

Cassowary

A pure Python implementation of the Cassowary constraint-solving algorithm [http://www.cs.washington.edu/research/constraints/cassowary/].
Cassowary is the algorithm that forms the core of the OS X and iOS visual
layout mechanism.

Quickstart

Cassowary is compatible with both Python 2 or Python 3. To install Cassowary
in your virtualenv, run:

$ pip install cassowary

Then, in your Python code, you can create and solve constraint systems. See
the documentation for examples of what this looks like in
practice.

Documentation

	Solving constraint systems
	Variables

	Constraints

	Solvers

	Stay constraints

	Constraint strength

	Constraint weight

	Editing constraints

	Examples
	Quadrilaterals

	GUI layout

	Reference
	Variables

	Solvers

	Contributing to Cassowary
	Setting up your development environment

	Cassowary Roadmap

	Release History
	0.5.2 - New management (February 2020)

	0.5.1 - Version bump (August 17 2014)

	0.5.0 - Initial release (May 3 2014)

Community

Notice: Cassowary is no longer part of the BeeWare suite.

You can talk to the community through:

	Tweet Brodderick on Twitter: @teamskynet_ [https://twitter.com/teamskynet_]

Contributing

If you experience problems with Cassowary, log them on GitHub [https://github.com/brodderickrodriguez/cassowary/issues]. If you
want to contribute code, please fork the code [https://github.com/brodderickrodriguez/cassowary] and submit a pull request [https://github.com/brodderickrodriguez/cassowary/pulls].

Project Administration

This project was transferred to Brodderick Rodriguez in February 2020. He will continue to oversee its development from here on out.

Russell Keith-Magee is the original author of this work (2013 - 2019). A big thanks to him for his work! Check out Russell’s GitHub [https://github.com/freakboy3742].

Indices and tables

	Index

	Module Index

	Search Page

Solving constraint systems

Constraint solving systems are an algorithmic approach to solving Linear
Programming problems. A linear programming problem is a mathematical problem
where you have a set of non- negative, real valued variables (x[1], x[2],
... x[n]), and a series of linear constraints (i.e, no exponential terms) on
those variables. These constraints are expressed as a set of equations of the
form:

a[1]x[1] + ... + a[n]x[n] = b,

a[1]x[1] + ... + a[n]x[n] <= b, or

a[1]x[1] + ... + a[n]x[n] >= b,

Given these constraints, the problem is to find the values of x[i] that
minimize or maximize the value of an objective function:

c + d[1]x[1] + ... + d[n]x[n]

Cassowary is an algorithm designed to solve linear programming problems of
this type. Published in 1997, it now forms the basis for the UI layout tools
in OS X Lion, and iOS 6+ (the approach known as Auto Layout [https://developer.apple.com/library/ios/documentation/userexperience/conceptual/AutolayoutPG/Introduction/Introduction.html]). The Cassowary
algorithm (and this implementation of it) provides the tools to describe a set
of constraints, and then find an optimal solution for that set of constraints.

Variables

At the core of the constraint problem are the variables in the system.
In the formal mathematical system, these are the x[n] terms; in Python,
these are rendered as instances of the Variable class.

Each variable is named, and can accept a default value. To create a variable,
instantiate an instance of Variable:

from cassowary import Variable

Create a variable with a default value.
x1 = Variable('x1')

Create a variable with a specific value
x2 = Variable('x1', 42.0)

Any value provided for the variable is just a starting point. When constraints
are imposed, this value can and will change, subject to the requirements of
the constraints. However, providing an initial value may affect the search process;
if there’s an ambiguity in the constraints (i.e., there’s more than one
possible solution), the initial value provided to variables will affect the solution
on which the system converges.

Constraints

A constraint is a mathematical equality or inequality that defines the linear
programming system.

A constraint is declared by providing the Python expression that encompasses the
logic described by the constraint. The syntax looks essentially the same as the
raw mathematical expression:

from cassowary import Variable

Create a variable with a default value.
x1 = Variable('x1')
x2 = Variable('x2')
x3 = Variable('x4')

Define the constraint
constraint = x1 + 3 * x2 <= 4 * x3 + 2

In this example, constraint holds the definition for the constraint system.
Although the statement uses the Python comparison operator <=, the result is
not a boolean. The comparison operators <=, <, >=, >, and == have
been overridden for instances of Variable to enable you to
easily define constraints.

Solvers

The solver is the engine that resolves the linear constraints into a solution.
There are many approaches to this problem, and the development of algorithmic
approaches has been the subject of math and computer science research for over
70 years. Cassowary provides one implementation – a
SimplexSolver, implementing the Simplex algorithm defined
by Dantzig in the 1940s.

The solver takes no arguments during constructions; once constructed, you simply
add constraints to the system.

As a simple example, let’s solve the problem posed in Section 2 of the Badros
& Borning’s paper on Cassowary [http://www.cs.washington.edu/research/constraints/cassowary/cassowary-tr.pdf]. In this problem, we have a 1 dimensional
number line spanning from 0 to 100. There are three points on it (left, middle
and right), with the following constraints:

	The middle point must be halfway between the left and right point;

	The left point must be at least 10 to the left of the right point;

	All points must fall in the range 0-100.

This system can be defined in Python as follows:

from cassowary import SimplexSolver, Variable

solver = SimplexSolver()

left = Variable('left')
middle = Variable('middle')
right = Variable('right')

solver.add_constraint(middle == (left + right) / 2)
solver.add_constraint(right == left + 10)
solver.add_constraint(right <= 100)
solver.add_constraint(left >= 0)

There are an infinite number of possible solutions to this system; if we
interrogate the variables, you’ll see that the solver has provided one
possible solution:

>>> left.value
90.0
>>> middle.value
95.0
>>> right.value
100.0

Stay constraints

If we want a particular solution to our left/right/middle problem, we need to
fix a value somewhere. To do this, we add a Stay - a special constraint that
says that the value should not be altered.

For example, we might want to enforce the fact that the middle value should
stay at a value of 45. We construct the system as before, but add:

middle.value = 45.0
solver.add_stay(middle)

Now when we interrogate the solver, we’ll get values that reflect this fixed
point:

>>> left.value
40.0
>>> middle.value
45.0
>>> right.value
50.0

Constraint strength

Not all constraints are equal. Some are absolute requirements - for example, a
requirement that all values remain in a specific range. However, other
constraints may be suggestions, rather than hard requirements.

To accommodate this, Cassowary allows all constraints to have a strength.
Strength can be one of:

	REQUIRED

	STRONG

	MEDIUM

	WEAK

REQUIRED constraints must be satisfied; the remaining strengths will
be satisfied with declining priority.

To define a strength, provide the strength value as an argument when adding
the constraint (or stay):

from cassowary import SimplexSolver, Variable, STRONG, WEAK

solver = SimplexSolver()
x = Variable('x')

Define some non-required constraints
solver.add_constraint(x <= 100, strength=STRONG)
solver.add_stay(x, strength=WEAK)

Unless otherwise specified, all constraints are REQUIRED.

Constraint weight

If you have multiple constraints of the same strength, you may want to have a
tie-breaker between them. To do this, you can set a weight, in addition to
a strength:

from cassowary import SimplexSolver, Variable, STRONG

solver = SimplexSolver()
x = Variable('x')

Define some non-required constraints
solver.add_constraint(x <= 100, strength=STRONG, weight=10)
solver.add_constraint(x >= 50, strength=STRONG, weight=20)

Editing constraints

Any constraint can be removed from a system; just retain the reference provided
when you add the constraint:

from cassowary import SimplexSolver, Variable

solver = SimplexSolver()
x = Variable('x')

Define a constraint
constraint = solver.add_constraint(x <= 100)

Remove it again
solver.remove_constraint(constraint)

Once a constraint is removed, the system will be automatically re-evaluated,
with the possible side effect that the values in the system will change.

But what if you want to change a variable’s value without introducing a
new constraint? In this case, you can use an edit context.

Here’s an example of an edit context in practice:

from cassowary import SimplexSolver, Variable

solver = SimplexSolver()
x = Variable('x')

Add a stay to x - that is, don't change the value.
solver.add_stay(x)

Now, mark x as being editable...
solver.add_edit_variable(x)

... start and edit context...
with solver.edit():
 # ... and suggest a new value for the variable.

 solver.suggest_value(x, 42.0)

When the edit context exits, the system will re-evaluate itself, and the
variable will have the new value. However, the variable isn’t guaranteed
to have the value you suggested - in this case it will, but if your
constraint system has other constraints, they may affect the value of
the variable after the suggestion has been applied.

All variables in the system will be re-evaluated when you leave the edit
context; however, if you need to force a re-evaluation in the middle of an
edit context, you can do so by calling resolve().

Examples

The following examples demonstrate the use of Cassowary in practical
constraint-solving problems.

Quadrilaterals

The “Bounded Quadrilateral” demo is the online example [http://www.badros.com/greg/cassowary/js/quaddemo.html] provided for
Cassowary. The online example is implemented in JavaScript, but the
implementation doesn’t alter the way the Cassowary algorithm is used.

The Bounded quadrilateral problem starts with a bounded, two dimensional
canvas. We want to draw a quadrilateral on this plane, subject to a number of
constraints.

Firstly, we set up the solver system itself:

from cassowary import SimplexSolver, Variable
solver = SimplexSolver()

Then, we set up a convenience class for holding information about points
on a 2D plane:

class Point(object):
 def __init__(self, identifier, x, y):
 self.x = Variable('x' + identifier, x)
 self.y = Variable('y' + identifier, y)

 def __repr__(self):
 return u'(%s, %s)' % (self.x.value, self.y.value)

Now we can set up a set of points to describe the initial location of our
quadrilateral - a 190x190 square:

points = [
 Point('0', 10, 10),
 Point('1', 10, 200),
 Point('2', 200, 200),
 Point('3', 200, 10),

 Point('m0', 0, 0),
 Point('m1', 0, 0),
 Point('m2', 0, 0),
 Point('m3', 0, 0),
]
midpoints = points[4:]

Note that even though we’re drawing a quadrilateral, we have 8 points. We’re
tracking the position of the midpoints independent of the corners of our
quadrilateral. However, we don’t need to define the position of the midpoints.
The position of the midpoints will be set by defining constraints.

Next, we set up some stays. A stay is a constraint that says that a particular
variable shouldn’t be modified unless it needs to be - that it should “stay”
as is unless there is a reason not to. In this case, we’re going to set a stay
for each of the four corners - that is, don’t move the corners unless you have
to. These stays are defined as WEAK stays – so they’ll have a very low
priority in the constraint system. As a tie breaking mechanism, we’re also
going to set each stay to have a different weight - so the top left corner
(point 1) will be moved in preference to the bottom left corner (point 2), and
so on:

weight = 1.0
multiplier = 2.0
for point in points[:4]:
 solver.add_stay(point.x, strength=WEAK, weight=weight)
 solver.add_stay(point.y, strength=WEAK, weight=weight)
 weight = weight * multiplier

Now we can set up the constraints to define where the midpoints fall. By
definition, each midpoint must fall exactly halfway between two points
that form a line, and that’s exactly what we describe - an expression that
computes the position of the midpoint. This expression is used to construct a
Constraint, describing that the value of the midpoint must
equal the value of the expression. The Constraint is then
added to the solver system:

for start, end in [(0, 1), (1, 2), (2, 3), (3, 0)]:
 cle = (points[start].x + points[end].x) / 2
 cleq = midpoints[start].x == cle
 solver.add_constraint(cleq)

 cle = (points[start].y + points[end].y) / 2
 cleq = midpoints[start].y == cle
 solver.add_constraint(cleq)

When we added these constraints, we didn’t provide any arguments - that means
that they will be added as REQUIRED constraints.

Next, lets add some constraints to ensure that the left side of the quadrilateral
stays on the left, and the top stays on top:

solver.add_constraint(points[0].x + 20 <= points[2].x)
solver.add_constraint(points[0].x + 20 <= points[3].x)

solver.add_constraint(points[1].x + 20 <= points[2].x)
solver.add_constraint(points[1].x + 20 <= points[3].x)

solver.add_constraint(points[0].y + 20 <= points[1].y)
solver.add_constraint(points[0].y + 20 <= points[2].y)

solver.add_constraint(points[3].y + 20 <= points[1].y)
solver.add_constraint(points[3].y + 20 <= points[2].y)

Each of these constraints is posed as a Constraint. For
example, the first expression describes a point 20 pixels to the right of the
x coordinate of the top left point. This Constraint is
then added as a constraint on the x coordinate of the bottom right (point 2)
and top right (point 3) corners - the x coordinate of these points must be at
least 20 pixels greater than the x coordinate of the top left corner (point
0).

Lastly, we set the overall constraints – the constraints that limit how large
our 2D canvas is. We’ll constraint the canvas to be 500x500 pixels, and
require that all points fall on that canvas:

for point in points:
 solver.add_constraint(point.x >= 0)
 solver.add_constraint(point.y >= 0)

 solver.add_constraint(point.x <= 500)
 solver.add_constraint(point.y <= 500)

This gives us a fully formed constraint system. Now we can use it to answer
layout questions. The most obvious question – where are the midpoints?

>>> midpoints[0]
(10.0, 105.0)
>>> midpoints[1]
(105.0, 200.0)
>>> midpoints[2]
(200.0, 105.0)
>>> midpoints[3]
(105.0, 10.0)

You can see from this that the midpoints have been positioned exactly where
you’d expect - half way between the corners - without having to explicitly
specify their positions.

These relationships will be maintained if we then edit the position of the
corners. Lets move the position of the bottom right corner (point 2). We mark
the variables associated with that corner as being Edit variables:

solver.add_edit_var(points[2].x)
solver.add_edit_var(points[2].y)

Then, we start an edit, change the coordinates of the corner, and stop the edit:

with solver.edit():

 solver.suggest_value(points[2].x, 300)
 solver.suggest_value(points[2].y, 400)

As a result of this edit, the midpoints have automatically been updated:

>>> midpoints[0]
(10.0, 105.0)
>>> midpoints[1]
(155.0, 300.0)
>>> midpoints[2]
(250.0, 205.0)
>>> midpoints[3]
(105.0, 10.0)

If you want, you can now repeat the edit process for any of the points -
including the midpoints.

GUI layout

The most common usage (by deployment count) of the Cassowary algorithm is as
the Autolayout mechanism that underpins GUIs in OS X Lion and iOS6. Although
there’s lots of code required to make a full GUI toolkit work, the layout
problem is a relatively simple case of solving constraints regarding the size
and position of widgets in a window.

In this example, we’ll show a set of constraints used to determine the
placement of a pair of buttons in a GUI. To simplify the problem, we’ll only
worry about the X coordinate; expanding the implementation to include the Y
coordinate is a relatively simple exercise left for the reader.

When laying out a GUI, widgets have a width; however, widgets can also change
size. To accommodate this, a widget has two size constraints in each dimension:
a minimum size, and a preferred size. The minimum size is a REQUIRED
constraint that must be met; the preferred size is a STRONG constraint
that the solver should try to accommodate, but may break if necessary.

The GUI also needs to be concerned about the size of the window that is being
laid out. The size of the window can be handled in two ways:

	a REQUIRED constraint – i.e., this is the size of the window;
show me how to lay out the widgets; or

	a WEAK constraint – i.e., come up with a value for the window size that
accommodates all the other widget constraints. This is the interpretation used
to determine an initial window size.

As with the Quadrilateral demo, we start by creating the solver, and creating
a storage mechanism to hold details about buttons:

from cassowary import SimplexSolver, Variable

solver = SimplexSolver()

class Button(object):
 def __init__(self, identifier):
 self.left = Variable('left' + identifier, 0)
 self.width = Variable('width' + identifier, 0)

 def __repr__(self):
 return u'(x=%s, width=%s)' % (self.left.value, self.width.value)

We then define our two buttons, and the variables describing the size of the
window on which the buttons will be placed:

b1 = Button('b1')
b2 = Button('b2')
left_limit = Variable('left', 0)
right_limit = Variable('width', 0)

left_limit.value = 0
solver.add_stay(left_limit)
solver.add_stay(right_limit, WEAK)

The left limit is set as a REQUIRED constraint – the left border can’t
move from coordinate 0. However, the window can expand if necessary to
accommodate the widgets it contains, so the right limit is a WEAK
constraint.

Now we can define the constraints on the button layouts:

The two buttons are the same width
solver.add_constraint(b1.width == b2.width)

Button1 starts 50 from the left margin.
solver.add_constraint(b1.left == left_limit + 50)

Button2 ends 50 from the right margin
solver.add_constraint(left_limit + right_limit == b2.left + b2.width + 50)

Button2 starts at least 100 from the end of Button1. This is the
"elastic" constraint in the system that will absorb extra space
in the layout.
solver.add_constraint(b2.left == b1.left + b1.width + 100)

Button1 has a minimum width of 87
solver.add_constraint(b1.width >= 87)

Button1's preferred width is 87
solver.add_constraint(b1.width == 87, strength=STRONG)

Button2's minimum width is 113
solver.add_constraint(b2.width >= 113)

Button2's preferred width is 113
solver.add_constraint(b2.width == 113, strength=STRONG)

Since we haven’t imposed a hard constraint on the right hand side, the
constraint system will give us the smallest window that will satisfy these
constraints:

>>> b1
(x=50.0, width=113.0)
>>> b2
(x=263.0, width=113.0)

>>> right_limit.value
426.0

That is, the smallest window that can accommodate these constraints is 426
pixels wide. However, if the user makes the window larger, we can still lay
out widgets. We impose a new REQUIRED constraint with the size of the
window:

right_limit.value = 500
right_limit_stay = solver.add_constraint(right_limit, strength=REQUIRED)

>>> b1
(x=50.0, width=113.0)
>>> b2
(x=337.0, width=113.0)

>>> right_limit.value
500.0

That is - if the window size is 500 pixels, the layout will compensate by
putting button2 a little further to the right. The WEAK stay on the
right limit that we established at the start is ignored in preference for the
REQUIRED stay.

If the window is then resized again, we can remove the 500 pixel limit, and
impose a new limit:

solver.remove_constraint(right_limit_stay)

right_limit.value = 475
right_limit_stay = solver.add_constraint(right_limit, strength=REQUIRED)
solver.add_constraint(right_limit_stay)

>>> b1
(x=50.0, width=113.0)
>>> b2
(x=312.0, width=113.0)

>>> right_limit.value
475.0

Again, button2 has been moved, this time to the left, compensating for the
space that was lost by the contracting window size.

Reference

Variables

	
class cassowary.Variable

	

	
Variable.value

	The current value of the variable. If the variable is part of a constraint,
the value will be updated as constraints are applied and changed.

	
Variable.__init__(name, value=0.0)

	Define a new variable. Value is optional, but will affect the constraint
solving process if multiple solutions are possible.

Solvers

	
class cassowary.SimplexSolver

	A class for collecting constraints into a system and solving them.

	
SimplexSolver.add_constraint(constraint, strength=REQUIRED, weight=1.0)

	Add a new constraint to the solver system. A constraint is a mathematical
expression involving 1 or more variables, and an equality or inequality.

strength is optional; by default, all constraints are added as
REQUIRED constraints.

weight is optional; by default, all constraints have an equal weight
of 1.0.

Returns the constraint that was added.

	
SimplexSolver.remove_constraint(var)

	Remove a new constraint to the solver system.

Returns the constraint that was added.

	
SimplexSolver.add_stay(var, strength=REQUIRED, weight=1.0)

	Add a stay constraint to the solver system for the current value of
the variable var.

strength is optional; by default, all constraints are added as
REQUIRED constraints.

weight is optional; by default, all constraints have an equal weight
of 1.0.

Returns the constraint that was added.

	
SimplexSolver.add_edit_var(var)

	Mark a variable as being an edit variable. This allows you to
suggest values for the variable once you start an edit context.

	
SimplexSolver.remove_edit_var(var)

	Remove the variable from the list of edit variables.

	
SimplexSolver.edit()

	Returns a context manager that can be used to manage the edit process.

	
SimplexSolver.suggest_value(var, value)

	Suggest a new value for a edit variable.

This method can only be invoked while inside an edit context.
var must be a variable that has been identified as an edit
variable in the current edit context.

	
SimplexSolver.resolve()

	Force a solver system to resolve any ambiguities. Useful when
introducing edit constraints.

Contributing to Cassowary

If you experience problems with Cassowary, log them on GitHub [https://github.com/brodderickrodriguez/cassowary/issues]. If you want
to contribute code, please fork the code [https://github.com/brodderickrodriguez/cassowary] and submit a pull request [https://github.com/brodderickrodriguez/cassowary/pulls].

Setting up your development environment

The recommended way of setting up your development environment for Cassowary
is to install a virtual environment, install the required dependencies and
start coding. Assuming that you are using virtualenvwrapper, you only have
to run:

$ git clone https://github.com/brodderickrodriguez/cassowary.git
$ cd cassowary
$ mkvirtualenv cassowary

Cassowary uses unittest (or unittest2 for Python < 2.7) for its own test
suite as well as additional helper modules for testing. If you are running a
Python version < 2.7 you will also need to pip install unittest2.

Now you are ready to start hacking! Have fun!

Cassowary Roadmap

Cassowary is a port to Python of existing implementations of the Cassowary
algorithm. To that extent, it is “feature complete”.

However, the test suite for the original implementation is not especially
comprehensive. Contributions of additional tests (and any bug fixes revealed
by those tests) are most welcome.

Documentation improvements are also most welcome.

Release History

0.5.2 - New management (February 2020)

Updated authorship and copyright.

0.5.1 - Version bump (August 17 2014)

0.5.0 - Initial release (May 3 2014)

Initial port of the Cassowary codebase.

 Python Module Index

 c

 		 	

 		
 c	

 	
 	
 cassowary	

Index

 _
 | A
 | C
 | E
 | R
 | S
 | V

_

 	
 	__init__() (cassowary.Variable method)

A

 	
 	add_constraint() (cassowary.SimplexSolver method)

 	
 	add_edit_var() (cassowary.SimplexSolver method)

 	add_stay() (cassowary.SimplexSolver method)

C

 	
 	cassowary (module)

E

 	
 	edit() (cassowary.SimplexSolver method)

R

 	
 	remove_constraint() (cassowary.SimplexSolver method)

 	
 	remove_edit_var() (cassowary.SimplexSolver method)

 	resolve() (cassowary.SimplexSolver method)

S

 	
 	SimplexSolver (class in cassowary)

 	
 	suggest_value() (cassowary.SimplexSolver method)

V

 	
 	value (cassowary.Variable attribute)

 	
 	Variable (class in cassowary)

Release History

0.5.2 - New management (February 2020)

Updated authorship and copyright.

0.5.1 - Version bump (August 17 2014)

0.5.0 - Initial release (May 3 2014)

Initial port of the Cassowary codebase.

 _static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 Cassowary

 		
 Solving constraint systems

 		
 Variables

 		
 Constraints

 		
 Solvers

 		
 Stay constraints

 		
 Constraint strength

 		
 Constraint weight

 		
 Editing constraints

 		
 Examples

 		
 Quadrilaterals

 		
 GUI layout

 		
 Reference

 		
 Variables

 		
 Solvers

 		
 Contributing to Cassowary

 		
 Setting up your development environment

 		
 Cassowary Roadmap

 		
 Release History

 		
 0.5.2 - New management (February 2020)

 		
 0.5.1 - Version bump (August 17 2014)

 		
 0.5.0 - Initial release (May 3 2014)

_static/ajax-loader.gif

