

CAS Bundle

A Central Authentication Service bundle for Symfony 4 & 5.

The Central Authentication Service (CAS) is an Open-Source single sign-on protocol for the web.
Its purpose is to permit a user to access multiple applications while providing their credentials only once.
It also allows web applications to authenticate users without gaining access to a user’s security credentials,
such as a password. The name CAS also refers to a software package that implements this protocol.

In order to foster a greater adoption of this bundle, it has been built
with interoperability in mind. It only uses PHP Standards Recommendations [https://www.php-fig.org/] interfaces.

	PSR-3 [https://www.php-fig.org/psr/psr-3/] for logging,

	PSR-4 [https://www.php-fig.org/psr/psr-4/] for classes autoloading,

	PSR-6 [https://www.php-fig.org/psr/psr-6/] for caching,

	PSR-7 [https://www.php-fig.org/psr/psr-7/] for HTTP messages (requests, responses),

	PSR-12 [https://www.php-fig.org/psr/psr-12/] for coding standards,

	PSR-17 [https://www.php-fig.org/psr/psr-17/] for HTTP messages factories,

	PSR-18 [https://www.php-fig.org/psr/psr-18/] for the HTTP client.

Requirements

PHP

PHP greater or equal to 7.2.5.

Symfony

The minimal required version of Symfony is 5.

Extensions

These PHP extensions are required:

	json

	libxml

	simplexml

Packages

In order to get the CAS bundle working, you will require some dependencies.

To give a maximum freedom to the users using, each required dependencies is
a well defined standardized PHP class.

See the PHP-FIG framework group [https://www.php-fig.org/] for more information.

	Dependency

	PSR

	Implementations

	Example package

	Logger

	PSR-3 [https://www.php-fig.org/psr/psr-3/]

	log-implementation [https://packagist.org/providers/psr/log-implementation]

	monolog/monolog [https://packagist.org/packages/monolog/monolog]

	Cache

	PSR-6 [https://www.php-fig.org/psr/psr-6/]

	cache-implementation [https://packagist.org/providers/psr/cache-implementation]

	symfony/cache [https://packagist.org/packages/symfony/cache]

	HTTP factories

	PSR-17 [https://www.php-fig.org/psr/psr-17/]

	http-factory-implementations [https://packagist.org/providers/psr/http-factory-implementation]

	nyholm/psr7 [https://packagist.org/packages/nyholm/psr7]

	HTTP Client

	PSR-18 [https://www.php-fig.org/psr/psr-18/]

	http-client-implementations [https://packagist.org/providers/psr/http-client-implementation]

	symfony/http-client [https://packagist.org/packages/symfony/http-client]

You are free to use any package you want, as long as they are implementing the proper requirement.

Installation

This package does not yet have a Symfony Flex recipe. Installation steps must be done manually.

Default configuration files will be copied in the dev environment except for the file defining
the services.

Step 1

The easiest way to install it is through Composer [https://getcomposer.org]

composer require drupol/cas-bundle

Step 2

Make sure that the bundle is enabled in config/bundles.php.

You should see a line that looks like the following:

drupol\CasBundle\CasBundle::class => ['all' => true],

Step 3

Recursively copy the content of the Resources/config folder in config/ folder.

cp -ar vendor/drupol/cas-bundle/Resources/config/* config/

Step 4

Register new firewall for CAS authentication, e.g.

firewalls:
 main:
 guard:
 provider: cas
 authenticators:
 - cas.guardauthenticator

Example of configuration:

security:
 firewalls:
 dev:
 pattern: ^/(_(profiler|wdt)|css|images|js)/
 security: false
 main:
 anonymous: true
 provider: cas
 switch_user: true
 pattern: ^/
 guard:
 authenticators:
 - cas.guardauthenticator
 access_control:
 - { path: ^/api, role: ROLE_CAS_AUTHENTICATED }

This example configuration example will trigger the authentication on paths starting
with /api, therefore make sure that at least such paths exists.

Feel free to change these configuration to fits your need. Have a look at
the Symfony documentation about security and Guard authentication [https://symfony.com/doc/current/security/guard_authentication.html].

Step 5

The default configuration of this bundle comes with a configuration for authenticating with a real
CAS server setup for testing and demo purposes at https://heroku-cas-server.herokuapp.com/cas/.

You should normally already be able to authenticate using the following credentials:

	User: casuser

	Password: Mellon

Modifying the configuration file is key in this bundle and requires some understanding
of the CAS protocol. See more on the dedicated Configuration page for that.

Step 6

The CAS protocol requires HTTPS on both side (client and server) in order
to communicate.

Whilst it is not possible to configure the behavior of the CAS server, it is
possible to configure the HTTP client in use in this bundle in order to relax
the requirement and to disable SSL checks when communicating from the client
to the server.

Warning

Keep in mind that the following is only for development setup, not for production.

On step 3, while copying the configuration files, the file config/packages/dev/cas_framework.yaml
is copied over. That file is useful when developing, it will disable some verifications
required when using SSL protocol.

Those particular settings are specific to the default HTTP client that is
installed, which is symfony/http-client [https://packagist.org/packages/symfony/http-client].

If you plan to change the HTTP client, those settings will most probably need
to be updated accordingly.

Configuration

Hereunder an example of configuration for CAS Bundle.

Tip

Based on this configuration, the behavior of the bundle can change.

base_url: https://heroku-cas-server.herokuapp.com/cas
protocol:
 login:
 path: /login
 allowed_parameters:
 - service
 - renew
 - gateway
 default_parameters:
 service: https://my-app/homepage
 serviceValidate:
 path: /p3/serviceValidate
 allowed_parameters:
 - format
 - pgtUrl
 - service
 - ticket
 default_parameters:
 format: JSON
 pgtUrl: https://my-app/casProxyCallback
 logout:
 path: /logout
 allowed_parameters:
 - service
 default_parameters:
 service: https://my-app/homepage
 proxy:
 path: /proxy
 allowed_parameters:
 - targetService
 - pgt
 proxyValidate:
 path: /proxyValidate
 allowed_parameters:
 - format
 - pgtUrl
 - service
 - ticket
 default_parameters:
 format: JSON
 pgtUrl: https://my-app/casProxyCallback

Usage

Step 1

Follow the Installation procedure.

Step 2

Configure the configuration files accordingly and the security of your Symfony application.

Step 3

If you try to reach a path that is protected by the firewall, you should be automatically
redirected to the CAS server login page.

Once you’re authenticated, the CAS server will redirect you back to the Symfony application
and continue the authentication process.

If the credentials that you provided were valid, then you’ll be authenticated.

Tests, code quality and code style

Every time changes are introduced into the library, Travis CI [https://travis-ci.org/drupol/cas-bundle/builds] and Github Actions [https://github.com/drupol/cas-bundle/actions]
run the tests written with PHPSpec [http://www.phpspec.net/].

PHPInfection [https://github.com/infection/infection] is also triggered used to ensure that your code is properly
tested.

The code style is based on PSR-12 [https://www.php-fig.org/psr/psr-12/] plus a set of custom rules.
Find more about the code style in use in the package drupol/php-conventions [https://github.com/drupol/php-conventions].

A PHP quality tool, Grumphp [https://github.com/phpro/grumphp], is used to orchestrate all these tasks at each commit
on the local machine, but also on the continuous integration tools (Travis, Github actions)

To run the whole tests tasks locally, do

composer grumphp

or

./vendor/bin/grumphp run

Here’s an example of output that shows all the tasks that are setup in Grumphp and that
will check your code

./vendor/bin/grumphp run
GrumPHP is sniffing your code!
Running task 1/13: SecurityChecker... ✔
Running task 2/13: Composer... ✔
Running task 3/13: ComposerNormalize... ✔
Running task 4/13: YamlLint... ✔
Running task 5/13: JsonLint... ✔
Running task 6/13: PhpLint... ✔
Running task 7/13: TwigCs... ✔
Running task 8/13: PhpCsAutoFixerV2... ✔
Running task 9/13: PhpCsFixerV2... ✔
Running task 10/13: Phpcs... ✔
Running task 11/13: PhpStan... ✔
Running task 12/13: Phpspec... ✔
Running task 13/13: Infection... ✔

Contributing

See the file CONTRIBUTING.md but feel free to contribute to this
project by sending Github pull requests.

Development

Index

 _static/minus.png

_static/file.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/down-pressed.png

_static/comment-close.png

_static/comment.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 CAS Bundle

_static/comment-bright.png

_static/ajax-loader.gif

