	

 	
 	
 ccgains.relations	

 	
 	
 ccgains.reports	

 	
 	
 ccgains.trades	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | P
 | R
 | S
 | T
 | U
 | W

A

 	
 	add_historic_data() (ccgains.relations.CurrencyRelation method)

 	add_missing_transaction_fees() (ccgains.trades.TradeHistory method)

 	add_payment() (ccgains.reports.CapitalGainsReport method)

 	append_binance_csv() (ccgains.trades.TradeHistory method)

 	append_bisq_csv() (ccgains.trades.TradeHistory method)

 	append_bitcoin_de_csv() (ccgains.trades.TradeHistory method)

 	append_bitsquare_csv() (ccgains.trades.TradeHistory method)

 	
 	append_bittrex_csv() (ccgains.trades.TradeHistory method)

 	append_ccgains_csv() (ccgains.trades.TradeHistory method)

 	append_coinbase_csv() (ccgains.trades.TradeHistory method)

 	append_csv() (ccgains.trades.TradeHistory method)

 	append_electrum_csv() (ccgains.trades.TradeHistory method)

 	append_poloniex_csv() (ccgains.trades.TradeHistory method)

 	append_trezor_csv() (ccgains.trades.TradeHistory method)

 	as_recipe() (ccgains.relations.RecipeStep method)

B

 	
 	Bag (class in ccgains.bags)

 	bag_amount (ccgains.reports.PaymentReport attribute)

 	bag_date (ccgains.reports.PaymentReport attribute)

 	bag_spent (ccgains.reports.PaymentReport attribute)

 	
 	BagQueue (class in ccgains.bags)

 	buy_currency (ccgains.reports.PaymentReport attribute)

 	buy_ratio (ccgains.reports.PaymentReport attribute)

 	buy_with_base_currency() (ccgains.bags.BagQueue method)

C

 	
 	CapitalGainsReport (class in ccgains.reports)

 	ccgains (module)

 	ccgains.bags (module)

 	ccgains.historic_data (module)

 	ccgains.relations (module)

 	ccgains.reports (module)

 	
 	ccgains.trades (module)

 	cost_currency (ccgains.reports.PaymentReport attribute)

 	currency (ccgains.reports.PaymentReport attribute)

 	CurrencyPair (class in ccgains.relations)

 	CurrencyRelation (class in ccgains.relations)

 	CurrencyTypeException

D

 	
 	deposit() (ccgains.bags.BagQueue method)

E

 	
 	ex_rate (ccgains.reports.PaymentReport attribute)

 	exchange (ccgains.reports.PaymentReport attribute)

 	export_extended_report_to_pdf() (ccgains.reports.CapitalGainsReport method)

 	
 	export_report_to_pdf() (ccgains.reports.CapitalGainsReport method)

 	export_short_report_to_csv() (ccgains.reports.CapitalGainsReport method)

 	export_to_csv() (ccgains.trades.TradeHistory method)

 	export_to_pdf() (ccgains.trades.TradeHistory method)

F

 	
 	fee_ratio (ccgains.reports.PaymentReport attribute)

G

 	
 	get_extended_report_html() (ccgains.reports.CapitalGainsReport method)

 	get_price() (ccgains.historic_data.HistoricData method)

 	
 	get_rate() (ccgains.relations.CurrencyRelation method)

 	get_report_data() (ccgains.reports.CapitalGainsReport method)

 	get_report_html() (ccgains.reports.CapitalGainsReport method)

H

 	
 	HistoricData (class in ccgains.historic_data)

 	HistoricDataAPI (class in ccgains.historic_data)

 	
 	HistoricDataAPIBinance (class in ccgains.historic_data)

 	HistoricDataAPICoinbase (class in ccgains.historic_data)

 	HistoricDataCSV (class in ccgains.historic_data)

I

 	
 	is_empty() (ccgains.bags.Bag method)

 	
 	is_short_term() (in module ccgains.bags)

K

 	
 	kind (ccgains.reports.PaymentReport attribute)

L

 	
 	load() (ccgains.bags.BagQueue method)

P

 	
 	pay() (ccgains.bags.BagQueue method)

 	PaymentReport (class in ccgains.reports)

 	pick_bag() (ccgains.bags.BagQueue method)

 	prepare_request() (ccgains.historic_data.HistoricData method)

 	(ccgains.historic_data.HistoricDataAPI method)

 	(ccgains.historic_data.HistoricDataAPIBinance method)

 	(ccgains.historic_data.HistoricDataAPICoinbase method)

 	
 	proceeds (ccgains.reports.PaymentReport attribute)

 	process_trade() (ccgains.bags.BagQueue method)

 	profit (ccgains.reports.PaymentReport attribute)

R

 	
 	Recipe (class in ccgains.relations)

 	RecipeStep (class in ccgains.relations)

 	resample_weighted_average() (in module ccgains.historic_data)

 	
 	reversed() (ccgains.relations.CurrencyPair method)

 	(ccgains.relations.Recipe method)

 	(ccgains.relations.RecipeStep method)

S

 	
 	save() (ccgains.bags.BagQueue method)

 	sell_date (ccgains.reports.PaymentReport attribute)

 	short_term (ccgains.reports.PaymentReport attribute)

 	
 	sort_bags() (ccgains.bags.BagQueue method)

 	spend() (ccgains.bags.Bag method)

 	spent_cost (ccgains.reports.PaymentReport attribute)

T

 	
 	to_csv_line() (ccgains.trades.Trade method)

 	to_data_frame() (ccgains.bags.BagQueue method)

 	(ccgains.trades.TradeHistory method)

 	to_html() (ccgains.trades.TradeHistory method)

 	
 	to_json() (ccgains.bags.BagQueue method)

 	(ccgains.reports.CapitalGainsReport method)

 	to_pay (ccgains.reports.PaymentReport attribute)

 	Trade (class in ccgains.trades)

 	TradeHistory (class in ccgains.trades)

U

 	
 	update_available_pairs() (ccgains.relations.CurrencyRelation method)

 	
 	update_ticker_names() (ccgains.trades.TradeHistory method)

W

 	
 	withdraw() (ccgains.bags.BagQueue method)

 nav.xhtml

 Table of Contents

 		
 Welcome to the ccGains documentation!

 		
 ccgains package

 		
 Module contents

 		
 ccgains.bags module

 		
 ccgains.historic_data module

 		
 ccgains.relations module

 		
 ccgains.trades module

 		
 ccgains.reports module

_static/file.png

_static/ajax-loader.gif

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

