

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Command Completion

Shell command completion is provided by the script at
/misc/completion/ipfs-completion.bash.

Installation

The simplest way to see it working is to run
source misc/completion/ipfs-completion.bash straight from your shell. This
is only temporary and to fully enable it, you'll have to follow one of the steps
below.

Bash on Linux

For bash, completion can be enabled in a couple of ways. One is to copy the
completion script to the directory ~/.ipfs/ and then in the file
~/.bash_completion add

source ~/.ipfs/ipfs-completion.bash

It will automatically be loaded the next time bash is loaded.
To enable ipfs command completion globally on your system you may also
copy the completion script to /etc/bash_completion.d/.

Additional References

	https://www.debian-administration.org/article/316/An_introduction_to_bash_completion_part_1

The go-ipfs config file

The go-ipfs config file is a json document. It is read once at node instantiation,
either for an offline command, or when starting the daemon. Commands that execute
on a running daemon do not read the config file at runtime.

Table of Contents

	Addresses

	API

	Bootstrap

	Datastore

	Discovery

	Gateway

	Identity

	Ipns

	Mounts

	Reprovider

	Swarm

Addresses

Contains information about various listener addresses to be used by this node.

	API
Multiaddr describing the address to serve the local HTTP API on.

Default: /ip4/127.0.0.1/tcp/4001

	Gateway
Multiaddr describing the address to serve the local gateway on.

Default: /ip4/127.0.0.1/tcp/8080

	Swarm
Array of multiaddrs describing which addresses to listen on for p2p swarm connections.

Default:

[
 "/ip4/0.0.0.0/tcp/4001",
 "/ip6/::/tcp/4001"
]

API

Contains information used by the API gateway.

	HTTPHeaders
Map of HTTP headers to set on responses from the API HTTP server.

Example:

{
 "Foo": ["bar"]
}

Default: null

Bootstrap

Bootstrap is an array of multiaddrs of trusted nodes to connect to in order to
initiate a connection to the network.

Default: The ipfs.io bootstrap nodes

Datastore

Contains information related to the construction and operation of the on-disk
storage system.

	StorageMax
An upper limit on the total size of the ipfs repository's datastore. Writes to
the datastore will begin to fail once this limit is reached.

Default: 10GB

	StorageGCWatermark
The percentage of the StorageMax value at which a garbage collection will be
triggered automatically if the daemon was run with automatic gc enabled (that
option defaults to false currently).

Default: 90

	GCPeriod
A time duration specifying how frequently to run a garbage collection. Only used
if automatic gc is enabled.

Default: 1h

	HashOnRead
A boolean value. If set to true, all block reads from disk will be hashed and
verified. This will cause increased CPU utilization.

	BloomFilterSize
A number representing the size in bytes of the blockstore's bloom filter. A
value of zero represents the feature being disabled.

Default: 0

	Spec
Spec defines the structure of the ipfs datastore. It is a composable structure, where each datastore is represented by a json object. Datastores can wrap other datastores to provide extra functionality (eg metrics, logging, or caching).

This can be changed manually, however, if you make any changes that require a different on-disk structure, you will need to run the ipfs-ds-convert tool [https://github.com/ipfs/ipfs-ds-convert] to migrate data into the new structures.

For more information on possible values for this configuration option, see docs/datastores.md

Default:

{
 "mounts": [
 {
 "child": {
 "path": "blocks",
 "shardFunc": "/repo/flatfs/shard/v1/next-to-last/2",
 "sync": true,
 "type": "flatfs"
 },
 "mountpoint": "/blocks",
 "prefix": "flatfs.datastore",
 "type": "measure"
 },
 {
 "child": {
 "compression": "none",
 "path": "datastore",
 "type": "levelds"
 },
 "mountpoint": "/",
 "prefix": "leveldb.datastore",
 "type": "measure"
 }
],
 "type": "mount"
}

Discovery

Contains options for configuring ipfs node discovery mechanisms.

	MDNS
Options for multicast dns peer discovery.

	Enabled
A boolean value for whether or not mdns should be active.

Default: true

	Interval
A number of seconds to wait between discovery checks.

Gateway

Options for the HTTP gateway.

	HTTPHeaders
Headers to set on gateway responses.

Default:

{
 "Access-Control-Allow-Headers": [
 "X-Requested-With"
],
 "Access-Control-Allow-Methods": [
 "GET"
],
 "Access-Control-Allow-Origin": [
 "*"
]
}

	RootRedirect
A url to redirect requests for / to.

Default: ""

	Writeable
A boolean to configure whether the gateway is writeable or not.

Default: false

	PathPrefixes
TODO

Default: []

Identity

	PeerID
The unique PKI identity label for this configs peer. Set on init and never read,
its merely here for convenience. Ipfs will always generate the peerID from its
keypair at runtime.

	PrivKey
The base64 encoded protobuf describing (and containing) the nodes private key.

Ipns

	RepublishPeriod
A time duration specifying how frequently to republish ipns records to ensure
they stay fresh on the network. If unset, we default to 12 hours.

	RecordLifetime
A time duration specifying the value to set on ipns records for their validity
lifetime.
If unset, we default to 24 hours.

	ResolveCacheSize
The number of entries to store in an LRU cache of resolved ipns entries. Entries
will be kept cached until their lifetime is expired.

Default: 128

Mounts

FUSE mount point configuration options.

	IPFS
Mountpoint for /ipfs/.

	IPNS
Mountpoint for /ipns/.

	FuseAllowOther
Sets the FUSE allow other option on the mountpoint.

Reprovider

	Interval
Sets the time between rounds of reproviding local content to the routing
system. If unset, it defaults to 12 hours. If set to the value "0" it will
disable content reproviding.

Note: disabling content reproviding will result in other nodes on the network
not being able to discover that you have the objects that you have. If you want
to have this disabled and keep the network aware of what you have, you must
manually announce your content periodically.

	Strategy
Tells reprovider what should be announced. Valid strategies are:

	"all" (default) - announce all stored data

	"pinned" - only announce pinned data

	"roots" - only announce directly pinned keys and root keys of recursive pins

Swarm

Options for configuring the swarm.

	AddrFilters
An array of address filters (multiaddr netmasks) to filter dials to.
See this issue [https://github.com/ipfs/go-ipfs/issues/1226#issuecomment-120494604] for more
information.

	DisableBandwidthMetrics
A boolean value that when set to true, will cause ipfs to not keep track of
bandwidth metrics. Disabling bandwidth metrics can lead to a slight performance
improvement, as well as a reduction in memory usage.

	DisableNatPortMap
Disable NAT discovery.

	DisableRelay
Disables the p2p-circuit relay transport.

	EnableRelayHop
Enables HOP relay for the node. If this is enabled, the node will act as
an intermediate (Hop Relay) node in relay circuits for connected peers.

ConnMgr

Connection manager configuration.

	Type
Sets the type of connection manager to use, options are: "none" and "basic".

	LowWater
LowWater is the minimum number of connections to maintain.

	HighWater
HighWater is the number of connections that, when exceeded, will trigger a connection GC operation.

	GracePeriod
GracePeriod is a time duration that new connections are immune from being closed by the connection manager.

Datastore Configuration Options

This document describes the different possible values for the Datastore.Spec
field in the ipfs configuration file.

flatfs

Stores each key value pair as a file on the filesystem.

The shardFunc is prefixed with /repo/flatfs/shard/v1 then followed by a descriptor of the sharding strategy. Some example values are:

	/repo/flatfs/shard/v1/next-to-last/2

	Shards on the two next to last characters of the key

	/repo/flatfs/shard/v1/prefix/2

	Shards based on the two character prefix of the key

{
 "type": "flatfs",
 "path": "<relative path within repo for flatfs root>",
 "shardFunc": "<a descriptor of the sharding scheme>",
 "sync": true|false
}

NOTE: flatfs should only be used as a block store (mounted at /blocks) as the
current implementation is not complete.

levelds

Uses a leveldb database to store key value pairs.

{
 "type": "levelds",
 "path": "<location of db inside repo>",
 "compression": "none" | "snappy",
}

badgerds

Uses badger [https://github.com/dgraph-io/badger] as a key value store.

{
 "type": "badgerds",
 "path": "<location of badger inside repo",
 "syncWrites": true|false
}

mount

Allows specified datastores to handle keys prefixed with a given path.
The mountpoints are added as keys within the child datastore definitions.

{
 "type": "mount",
 "mounts": [
 {
 // Insert other datastore definition here, but add the following key:
 "mountpoint": "/path/to/handle"
 },
 {
 // Insert other datastore definition here, but add the following key:
 "mountpoint": "/path/to/handle"
 },
]
}

measure

This datastore is a wrapper that adds metrics tracking to any datastore.

{
 "type": "measure",
 "prefix": "sometag.datastore",
 "child": { datastore being wrapped }
}

General performance debugging guidelines

This is a document for helping debug go-ipfs. Please add to it if you can!

Table of Contents

	Beginning

	Analysing the stack dump

	Analyzing the CPU Profile

	Other

Beginning

When you see ipfs doing something (using lots of CPU, memory, or otherwise
being weird), the first thing you want to do is gather all the relevant
profiling information.

	goroutine dump

	curl localhost:5001/debug/pprof/goroutine\?debug=2 > ipfs.stacks

	30 second cpu profile

	curl localhost:5001/debug/pprof/profile > ipfs.cpuprof

	heap trace dump

	curl localhost:5001/debug/pprof/heap > ipfs.heap

	system information

	ipfs diag sys > ipfs.sysinfo

Bundle all that up and include a copy of the ipfs binary that you are running
(having the exact same binary is important, it contains debug info).

You can investigate yourself if you feel intrepid:

Analysing the stack dump

The first thing to look for is hung goroutines -- any goroutine thats been stuck
for over a minute will note that in the trace. It looks something like:

goroutine 2306090 [semacquire, 458 minutes]:
sync.runtime_Semacquire(0xc8222fd3e4)
 /home/whyrusleeping/go/src/runtime/sema.go:47 +0x26
sync.(*Mutex).Lock(0xc8222fd3e0)
 /home/whyrusleeping/go/src/sync/mutex.go:83 +0x1c4
gx/ipfs/QmedFDs1WHcv3bcknfo64dw4mT1112yptW1H65Y2Wc7KTV/yamux.(*Session).Close(0xc8222fd340, 0x0, 0x0)
 /home/whyrusleeping/gopkg/src/gx/ipfs/QmedFDs1WHcv3bcknfo64dw4mT1112yptW1H65Y2Wc7KTV/yamux/session.go:205 +0x55
gx/ipfs/QmWSJzRkCMJFHYUQZxKwPX8WA7XipaPtfiwMPARP51ymfn/go-stream-muxer/yamux.(*conn).Close(0xc8222fd340, 0x0, 0x0)
 /home/whyrusleeping/gopkg/src/gx/ipfs/QmWSJzRkCMJFHYUQZxKwPX8WA7XipaPtfiwMPARP51ymfn/go-stream-muxer/yamux/yamux.go:39 +0x2d
gx/ipfs/QmZK81vcgMhpb2t7GNbozk7qzt6Rj4zFqitpvsWT9mduW8/go-peerstream.(*Conn).Close(0xc8257a2000, 0x0, 0x0)
 /home/whyrusleeping/gopkg/src/gx/ipfs/QmZK81vcgMhpb2t7GNbozk7qzt6Rj4zFqitpvsWT9mduW8/go-peerstream/conn.go:156 +0x1f2
created by gx/ipfs/QmZK81vcgMhpb2t7GNbozk7qzt6Rj4zFqitpvsWT9mduW8/go-peerstream.(*Conn).GoClose
 /home/whyrusleeping/gopkg/src/gx/ipfs/QmZK81vcgMhpb2t7GNbozk7qzt6Rj4zFqitpvsWT9mduW8/go-peerstream/conn.go:131 +0xab

At the top, you can see that this goroutine (number 2306090) has been waiting
to acquire a semaphore for 458 minutes. That seems bad. Looking at the rest of
the trace, we see the exact line it's waiting on is line 47 of runtime/sema.go.
That's not particularly helpful, so we move on. Next, we see that call was made
by line 205 of yamux/session.go in the Close method of yamux.Session. This
one appears to be the issue.

Given that information, look for another goroutine that might be
holding the semaphore in question in the rest of the stack dump.
(If you need help doing this, ping and we'll stub this out.)

There are a few different reasons that goroutines can be hung:

	semacquire means we're waiting to take a lock or semaphore.

	select means that the goroutine is hanging in a select statement and none of
the cases are yielding anything.

	chan receive and chan send are waiting for a channel to be received from
or sent on, respectively.

	IO wait generally means that we are waiting on a socket to read or write
data, although it can mean we are waiting on a very slow filesystem.

If you see any of those tags without a , X minutes suffix, that generally means there isn't a problem -- you just caught
that goroutine in the middle of a short wait for something. If the wait time is
over a few minutes, that either means that goroutine doesn't do much, or
something is pretty wrong.

Analyzing the CPU Profile

The go team wrote an excellent article on profiling go
programs [http://blog.golang.org/profiling-go-programs]. If you've already
gathered the above information, you can skip down to where they start talking
about go tool pprof. My go-to method of analyzing these is to run the web
command, which generates an SVG dotgraph and opens it in your browser. This is
the quickest way to easily point out where the hot spots in the code are.

Other

If you have any questions, or want us to analyze some weird go-ipfs behaviour,
just let us know, and be sure to include all the profiling information
mentioned at the top.

Experimental features of go-ipfs

This document contains a list of experimental features in go-ipfs.
These features, commands, and APIs aren't mature, and you shouldn't rely on them.
Once they reach maturity, there's going to be mention in the changelog and
release posts. If they don't reach maturity, the same applies, and their code is
removed.

Subscribe to https://github.com/ipfs/go-ipfs/issues/3397 to get updates.

When you add a new experimental feature to go-ipfs, or change an experimental
feature, you MUST please make a PR updating this document, and link the PR in
the above issue.

	ipfs pubsub

	Client mode DHT routing

	go-multiplex stream muxer

	Raw leaves for unixfs files

	ipfs filestore

	Private Networks

	ipfs p2p

	Circuit Relay

ipfs pubsub

State

experimental, default-disabled.

In Version

0.4.5

How to enable

run your daemon with the --enable-pubsub-experiment flag. Then use the
ipfs pubsub commands.

Road to being a real feature

	[] Needs more people to use and report on how well it works

	[] Needs authenticated modes to be implemented

	[] needs performance analyses to be done

Client mode DHT routing

Allows the dht to be run in a mode that doesnt serve requests to the network,
saving bandwidth.

State

experimental.

In Version

0.4.5

How to enable

run your daemon with the --routing=dhtclient flag.

Road to being a real feature

	[] Needs more people to use and report on how well it works.

	[] Needs analysis of effect it has on the network as a whole.

go-multiplex stream muxer

Adds support for using the go-multiplex stream muxer alongside (or instead of)
yamux and spdy. This multiplexer is far simpler, and uses less memory and
bandwidth than the others, but is lacking on congestion control and backpressure
logic. It is available to try out and experiment with.

State

Experimental

In Version

0.4.5

How to enable

run your daemon with --enable-mplex-experiment

To make it the default stream muxer, set the environment variable
LIBP2P_MUX_PREFS as follows:

export LIBP2P_MUX_PREFS="/mplex/6.7.0 /yamux/1.0.0 /spdy/3.1.0"

To check which stream muxer is being used between any two given peers, check the
json output of the ipfs swarm peers command, you'll see something like this:

$ ipfs swarm peers -v --enc=json | jq .
{
 "Peers": [
 {
 "Addr": "/ip4/104.131.131.82/tcp/4001",
 "Peer": "QmaCpDMGvV2BGHeYERUEnRQAwe3N8SzbUtfsmvsqQLuvuJ",
 "Latency": "46.032624ms",
 "Muxer": "*peerstream_multiplex.conn",
 "Streams": [
 {
 "Protocol": "/ipfs/bitswap/1.1.0"
 },
 {
 "Protocol": "/ipfs/kad/1.0.0"
 },
 {
 "Protocol": "/ipfs/kad/1.0.0"
 }
]
 },
 {
...

Road to being a real feature

	[] Significant real world testing and performance metrics across a wide
variety of workloads showing that it works well.

Raw Leaves for unixfs files

Allows files to be added with no formatting in the leaf nodes of the graph.

State

experimental.

In Version

master, 0.4.5

How to enable

Use --raw-leaves flag when calling ipfs add.

Road to being a real feature

	[] Needs more people to use and report on how well it works.

ipfs filestore

Allows files to be added without duplicating the space they take up on disk.

State

experimental.

In Version

master, 0.4.7

How to enable

Modify your ipfs config:

ipfs config --json Experimental.FilestoreEnabled true

And then pass the --nocopy flag when running ipfs add

Road to being a real feature

	[] Needs more people to use and report on how well it works.

	[] Need to address error states and failure conditions

	[] Need to write docs on usage, advantages, disadvantages

	[] Need to merge utility commands to aid in maintenance and repair of filestore

Private Networks

Allows ipfs to only connect to other peers who have a shared secret key.

State

Experimental

In Version

master, 0.4.7

How to enable

Generate a pre-shared-key using ipfs-swarm-key-gen [https://github.com/Kubuxu/go-ipfs-swarm-key-gen]):

go get github.com/Kubuxu/go-ipfs-swarm-key-gen/ipfs-swarm-key-gen
ipfs-swarm-key-gen > ~/.ipfs/swarm.key

To join a given private network, get the key file from someone in the network
and save it to ~/.ipfs/swarm.key (If you are using a custom $IPFS_PATH, put
it in there instead).

When using this feature, you will not be able to connect to the default bootstrap
nodes (Since we arent part of your private network) so you will need to set up
your own bootstrap nodes.

First, to prevent your node from even trying to connect to the default bootstrap nodes, run:

ipfs bootstrap rm --all

Then add your own bootstrap peers with:

ipfs bootstrap add <multiaddr>

For example:

ipfs bootstrap add /ip4/104.236.76.40/tcp/4001/ipfs/QmSoLV4Bbm51jM9C4gDYZQ9Cy3U6aXMJDAbzgu2fzaDs64

Bootstrap nodes are no different from all other nodes in the network apart from
the function they serve.

To be extra cautious, You can also set the LIBP2P_FORCE_PNET environment
variable to 1 to force the usage of private networks. If no private network is
configured, the daemon will fail to start.

Road to being a real feature

	[] Needs more people to use and report on how well it works

	[] More documentation

ipfs p2p

Allows to tunnel TCP connections through Libp2p sterams

State

Experimental

In Version

master, 0.4.10

How to enable

P2P command needs to be enabled in config

ipfs config --json Experimental.Libp2pStreamMounting true

How to use

Basic usage:

	Open a listener on one node (node A)
ipfs p2p listener open p2p-test /ip4/127.0.0.1/tcp/10101

	Where /ip4/127.0.0.1/tcp/10101 put address of application you want to pass
p2p connections to

	On the other node, connect to the listener on node A
ipfs p2p stream dial $NODE_A_PEERID p2p-test /ip4/127.0.0.1/tcp/10102

	Node B is now listening for a connection on TCP at 127.0.0.1:10102, connect
your application there to complete the connection

Road to being a real feature

	[] Needs more people to use and report on how well it works / fits use cases

	[] More documentation

	[] Support other protocols

Circuit Relay

Allows peers to connect through an intermediate relay node when there
is no direct connectivity.

State

Experimental

In Version

master, 0.4.11

How to enable

The relay transport is enabled by default, which allows peers to dial through
relay and listens for incoming relay connections. The transport can be disabled
by setting Swarm.DisableRelay = true in the configuration.

By default, peers don't act as intermediate nodes (relays). This can be enabled
by setting Swarm.EnableRelayHop = true in the configuration. Note that the
option needs to be set before online services are started to have an effect; an
already online node would have to be restarted.

Basic Usage:

In order to connect peers QmA and QmB through a relay node QmRelay:

	Both peers should connect to the relay:
ipfs swarm connect /transport/address/ipfs/QmRelay

	Peer QmA can then connect to peer QmB using the relay:
ipfs swarm connect /ipfs/QmRelay/p2p-cricuit/ipfs/QmB

Peers can also connect with an unspecific relay address, which will
try to dial through known relays:
ipfs swarm connect /p2p-circuit/ipfs/QmB

Peers can see their (unspecific) relay address in the output of
ipfs swarm addrs listen

Road to being a real feature

	[] Needs more people to use it and report on how well it works.

	[] Advertise relay addresses to the DHT for NATed or otherwise unreachable
peers.

	[] Active relay discovery for specific relay address advertisement. We would
like advertised relay addresses to designate specific relays for efficient
dialing.

	[] Dialing priorities for relay addresses; arguably, relay addresses should
have lower priority than direct dials.

Plugins

In Version

0.4.11

State

Experimental

Plugins allow to add functionality without the need to recompile the daemon.

Basic Usage:

See Plugin docs

Road to being a real feature

	[] Better support for platforms other than Linux

	[] More plugins and plugin types

	[] Feedback on stability

Badger datastore

In Version

0.4.11

Badger-ds is new datastore implementation based on
https://github.com/dgraph-io/badger

Basic Usage

$ ipfs init --profile=badgerds

or

[BACKUP ~/.ipfs]
$ ipfs config profile apply badgerds
$ ipfs-ds-convert convert

Road to being a real feature

	[] Needs more testing

	[] Make sure there are no unknown major problems

FUSE

go-ipfs makes it possible to mount /ipfs and /ipns namespaces in your OS,
allowing arbitrary apps access to IPFS.

Install FUSE

You will need to install and configure fuse before you can mount IPFS

Linux

Note: while this guide should work for most distributions, you may need to refer
to your distribution manual to get things working.

Install fuse with your favorite package manager:

sudo apt-get install fuse

Add the user which will be running IPFS daemon to the fuse group:

sudo usermod -a -G fuse <username>

Restart user session, if active, for the change to apply, either by restarting
ssh connection or by re-logging to the system.

Mac OSX -- OSXFUSE

It has been discovered that versions of osxfuse prior to 2.7.0 will cause a
kernel panic. For everyone's sake, please upgrade (latest at time of writing is
2.7.4). The installer can be found at https://osxfuse.github.io/. There is
also a homebrew formula (brew install osxfuse) but users report best results
installing from the official OSXFUSE installer package.

Note that ipfs attempts an automatic version check on osxfuse to prevent you
from shooting yourself in the foot if you have pre 2.7.0. Since checking the
OSXFUSE version [is more complicated than it should be], running ipfs mount
may require you to install another binary:

go get github.com/jbenet/go-fuse-version/fuse-version

If you run into any problems installing FUSE or mounting IPFS, hop on IRC and
speak with us, or if you figure something new out, please add to this document!

Prepare mountpoints

By default ipfs uses /ipfs and /ipns directories for mounting, this can be
changed in config. You will have to create the /ipfs and /ipns directories
explicitly. Note that modifying root requires sudo permissions.

make the directories
sudo mkdir /ipfs
sudo mkdir /ipns

chown them so ipfs can use them without root permissions
sudo chown <username> /ipfs
sudo chown <username> /ipns

Depending on whether you are using OSX or Linux, follow the proceeding instructions.

Mounting IPFS

ipfs daemon --mount

If you wish to allow other users to use the mount points, edit /etc/fuse.conf
to enable non-root users, i.e.:

/etc/fuse.conf - Configuration file for Filesystem in Userspace (FUSE)

Set the maximum number of FUSE mounts allowed to non-root users.
The default is 1000.
#mount_max = 1000

Allow non-root users to specify the allow_other or allow_root mount options.
user_allow_other

Next set Mounts.FuseAllowOther config option to true:

ipfs config --json Mounts.FuseAllowOther true
ipfs daemon --mount

Troubleshooting

Permission denied or fusermount: user has no write access to mountpoint error in Linux

Verify that the config file can be read by your user:

sudo ls -l /etc/fuse.conf
-rw-r----- 1 root fuse 216 Jan 2 2013 /etc/fuse.conf

In most distributions group named fuse is be created during fuse installation.
You can check this with:

sudo grep -q fuse /etc/group && echo fuse_group_present || echo fuse_group_missing

If the group is present, just add your regular user to the fuse group:

sudo usermod -G fuse -a <username>

If the group didn't exist, create fuse group (add your regular user to it) and
set necessary permissions, for example:

sudo chgrp fuse /etc/fuse.conf
sudo chmod g+r /etc/fuse.conf

Note that the use of fuse group is optional and may depend on your operating
system. It is okay to use a different group as long as proper permissions are
set for user running ipfs mount command.

Mount command crashes and mountpoint gets stuck

sudo umount /ipfs
sudo umount /ipns

If you manage to mount on other systems (or followed an alternative path to one
above), please contribute to these docs :D

How to file a GitHub Issue

We use GitHub Issues to log all of our todos and tasks. Here is
a good guide [https://guides.github.com/features/issues/] for them if you are
unfamiliar.

When logging an issue with go-ipfs, it would be useful if you specified the
below information, if possible. This will help us triage the issues faster.
Please title your issues with the type. For instance:

	"bug: Cannot add file with ipfs add"

	"question: How do I use ipfs block <hash>?"

Putting the command in backticks helps us parse the natural language description,
and is generally suggested.

This is a living guide. If you see anything that should be here and isn't, or
have ideas on improvement, please open a "meta" issue.

Type

	"bug": If what you are filing is a bug.

	"meta": If it is something about how we run go-ipfs, and not code related in itself.

	"question": If you have a question.

	"test failure": If the tests are failing

	"panic": If it is a severe bug.

	"enhancement ": If you have a feature you would like that enhances go-ipfs.

Platform

For platform and processor, just run ipfs version --all and include that output.

Your platform.

	"Linux"

	"Windows"

	"Mac"

	Etc.

Processor

Your processor architecture.

	"x86"

	"amd64"

	"Arm"

Area

What your issue refers to. Multiple items are OK.

	"api"

	"bandwidth reduction"

	"bit swap"

	"blockstore"

	"commands"

	"containers + vms"

	"core"

	"daemon + init"

	"dat"

	"discovery"

	"encryption"

	"files"

	"fuse"

	"gateway"

	"gx"

	"interior"

	"pins"

	"libp2p"

	"merkledag"

	"nat"

	"releases"

	"repo"

	"routing"

	"tools"

	"tracking"

	"unix vs dag"

Priority

	Critical - System crash, application panic.

	High - The main functionality of the application does not work, API breakage,
repo format breakage, etc.

	Medium - A non-essential functionality does not work, performance issues, etc.

	Low - An optional functionality does not work.

	Very Low - Translation or documentation mistake. Something that really does
not matter much but should be noticed for a future release.

IPFS API Implementation Doc

This short document aims to give a quick guide to anyone implementing API
bindings for IPFS implementations-- in particular go-ipfs.

Sections:

	IPFS Types

	API Transports

	API Commands

	Implementing bindings for the HTTP API

IPFS Types

IPFS uses a set of value type that is useful to enumerate up front:

	<ipfs-path> is unix-style path, beginning with /ipfs/<cid>/... or
/ipns/<hash>/... or /ipns/<domain>/....

	<hash> is a base58 encoded multihash [https://github.com/multiformats/multihash]

	cid is a multibase [https://github.com/multiformats/multibase] encoded
CID [https://github.com/ipld/cid] - a self-describing content-addressing identifier

A note on streams: IPFS is a streaming protocol. Everything about it can be
streamed. When importing files, API requests should aim to stream the data in,
and handle back-pressure correctly, so that the IPFS node can handle it
sequentially without too much memory pressure. (If using HTTP, this is typically
handled for you by writes to the request body blocking.)

API Transports

Like with everything else, IPFS aims to be flexible regarding the API transports.
Currently, the go-ipfs [https://github.com/ipfs/go-ipfs] implementation supports
both an in-process API and an HTTP api. More can be added easily, by mapping the
API functions over a transport. (This is similar to how gRPC is also mapped on
top of transports, like HTTP).

Mapping to a transport involves leveraging the transport's features to express
function calls. For example:

CLI API Transport

In the commandline, IPFS uses a traditional flag and arg-based mapping, where:

	the first arguments selects the command, as in git - e.g. ipfs object get

	the flags specify options - e.g. --enc=protobuf -q

	the rest are positional arguments - e.g.
ipfs object patch <hash1> add-linkfoo <hash2>

	files are specified by filename, or through stdin

(NOTE: When go-ipfs runs the daemon, the CLI API is actually converted to HTTP
calls. otherwise, they execute in the same process)

HTTP API Transport

In HTTP, our API layering uses a REST-like mapping, where:

	the URL path selects the command - e.g /object/get

	the URL query string implements option arguments - e.g. &enc=protobuf&q=true

	the URL query also implements positional arguments - e.g.
&arg=<hash1>&arg=add-link&arg=foo&arg=<hash2>

	the request body streams file data - reads files or stdin

	multiple streams are muxed with multipart (todo: add tar stream support)

API Commands

There is a "standard IPFS API" which is currently defined as "all the commands
exposed by the go-ipfs implementation". There are auto-generated API Docs [https://ipfs.io/docs/api/].
You can Also see a listing here [https://git.io/v5KG1], or get a list of
commands by running ipfs commands locally.

Implementing bindings for the HTTP API

As mentioned above, the API commands map to HTTP with:

	the URL path selects the command - e.g /object/get

	the URL query string implements option arguments - e.g. &enc=protobuf&q=true

	the URL query also implements positional arguments - e.g.
&arg=<hash1>&arg=add-link&arg=foo&arg=<hash2>

	the request body streams file data - reads files or stdin

	multiple streams are muxed with multipart (todo: add tar stream support)

To date, we have two different HTTP API clients:

	js-ipfs-api [https://github.com/ipfs/js-ipfs-api] - simple javascript
wrapper -- best to look at

	go-ipfs/commands/http [https://git.io/v5KnB] -
generalized transport based on the command definitions [https://git.io/v5KnE]

The Go implementation is good to answer harder questions, like how is multipart
handled, or what headers should be set in edge conditions. But the javascript
implementation is very concise, and easy to follow.

Anatomy of node-ipfs-api

Currently, node-ipfs-api has three main files

	src/index.js [https://git.io/v5Kn2] defines the functions clients of the API
module will use. uses RequestAPI, and translates function call parameters to
the API almost directly.

	src/get-files-stream.js [https://git.io/v5Knr] implements the hardest part:
file streaming. This one uses multipart.

	src/request-api.js [https://git.io/v5KnP] generic function call to perform
the actual HTTP requests

Note on multipart + inspecting requests

Despite all the generalization spoken about above, the IPFS API is actually very
simple. You can inspect all the requests made with nc and the --api option
(as of this PR [https://github.com/ipfs/go-ipfs/pull/1598], or 0.3.8):

> nc -l 5002 &
> ipfs --api /ip4/127.0.0.1/tcp/5002 swarm addrs local --enc=json
POST /api/v0/version?enc=json&stream-channels=true HTTP/1.1
Host: 127.0.0.1:5002
User-Agent: /go-ipfs/0.3.8/
Content-Length: 0
Content-Type: application/octet-stream
Accept-Encoding: gzip

The only hard part is getting the file streaming right. It is (now) fairly easy
to stream files to go-ipfs using multipart. Basically, we end up with HTTP
requests like this:

> nc -l 5002 &
> ipfs --api /ip4/127.0.0.1/tcp/5002 add -r ~/demo/basic/test
POST /api/v0/add?encoding=json&progress=true&r=true&stream-channels=true HTTP/1.1
Host: 127.0.0.1:5002
User-Agent: /go-ipfs/0.3.8/
Transfer-Encoding: chunked
Content-Disposition: form-data: name="files"
Content-Type: multipart/form-data; boundary=2186ef15d8f2c4f100af72d6d345afe36a4d17ef11264ec5b8ec4436447f
Accept-Encoding: gzip

1
-
e5
-2186ef15d8f2c4f100af72d6d345afe36a4d17ef11264ec5b8ec4436447f
Content-Disposition: form-data; name="file"; filename="test"
Content-Type: multipart/mixed; boundary=acdb172fe12f25e8ffae9981ce6f4580abdefb0cae3ceebe464d802866be

9c
--acdb172fe12f25e8ffae9981ce6f4580abdefb0cae3ceebe464d802866be
Content-Disposition: file; filename="test%2Fbar"
Content-Type: application/octet-stream

4
bar

dc

--acdb172fe12f25e8ffae9981ce6f4580abdefb0cae3ceebe464d802866be
Content-Disposition: file; filename="test%2Fbaz"
Content-Type: multipart/mixed; boundary=2799ac77a72ef7b8a0281945806b9f9a28f7681145aa8e91b052d599b2dd

a0
--2799ac77a72ef7b8a0281945806b9f9a28f7681145aa8e91b052d599b2dd
Content-Type: application/octet-stream
Content-Disposition: file; filename="test%2Fbaz%2Fb"

4
bar

a2

--2799ac77a72ef7b8a0281945806b9f9a28f7681145aa8e91b052d599b2dd
Content-Disposition: file; filename="test%2Fbaz%2Ff"
Content-Type: application/octet-stream

4
foo

44

--2799ac77a72ef7b8a0281945806b9f9a28f7681145aa8e91b052d599b2dd--

9e

--acdb172fe12f25e8ffae9981ce6f4580abdefb0cae3ceebe464d802866be
Content-Disposition: file; filename="test%2Ffoo"
Content-Type: application/octet-stream

4
foo

44

--acdb172fe12f25e8ffae9981ce6f4580abdefb0cae3ceebe464d802866be--

44

--2186ef15d8f2c4f100af72d6d345afe36a4d17ef11264ec5b8ec4436447f--

0

Which produces: http://gateway.ipfs.io/ipfs/QmNtpA5TBNqHrKf3cLQ1AiUKXiE4JmUodbG5gXrajg8wdv

Building on OpenBSD

Prepare your system

Make sure you have git, go and gmake installed on your system.

$ doas pkg_add -v git go gmake

Prepare go environment

Make sure your gopath is set:

$ export GOPATH=~/go
$ echo "$GOPATH"
$ export PATH="$PATH:$GOPATH/bin"

Build

The install_unsupported target works nicely for openbsd. This will install
gx, gx-go and run go install -tags nofuse ./cmd/ipfs.

$ go get -v -u -d github.com/ipfs/go-ipfs

$ cd $GOPATH/src/github.com/ipfs/go-ipfs
$ gmake install_unsupported

if everything went well, your ipfs binary should be ready at $GOPATH/bin/ipfs.

$ ipfs version

Plugins

Since 0.4.11 go-ipfs has an experimental plugin system that allows augmenting
the daemons functionality without recompiling.

When an IPFS node is created, it will load plugins from the $IPFS_PATH/plugins
directory (by default ~/.ipfs/plugins).

Plugin types

IPLD

IPLD plugins add support for additional formats to ipfs dag and other IPLD
related commands.

Supported plugins

Name	Type
git	IPLD

Installation

Linux

	Build included plugins:

go-ipfs$ make build_plugins
go-ipfs$ ls plugin/plugins/*.so

	Copy desired plugins to $IPFS_PATH/plugins

go-ipfs$ mkdir -p ~/.ipfs/plugins/
go-ipfs$ cp plugin/plugins/git.so ~/.ipfs/plugins/
go-ipfs$ chmod +x ~/.ipfs/plugins/git.so # ensure plugin is executable

	Restart daemon if it is running

Other

Go currently only supports plugins on Linux, for other platforms you will need
to compile them into IPFS binary.

	Uncomment plugin entries in plugin/loader/preload_list

	Build ipfs

go-ipfs$ make build

go-ipfs releases

Release Schedule

go-ipfs is on a six week release schedule. Following a release, there will be
five weeks for code of any type (features, bugfixes, etc) to be added. After
the five weeks is up, a release canidate is tagged and only important bugfixes
will be allowed up to release day.

Pre-Release Checklist

	[] before release, tag 'release canidate' for users to test against

	if bugs are found/fixed, do another release canidate

	[] all tests pass (no exceptions)

	[] webui works (for most definitions of 'works')

	[] CHANGELOG.md has been updated

	use LAST=v0.4.2 ; for n in $(git log --oneline --merges --reverse -n-1 $LAST...master | cut -d'#' -f2 | cut -d' ' -f1); do echo https://github.com/ipfs/go-ipfs/pull/$n; done

	[] version string in repo/config/version.go has been updated

	[] tag commit with vX.Y.Z

	[] bump version string in repo/config/version.go to vX.Y.Z-dev

	[] update release branch to point to release commit

	[] publish dist.ipfs.io

	[] publish next version to https://github.com/ipfs/npm-go-ipfs

Post-Release

	Communication

	[] Create the release issue

	[] Announcements (both pre-release and post-release)

	[] Twitter

	[] IRC

	[] Reddit

	[] Blog post (at minimum, paste the changelog. optionally add context and thank contributors.)

	[] Update HTTP-API Documentation on the Website using https://github.com/ipfs/http-api-docs

/ws and /wss -- websockets

If you want browsers to connect to e.g. /dns4/example.com/tcp/443/wss/ipfs/QmFoo

	[] An SSL cert matching the /dns4 or /dns6 name

	[] go-ipfs listening on /ip4/127.0.0.1/tcp/8081/ws

	8081 is just an example

	note that it's /ws here, not /wss -- go-ipfs can't currently do SSL, see the next point

	[] nginx

	configured with the SSL cert

	listening on port 443

	forwarding to 127.0.0.1:8081

Building on Windows

Install Git For Windows

As Git is used by the Go language to download dependencies, you need
to install Git, for example from http://git-scm.com/.

You also must make sure that the directory that contains the Git For
Windows binary is in the Path environment variable. Note that Git For
Windows has a 'git' binary in a 'Git\bin' directory and another one in
a 'Git\cmd' directory. You should only put the 'Git\cmd' directory in
the Path environment variable.

Install Go

Please install the Go language as explained on
https://golang.org/doc/install.

To properly install Go, you will need to set some environment
variables. We recommend you to set them globally using the Control
Panel, as explained in the documentation above, so that these
environment variables are automatically available in all the possible
environments that you might want to use like Git Bash, Windows's cmd,
Cygwin's terminal, Windows' PowerShell and so on.

You must make sure that the GOROOT environment variable is set and
that the %GOROOT%/bin directory is in the Path environment variable.

The GOPATH environment variable should also be set to a directory that
you have created, and the %GOPATH/bin directory should also be in the
Path environment variable.

Download go-ipfs and fix Git authentication

Use the following command to download go-ipfs source code:

go get -u github.com/ipfs/go-ipfs

The above command uses Git to download go-ipfs from its GitHub
repository. If you get authentication problems with Git, you might
want to take a look at
https://help.github.com/articles/caching-your-github-password-in-git/
and use the suggested solution:

git config --global credential.helper wincred

Choose the way you want to proceed

Now there are two ways to download, install the dependencies and to
build go-ipfs:

	There is the "Manual Way", where you don't need to install anymore
software except the dependencies, but you have a number of commands to
type.

	There is a way by installing 'make' through Cygwin and using it to
do nearly everything. We call this way the "Cygwin Way". It may take
much more time, because installing Cygwin can take a lot of time, but
after that it might be easier as many procedures are just a 'make'
command away.

So use the next steps below that start with "Manual Way" if that's the
way you want, otherwise scroll down a bit and use the "Cygwin Way"
steps below.

Manual Way: download and install dependencies

The following commands should download or update go-ipfs dependencies
and then install them:

go get -u github.com/whyrusleeping/gx
go get -u github.com/whyrusleeping/gx-go
cd %GOPATH%/src/github.com/ipfs/go-ipfs
gx --verbose install --global

Manual Way: build go-ipfs

To actually build go-ipfs, first go to the cmd/ipfs directory:

cd cmd\ipfs

Then get the current Git commit:

git rev-parse --short HEAD

It will output a small number of hex characters that you must pass to
the actual build command (replace XXXXXXX with these characters):

go install -ldflags="-X "github.com/ipfs/go-ipfs/repo/config".CurrentCommit=XXXXXXX"

After that ipfs should have been built and should be available in
"%GOPATH%\bin".

You can check that the ipfs you built has the right version using:

ipfs version --commit

It should output something like "ipfs version 0.4.0-dev-XXXXXXX" where
XXXXXXX is the current commit that you passed to the build command.

Cygwin way: install Cygwin

Install Cygwin as explained in the Cygwin documentation:

http://cygwin.com/install.html

By default Cygwin will not install 'make', so you should click on the
"Devel" category during the Cygwin installation process and then check
the 'make' package.

Cygwin way: build go-ipfs

To build go-ipfs using Cygwin you just need to open a Cygwin Terminal
and then type the following commands:

cd $GOPATH/src/github.com/ipfs/go-ipfs
make install

After that ipfs should have been built and should be available in
"%GOPATH%\bin".

You can check that the ipfs you built has the right version using:

ipfs version --commit

 _static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

