
ccc Documentation
Release latest

Jun 25, 2021

Documentation

1 Introduction 3
1.1 Philosophy . 3
1.2 Warning . 3
1.3 Assumptions . 3

2 Installation 5
2.1 Source code . 5

3 Compilation 7
3.1 Compilation phases . 7
3.2 Output JSON Object . 8
3.3 Compilation options . 9

4 Command Line Interface 11
4.1 Usage . 11
4.2 Options . 11

5 Node.js module 13
5.1 Usage . 13

6 Smart Contract 15
6.1 ABI Interface . 15

i

ii

ccc Documentation, Release latest

CCC is an EVM compiler which tries to offer the minimal required features to write smart contracts in an old fashion
C style.

CCC is the name of the language as well.

Documentation 1

ccc Documentation, Release latest

2 Documentation

CHAPTER 1

Introduction

After exploring the available EVM compilers offered by the open source community, being not able to find one of
them capable to satisfy me, I decided to undertake this challenging project.

1.1 Philosophy

Thinking just a while to the EVM we all can agree that it is a really small environment, that’s why (in my opinion) an
EVM dedicated compiler should offer the less as possible features to comfortably write smart contracts while keeping
the generated opcode the more thin as possible.

1.2 Warning

I learned everithing I know about EVM reading from the internet or through reverse engineering. I have no way to say
if what I read is wrong or outdated, I can’t say if there are other ways to do what I discovered: do not trust me! If you
find something wrong, outdated, or false for any other reasons, please do not hesitate to report it on github.

1.3 Assumptions

In this documentation there are several assumptions as the following example.

Assumption

1 + 1 = 3

Assumptions can be read in two ways: decontextualized or in the context of CCC. If reading one of them you find it
wrong, please consider the previous Warning. Regardless of that, in the context of CCC they can be taken as the truth
due to the fact that CCC is written respecting them as the truth should be respected.

3

https://github.com/iccicci/ccc/issues

ccc Documentation, Release latest

4 Chapter 1. Introduction

CHAPTER 2

Installation

CCC is distributed through npm.

To install the Command Line Interface issue following command:

$ sudo npm install -g cccompiler

To install only the Node.js module to use it in your own build system, issue following command:

$ npm install -s cccompiler

2.1 Source code

Source repository is on github.

5

https://www.npmjs.com/package/cccompiler
https://github.com/iccicci/ccc

ccc Documentation, Release latest

6 Chapter 2. Installation

CHAPTER 3

Compilation

The compilation process takes in input only one file (many other files can be included through the #include pre-
pocessor directive) and gives in output a JSON Object (called Output JSON Object) containing all requested informa-
tion that can be provided. The entire process is composed by a set of phases, executed in a sequence and everyone
of which produces an output for each contract compiled. Starting phase can be eventually specified by Compilation
options. If during the execution of a phase an error is generated, the process stops at the end of that phase and no
output for that phase is provided (obviously no output for subsequent phases is provided neither).

3.1 Compilation phases

Here is the list of all phases, in the order they are executed. The input of the first executed phase is the content of the
file provided in input to the whole process, while for all subsequent phases the output of previously executed phase is
used as input.

3.1.1 Preprocess

Runs the CCC preprocessor. Both input format and output format are CCC.

3.1.2 Compile

Runs the CCC compiler. This phase produces two outputs: the abi and the assembly representation of the compiled
contract(s) which is eventually used as input for next phase. The expected input format is CCC.

3.1.3 Assemble

Runs the CCC assembler which provides the opcode representation of the contract(s). Both input format and output
format are assembly.

7

ccc Documentation, Release latest

3.1.4 Opcode

Translates the assembly in the opcodes: Basically it resolves the assembly labels in their realtive or absolute address.

3.1.5 Translate

Literally translates the opcodes in the hexadecimal representation of the bytecode of the contract(s), ready to be
deployed on blockchain.

3.2 Output JSON Object

This is a JSON Object with four keys. Follows an example.

{
"contracts": {

"FirstContract": {
"abi": [...],
"assembly": [...],
"bin": [...],
"preprocessed": [...],
"opcodes": [...]

},
...

},
"errors": [],
"messages": [],
"warnings": []

}

3.2.1 contracts

This is a JSON Object where the keys are the names of all compiled contracts and the values are the output of all phase
run during the compilation process.

3.2.2 errors

The array of all encoutered errors, eventually the empty array [].

3.2.3 messages

The array of all generated messages, eventually the empty array []. This is merely the merge of all errors and
warnings.

3.2.4 warnings

The array of all encoutered warnings, eventually the empty array [].

8 Chapter 3. Compilation

ccc Documentation, Release latest

3.3 Compilation options

Some options may conflict due to the fact some one of them specify the input format of the file or they define conflicting
starting and ending phase.

3.3.1 assemble

Boolean - If true specifies that input format is in assembly and starting phase is Assemble.

3.3.2 assembly

Boolean - If true includes the generated assembly in the output, specifies that input format is in CCC and starting
phase is Compile.

3.3.3 define

Object - Specifies a set of predefined #define macros. Each key is the name of the macro and relative value is the
value of the macro. The values must be of type String, eventually the empty string "".

3.3.4 opcode

Boolean - If true includes the generated opcode in the output.

3.3.5 preprocess

Boolean - If true includes the preprocessor result in the output, specifies that input format is in CCC.

3.3. Compilation options 9

ccc Documentation, Release latest

10 Chapter 3. Compilation

CHAPTER 4

Command Line Interface

CCC cli is simply a shell interface to the Node.js module. Please refer to Compilation to understand how the process
works.

4.1 Usage

ccc [options] file

4.2 Options

For more details about about options please refere to Compilation options.

4.2.1 -A –assembly

Includes the generated assembly in the output; assumes input format is in CCC.

4.2.2 -a –assemble

Assemble; assumes input format is in assembly.

4.2.3 -D<macro>[=<value>]

Defines <macro> eventually with its <value>. Can be used multiple times to define more macros.

11

ccc Documentation, Release latest

4.2.4 -h –help

Prints a quick reference help screen and exits.

4.2.5 -O –opcode

Includes the generated opcode in the output.

4.2.6 -o <filename>

The output <filename>. If omitted defaults stdout.

4.2.7 -p –preprocess

Includes the preprocessor result in the output; assumes input format is in CCC.

4.2.8 -v –version

Prints ccc version and exits.

12 Chapter 4. Command Line Interface

CHAPTER 5

Node.js module

5.1 Usage

var ccc = require('cccompiler');
var res = ccc(filename, options);

console.log(res.contracts.contractName.preprocessed);

Where filename is the name of the file to compile, options are described in Compilation options and return value
is Output JSON Object.

13

ccc Documentation, Release latest

14 Chapter 5. Node.js module

CHAPTER 6

Smart Contract

6.1 ABI Interface

For ABI specification please refer to Solidity ABI specification.

15

https://solidity.readthedocs.io/en/latest/abi-spec.html

	Introduction
	Philosophy
	Warning
	Assumptions

	Installation
	Source code

	Compilation
	Compilation phases
	Output JSON Object
	Compilation options

	Command Line Interface
	Usage
	Options

	Node.js module
	Usage

	Smart Contract
	ABI Interface

