
Cask
Release 0.8.4

Jun 12, 2018

Contents

1 User guide 3
1.1 Introduction — Why Cask? . 3
1.2 Installation . 5
1.3 Usage . 6
1.4 Cask Domain Specific Language . 11
1.5 Troubleshooting . 13

2 Developer guide 15
2.1 Cask API . 15
2.2 Contributing to Cask . 20

3 Licensing 23
3.1 GNU General Public License . 23

4 Index 37

i

ii

Cask, Release 0.8.4

Cask is a project management tool for Emacs Lisp to automate the package development cycle; development, depen-
dencies, testing, building, packaging and more.

Cask can also be used to manage dependencies for your local Emacs configuration.

It’s based on a Cask file, which identifies an Emacs Lisp package, provides meta information about the package, and
declares its contents and dependencies.

Fig. 1: Cask’s own Cask file

Table of Contents

• User guide

• Developer guide

• Licensing

• Index

Contents 1

Cask, Release 0.8.4

2 Contents

CHAPTER 1

User guide

This part of the documentation explains how to use Cask. We start with a little introduction on Cask, which provides
background information and motivation for Cask. Then we guide you through the installation and usage of Cask, and
provide a reference on Cask’s domain specific language. We conclude with some troubleshooting help.

1.1 Introduction — Why Cask?

Cask is an Emacs Lisp project management tool, similar to Maven or Leiningen. It aims to control and automate the
entire life cycle of an Emacs Lisp package, including dependency management, packaging, distribution and testing.

This document provides a motivation for using Cask in your Emacs Lisp packages, or in your personal Emacs config-
uration.

1.1.1 Package development

So, why should your Emacs Lisp project use Cask? Do you know why:

• Ruby projects have a gemspec file?

• Node.js projects have a package.json file?

• Clojure projects have a project.clj file?

• Emacs Lisp projects have a Cask file?

Actually, let us rephrase the last statement.

• Some Emacs Lisp projects have a Cask file?

No, let’s try that again.

• Some Emacs Lisp projects do not have a Cask file?

We will argue that some Emacs Lisp projects may not benefit directly from using Cask. Those are the projects that:

• Do not have any dependencies

3

Cask, Release 0.8.4

• Do not have any tests

• Do not care about consistency

• Do not care about compiler warnings

• Do not want to make it easy for contributors

So all in all, projects that are not worth using.

Emacs package development has improved drastically during the last couple of years. From single Emacs Lisp files
uploaded to the Emacs Wiki, to high quality packages, using VCS, that are tested, installable via a package manager
and more.

But there’s one thing still missing and that is consistency. Note that every Ruby project has a gemspec file, every
Node.js project has a package.json file and every Clojure project has a project.clj file.

In those environments, projects are structured, tested, packaged, compiled, released in the same way. If you find a new
project and want to find out what dependencies it has, you will know exactly where to look. If you want to find the
test for a specific feature, you know exactly where to look.

For Emacs Lisp projects using Cask, this is true as well.

So, even if you feel that your Emacs Lisp project does not have direct benefit of using Cask, please do so any way. If
not for you, do it for other Emacs Lisp developers.

1.1.2 Emacs configuration

If you look at the majority of Emacs configurations out there, you will see a few different types setups. These are the
major ones:

Using package.el directly

It usually looks something like this:

(require 'package)
(package-initialize)
(mapc
(lambda (package)
(unless (package-installed-p package)

(package-install package)))
'(s f dash flycheck prodigy ...))

I did something like this in my configuration once as well, but I no longer have to, because Cask exists.

Submodules

I have over 60 packages in my Emacs configuration. Can you imagine how much work it would require to keep all of
those up to date?

Bundled packages

This has the same “keeping up to date” issue as the submodules approach. But it’s even worse. Storing dependencies
as part of the repository is madness. I shouldn’t have to explain why.

4 Chapter 1. User guide

Cask, Release 0.8.4

Cask

This is obviously what we want. All it is, is a single file that declares a list of dependencies. You know where to look
if you want to find out what dependencies a configuration has and it’s easy to keep packages up to date.

1.2 Installation

This document guides you through the installation of Cask.

1.2.1 Prerequisites

Cask requires GNU Emacs 24 and Python 2.6 or later on a Unix system. It will not work with Emacs 23 and below, or
with other flavours of Emacs, e.g. XEmacs.

Warning: Windows support for Cask requires additional work (see Windows Installation and Setup).

1.2.2 Manual installation

To install Cask, run the following command:

$ curl -fsSL https://raw.githubusercontent.com/cask/cask/master/go | python

You can also clone the repository explicitly:

$ git clone https://github.com/cask/cask.git

To upgrade a manual installation, use:

$ cask upgrade-cask

1.2.3 Package managers

Cask is available in Homebrew, so OS X users can just use:

$ brew install cask

1.2.4 Setup

Add Cask to your $PATH:

export PATH="$HOME/.cask/bin:$PATH"

1.2. Installation 5

http://brew.sh/

Cask, Release 0.8.4

1.2.5 Windows Installation and Setup

Cask requires the following additional steps to run under Windows.

Both emacs and python need to be added to your %PATH%.

Assuming that python is installed to the default location (c:Python27) and emacs is under c:binemacs.

By Command Line

> setx PATH "%PATH%;c:\Python27\"
> setx PATH "%PATH%;c:\bin\emacs\bin"
> setx PATH "%PATH%;%userprofile%\.cask\bin"

By GUI

1. Use Win+Pause to open System Properties.

2. Under Windows 7 or newer, click on Advanced system settings.

Under Windows XP, click on the Advanced tab.

3. Click on Environment Variables. . . .

4. Under System Variables find Path then choose to Edit. . . .

At the end of the listed path, append (include the first ; only if not already present):

;C:\Python27\;C:\bin\emacs\bin

If you do not have administrative rights to the machine, add the above to the User Variables Path.

5. Under User Variables find Path, and edit. If not present select New. . . and name it Path.

Append or insert (add a ; at the beginning if Path exists):

%userprofile%\.cask\bin

1.3 Usage

This document explains how to use Cask, and provides a reference of its commands and options.

1.3.1 Quickstart

Start by creating a file named Cask in the project root. Use cask init command to create a Cask-file automati-
cally, containing boilerplate code:

$ cask init [--dev]

Use cask init --dev , if the project is for package development!

If you are using Cask for your Emacs configuration, add this to your ~/.emacs.d/init.el file:

(require 'cask "~/.cask/cask.el")
(cask-initialize)

6 Chapter 1. User guide

Cask, Release 0.8.4

Or if you installed Cask via Homebrew:

(require 'cask "/usr/local/share/emacs/site-lisp/cask/cask.el")
(cask-initialize)

To install all dependencies, run:

$ cask install

This will create a directory called .cask and install all dependencies into it.

Finding Emacs

By default, packages are installed for the default Emacs, i.e. the one behind the emacs command. To pick a different
Emacs, set the environment variable EMACS to the command name or executable path of the Emacs to use:

$ EMACS="emacs24.1" cask command

Note that installed dependencies are scoped on the version of Emacs. So when switching between versions you will
have to install the dependencies for each:

$ EMACS="emacs24.5" cask install

Exceptionally, if you are launching cask inside Emacs 24 either from an internal shell or M-x compile, then Emacs
uses EMACS in a way which conflicts with cask, in which case you can use the environment variable CASK_EMACS
instead. With Emacs 25, EMACS can be used as normal.

1.3.2 Commands and options

The general syntax of the cask program is as follows:

cask [GLOBAL-OPTIONS] [COMMAND] [COMMAND-OPTIONS] [COMMAND-ARGUMENTS]

cask exec

cask [GLOBAL-OPTIONS] exec [COMMAND] [ARGUMENTS ...]

Execute the system command with the given arguments, with a proper $PATH (see cask path) and $EMACSLOADPATH
(see cask load-path).

cask emacs

cask [GLOBAL-OPTIONS] emacs [ARGUMENTS ...]

Execute emacs with the given arguments, with the appropriate environmment (see cask exec). The Emacs executable
is that which cask would normally run in (see Finding Emacs).

cask eval

1.3. Usage 7

Cask, Release 0.8.4

cask [GLOBAL-OPTIONS] eval [FORM]

Evaluate FORM as a lisp form with a proper $PATH (see cask path) and $EMACSLOADPATH (see cask load-path).
The return value of the form is not printed directly: FORM must print to the standard out or error stream.

cask help

cask [GLOBAL-OPTIONS] help [COMMAND]

Show help about Cask, or a given COMMAND.

cask info

cask [GLOBAL-OPTIONS] info

Show information about the project, such as name, description and version.

cask init

cask [GLOBAL-OPTIONS] init [--dev]

Create new Cask-file in the current directory.

If the project is for package development, use the --dev option:

--dev
Add additional code to the Cask file, which is specific to Emacs Lisp packages.

cask install

cask [GLOBAL-OPTIONS] [install]

Install all dependencies of the project. This is the default command.

cask list

cask [GLOBAL-OPTIONS] list

List all runtime and development dependencies.

cask load-path

cask [GLOBAL-OPTIONS] load-path

Print the load path containing the dependencies of the current project, in proper format for the EMACSLOADPATH
environment variable.

cask exec automatically runs its commands with the proper load-path.

8 Chapter 1. User guide

Cask, Release 0.8.4

cask outdated

cask [GLOBAL-OPTIONS] outdated

Show all outdated dependencies.

cask pkg-file

cask [GLOBAL-OPTIONS] pkg-file

Write a package descriptor file to project-pkg.el in the project root. project is the project name, as declared
in the Cask file. See Multi-file Packages(elisp) for details.

cask package-directory

cask [GLOBAL-OPTIONS] package-directory

Print path to package directory, where all dependencies are installed. Currently, this is .cask/emacs-version/
elpa), where emacs-version is the value of the emacs-version variable in Emacs.

cask path

cask [GLOBAL-OPTIONS] path

Print the PATH environment variable of this project.

The PATH of a project contains the binary directories of all dependencies, prepended to the PATH inherited from the
current shell. The binary directory of a package is the bin/ subdirectory of the package.

cask exec uses the PATH returned by this command when running programs.

cask update

cask [GLOBAL-OPTIONS] update

Update all dependencies installed in the project.

cask upgrade-cask

cask [GLOBAL-OPTIONS] upgrade-cask

Upgrade Cask and all its dependencies.

cask version

cask [GLOBAL-OPTIONS] version

Print version of the current package.

1.3. Usage 9

https://www.gnu.org/software/emacs/manual/html_node/elisp/Multi_002dfile-Packages.html#Multi_002dfile-Packages

Cask, Release 0.8.4

cask files

cask [GLOBAL-OPTIONS] files

Print the list of all package files.

cask build

cask [GLOBAL-OPTIONS] build

Byte compile all Emacs Lisp files in the package. The resulting byte code is written to the original path, with the
extension replaced by .elc.

cask clean-elc

cask [GLOBAL-OPTIONS] clean-elc

Remove byte compiled files generated by cask build.

cask link

cask [GLOBAL-OPTIONS] link PACKAGE SOURCE
cask [GLOBAL-OPTIONS] link list
cask [GLOBAL-OPTIONS] link delete PACKAGE

Link between this package and a dependency on the local filesystem. A linked dependency avoids the need to download
a dependency from a remote archive. The package linked to must either have a Cask-file or a -pkg.el-file.

cask link package source links the given source directory into the package directory of this project, under
the given package name.

cask link list lists all links, and cask link delete package deletes the link for the given package.

cask package

cask [GLOBAL-OPTIONS] package [DISTDIR]

Build a package artefact, and put it into the given DISTDIR, defaulting to dist/.

For single-file packages, this command merely copies the corresponding file to DISTDIR, under the correct filename
package-version.el.

For multi-file packages, this command creates a TAR archive containing the package, as package-version.tar.
The TAR archive contains an appropriate package descriptor as generated by cask pkg-file.

If the files of the package contain .texinfo files and if makeinfo is available, these are compiled to Info before
inclusion in the package, to allow for online reading of the manual in Emacs.

10 Chapter 1. User guide

Cask, Release 0.8.4

Global options

The following options are available on all Cask commands:

--proxy <proxy>
Set Emacs proxy for HTTP and HTTPS:

$ cask --proxy "localhost:8888" install

--http-proxy <proxy>
Set Emacs proxy for HTTP only.

--https-proxy <proxy>
Set Emacs proxy for HTTPS only.

--no-proxy <pattern>
Do not use a proxy for any URL matching pattern.

pattern is an Emacs regular expression.

--version
Print Cask’s version.

--debug
Enable debug information.

--path <directory>
Use directory/Cask instead of the Cask file in the current directory.

--verbose
Show all output from package.el.

1.3.3 Environment variables

EMACSLOADPATH
The load path for Emacs, see Library Search(elisp).

EMACS
The command name or executable path of Emacs. Cask will use this Emacs in its commands, i.e. byte-compile
files with this Emacs, install packages for this Emacs, and run commands from packages installed for this Emacs.

If empty, Cask tries to find a reasonable default. On OS X, Cask tries the following Emacsen, in this order:

• ~/Applications/Emacs.app

• /Applications/Emacs.app

• /usr/local/bin

• emacs

On other Unix variants, e.g. Linux, Cask will simply use emacs.

CASK_EMACS
As EMACS, but takes precedence over it. This is most useful for launching Cask inside Emacs which often
resets EMACS to other values.

1.4 Cask Domain Specific Language

This document provides a reference on the DSL (Domain Specific Language).

1.4. Cask Domain Specific Language 11

https://www.gnu.org/software/emacs/manual/html_node/elisp/Library-Search.html#Library-Search

Cask, Release 0.8.4

1.4.1 Package metadata

Function package(name, version, description)
Declare a package with the given name, version and description:

(package "ecukes" "0.2.1" "Cucumber for Emacs.")

All arguments are strings. The version must be a version understood by Emacs’ built-in version-to-list.

Function package-file(file)
Declare a package by taking the package metadata from the given file. Relative filenames are relative to the
directory of the Cask file.

The package name will be the name of the given file, sans directory and extension. The description is taken from
the very first line of file. The version and the runtime dependencies are taken from the library headers of file.
See Library Headers(elisp) for details about library headers

1.4.2 Package contents

Function files(&rest patterns)
The files to include in the package built by cask package. The patterns have the same format as the :files in
an MELPA recipe, as Cask uses the same library to build packages.

Each pattern in patterns is either a simple glob pattern as string or an expression (target pattern...).
In the former case, all files matching the pattern (relative to the directory of the Cask file) are included at the
top-level of the package. :defaults may be used as the first pattern to explicitly include the default patterns.
This allows subsequent patterns to append to the defaults.

In the latter case, target is the unqualified target directory within the package, each pattern describes the contents
of the package under the target directory recursively.

Hence, the pattern (“*.el” (“resources” (“snippets” “*.snippet”))) would include all .
el files from the project root in the package root, and all .snippet files from the project root in the directory
resources/snippets under the package root.

1.4.3 Dependencies

Function depends-on(package-name &optional , minimum-version)
Function depends-on(package-name, :fetcher, repourl &optional , :ref, hash, :branch, name, :files,

patterns)
Specify a dependency of this package.

package-name is the name of a package which is a dependency of this package.

In the first variant, install the package from a package archive (see source), optionally requiring a minimum-
version.

In the second variant, install the package from a VCS repository. Replace fetcher with any of the following:
:git, :bzr, :hg, :darcs, :svn or :cvs. repourl is the repository URL to install the package from.

ref and branch specify the commit hash or branch name to install from. If both are omitted, default to the
master branch.

files gives the files from the repository to include in the package, in the same format as files. If omitted, try
to take the files from the Cask file of the repository.

12 Chapter 1. User guide

https://www.gnu.org/software/emacs/manual/html_node/elisp/Library-Headers.html#Library-Headers
https://github.com/milkypostman/melpa#recipe-format

Cask, Release 0.8.4

Function development(&rest body)
Scope all depends-on expressions in body to development.

Development dependencies are installed with cask install, but are not included in package descriptors generated
by cask pkg-file and cask package.

Function source(alias)
Function source(name, url)

Add a package archive to install dependencies from.

In the first variant, add a built-in package archive. In the second variant, add a package archive with the given
name, and the given url.

Cask includes the following built-in package archives:

gnu The standard GNU ELPA archive at https://elpa.gnu.org/.

Warning: Unlike an interactive Emacs, Cask does not enable any archive by default. Hence, you
must explicitly add the gnu archive if you need it.

melpa-stable An archive of stable versions built automatically from upstream repositories, at https://stable.
melpa.org/.

melpa An archive of VCS snapshots built automatically from upstream repositories, at https://melpa.org/.

marmalade An archive of packages uploaded by users and maintainers, at https://marmalade-repo.org/.

SC An archive providing packages for Sunrise Commander, at http://joseito.republika.pl/sunrise-commander/.

org An archive providing packages for Org Mode, at http://orgmode.org/elpa/.

Note that unlike the gnu archive, which also provides an org package, this archive provides the
org-plus-contrib package, which installs additional extensions for Org Mode maintained by the
Org Mode maintainers, which are not included in the standard gnu packages for copyright reasons.

1.5 Troubleshooting

1.5.1 Error when running a Cask command

If you run a Cask command and get an error, there are a few things you can try yourself:

• Make sure that you have the latest Cask version. You can determine the current Cask version with cask
--version.

• Upgrade Cask with cask upgrade-cask.

Warning: Use cask upgrade-cask even if you installed Cask with git pull. cask
upgrade-cask will update the internal dependencies of Cask as well.

• If the error persists, remove Cask’s internal dependencies, located at ~/.emacs.d/.cask/
emacs-version/bootstrap, where emacs-version is the version of Emacs you are using.

Remove that directory and try again. Cask will automatically download all internal dependencies again.

If Cask still does not work, please report an issue to the issue tracker. Please include Cask output with the cask
--verbose and cask --debug options set, to give us as much information as possible.

1.5. Troubleshooting 13

https://elpa.gnu.org/
https://stable.melpa.org/
https://stable.melpa.org/
https://melpa.org/
https://marmalade-repo.org/
http://www.emacswiki.org/emacs/Sunrise_Commander
http://joseito.republika.pl/sunrise-commander/
http://orgmode.org
http://orgmode.org/elpa/
https://github.com/cask/cask/issues/new

Cask, Release 0.8.4

14 Chapter 1. User guide

CHAPTER 2

Developer guide

This part of the documentation shows how to write extensions for and packages based on Cask, and explains how to
contribute to Cask.

2.1 Cask API

This document provides a reference of the public Cask API, which you may use in your own projects and extensions
to Cask.

Table of Contents

• Cask bundles

• Creating bundles

• Bundle paths

• Package metadata of bundles

• Bundle contents

• Bundle dependencies

• Dependency links

• Dependency sources and package archives

• Dependency operations

• Byte compilation

• Packaging

• Miscellaneous functions

15

Cask, Release 0.8.4

2.1.1 Cask bundles

A bundle represents a specific Cask project. Essentially, a bundle is a loaded Cask file.

2.1.2 Creating bundles

The following functions create bundles.

Function cask-setup(project-path)
Setup cask for project at PROJECT-PATH.

This function return a `cask-bundle' object.

Function cask-initialize(&optional project-path)
Initialize packages under PROJECT-PATH or `user-emacs-directory'.

This function return a `cask-bundle' object.

2.1.3 Bundle paths

These functions return various paths associated with a bundle:

Function cask-file(bundle)
Return path to BUNDLE Cask-file.

Function cask-path(bundle)
Return BUNDLE root path.

Function cask-load-path(bundle)
Return Emacs `load-path' (including BUNDLE dependencies).

Function cask-exec-path(bundle)
Return Emacs `exec-path' (including BUNDLE dependencies).

Function cask-elpa-path(bundle)
Return full path to BUNDLE elpa directory.

2.1.4 Package metadata of bundles

These functions give access to the metadata of the package, represented by the bundle.

Function cask-package-name(bundle)
Return BUNDLE name.

If BUNDLE is not a package, the error `cask-not-a-package' is signaled.

Function cask-package-version(bundle)
Return BUNDLE version.

If BUNDLE is not a package, the error `cask-not-a-package' is signaled.

Function cask-package-description(bundle)
Return BUNDLE description.

If BUNDLE is not a package, the error `cask-not-a-package' is signaled.

16 Chapter 2. Developer guide

Cask, Release 0.8.4

2.1.5 Bundle contents

Function cask-files(bundle)
Return BUNDLE files list.

This is done by expanding the patterns in the BUNDLE path. Files
in the list are relative to the path.

2.1.6 Bundle dependencies

Function cask-dependencies(bundle &optional , deep)
Return BUNDLE's runtime and development dependencies.

If DEEP is true, return all dependencies, recursively.

Return value is a list of `cask-dependency' objects.

Function cask-runtime-dependencies(bundle &optional , deep)
Return BUNDLE's runtime dependencies.

If DEEP is true, return all dependencies, recursively.

Return value is a list of `cask-dependency' objects.

Function cask-development-dependencies(bundle &optional , deep)
Return BUNDLE's development dependencies.

If DEEP is true, return all dependencies, recursively.

Return value is a list of `cask-dependency' objects.

Function cask-installed-dependencies(bundle &optional , deep)
Return list of BUNDLE's installed dependencies.

If DEEP is t, all dependencies recursively will be returned.

Function cask-add-dependency(bundle, name &rest , args)
Add dependency to BUNDLE.

NAME is the name of the dependency.

ARGS is a plist with these optional arguments:

`:version' Depend on at least this version for this dependency.

`:scope' Add dependency to a certain scope. Allowed values are
'development and 'runtime.

`:files' Only include files matching this pattern.

`:ref' Fetcher ref to checkout.

`:branch' Fetcher branch to checkout.

ARGS can also include any of the items in `cask-fetchers'. The

2.1. Cask API 17

Cask, Release 0.8.4

plist key is one of the items in the list and the value is the
url to the fetcher source.

Function cask-has-dependency(bundle, name)
Return true if BUNDLE contain link with NAME, false otherwise.

Function cask-find-dependency(bundle, name)
Find dependency in BUNDLE with NAME.

Function cask-dependency-path(bundle, name)
Return path to BUNDLE dependency with NAME.

If no such dependency exist, return nil.

2.1.7 Dependency links

These functions deal with dependency links.

See also:

cask link

Function cask-links(bundle)
Return a list of all links for BUNDLE.

The list is a list of alist's where the key is the name of the
link, as a string and the value is the absolute path to the link.

Function cask-link(bundle, name, source)
Add BUNDLE link with NAME to SOURCE.

NAME is the name of the package to link as a string. SOURCE is
the path to the directory to link to. SOURCE must have either a
NAME-pkg.el or Cask file for the linking to be possible.

Function cask-link-delete(bundle, name)
Delete BUNDLE link with NAME.

Function cask-linked-p(bundle, name)
Return true if BUNDLE has link with NAME.

2.1.8 Dependency sources and package archives

These functions let you add and remove dependency sources, i.e., package archives where to get dependencies from.

Function cask-add-source(bundle, name-or-alias &optional , url)
Add source to BUNDLE.

NAME-OR-ALIAS is either a string with the name of the source or a
symbol, which refers to some of the keys in
`cask-source-mapping'.

Second argument URL is only required unless alias. If no alias,
URL is the url to the mirror.

Function cask-remove-source(bundle, name)
Remove source from BUNDLE with NAME.

18 Chapter 2. Developer guide

Cask, Release 0.8.4

2.1.9 Dependency operations

These functions provide operations on dependencies, such as updating, or installing them:

Function cask-install(bundle)
Install BUNDLE dependencies.

Install all available dependencies.

If some dependencies are not available, signal a
`cask-missing-dependencies' error, whose data is a list of all
missing dependencies. All available dependencies are installed
nonetheless.

If a dependency failed to install, signal a
`cask-failed-installation' error, whose data is a (DEPENDENCY
. ERR), where DEPENDENCY is the `cask-dependency' which failed
to install, and ERR is the original error data.

Function cask-update(bundle)
Update BUNDLE dependencies.

Return list of updated packages.

Function cask-outdated(bundle)
Return list of `epl-upgrade' objects for outdated BUNDLE dependencies.

2.1.10 Byte compilation

These function let you byte compile all Emacs Lisp files in a bundle:

Function cask-build(bundle)
Build BUNDLE Elisp files.

Function cask-clean-elc(bundle)
Remove BUNDLE Elisp byte compiled files.

2.1.11 Packaging

These functions create packages and package descriptors:

Function cask-define-package-string(bundle)
Return `define-package' string for BUNDLE.

Function cask-define-package-file(bundle)
Return path to `define-package' file for BUNDLE.

Function cask-package(bundle &optional , target-dir)
Build an ELPA package of BUNDLE.

Put package in TARGET-DIR if specified. If not specified, put in
a directory specified by `cask-dist-path' in the BUNDLE path.

2.1. Cask API 19

Cask, Release 0.8.4

2.1.12 Miscellaneous functions

Function cask-caskify(bundle &optional , dev-mode)
Create Cask-file for BUNDLE path.

If DEV-MODE is true, the dev template is used, otherwise the
configuration template is used.

Function cask-version()
Return Cask's version.

2.2 Contributing to Cask

This document provides guidelines and information on contributing to Cask.

Cask is on Github, and a discussion group is available at https://groups.google.com/forum/#!forum/cask-dev.

2.2.1 Testing

Cask comes with a rich set of test cases. When fixing bugs or implementing new features, please add the corresponding
test cases as well.

Running tests

1. make start-server to start the fake package server, which is used throughout the tests.

2. make test to run all tests. Use make unit to only run the unit tests, and make ecukes to only run the
integration tests.

3. Repeat 2. as long as you need.

4. make stop-server to stop the fake package server started in 1.

2.2.2 Documentation

Cask includes a comprehensive user guide. Please try to extend it accordingly when you implement new features.

The documentation is written in reStructuredText, using Sphinx and sphinxcontrib-emacs. The former is a generic
documentation tool, and the latter extends it with specific support for Emacs Lisp projects.

Setup

To build the documentation locally, you need to go through a little setup first.

Make sure that you have Python 2.7 and virtualenv available. To install virtualenv, use the following command:

$ pip install --user virtualenv

Then add ~/Library/Python/2.7/bin (on OS X) or ~/.local/bin (on other Unix variants) to PATH.

20 Chapter 2. Developer guide

https://github.com/cask/cask
https://groups.google.com/forum/#!forum/cask-dev
http://docutils.sourceforge.net/rst.html
http://sphinx-doc.org/
https://sphinxcontrib-emacs.readthedocs.io/
https://virtualenv.pypa.io/
https://virtualenv.pypa.io/

Cask, Release 0.8.4

Note: You probably need to install pip first. It is available in the package repositories of most Linux distributions, as
python-pip or similar. If pip is not available for your Linux distribution, or if you are using OS X, please follow
the instructions to install pip.

Now create a virtualenv for the documentation, and install the requirements:

$ mkdir -p ~/.virtualenvs
$ virtualenv -p python2.7 ~/.virtualenvs/cask
$ pip install -r doc/requirements.txt

Now you are set up to build the documentation.

Building

Now you are ready to build the documentation.

First, switch to the virtualenv and make sure that the requirements are up to date:

$ source ~/.virtualenvs/cask/bin/activate
$ pip install -r doc/requirements.txt

Then you can build the HTML documentation, or verify all links in the documentation:

$ make html # Build HTML documentation to build/doc/html/
$ make linkcheck # Check all links in the documentation

2.2.3 Pull requests

If all tests passes, and the documentation builds, please send us a pull request with your changes.

Note: Usually we work on a WIP branch, named vmajor.minor-wip. Your pull request should target this branch,
if present. Otherwise just base your pull request on master.

2.2. Contributing to Cask 21

https://pip.pypa.io/en/latest/installing.html
https://github.com/cask/cask/pulls

Cask, Release 0.8.4

22 Chapter 2. Developer guide

CHAPTER 3

Licensing

Cask is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

Cask is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.

See GNU General Public License or http://www.gnu.org/licenses/ for a copy of the GNU General Public License.

3.1 GNU General Public License

GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007

Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for
software and other kinds of works.

The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.

(continues on next page)

23

http://www.gnu.org/licenses/

Cask, Release 0.8.4

(continued from previous page)

When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.

To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.

Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.

For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.

Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users' freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.

Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.

The precise terms and conditions for copying, distribution and
modification follow.

TERMS AND CONDITIONS

0. Definitions.

"This License" refers to version 3 of the GNU General Public License.

"Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.

(continues on next page)

24 Chapter 3. Licensing

Cask, Release 0.8.4

(continued from previous page)

"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.

To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.

A "covered work" means either the unmodified Program or a work based
on the Program.

To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.

To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.

An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.

1. Source Code.

The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.

A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.

The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.

The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable

(continues on next page)

3.1. GNU General Public License 25

Cask, Release 0.8.4

(continued from previous page)

work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.

The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.

The Corresponding Source for a work in source code form is that
same work.

2. Basic Permissions.

All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.

Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.

3. Protecting Users' Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.

When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of

(continues on next page)

26 Chapter 3. Licensing

Cask, Release 0.8.4

(continued from previous page)

technological measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.

You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:

a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.

b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
"keep intact all notices".

c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.

d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.

A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,

(continues on next page)

3.1. GNU General Public License 27

Cask, Release 0.8.4

(continued from previous page)

in one of these ways:

a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.

b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.

c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.

d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.

e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.

A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.

A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial

(continues on next page)

28 Chapter 3. Licensing

Cask, Release 0.8.4

(continued from previous page)

commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.

"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.

If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).

The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.

7. Additional Terms.

"Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.

When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:

(continues on next page)

3.1. GNU General Public License 29

Cask, Release 0.8.4

(continued from previous page)

a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or

b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or

c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or

d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or

e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or

f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.

All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.

8. Termination.

You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).

However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.

(continues on next page)

30 Chapter 3. Licensing

Cask, Release 0.8.4

(continued from previous page)

Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.

Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.

10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.

An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.

11. Patents.

A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".

A contributor's "essential patent claims" are all patent claims
(continues on next page)

3.1. GNU General Public License 31

Cask, Release 0.8.4

(continued from previous page)

owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.

In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.

If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.

If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.

A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.

(continues on next page)

32 Chapter 3. Licensing

Cask, Release 0.8.4

(continued from previous page)

Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.

12. No Surrender of Others' Freedom.

If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.

13. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.

14. Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.

If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.

Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
(continues on next page)

3.1. GNU General Public License 33

Cask, Release 0.8.4

(continued from previous page)

APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.

<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

(continues on next page)

34 Chapter 3. Licensing

Cask, Release 0.8.4

(continued from previous page)

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:

<program> Copyright (C) <year> <name of author>
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.

The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, your program's commands
might be different; for a GUI interface, you would use an "about box".

You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<http://www.gnu.org/licenses/>.

The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first, please read
<http://www.gnu.org/philosophy/why-not-lgpl.html>.

3.1. GNU General Public License 35

Cask, Release 0.8.4

36 Chapter 3. Licensing

CHAPTER 4

Index

The index provides a sorted list of all symbols, variables and concepts explained throughout Cask’s documentation:

• genindex

37

Cask, Release 0.8.4

38 Chapter 4. Index

Index

Symbols
–debug

cask command line option, 11
–dev

cask-init command line option, 8
–http-proxy <proxy>

cask command line option, 11
–https-proxy <proxy>

cask command line option, 11
–no-proxy <pattern>

cask command line option, 11
–path <directory>

cask command line option, 11
–proxy <proxy>

cask command line option, 11
–verbose

cask command line option, 11
–version

cask command line option, 11
%PATH%, 6

C
cask command line option

–debug, 11
–http-proxy <proxy>, 11
–https-proxy <proxy>, 11
–no-proxy <pattern>, 11
–path <directory>, 11
–proxy <proxy>, 11
–verbose, 11
–version, 11

cask-add-dependency
Emacs Lisp function, 17

cask-add-source
Emacs Lisp function, 18

cask-build
Emacs Lisp function, 19

cask-caskify
Emacs Lisp function, 20

cask-clean-elc
Emacs Lisp function, 19

cask-define-package-file
Emacs Lisp function, 19

cask-define-package-string
Emacs Lisp function, 19

cask-dependencies
Emacs Lisp function, 17

cask-dependency-path
Emacs Lisp function, 18

cask-development-dependencies
Emacs Lisp function, 17

cask-elpa-path
Emacs Lisp function, 16

cask-exec-path
Emacs Lisp function, 16

cask-file
Emacs Lisp function, 16

cask-files
Emacs Lisp function, 17

cask-find-dependency
Emacs Lisp function, 18

cask-has-dependency
Emacs Lisp function, 18

cask-init command line option
–dev, 8

cask-initialize
Emacs Lisp function, 16

cask-install
Emacs Lisp function, 19

cask-installed-dependencies
Emacs Lisp function, 17

cask-link
Emacs Lisp function, 18

cask-link-delete
Emacs Lisp function, 18

cask-linked-p
Emacs Lisp function, 18

cask-links
Emacs Lisp function, 18

39

Cask, Release 0.8.4

cask-load-path
Emacs Lisp function, 16

cask-outdated
Emacs Lisp function, 19

cask-package
Emacs Lisp function, 19

cask-package-description
Emacs Lisp function, 16

cask-package-name
Emacs Lisp function, 16

cask-package-version
Emacs Lisp function, 16

cask-path
Emacs Lisp function, 16

cask-remove-source
Emacs Lisp function, 18

cask-runtime-dependencies
Emacs Lisp function, 17

cask-setup
Emacs Lisp function, 16

cask-update
Emacs Lisp function, 19

cask-version
Emacs Lisp function, 20

CASK_EMACS, 7

D
depends-on

Emacs Lisp function, 12
development

Emacs Lisp function, 12

E
EMACS, 7
Emacs Lisp function

cask-add-dependency, 17
cask-add-source, 18
cask-build, 19
cask-caskify, 20
cask-clean-elc, 19
cask-define-package-file, 19
cask-define-package-string, 19
cask-dependencies, 17
cask-dependency-path, 18
cask-development-dependencies, 17
cask-elpa-path, 16
cask-exec-path, 16
cask-file, 16
cask-files, 17
cask-find-dependency, 18
cask-has-dependency, 18
cask-initialize, 16
cask-install, 19
cask-installed-dependencies, 17

cask-link, 18
cask-link-delete, 18
cask-linked-p, 18
cask-links, 18
cask-load-path, 16
cask-outdated, 19
cask-package, 19
cask-package-description, 16
cask-package-name, 16
cask-package-version, 16
cask-path, 16
cask-remove-source, 18
cask-runtime-dependencies, 17
cask-setup, 16
cask-update, 19
cask-version, 20
depends-on, 12
development, 12
files, 12
package, 12
package-file, 12
source, 13

EMACSLOADPATH, 8
environment variable

%PATH%, 6
CASK_EMACS, 7, 11
EMACS, 7, 11
EMACSLOADPATH, 8, 11
PATH, 9, 20
Path, 6

F
files

Emacs Lisp function, 12

P
package

Emacs Lisp function, 12
package-file

Emacs Lisp function, 12
PATH, 9, 20
Path, 6

S
source

Emacs Lisp function, 13

40 Index

	User guide
	Introduction — Why Cask?
	Installation
	Usage
	Cask Domain Specific Language
	Troubleshooting

	Developer guide
	Cask API
	Contributing to Cask

	Licensing
	GNU General Public License

	Index

