

CC’s C - EVM compiler

CCC is an EVM compiler which tries to offer the minimal required features to write smart contracts
in an old fashion C style.

CCC is the name of the language as well.

Documentation

	Introduction
	Philosophy

	Warning

	Assumptions

	Installation
	Source code

	Compilation
	Compilation phases

	Output JSON Object

	Compilation options

	Command Line Interface
	Usage

	Options

	Node.js module
	Usage

	Smart Contract
	ABI Interface

Introduction

After exploring the available EVM compilers offered by the open source community, being not able
to find one of them capable to satisfy me, I decided to undertake this challenging project.

Philosophy

Thinking just a while to the EVM we all can agree that it is a really small environment, that’s why
(in my opinion) an EVM dedicated compiler should offer the less as possible features to comfortably
write smart contracts while keeping the generated opcode the more thin as possible.

Warning

I learned everithing I know about EVM reading from the internet or through reverse engineering. I
have no way to say if what I read is wrong or outdated, I can’t say if there are other ways to do what I
discovered: do not trust me! If you find something wrong, outdated, or false for any other reasons,
please do not hesitate to report it on github [https://github.com/iccicci/ccc/issues].

Assumptions

In this documentation there are several assumptions as the following example.

Assumption

1 + 1 = 3

Assumptions can be read in two ways: decontextualized or in the context of CCC. If reading one of
them you find it wrong, please consider the previous Warning. Regardless of that, in the context of
CCC they can be taken as the truth due to the fact that CCC is written respecting them as the
truth should be respected.

Installation

CCC is distributed through npm [https://www.npmjs.com/package/cccompiler].

To install the Command Line Interface issue following command:

$ sudo npm install -g cccompiler

To install only the Node.js module to use it in your own build system, issue following command:

$ npm install -s cccompiler

Source code

Source repository is on github [https://github.com/iccicci/ccc].

Compilation

The compilation process takes in input only one file (many other files can be included through the
#include prepocessor directive) and gives in output a JSON Object (called Output JSON Object)
containing all requested information that can be provided. The entire process is composed by a set
of phases, executed in a sequence and everyone of which produces an output for each contract
compiled. Starting phase can be eventually specified by Compilation options. If during the
execution of a phase an error is generated, the process stops at the end of that phase and
no output for that phase is provided (obviously no output for subsequent phases is provided
neither).

Compilation phases

Here is the list of all phases, in the order they are executed. The input of the first executed
phase is the content of the file provided in input to the whole process, while for all subsequent
phases the output of previously executed phase is used as input.

Preprocess

Runs the CCC preprocessor. Both input format and output format are CCC.

Compile

Runs the CCC compiler. This phase produces two outputs: the abi and the assembly
representation of the compiled contract(s) which is eventually used as input for next phase. The
expected input format is CCC.

Assemble

Runs the CCC assembler which provides the opcode representation of the contract(s). Both
input format and output format are assembly.

Opcode

Translates the assembly in the opcodes: Basically it resolves the assembly labels in
their realtive or absolute address.

Translate

Literally translates the opcodes in the hexadecimal representation of the bytecode of the
contract(s), ready to be deployed on blockchain.

Output JSON Object

This is a JSON Object with four keys. Follows an example.

{
 "contracts": {
 "FirstContract": {
 "abi": [...],
 "assembly": [...],
 "bin": [...],
 "preprocessed": [...],
 "opcodes": [...]
 },
 ...
 },
 "errors": [],
 "messages": [],
 "warnings": []
}

contracts

This is a JSON Object where the keys are the names of all compiled contracts and the values
are the output of all phase run during the compilation process.

errors

The array of all encoutered errors, eventually the empty array [].

messages

The array of all generated messages, eventually the empty array []. This is merely the merge
of all errors and warnings.

warnings

The array of all encoutered warnings, eventually the empty array [].

Compilation options

Some options may conflict due to the fact some one of them specify the input format of the file
or they define conflicting starting and ending phase.

assemble

Boolean - If true specifies that input format is in assembly and starting phase is
Assemble.

assembly

Boolean - If true includes the generated assembly in the output, specifies that input
format is in CCC and starting phase is Compile.

define

Object - Specifies a set of predefined #define macros. Each key is the name of the
macro and relative value is the value of the macro. The values must be of type
String, eventually the empty string "".

opcode

Boolean - If true includes the generated opcode in the output.

preprocess

Boolean - If true includes the preprocessor result in the output, specifies that input
format is in CCC.

Command Line Interface

CCC cli is simply a shell interface to the Node.js module. Please refer to
Compilation to understand how the process works.

Usage

ccc [options] file

Options

For more details about about options please refere to Compilation options.

-A –assembly

Includes the generated assembly in the output; assumes input format is in CCC.

-a –assemble

Assemble; assumes input format is in assembly.

-D<macro>[=<value>]

Defines <macro> eventually with its <value>. Can be used multiple times to define more
macros.

-h –help

Prints a quick reference help screen and exits.

-O –opcode

Includes the generated opcode in the output.

-o <filename>

The output <filename>. If omitted defaults stdout.

-p –preprocess

Includes the preprocessor result in the output; assumes input format is in CCC.

-v –version

Prints ccc version and exits.

Node.js module

Usage

var ccc = require('cccompiler');
var res = ccc(filename, options);

console.log(res.contracts.contractName.preprocessed);

Where filename is the name of the file to compile, options are described in
Compilation options and return value is Output JSON Object.

Smart Contract

ABI Interface

For ABI specification please refer to Solidity ABI specification [https://solidity.readthedocs.io/en/latest/abi-spec.html].

Index

 _static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 CC’s C - EVM compiler

 		
 Introduction

 		
 Philosophy

 		
 Warning

 		
 Assumptions

 		
 Installation

 		
 Source code

 		
 Compilation

 		
 Compilation phases

 		
 Preprocess

 		
 Compile

 		
 Assemble

 		
 Opcode

 		
 Translate

 		
 Output JSON Object

 		
 contracts

 		
 errors

 		
 messages

 		
 warnings

 		
 Compilation options

 		
 assemble

 		
 assembly

 		
 define

 		
 opcode

 		
 preprocess

 		
 Command Line Interface

 		
 Usage

 		
 Options

 		
 -A –assembly

 		
 -a –assemble

 		
 -D<macro>[=<value>]

 		
 -h –help

 		
 -O –opcode

 		
 -o <filename>

 		
 -p –preprocess

 		
 -v –version

 		
 Node.js module

 		
 Usage

 		
 Smart Contract

 		
 ABI Interface

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/up.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

