
cartogratree Documentation
Release 7.x-0.1-dev

Nic Herndon

Oct 03, 2020

Table of contents

1 Introduction 1
1.1 Project members . 1

2 Administrators 3
2.1 Installation . 3
2.2 Configuration . 4

3 Database setup 7
3.1 Chado . 7
3.2 Trees . 7
3.3 Layers . 10
3.4 Sessions . 12

4 Users 13
4.1 The Left Panel . 13
4.2 Select dataset sources to include . 15
4.3 Select and filter trees . 15
4.4 Select environmental data . 19
4.5 Get location information . 21
4.6 Navigation Controls . 21
4.7 Saving and loading saved searches and config . 21
4.8 Analyze data . 23

5 Developer Documentation 25
5.1 About . 25
5.2 Coding style specifications . 25
5.3 Project Structure . 26
5.4 Mapbox . 27
5.5 TreeSnap . 27
5.6 BIEN . 27
5.7 Adding a new Tree Dataset source . 28
5.8 Adding Geoserver Tileset layers . 28
5.9 Customizing icons on the map that represent the points . 28
5.10 Filtering using a Query Builder . 29
5.11 Updating the NodeJS API . 31
5.12 Extracting tree data . 31
5.13 Extracting layer data . 33

i

5.14 Adding and Removing layers from the map . 33
5.15 Adding layer filters for environmental layers . 34
5.16 Adding layer legend box HTML . 34
5.17 Generating analysis tables and passing to Sambada . 34
5.18 Saving and loading sessions . 35

6 CartograTree API Reference 37
6.1 CONFIGURATION . 37
6.2 ADMIN API FUNCTIONS . 37
6.3 REMOVE TREEGENES TREES . 37
6.4 TREES RELOAD . 38
6.5 TREES RELOAD STATUS . 38
6.6 CACHE CLEAR . 38
6.7 CONSOLIDATE DRYAD TREES FROM TREEGENES . 39
6.8 CONSOLIDATE TREESNAP SUBKINGDOMS . 39
6.9 CONSOLIDATE TREESNAP FAMILIES . 39
6.10 RELOAD TREESNAP . 40
6.11 FORCE RELOAD TREESNAP . 40
6.12 FORCE RELOAD BIENv4 TREES . 40
6.13 FORCE RELOAD BIENv4 ENDANGERED TAXA . 41
6.14 NORMAL USER API FUNCTIONS . 41
6.15 GET TREES . 41
6.16 GET TREES BASED ON QUERY . 42
6.17 GET TREES BASED ON SOURCE . 44
6.18 GET TREE BASIC INFORMATION . 45
6.19 GET TREE PHENOTYPES . 46
6.20 GET TREE GENOTYPES . 47
6.21 GET TREE MARKERS . 48
6.22 GET TREE PUBLICATIONS . 49
6.23 GET TREE TREESNAP COMPLETE . 51
6.24 GET SESSION DATA . 52
6.25 GET USER SESSION . 53
6.26 GET ALL USER SESSIONS . 54

ii

CHAPTER 1

Introduction

Forest trees are long-lived and immobile individuals that serve as ideal models to assess population structure and
adaptation to the environment. Despite the availability of comprehensive data, the researchers who study them are
challenged to integrate data describing genotype, phenotype, and the environment. Towards this goal, the web ap-
plication CartograTree was designed and implemented as an open repository and open-source analytic web-based
framework for all three. This framework allows query and analysis in a map-based interface to primarily enable as-
sociation mapping, ecological genomics, and landscape genomics, through high performance computing. The high
performance computing and hosted applications are connected to the user queried data via web services. Ontologies
implemented for sequence, phenotype, and environmental metrics facilitate these transactions.

1.1 Project members

• Nic Herndon

• Taylor Falk

• Emily Grau

• Sean Beuhler

• Peter Richter

• Risharde Ramnath

• Ronald Santos

• Jill Wegrzyn

1

cartogratree Documentation, Release 7.x-0.1-dev

2 Chapter 1. Introduction

CHAPTER 2

Administrators

2.1 Installation

Note: The following instructions assume that CartograTree will be installed on a Linux server.

2.1.1 CartograTree Drupal module

CartograTree is a module for Drupal 7 CMS, dependent on the Tripal 7.x-3.x, TripalGalaxy 7.x-1.x modules, and
GeoServer v2.11.2. Installation instructions for Drupal 7, Tripal, and GeoServer are available online. TripalGalaxy
can be installed by cloning it from GitHub, in the sites/all/modules directory of Drupal, and then enabling it
with Drupal shell (drush).

$ git clone https://github.com/tripal/tripal_galaxy.git
$ drush en tripal_galaxy

Once these dependencies are installed, you can proceed with installing the CartograTree module, in the sites/
all/modules directory of Drupal.

$ git clone https://gitlab.com/TreeGenes/CartograTree.git
create cartogratree directory and copy the module contents in it
$ mkdir cartogratree
$ mv CartograTree/drupal_module/* cartogratree/
remove the other CartograTree components
$ rm -rf CartograTree/
enable the module
$ drush en cartogratree

3

https://www.drupal.org/docs/7/install
https://tripal.readthedocs.io/en/latest/user_guide/install_tripal.html
http://docs.geoserver.org/2.11.2/user/installation/index.html#installation

cartogratree Documentation, Release 7.x-0.1-dev

2.1.2 Library dependencies

2.1.3 Mapbox

CartograTree uses Mapbox, a mapping software, for creation of its base map and to host some of its layers as tilesets.
CartograTree uses the MapboxGL JS library to add layers and data to the map.

The MapBox GL JS API reference can be found here: https://docs.mapbox.com/mapbox-gl-js/api/

To use Mapbox, you first need to create an account and get an access token.

2.1.4 CartograTree API

A final dependency for the CartograTree Drupal module is the CartograTree API. This in turn depends on NodeJs
v8.11.2, NPM v5.6.0, and PM2. This API also uses the modules mem-cache, cors, pg, body-parser, and response-
time. To install the CartograTree API follow these steps:

create a directory for this API
$ mkdir -p cartogratree/api
copy the API files into in
$ git clone https://gitlab.com/TreeGenes/CartograTree.git
$ mv CartograTree/NodeJsAPI/* cartogratree/api/
remove the other CartograTree components
$ rm -rf CartograTree/
replace the values for host, port, database, user, and password in query.js
install the express module
$ cd cartogratree/api
$ npm install express pg --save
install PM2 and run it as a service
$ sudo npm install pm2@latest -g
$ sudo pm2 startup systemd
confirm that it's running
$ sudo systemctl status pm2-root.service
start CartograTree API and add it to PM2's process list
$ pm2 start cartogratree_api
to [stop|start|restart|get info] run:
$ pm2 [stop|start|restart|info] cartogratree_api

2.2 Configuration

Go to your Drupal website and navigate to admin/cartogratree/settings. From this page you can set up
the URLs for the GIS and API servers (admin/cartogratree/settings/servers/edit), add|edit|delete
groups and subgroups for organizing the layers, and add|edit|delete|set access permissions for layers. For environ-
mental layers, you can also get the values at the locations of the trees.

2.2.1 Groups

For groups, two values are required: Group name and Group rank. The Group name will be displayed on
CartograTree page, and the Group rank determines the location in the list for this gror up (the lower the rank the
higher in the list).

4 Chapter 2. Administrators

https://docs.mapbox.com/mapbox-gl-js/api/

cartogratree Documentation, Release 7.x-0.1-dev

2.2.2 Subgroups

For subgroups, only one value is required: Subgroup name. Once created, a subgroup can be added to one or more
groups. The Subgroup name will be displayed on CartograTree page, based on the rank assigned in the group.

2.2.3 Layers

Once the groups and subgroups are defined, the layers can be added to CartograTree. The layer page prompts for the
following values:

• Human-readable name: this is the name shown to the CartograTree users. Make sure it is descriptive, and
uniquely identifies the layer.

• Machine name: this is the name used by the GIS server.

• URL: the location from where this layer was downloaded.

• Trees layer[yes|no]: tree layers are shown on top of the environmental layers.

• Group name and Subgroup name, discussed above.

• Layer rank: the order in which layers within a subgroup are listed. If from worldclim for example, then the
layer ranks will range from 1-12 corresponding with the months January - December.

• Fields: which fields from this layer are exposed to the users (described below).

The machine name is defined by you when you add and publish the layer to geoserver. For adding mapbox layers log
in to your mapbox account and go to: https://studio.mapbox.com/tilesets/. Convert your layer to one of the accepted
formats, add it as a tileset, then go to https://studio.mapbox.com/, select the style of your base map or create a new
one. Then click on the ‘Add Layer’ button at the top left of the screen and select your tileset as the source.

Fields

• Field name: this is the name returned by the GIS server.

• Display name: this is the name shown to the users.

• Filter[yes|no]: whether to allow the users to filter the data based on this field’s values.

• Filter type[continuous|discrete]: the types of values present in this field.

• Precision used with continuous values

• Mask value: value returned by layer that should be replaced.

• Mask display: text shown to user for masked values.

• Pop-up whether this field should be shown in the pop-up window, when the user clicks on the map.

• Field rank: the order in which fields within a layer are listed.

Layer permissions

Using this form, administrators can control which users or Drupal roles can access each layer.

Get layer values

Using this form, administrators can extract the values from an environmental layer at the locations with geo-referenced
trees, and then save these values in the database.

2.2. Configuration 5

https://studio.mapbox.com/tilesets/
https://studio.mapbox.com/

cartogratree Documentation, Release 7.x-0.1-dev

6 Chapter 2. Administrators

CHAPTER 3

Database setup

CartograTree and its API depend on several tables and materialized views. Their schemas are shown below. If the
images are too small and hard to see, right click -> ‘View Image’ will give you the full image resolution.

3.1 Chado

Chado is a db schema optimized for genomic data. CartograTree makes use of several chado tables to store and receive
its data. Read about it more here: http://www.gmod.org/wiki/Chado_Manual

3.2 Trees

3.2.1 ct_trees_all_view

This is the main view used to populate the map with tree data. It’s a view that is created from joining multiple tables
to allow for greater read access speed.

7

http://www.gmod.org/wiki/Chado_Manual

cartogratree Documentation, Release 7.x-0.1-dev

3.2.2 ct_trees

This is the table which is used by ct_trees_all_view to cross reference the trees with their genomic and phenotypic
data. It contains all the trees.

3.2.3 chado.ct_view

This is the main view that houses the trees submitted through TPPS. It uses join conditions on tables such as
chado.stock and chado.stockprop to build each record.

8 Chapter 3. Database setup

cartogratree Documentation, Release 7.x-0.1-dev

3.2.4 chado.new_geno_view

This view contains tree genotype records.

3.2.5 chado.new_pheno_view

This view contains tree phenotype records.

3.2. Trees 9

cartogratree Documentation, Release 7.x-0.1-dev

3.2.6 chado.plusgeno_view

This view contains tree publication records.

3.3 Layers

The layers tables are important for the administration side because they are what decide which layers are available and
useable to the user.

10 Chapter 3. Database setup

cartogratree Documentation, Release 7.x-0.1-dev

3.3.1 cartogratree_layers

3.3.2 cartogratree_layer_permissions

3.3.3 cartogratree_fields

3.3.4 cartogratree_groups

3.3.5 cartogratree_subgroups

3.3.6 cartogratree_groups_subgroups

3.3. Layers 11

cartogratree Documentation, Release 7.x-0.1-dev

3.4 Sessions

Session tables must also be created to store logged in user and anonymous user sessions.

3.4.1 ct_sessions

3.4.2 ct_user_sessions

Ones all these tables and views have been created in your PostgreSQL databse, then go to the API directory of the
project and with your favorite text editor edit query.js

Input the necessary values for the following configuration fields in query.js

const conf = {
host: <host>,
port: <port>,
database: <database_name>,
user: <username>,
password: <password>,
...

};

12 Chapter 3. Database setup

CHAPTER 4

Users

4.1 The Left Panel

The action panel to interact with the map and trees is located to the left of the screen. At the top lies the button to
expand the panel to show the environmental layers panel. After that there are two buttons: the RESET MAP button,
which resets the map to its original state on load and the CLOSE TREE VIEW button, which closes the tree view
that is opened when a tree is clicked. The section after that shows the map summary, which has statistics for the data
selected and shown on the map. At the bottom of the left panel is a collapse button, which hides the majority of the
action panel increasing the size of the map.

13

cartogratree Documentation, Release 7.x-0.1-dev

14 Chapter 4. Users

cartogratree Documentation, Release 7.x-0.1-dev

4.2 Select dataset sources to include

CartograTree enables the analysis of trees from three data sources: TreeGenes, TreeSnap, and DataDryad. The user
can choose which trees from which datasets they want on the map, or any combination of them. When applying filters
only trees from selected datasets are effected.

To contribute and submit your own data for TreeGenes, you can use TPPS: https://treegenesdb.org/tpps. This is a
module that streamlines the submission process for plant related studies. The documentation for TPPS can be found
here: https://tpps.readthedocs.io/

You can also contribute to TreeSnap by downloading the app and submitting pictures of the trees that you find: https:
//treesnap.org/.

4.3 Select and filter trees

Users can select from the left pane the trees to be included in an analysis. CartograTree has tens of thousands of trees,
and it will only continue to grow. To only look at the trees of interest to you, you can filter the trees on the map by
taxonomy, publication, genotype, and/or phenotype.

4.2. Select dataset sources to include 15

https://treegenesdb.org/tpps
https://tpps.readthedocs.io/
https://treesnap.org/
https://treesnap.org/

cartogratree Documentation, Release 7.x-0.1-dev

If you want to narrow your search even more, you can make use of the combination filters offered by making use of
the AND/OR switches and the ADD RULE and ADD GROUP buttons. Resetting the filter removes all the currently
active filters and shows all trees available on the map again.

16 Chapter 4. Users

cartogratree Documentation, Release 7.x-0.1-dev

The operation that is currently selected for each group is colored blue. The selection condition available for each
property is EQUAL and NOT EQUAL. After clicking Apply Filters, the map should move to the area of interest where
the filtered trees are located.

Hovering over a tree icon reveals how many trees there are at that location. Clicking on a tree icon opens a map
overlay located at the top right of the map. This map overlay shows information about the currently selected tree and
any images that are present for that tree. Clicking on the ADDITIONAL INFO button creates a popup which shows
the publication, markers and phenotypes recorded for the tree. At the bottom is a list of the trees located at this area.
You can click on any of the tree IDs on the list to view information for that tree. There is also an ADD TREE button
which puts the tree in the list of trees that will be part of the analysis.

4.3. Select and filter trees 17

cartogratree Documentation, Release 7.x-0.1-dev

18 Chapter 4. Users

cartogratree Documentation, Release 7.x-0.1-dev

4.3.1 Filtering by passing parameters to URL

You can also filter the trees on load of the map by adding additional parameters to the URL. The base URL for
CartograTree is: https://treegenesdb.org/cartogratree If a valid session has been provided then the URL is: https:
//treegenesdb.org/cartogratree?session_id=<session_id>

The additional parameters that you can pass include TGDR study accession, species, genus, and family. Passing
multiple of these parameters will result in a conjunction of the options. An example filter by passing URL ar-
guments is: https://treegenesdb.org/cartogratree?accession=TGDR002 https://treegenesdb.org/cartogratree?species=
Abies%20alba

4.4 Select environmental data

Users can also select from the left pane, the environmental values to be included in an analysis, by turning environ-
mental layers on or off. The environmental layers are layered on top of each other, with the latest layer placed on top
of previously selected layers. Clicking on any random point on the map with at least one active layer will show the
environmental values for that location.

4.4. Select environmental data 19

https://treegenesdb.org/cartogratree
https://treegenesdb.org/cartogratree
https://treegenesdb.org/cartogratree
https://treegenesdb.org/cartogratree?accession=TGDR002
https://treegenesdb.org/cartogratree?species=Abies%20alba
https://treegenesdb.org/cartogratree?species=Abies%20alba

cartogratree Documentation, Release 7.x-0.1-dev

20 Chapter 4. Users

cartogratree Documentation, Release 7.x-0.1-dev

Some enviornmental layers contain additional filters which will also be seen under the on/off toggle button. For
example, range maps may have color options that allow you to color each range map with a different color as a way
to differentiate between multiple selected layers. Some environmental layers contain a year range slider filter which
allows you to filter between a starting year and ending year. For those that can filter by year, you will see a range slider
in which the left select represents the starting year and while the right select represents the ending year. Adjusting
these filters will filter the data in realtime.

4.5 Get location information

Users can display the values at a particular location on the map, by clicking on the map at that location. The pop-up
window, will display the trees present at that location (if there are any), and the values from the environmental layers
selected.

At zoomed out levels the trees are clustered and are represented by circles. The color and size of the circle indicates
how many trees there are in the cluster. The user can click on a cluster to zoom in and view the individual trees.

4.6 Navigation Controls

You can use arrow keys to move across the zoom, and the scroll wheel to zoom in. Double clicking on any point in the
map will also zoom you in. There also exists navigation controls at the top right of the map which gives you control
of the zoom level, the bearing and the pitch of the map.

4.7 Saving and loading saved searches and config

The filters applied, layers activated, trees chosen and current state of the map can be saved to go back to at a later date
by clicking the SAVE SESSION button located at the bottom of the left panel. If the save is successful, a popup will

4.5. Get location information 21

cartogratree Documentation, Release 7.x-0.1-dev

appear with a link with a session_id supplied for CartograTree which you can follow at anytime to go back to this state
of the map. Verified users that are logged in to their account can also save a session to their account with a title and
comment.

22 Chapter 4. Users

cartogratree Documentation, Release 7.x-0.1-dev

4.8 Analyze data

Logged in users have permission to perform landscape genomics analysis. The user can select the dataset to be used,
select/deselect specific trees, what publications to include, and which environmental variables to be sent for analysis.
In the final stage before confirmation, they will be shown histograms related to the genotypic data associated with
each tree and the user can select and filter out data they would like to exclude. The analysis will be performed using
Sam𝛽ada and the user will be notified of the results after the anlysis is done.

4.8.1 Galaxy Workflows

4.8.2 How do I select trees?

When you click on a tree icon on the map, a detailed view pops up to the right of the screen. On the bottom of this
map overlay, there is an “Add All” button to add all the trees at this location for analysis, and an “Add Tree” button
next to the tree ids to add individual trees.

4.8. Analyze data 23

cartogratree Documentation, Release 7.x-0.1-dev

4.8.3 How do I select environmental data?

You can view environmental layers using the environmental layers panel, then clicking on any point in the map when
any of the environmental layers active shows the value at that location for the layers active. For analysis, you can
select the environmental variables you want based on the layers active.

4.8.4 How long does it take?

Depends on the size of the dataset you selected. Can be anywhere from a couple hours to days.

4.8.5 How do I know when it’s done?

You’ll receive an email notification.

4.8.6 Example Input

Name ENV1 ENV2 ENV3
ID1 46 89 99
ID2 10 2 77
ID1 46 89 99
ID2 10 2 77
ID1 46 89 99
ID2 10 2 77

4.8.7 Example Output

24 Chapter 4. Users

CHAPTER 5

Developer Documentation

5.1 About

CartograTree was built with CSS3, HTML5, JavaScript, PHP 7.0.29, and PSQL 9.2.15. The libraries and frameworks
used include: Mapbox GL JS 1.0.0, Bootstrap 4.0.0, and JQuery 2.2.4. You should also be familiar with Git to commit
and push changes. Understanding Mapbox and Drupal is a good starting point before diving deep into the project.

If you want to read about the motivations and future plans for the project read this paper: https://docs.google.com/
document/d/1y4-KwPzZfSC6bzHZlhFI627cLPwfz0H3ogZUb_XQeMs

Before anything else, make sure you have sudo access in the server where CartograTree is running and admin privileges
in the Drupal website where CartograTree is being developed. Although not required these extra privileges will make
development much easier. You should have a GitLab account to be able to contribute to the codebase, Geoserver
and Mapbox accounts to view the layers, a TreeSnap account with a valid API key to request TreeSnap data, and an
account in the Drupal website where CartograTree is installed to be able to log in and test the changes.

5.2 Coding style specifications

It helps to maintain consistency in code to make maintainability of the codebase much easier. Some coding guidelines
for developing CartograTree:

• Tabs are 4 spaces, indent using tabs not spaces

• Starting curly brace should be in the same line, while ending curly brace in their own line

• Don’t add in-line comments for the sake of adding comments, only do so if an explanation is necessary. The
names of functions or variables should be enough in some cases, if they were named appropriately.

• HTML ids and classes delimited by ‘-‘

• In PHP only use single quotes unless necessary

• Try to use Tripal API functions instead of Drupal ones

• In JavaScript single and double quotes are interchangeable, but try to keep it consistent

25

https://docs.google.com/document/d/1y4-KwPzZfSC6bzHZlhFI627cLPwfz0H3ogZUb_XQeMs
https://docs.google.com/document/d/1y4-KwPzZfSC6bzHZlhFI627cLPwfz0H3ogZUb_XQeMs

cartogratree Documentation, Release 7.x-0.1-dev

• Only use ternary operators if it could fit in a single line or less

• Class names should be capitalized

• Variables

– Should describe what the variable is

– No one letter variable names unless used for loops or temporary variables

– Should be short and sweet

– For PHP and NodeJS we use underscore, and for front-end JavaScript we use camelCase

– Try to avoid using global variables

• Functions

– Don’t repeat yourself

– Don’t make functions too long

– Ideally a function should only do one thing

– Try to be as descriptive in the name as possible, but not too long that it becomes a pain to type or refer
back to

– For PHP and NodeJS we use underscore, and for front-end JavaScript we use camelCase

– Minimize vertical distance for functions such that functions that use each other are close to each other
in the top-down view of the program

• Any tokens or API keys should not be exposed to the public and ideally should be stored in a configuration file
or as environmental variables

5.3 Project Structure

- drupal_module
- cartogratree.info
- cartogratree.install
- js

- main.js
- map.js

- styling
- main.css

- includes
- cartogratree_admin_get_environmental_values.js
- cartogratree.admin.inc
- cartogratree.user.inc

- theme
- templates

- page--cartogratree.tpl.php
- resources_imgs
- trees_imgs
- ui_icons_imgs

- cartogratree_theme.inc
- cartogratree.module

- NodeJSAPI
- cartogratree_api.js
- query.js
- routes.js

(continues on next page)

26 Chapter 5. Developer Documentation

cartogratree Documentation, Release 7.x-0.1-dev

(continued from previous page)

- controllers
- treeController.js
- userController.js
- oldController.js

- package.json
- README.md

- galaxy_workflows
- LICENSE
- README.md
- CHANGELOG.md

The cartogratree–page.tpl.php contains the basic HTML layout of the page. The map.js file contains the majority of
the code for controlling the map and any map interactions. The cartogratree.module is the heart of the Drupal program
and controls what happens on page load.

Modifying any changes to the files will usually allow you to view the effects on refresh of the page, but in the event it
doesn’t try clearing the cache by typing the following command in the terminal:

drush cc all

5.4 Mapbox

Mapbox is a platform for hosting and editing map styles. It also offers libraries and frameworks for cre-
ating web-based mapping applications. CartograTree uses Mapbox GL JS to display its base map and
serve some of its layers. Cartogratree’s base map along with the composited layers can be found here:
https://api.mapbox.com/styles/v1/snkb/cjrgce15209bi2spi9f2ddvch.html?fresh=true&title=true&access_token=
pk.eyJ1Ijoic25rYiIsImEiOiJjanFtZXpkbmkzc2cyM3hsYjJ3dDhtYnp5In0.suo54ZuchrNHspBirQ8drA#4.05/40.54/
-96.66

In case you’re stuck on something Mapbox related a good place to start is the documentation, which you can find here:
https://docs.mapbox.com/mapbox-gl-js/api/

5.5 TreeSnap

CartograTree works in collaboration with TreeSnap and their mobile application which relies on citizen scientists
to submit trees they encounter in nature. To use the TreeSnap API you must first create a TreeSnap account and
get a bearer token which will be used to authenticate API requests. Create a TreeSnap account then go to https:
//treesnap.org/developer to generate your tokens for use. Documentation for the TreeSnap API and what data you can
request can be found at: https://github.com/statonlab/Treesnap-website/wiki/Observations-Web-Service

5.6 BIEN

CartograTree also works in collaboration with the Botanical Information and Ecology Network’s dataset. The BIEN
working group has been working since 2008 toward bringing together disparate networks of botanical researchers and
integrating global botanical observation data. This observational data is pulled into Cartogratree for further research
and analysis. Please have a look at Cartogratree’s API function list for more information on related BIENv4 features.
Currently Cartogratree supports two main observation sub datasets from BIENv4 - tree observations and endangered
taxa.

5.4. Mapbox 27

https://api.mapbox.com/styles/v1/snkb/cjrgce15209bi2spi9f2ddvch.html?fresh=true&title=true&access_token=pk.eyJ1Ijoic25rYiIsImEiOiJjanFtZXpkbmkzc2cyM3hsYjJ3dDhtYnp5In0.suo54ZuchrNHspBirQ8drA#4.05/40.54/-96.66
https://api.mapbox.com/styles/v1/snkb/cjrgce15209bi2spi9f2ddvch.html?fresh=true&title=true&access_token=pk.eyJ1Ijoic25rYiIsImEiOiJjanFtZXpkbmkzc2cyM3hsYjJ3dDhtYnp5In0.suo54ZuchrNHspBirQ8drA#4.05/40.54/-96.66
https://api.mapbox.com/styles/v1/snkb/cjrgce15209bi2spi9f2ddvch.html?fresh=true&title=true&access_token=pk.eyJ1Ijoic25rYiIsImEiOiJjanFtZXpkbmkzc2cyM3hsYjJ3dDhtYnp5In0.suo54ZuchrNHspBirQ8drA#4.05/40.54/-96.66
https://docs.mapbox.com/mapbox-gl-js/api/
https://treesnap.org/developer
https://treesnap.org/developer
https://github.com/statonlab/Treesnap-website/wiki/Observations-Web-Service

cartogratree Documentation, Release 7.x-0.1-dev

5.7 Adding a new Tree Dataset source

The tree dataset sources on the map are loaded as GeoJSON files received from an API endpoint. GeoJSON is a
format for encoding a variety of geographic data structures. The GeoJSON returned must be a list of features with
valid longitude and latitude coordinates and a unique id. All of the trees are stored in a single table where each
record has a <source_id> column. CartograTree currently supports three sources, where TreeGenes = 0, TreeSnap
= 1, DataDryad = 2 and BIEN = 3 for source ids. Currently the dataset layer, which encompasses the three sources
mentioned beforehand, is composed of three layers. The first layer, which is the outermost layer, is the cluster text
layer. This displays how many trees there are in this cluster. The 2nd top most level layer is the cluster layer itself,
which is just a circle symbol on the map with varying sizes and colors. The last layer is for the individual points which
are represented by tree icons and only appear when the user is zoomed in.

An example GeoJSON feature collection array

{"type":"FeatureCollection",
"features":[

{"type":"Feature","properties":{"icon_type":1,"id":"ABAL0001"},"geometry":{
→˓"type":"Point","coordinates":[10.8377888,45.9715095]}},

{"type":"Feature","properties":{"icon_type":1,"id":"ABAL0002"},"geometry":{
→˓"type":"Point","coordinates":[10.8380944,45.9715108]}}

]
}

The <id> in the properties object identifies a single tree. The <icon_type> property signifies which icon the tree will
have displayed on the map to represent it. Currently there are six icon types, where exact/approximate refers to the
confidence level of the location of the tree.

0 = Angiosperm exact
1 = Gymnosperm exact
2 = Angiosperm approximate
3 = Gymnosperm approximate
4 = TreeSnap angiosperm
5 = TreeSnap gymnosperm

To read more about GeoJSON and how to optimize it for large datasets: https://docs.mapbox.com/help/
troubleshooting/working-with-large-geojson-data/

5.8 Adding Geoserver Tileset layers

Our latest version of Cartogratree uses a mixture of both geoJSON layers and Geoserver tileset layers to display
datasets. For example, the new BIEN layer is a Geoserver tileset layer. In order to add Geoserver tileset layers, it is
important to name it and also append ‘_geoserver_tileset’ within the Javascript code particularly for the global variable
datasetKey which holds the corresponding source_ids of each layer and the datasetGeoserverLayerConfig which holds
the raw Geoserver layer name for the dataset and other required settings. It is also important to edit the theme file
page–cartogratree.tpl.php which contains the dataset toggle buttons and set an id for the new dataset in the form of
<name>_geoserver_tileset-data.

5.9 Customizing icons on the map that represent the points

The different icon_types differentiate between approximate and exact coordinates of the georeferenced trees, the plant
group that the tree belongs to, as well as the data source. TreeSnap’s trees implement some sort of coordinate obsfu-
cation as some of the trees recorded are on private property.

28 Chapter 5. Developer Documentation

https://docs.mapbox.com/help/troubleshooting/working-with-large-geojson-data/
https://docs.mapbox.com/help/troubleshooting/working-with-large-geojson-data/

cartogratree Documentation, Release 7.x-0.1-dev

To add your own icons, first the icons must be chosen. You can either choose from some of mapbox’s icons and
add them to your base map using mapbox studio, or add your own images to the project directory and linking them
yourself.

Adding your own icons to mapbox

map.loadImage(<image_path>,
function (error, <image_var_name>) {

map.addImage(<image_name_to_reference>, <image_var_name>);
}

)

To match the trees with their icon a mapbox matching expression is used.

[
"match",
["get", <icon_property_name>],
<icon_property_value>,
<image_name_to_reference>,
<icon_property_value>,
<image_name_to_reference_2>,
<default_image_name_to_reference>,

];

If keeping the trees intact, then you can simply replace the images located in the theme/templates/
trees_imgs directory with your new tree images.

5.10 Filtering using a Query Builder

The main.js file located in the /js directory contains the starter code for the filter options available to the user. The
ruleBasic variable below indicates what is the first filter option shown to the user on load. The <condition> denotes
the starting selected condition for this query. The <condition> parameter can either be ‘AND’ or ‘OR’.

var rulesBasic = {
condition: 'AND',
rules: [

{
id: 'family',
operator: 'equal',

},
]

};

The filtersList variable contains all of the filters declared and that are available to the user right now. Each filter is
composed of several properties. The <id> indicates the field of the selection and must be unique, the <label> is the
name shown to the user, <input> is the type of form being used. The <values> is the available options for this select
dropdown, it’s composed of key/value pairs. This is dynamically populated on page load. The <operators> is the array
of clauses that is available for this option.

var filtersList = [
{

id: 'family',
label: 'Family',
type: 'string',
input: 'select',

(continues on next page)

5.10. Filtering using a Query Builder 29

https://labs.mapbox.com/maki-icons/

cartogratree Documentation, Release 7.x-0.1-dev

(continued from previous page)

values: {},
operators: ['equal', 'not_equal']

},
...

]

To get the filters chosen by the user we select the element that contains the filter form and call the queryBuilder
function: $(‘#builder’).queryBuilder(‘getRules’); This returns a json object, which we pass to the API and the API
parses it, generates a sql query, then returns back the result of the query.

An example json that can result from a filter selection

{
"condition": "AND",
"rules": [
{

"id": "family",
"field": "family",
"type": "string",
"input": "select",
"operator": "equal",
"value": "Pinaceae"

},
{

"condition": "AND",
"rules": [

{
"id": "genus",
"field": "genus",
"type": "string",
"input": "select",
"operator": "equal",
"value": "Pinus"

},
{
"id": "marker_type",
"field": "marker_type",
"type": "string",
"input": "select",
"operator": "equal",
"value": "SNP"

}
]

}
]

}

5.10.1 Parsing

The filters chosen by the user can be as deep as the user wants, so a recursive function that simulates a depth first
search approach is used to parse the resulting json object. We go through each filter, and if we encounter a filter that is
an object we go one level deeper. We use paranthesis to separate between groups of filters.

The resulting query from the example json above would look like:

30 Chapter 5. Developer Documentation

cartogratree Documentation, Release 7.x-0.1-dev

SELECT * FROM some_table WHERE (family = 'Pinaceae') AND (genus = 'Pinus' AND marker_
→˓type = 'SNP');

5.11 Updating the NodeJS API

The NodeJS express API is composed of four major parts. The cartogratree_api.js is the main file, declares the
necessary dependency modules and starts everything. Then there’s the routes.js file which defines all the current
available API endpoints. Adding a new endpoint is fairly trivial. Then there’s the query.js file which defines the
connection to the database and what gives the API access and ability to get data from the tables.

app.<operation>('/cartogratree/api/<version>/<path>', <controller>.<function_name>);

Here the <operation> refers to GET, POST, PUT, etc operations. The <version> refers to the API’s current version,
right now CartograTree is at version 2. This version number should remain a whole number just by convention.

Lastly, there are the controllers which receive the requests handled by the routes. The controllers must be first imported
into the routes.js file to be able to refer to them. The general format for a controller function that handles an API call
is:

exports.<function_name> = function(req, res, next) {
do stuff
res.status(<status_code>).json(<some_result>);
return;

}

To see your changes take effect, you need to restart the API. If using systemd to manage the api:

The command: sudo systemctl restart cartogratree_api restarts the API.

To see the current status of the API do: sudo systemctl status cartogratree_api

If you are using the node command:

The command: node cartogratree_api & will start the server for the API in the background

To stop it: Find the process id of the the program using ps aux | grep node and kill it using kill -9
<node_process_id>

Using node to run the server is recommended as it allows you to see a more detailed error message.

To view debugging output: node cartogratree_api on the console.

5.12 Extracting tree data

When a user clicks on a point, we can grab the features within that click point.

map.on('click', function (e) {
//create a bounding box around the clicked point, to be used to query for

→˓features/trees around the bbox
var treesBbox = [

[e.point.x, e.point.y],
[e.point.x, e.point.y]

];

var features = map.queryRenderedFeatures(treesBbox, {

(continues on next page)

5.11. Updating the NodeJS API 31

cartogratree Documentation, Release 7.x-0.1-dev

(continued from previous page)

layers: [<layer_names>]
});

Using the features, we can find the properties of the points at the clicked location and from the properties find the id of
the trees. Then we make an API call where we pass in the tree_id to get the information we need and want to display.
For TreeSnap trees, we need to also communicate with their API to get the data and images we need.

This is what a typical result looks like when querying features of a clicked point

[
{
"geometry": {

"type": "Point",
"coordinates": [

-122.97992706298828,
40.19228260049829

]
},
"type": "Feature",
"properties": {

"id": "FS0085",
"icon_type": 1

},
"layer": {

"id": "tree-points",
"type": "symbol",
"source": "trees",
"filter": [

"!",
[
"has",
"point_count"

]
],
"layout": {

"icon-image": [
"match",
[

"get",
"icon_type"

],
0,
"angiosperm_ex",
1,
"gymnosperm_ex",
2,
"angiosperm_app",
3,
"gymnosperm_app",
4,
"treesnap_angio",
5,
"treesnap_gymno",
"angiosperm_ex"

],
"icon-size": 0.04,
"icon-allow-overlap": true

(continues on next page)

32 Chapter 5. Developer Documentation

cartogratree Documentation, Release 7.x-0.1-dev

(continued from previous page)

}
},
"source": "trees",
"state": {}

},
...

]

Here the tree_id of the first point in the clicked area is “FS0085”. After making a call to the API and passing in this
tree_id this should be the response

{
"uniquename":"FS0085",
"genus":"Pinus",
"species":"Pinus balfouriana",
"subkingdom":"gymnosperm",
"family":"Pinaceae",
"latitude":40.1922833333333,"longitude":-122.979933333333,
"coordinate_type":0,
"source_id":0,
"icon_type":1,
"tree_num":1486
}

5.13 Extracting layer data

Mapbox layers are composited into the map, so we can get the environmental data at a clicked point just by looking at
the properties of the layers around the clicked point. For geoserver layers we must get the data using GetFeatureInfo.
For more information: https://docs.geoserver.org/latest/en/user/tutorials/GetFeatureInfo/index.html

Getting the environmental data around a clicked point is done by making an ajax call to an endpoint similar to this
one:

https://tgwebdev.cam.uchc.edu/geoserver/wms?SERVICE=WMS&VERSION=1%2E3%2E0&REQUEST=GetFeatureInfo&FORMAT=image%2Fpng&TRANSPARENT=true&QUERY_LAYERS=<layer_name>&LAYERS=<layer_name>&INFO_FORMAT=application%2Fjson&I=128&J=128&WIDTH=256&HEIGHT=256&CRS=EPSG%3A4326&STYLES=&BBOX=[[X1,
Y1], [X2, Y2]]

Where <layer_name> is the name of the layer that takes a form of a string BBOX is the bounding box and takes the
form of an array

5.14 Adding and Removing layers from the map

The layers of CartograTree are hosted in both geoserver and mapbox. Adding raster layers to the base map on mapbox
doesn’t seem to give good results, at least not from the layers we have, and the most success seems to come from
converting the layer to GeoJSON using something like QGIS and generating tile sets based on the GeoJSON. To add
a mapbox layer to the map that has already been composited to the base map, we merely need to change the layer’s
visibility settings.

Mapbox has a library for converting GeoJSON data to vector tilesets: https://github.com/mapbox/tippecanoe

To learn more about combining layers: https://docs.mapbox.com/help/troubleshooting/mapbox-gl-js-performance/
#combine-layers.

5.13. Extracting layer data 33

https://docs.geoserver.org/latest/en/user/tutorials/GetFeatureInfo/index.html
https://github.com/mapbox/tippecanoe
https://docs.mapbox.com/help/troubleshooting/mapbox-gl-js-performance/#combine-layers
https://docs.mapbox.com/help/troubleshooting/mapbox-gl-js-performance/#combine-layers

cartogratree Documentation, Release 7.x-0.1-dev

5.15 Adding layer filters for environmental layers

We’ve introduced 2 available environmental layer filters which use different concepts.

1. Color filters

2. Year filters.

To enable color filters for environmental layers, you can visit the Cartogratree Admin UI at admin/cartogratree/settings
and either create or edit a layer. You can enable the color filter by checking the checkbox labeled ‘Allow user to
select/change colors via the map interface?’. This will add a color picker user interface option when a user selects an
environmental layer and allow users to change the color of this layer in realtime.

To enable year filters for environmental layers, visit the Cartogratree Admin UI and add or edit a layer. You will see
a checkbox labeled Allow user to filter by year range via the map interface?. Make sure to select this checkbox and
also ensure that you set the additional fields such as Year range geoserver parameter, Year range starting year and Year
range ending year. The year range geoserver parameter is the paramater used to filter the year range and is usually
specific to the fields embedded in a layer (within Geoserver). Currently this filter is only compatible with year data
that is stored as integers and will not work properly if the field is saved as a string in Geoserver. The start and ending
year field limits the UI slider to only select years between these years.

5.16 Adding layer legend box HTML

You can also provide custom information for each environmental layer which will then be available to users by
utilizing the Layer Legend HTML field. You can access this field by going to the Cartogratree Admin UI at ad-
min/cartogratree/settings and adding or editing a layer. You should be able to see the Layer Legend HTML text area.
You can enter plain text or HTML text in this text area. Users will be able to view this information by clicking on the
blue info (i) icon when they enable a layer.

5.17 Generating analysis tables and passing to Sambada

Marker type and environmental value tables are created, written to a file and submitted to a galaxy workflow to perform
analysis. Sambada is the framework used for landscape genomics analysis. To generate the marker types table, which
will be entirely composed of SNP, we get all the markers from the trees selected that are of the SNP type. We store
all the available SNP markers into a set, then go through each of the SNPs in the set and cross reference with the
SNP markers that the current tree has. If the current SNP from the entire dataset chosen does not exist for the current
tree, then we set the cell value to ‘NaN’ otherwise we set it to whatever correspondin value the tree has based on
homogyneous and heterogyneuos from reference. We perform some further array operations on the resulting 2D array
which simulates the table to generate a chart for it using D3js. The user can further filter the SNP table using the
generated chart filter options.

For the environmental value table we collect all the tree_ids of the selected trees, and create a mapping of coordinate
location to array of tree_ids in that location. Then we go through all the keys of the mapping, which will be of an array
of coordinates, and extract the environmental values based on the activated layers.

We write the final arrays generated into a CSV file, and send to the galaxy Sambada workflow using the Tripal Galaxy
API. To check for results and whether an analysis has been completed, the Tripal Galaxy API functions were used.

34 Chapter 5. Developer Documentation

cartogratree Documentation, Release 7.x-0.1-dev

5.18 Saving and loading sessions

Based on the session_id provided in the url, if the session_id is valid then all session related data from that session
is loaded to the map on page load. The session_data is requested from the API and takes the form of a JSON object.
Logged in users have access to all their saved sessions and can load or delete any one of them as they wish. Saving
sessions is entirely under the user’s control, if the user is not logged in then the session data is saved, and if the user
is logged in then the user’s session identification parameters such as title and comments are also saved. The complex
items such as leyers and filters applied are saved as jsonb data types, while the other values are saved as more primitive
sql data types.

5.18. Saving and loading sessions 35

cartogratree Documentation, Release 7.x-0.1-dev

36 Chapter 5. Developer Documentation

CHAPTER 6

CartograTree API Reference

CartograTree communicates with its own API to send and request data. To gain access to this API, first create a
TreeGenes account and generate an API key. The API contains both normal user level API functions as well as admin-
istrative API functions. The API key is required for normal user-level API usage such as accessing tree information
while the asup key is needed to performan administrative functions such as clearing the cache.

6.1 CONFIGURATION

The latest version of Cartogratree API (NodeJS) uses configuration settings within the config.js file.

The most relevant configuration variable in relation to the Cartogratree API is the asup key which is an abbreviation
for api_superuser_password.

You must set this password appropriately in order to perform administrative level API functions such as re-
move_treegenes_trees, reload_trees and reload_trees_status.

6.2 ADMIN API FUNCTIONS

The functions below require the ?asup= get variable in order to execute.

6.3 REMOVE TREEGENES TREES

Removes TreeGenes trees from the public.ct_trees table. This function is used before the TREES RELOAD function.

Type of Request: GET

URL: http://tgwebdev.cam.uchc.edu/cartogratree/api/v2/trees/
remove_treegenes_trees?asup=<password>

Query string parameters:

37

cartogratree Documentation, Release 7.x-0.1-dev

Name Type Description
asup string API Super User Password

6.4 TREES RELOAD

Regenerates the views that contain tree information that are used by Cartogratree API. This function answers to the
browser but performs multiple tasks in the background. Regenerating the trees can take several minutes or even
hours to complete depending on the size of your tree database. Most of the tree_reload function performs nested
SQL/Database manipulations and this is why the function can take so long - since multiple views and tables are
dependent on each other. The following are generated in the order listed:

• chado.new_geno_view

• chado.plusgeno_view

• chado.new_pheno_view

• chado.ct_view

• ct_trees_all_view

Type of Request: GET

URL: http://tgwebdev.cam.uchc.edu/cartogratree/api/v2/trees/trees_reload?
asup=<password>

Query string parameters:

Name Type Description
asup string API Super User Password

6.5 TREES RELOAD STATUS

Returns whether the TREE RELOAD function is currently regenerating the views. This can be used to determine if
the task is ongoing/running or not running. You can reload this page multiple times to get the current status.

Type of Request: GET

URL: http://tgwebdev.cam.uchc.edu/cartogratree/api/v2/trees/reload_status?
asup=<password>

Query string parameters:

Name Type Description
asup string API Super User Password

6.6 CACHE CLEAR

Most SQL results are stored within the cache for usually 24 hours. Especially during development, this is not usually
ideal - this is where the cache_clear function is useful. It clears all memory records and this assures you that the
information you are retrieving from the Cartogratree UI is valid and fresh.

Type of Request: GET

38 Chapter 6. CartograTree API Reference

cartogratree Documentation, Release 7.x-0.1-dev

URL: http://tgwebdev.cam.uchc.edu/cartogratree/api/v2/trees/clear?
asup=<password>

Query string parameters:

Name Type Description
asup string API Super User Password

6.7 CONSOLIDATE DRYAD TREES FROM TREEGENES

Converts TPPS submitted trees that are categorized as DRYAD studies into the correct database table ct_trees. It
updates the source_id to 2 which is the DRYAD category. This must be done periodically and is usually called with a
cron every 12 hours on production environments. This allows Cartogratree to properly display these trees as DRYAD
trees. It also affects the DRYAD dataset filter.

Type of Request: GET

URL: http://tgwebdev.cam.uchc.edu/cartogratree/api/v2/trees/dryad/
consolidate_dryad_trees_from_treegenes?asup=<password>

Query string parameters:

Name Type Description
asup string API Super User Password

6.8 CONSOLIDATE TREESNAP SUBKINGDOMS

TreeSnap trees are imported from the TREESNAP database (remotely). During the import, any trees with their sub-
kingdom value as NULL in the ct_trees table is cross referenced with the organismprop table in an attempt to retrieve
a valid subkingdom and them updated.

Type of Request: GET

URL: http://tgwebdev.cam.uchc.edu/cartogratree/api/v2/trees/treesnap/
consolidate_subkingdoms?asup=<password>

Query string parameters:

Name Type Description
asup string API Super User Password

6.9 CONSOLIDATE TREESNAP FAMILIES

TreeSnap trees /date are imported from the TREESNAP database (via the remote API). During the import, any trees
with their family value as NULL in the ct_trees table is cross referenced with the organismprop table in an attempt to
retrieve a valid family and then updated.

Type of Request: GET

URL: http://tgwebdev.cam.uchc.edu/cartogratree/api/v2/trees/treesnap/
consolidate_families?asup=<password>

6.7. CONSOLIDATE DRYAD TREES FROM TREEGENES 39

cartogratree Documentation, Release 7.x-0.1-dev

Query string parameters:

Name Type Description
asup string API Super User Password

6.10 RELOAD TREESNAP

TreeSnap trees / data are imported from the TREESNAP database (via the remote API). From time to time, when
TreeSnap updates it’s remote database, it is important for Cartogratree to pull the latest updates. This API function
call will do this, continuing where it left off instead of reimporting the whole database.

Type of Request: GET

URL: http://tgwebdev.cam.uchc.edu/cartogratree/api/v2/trees/treesnap/reload?
asup=<password>

Query string parameters:

Name Type Description
asup string API Super User Password

6.11 FORCE RELOAD TREESNAP

TreeSnap trees / data are imported from the TREESNAP database (via the remote API). This is mostly used for major
debugging. This function will pull the entire TREESNAP database into Cartogratree.

Type of Request: GET

URL: http://tgwebdev.cam.uchc.edu/cartogratree/api/v2/trees/treesnap/
force_reload?asup=<password>

Query string parameters:

Name Type Description
asup string API Super User Password

6.12 FORCE RELOAD BIENv4 TREES

This function imports BIEN tree data from the publicly accessible BIENv4 database. This function uses unique
TreeGenes genus groups and query the BIENv4’s massive dataset for related trees. It does not import the entire
BIENv4 dataset but rather a subset from the distinct genus groups from TreeGenes. This data is imported into the
public.ct_trees table with the source_id set as 3.

Due to the size of this dataset (millions of records returned), nodejs may need more memory for this function to
successfully complete. To avoid out of memory errors and incomplete imports, you can tweak NodeJS to run with
a higher amount of memory (once available on server). Example command to do so (assigning 4 GB of memory to
NodeJS): node --max-old-space-size=4096 cartogratree_api.js

IMPORTANT: Like most force reload functions, this force reload function will delete all data from the table before
importing data. Please remember this is resource intensive (NodeJS memory intensive) and also database server (IO

40 Chapter 6. CartograTree API Reference

cartogratree Documentation, Release 7.x-0.1-dev

writes and CPU) and can take a day or more to fully complete. It is not designed to be used on a daily basis for
refreshing data.

Type of Request: GET

URL: http://tgwebdev.cam.uchc.edu/cartogratree/api/v2/trees/bienv4/trees/
force_reload?asup=<password>

Query string parameters:

Name Type Description
asup string API Super User Password

6.13 FORCE RELOAD BIENv4 ENDANGERED TAXA

This function imports BIEN endangered taxa data from the publicly accessible BIENv4 database. This func-
tion downloads the entire dataset into Cartogratree for display purposes. The data is imported into the pub-
lic.ct_bien_endangered_taxa table.

IMPORTANT: Like most force reload functions, this force reload function will delete all data from the table before
importing data.

Type of Request: GET

URL: http://tgwebdev.cam.uchc.edu/cartogratree/api/v2/trees/bienv4/
endangered_taxa/force_reload?asup=<password>

Query string parameters:

Name Type Description
asup string API Super User Password

6.14 NORMAL USER API FUNCTIONS

The functions below only require the ?api_key= get variable in order to execute.

6.15 GET TREES

Gets all the trees currently curated by TreeGenes and other sources

Type of Request: GET

URL: http://tgwebdev.cam.uchc.edu/cartogratree/api/v2/trees?api_key=<api_key>

Query string parameters:

Name Type Description
api_key string Your API key

6.13. FORCE RELOAD BIENv4 ENDANGERED TAXA 41

cartogratree Documentation, Release 7.x-0.1-dev

6.15.1 Example Response

[{"type":"Feature","properties":{"icon_type":1,"id":"ABAL0001"},"geometry":{"type":
→˓"Point","coordinates":[10.8377888,45.9715095]}},
{"type":"Feature","properties":{"icon_type":1,"id":"ABAL0002"},"geometry":{"type":
→˓"Point","coordinates":[10.8380944,45.9715108]}}
...

]

6.15.2 Response Fields

Field Type Description
icon_type integer The type of icon for the feature
id string The id of the feature
geometry.type string The type of geometry
geometry.coordinates array of doubles Coordinates [long, lat]

6.16 GET TREES BASED ON QUERY

Gets all the trees based on the active datasets on the map and the filter created by the user

Type of Request: POST

URL: http://tgwebdev.cam.uchc.edu/cartogratree/api/v2/trees/q?api_key=<api_key>

Query string parameters:

Name Type Description
api_key string Your API key
query object The query object derived from query builder
active_sources array of strings The active datasets on the map

Sample parameters passed

{
"query": {
"condition": "AND",
"rules": [

{
"id": "family",
"field": "family",
"type": "string",
"input": "select",
"operator": "equal",
"value": "Anacardiaceae"

}
]

},
"active_sources": [
"0",
"1",
"2"

(continues on next page)

42 Chapter 6. CartograTree API Reference

cartogratree Documentation, Release 7.x-0.1-dev

(continued from previous page)

]
}

6.16.1 Example POST request using ajax

$.ajax({
url: 'https://tgwebdev.cam.uchc.edu/cartogratree/api/v2/trees/q?api_key=<api_key>

→˓',
type: 'POST',
async: false,
contentType: 'application/json',
data: JSON.stringify(jsonData),
success: function(result){ ... },
error: ...

});

6.16.2 Example Response

{
"features": [

{
"type": "Feature",
"properties": {
"id": "TGDR045-161613",
"icon_type": 0

},
"geometry": {

"type": "point",
"coordinates": [
-54.36032,
-31.01048

]
}

},
...
{
"type": "Feature",
"properties": {

"id": "TGDR045-161614",
"icon_type": 0

},
"geometry": {

"type": "point",
"coordinates": [
-54.35471,
-31.01187

]
}

},
],
"center": [

-56.10413,

(continues on next page)

6.16. GET TREES BASED ON QUERY 43

cartogratree Documentation, Release 7.x-0.1-dev

(continued from previous page)

-30.2429
],
"num_species": 1,
"num_pubs": 1,
"num_trees": 278

}

6.16.3 Response Fields

Field Type Description
features array of objects A feature list of points
center array of doubles The coordinate where most points are located
num_species integer Number of species resulting from this query
num_pubs integer Number of publications resulting from this query
num_trees integer Number of trees resulting from this query

6.17 GET TREES BASED ON SOURCE

Gets all the trees based on their dataset source

Type of Request: GET

URL: http://tgwebdev.cam.uchc.edu/cartogratree/api/v2/trees/source?
api_key=<api_key>&source_id=<source_id>

Query string parameters

Name Type Description
api_key string Your API key
source_id integer The id of the source dataset

6.17.1 Example GET request

https://tgwebdev.cam.uchc.edu/cartogratree/api/v2/trees/source?
api_key=<api_key>&source_id=1&source_id=2

6.17.2 Example Response

[{"type":"Feature","properties":{"icon_type":1,"id":"ABAL0001"},"geometry":{"type":
→˓"Point","coordinates":[10.8377888,45.9715095]}},
{"type":"Feature","properties":{"icon_type":1,"id":"ABAL0002"},"geometry":{"type":
→˓"Point","coordinates":[10.8380944,45.9715108]}}
...

]

44 Chapter 6. CartograTree API Reference

cartogratree Documentation, Release 7.x-0.1-dev

6.17.3 Response Fields

Field Type Description
icon_type integer The type of icon for the feature
id string The id of the feature
geometry.type string The type of geometry
geometry.coordinates array of doubles Coordinates [long, lat]

6.18 GET TREE BASIC INFORMATION

Get the basic information of the tree

Type of Request: GET

URL: http://tgwebdev.cam.uchc.edu/cartogratree/api/v2/tree?
api_key=<api_key>&tree_id=<tree_id>

Query string parameters:

Name Type Description
api_key string Your API key
tree_id string The unique id of the individual tree

6.18.1 Example GET request using ajax

$.ajax({
url: 'https://tgwebdev.cam.uchc.edu/cartogratree/api/v2/tree?api_key=<api_key>&

→˓tree_id=ABAL0001',
type: 'GET',
contentType: 'application/json',
data: JSON.stringify(jsonData),
success: function(result){ ... },
error: ...

});

6.18.2 Example Response

{
"uniquename":"ABAL0001",
"genus":"Abies",
"species":"Abies alba",
"subkingdom":"gymnosperm",
"family":"Pinaceae",
"latitude":45.9715095,
"longitude":10.8377888,
"coordinate_type":0,
"source_id":0,
"icon_type":1,
"tree_num":1

}

6.18. GET TREE BASIC INFORMATION 45

cartogratree Documentation, Release 7.x-0.1-dev

6.18.3 Response Fields

Field Type Description
uniquename string The id of the tree
genus string The genus of the tree
species string The species of the tree
subkingdom string The plant group the tree belongs to
family string The family of the tree
latitude double The latitude coordinate of the tree
longitude double The longitude coordinate of the tree
coordinate_type integer The type of coordinate for the tree recorded
source_id integer The dataset source that the tree originates from
icon_type integer The type of icon that represents the tree on the map
tree_num integer The number of the tree

6.19 GET TREE PHENOTYPES

Get the phenotype information of the tree

Type of Request: GET

URL: http://tgwebdev.cam.uchc.edu/cartogratree/api/v2/phenotypes?
api_key=<api_key>&tree_id=<tree_id>

Query string parameters:

Name Type Description
api_key string Your API key
tree_id string The unique id of the individual tree

6.19.1 Example GET request using ajax

$.ajax({
url: 'https://tgwebdev.cam.uchc.edu/cartogratree/api/v2/phenotypes?api_key=<api_

→˓key>&tree_id=TGDR069-190112',
type: 'GET',
contentType: 'application/json',
data: JSON.stringify(jsonData),
success: function(result){ ... },
error: ...

});

6.19.2 Example Response

[
{

"tree_acc":"TGDR069-190112",
"name":"flush",
"uniquename":"flush-190112",

(continues on next page)

46 Chapter 6. CartograTree API Reference

cartogratree Documentation, Release 7.x-0.1-dev

(continued from previous page)

"phenotype_name":"Budset scoring",
"value":"119.6",
"units":"days",
"po_name":" bud burst stage",
"po_accession":"PO:0025532",
"pato_name":"time",
"pato_accession":"PATO:0000165",
"cvterm_name":"Budset scoring",
"cvterm_accession":"CO_357:1000010"

}
...

]

6.19.3 Response Fields

Field Type Description
tree_acc string The id of the tree
name string The name of the phenotype
uniquename string Uniquename of the phenotype assigned by chado
phenotype_name string The phenotype name
units string The units of the value measured
po_name string The plant ontology name of the tree
pato_name string Phenotype properties
pato_accession string Accession of the pato
cvterm_name string Ontology term
cvterm_accession string Ontology term accession

6.20 GET TREE GENOTYPES

Get the genotype information of the tree

Type of Request: GET

URL: http://tgwebdev.cam.uchc.edu/cartogratree/api/v2/genotypes?
api_key=<api_key>&tree_id=<tree_id>

Query string parameters:

Name Type Description
api_key string Your API key
tree_id string The unique id of the individual tree

6.20.1 Example GET request using ajax

$.ajax({
url: 'https://tgwebdev.cam.uchc.edu/cartogratree/api/v2/genotypes?api_key=<api_

→˓key>&tree_id=TGDR069-190112',
type: 'GET',
contentType: 'application/json',

(continues on next page)

6.20. GET TREE GENOTYPES 47

cartogratree Documentation, Release 7.x-0.1-dev

(continued from previous page)

data: JSON.stringify(jsonData),
success: function(result){ ... },
error: ...

});

6.20.2 Example Response

[
{

"tree_acc": "TGDR001-7014"
"uniquename": "SNP-PTRI.339.C1-162-Potr-A:A"
"marker_name": "-"
"description": "A:A"
"marker_type": "SNP"
"study_type": "Natural Population (Landscape)"

}
...

]

6.20.3 Response Fields

Field Type Description
tree_acc string The id of the tree
uniquename string Uniquename of the phenotype assigned by chado
marker_name string The marker name
description string The description
study_type string The study type

6.21 GET TREE MARKERS

Get the marker types and additional genotype information associated with the tree

Type of Request: GET

URL: http://tgwebdev.cam.uchc.edu/cartogratree/api/v2/markertypes?
api_key=<api_key>&tree_id=<tree_id>

Query string parameters:

Name Type Description
api_key string Your API key
tree_id String The unique id of the individual tree

6.21.1 Example GET request using ajax

48 Chapter 6. CartograTree API Reference

cartogratree Documentation, Release 7.x-0.1-dev

$.ajax({
url: 'https://tgwebdev.cam.uchc.edu/cartogratree/api/v2/markertypes?api_key=<api_

→˓key>&tree_id=TGDR006-14454',
type: 'GET',
contentType: 'application/json',
success: function(result){ ... },
error: ...

});

6.21.2 Example Response

[
{

"tree_acc":"TGDR006-14454",
"marker_name":"0_10207_01_333-Pita",
"description":"C:C",
"marker_type":"SNP",
"study_type":"GxP",
"quality_score":null,
"marker_technology":"array",
"assembly_type":null,
"scaffold":null,
"position":null,
"original_name":null

}
...

]

6.21.3 Response Fields

Field Type Description
tree_acc string The id of the tree
marker_name string The name of the marker
description string The description of the genotype
marker_type string The type of the marker
study_type string The type of the study
quality_score unknown The quality score
marker_technology string The technology of the marker
assembly_type unkown The assembly type
scaffold unknown The scaffold of the genotype
position unknown The position of the genotype
original name unknown The original name of the genotype

6.22 GET TREE PUBLICATIONS

Get the publication information for a tree if it has a publication associated with it

Type of Request: GET

6.22. GET TREE PUBLICATIONS 49

cartogratree Documentation, Release 7.x-0.1-dev

URL: http://tgwebdev.cam.uchc.edu/cartogratree/api/v2/publications?
api_key=<api_key>&tree_acc=<tree_acc>

Query string parameters:

Name Type Description
api_key string Your API key
tree_acc String Study accession of a tree

6.22.1 Example GET request using ajax

$.ajax({
url: 'https://tgwebdev.cam.uchc.edu/cartogratree/api/v2/publications?api_key=<api_

→˓key>&tree_acc=TGDR002',
type: 'GET',
contentType: 'application/json',
success: function(result){ ... },
error: ...

});

6.22.2 Example Response

[
{

"project_id":"45",
"accession":"TGDR002",
"pub_id":"21371",
"title":"Astonishingly low genetic variation in Quercus acutissima, an

→˓important tree species in Satoyama, a traditional Japanese rural forest and
→˓agricultural landscape, revealed by chloroplast microsatellite markers",

"author":"Tsuda, Yoshiaki",
"species":"Quercus acutissima",
"tree_count":"2152",
"phen_count":null,
"ontology_ids":null,
"phenotypes_assessed":null,
"gen_count":"12912",
"markers":"cpSSR",
"study_type":"G",
"volumetitle":null,
"volume":"",
"series_name":"Tree Genetics & Genomes",
"issue":"","pyear":"2012",
"pages":"-",
"miniref":null,
"uniquename":"Saito, Yoko, Tsuda, Yoshiaki , Uchiyama, Kentaro , Fukuda,

→˓Tomohide , Seto, Yasuhiro , Kim, Pangi , Ide, Yuji Astonishingly low genetic
→˓variation in Quercus acutissima, an important tree species in Satoyama, a
→˓traditional Japanese rural forest and agricultural landscape, revealed by
→˓chloroplast microsatellite markers 2012; () -",

"type_id":"229",
"is_obsolete":false,
"publisher":null,
"pubplace":null

(continues on next page)

50 Chapter 6. CartograTree API Reference

cartogratree Documentation, Release 7.x-0.1-dev

(continued from previous page)

}
]

6.22.3 Response Fields

Field Type Description
project_id integer The id of the project
accession string The accession of the publication
pub_id integer The id of the publication
title string The title of this study
author string The primary author fo this study
species string The species focused on by this study
tree_count integer Number of trees assessed by this study
phen_count intger Number of phenotypes for this study
ontology_ids string The ids of the associated ontologies
phenotypes_assessed integer The phenotypes assessed
gen_count integer Number of genotypes for this study
markers string Markers recorded for the species of this study
study_type string The type of the study
volumetitle string Title of volume where this study was published
volume string The volume of the paper published
series_name string The series of the published paper
issue string The issue of the published paper
pages string The pages of the published paper
miniref string The mini reference to the paper
uniquename string The uniquename of the paper
type_id integer The type_id of the paper
is_obselete boolean Is the paper obselete
publisher string The publisher of the paper
pubplace string The place??? of the publication

6.23 GET TREE TREESNAP COMPLETE

TreeSnap trees are accessed through the TreeSnap API provided by https://treesnap.org Please visit the site, download
their app and submit your own trees if you want to contribute both to TreeSnap and CartograTree

Type of Request: GET

URL: http://tgwebdev.cam.uchc.edu/cartogratree/api/v2/treesnap?
api_key=<api_key>&tree_id=<tree_id>

Query string parameters:

Name Type Description
api_key string Your API key
tree_id string The unique id of a treesnap tree

6.23. GET TREE TREESNAP COMPLETE 51

https://treesnap.org

cartogratree Documentation, Release 7.x-0.1-dev

6.23.1 Example GET request using ajax

$.ajax({
url: 'https://tgwebdev.cam.uchc.edu/cartogratree/api/v2/treesnap?api_key=<api_key>

→˓&tree_id=treesnap.1',
type: 'GET',
contentType: 'application/json',
success: function(result){ ... },
error: ...

});

The response will be the same as accessing the TreeSnap API directly for individual trees. To see the full documenta-
tion for TreeSnap’s API please go to: https://github.com/statonlab/Treesnap-website/wiki/Public-API-Documentation

6.24 GET SESSION DATA

Gets saved session state properties

Type of Request: GET

URL: http://tgwebdev.cam.uchc.edu/cartogratree/api/v2/user/session?
api_key=<api_key>&session_id=<session_id>

Query string parameters

Name Type Description
api_key string Your API key
session_id string The id of the session

6.24.1 Example Response

{
"layers":null,
"filters":null,
"zoom":null,
"pitch":null,
"bearing":null,
"center":null,
"excluded_trees":null,
"session_id":<session_id>

}

52 Chapter 6. CartograTree API Reference

https://github.com/statonlab/Treesnap-website/wiki/Public-API-Documentation

cartogratree Documentation, Release 7.x-0.1-dev

6.24.2 Response Fields

Field Type Description
api_key string Your API key
session_id string The session id
layers object The layers activated in this session
filters object The filters and active datasets
excluded_trees array Trees excluded for analysis
zoom double Map zoom property
pitch double Map pitch proterty
bearing double Map bearing property
center array of doubles Center of map [long, lat]

6.25 GET USER SESSION

Gets session information for a saved session by the user

Type of Request: GET

URL: http://tgwebdev.cam.uchc.edu/cartogratree/api/v2/user/session/by-user?
api_key=<api_key>&user_id=<user_id>&session_id=<session_id>

Query string parameters

Name Type Description
api_key string Your API key
user_id integer The id of user created by drupal
session_id string The id of the session of the user

6.25.1 Example Response

[
{
"user_id":"186",
"title":"ok",
"comments":"",
"session_id":"0b6d71c1324b3bfc68732caaa9315c27"}

]

6.25.2 Response Fields

Field Type Description
title string The title of the session
comments string The comments by the user
user_id integer The id of the user
session_id string The session id

6.25. GET USER SESSION 53

cartogratree Documentation, Release 7.x-0.1-dev

6.26 GET ALL USER SESSIONS

Gets all the saved sessions by a user along with the saved session state properties

Type of Request: GET

URL: http://tgwebdev.cam.uchc.edu/cartogratree/api/v2/user/sessions/by-user/
all?api_key=<api_key>&user_id=<user_id>

Query string parameters

Name Type Description
api_key string Your API key
user_id integer The id of user created by drupal

6.26.1 Example Response

[
{
"title":"t2",
"comments":"",
"session_id":<session_id>,
"layers":{},
"filters":{

"query":{
"condition":"OR",
"rules":[

{
"id":"genus",
"field":"genus",
"type":"string",
"input":"select",
"operator":"equal",
"value":"Abies"}

]
},
"active_sources":["0","1","2"]

},
"zoom":4,
"pitch":0,
"bearing":0,
"center":{"lng":24.851,"lat":41.922},
"created_at":"2019-07-01T19:08:32.010Z","excluded_trees":{}
}
...

]

54 Chapter 6. CartograTree API Reference

cartogratree Documentation, Release 7.x-0.1-dev

6.26.2 Response Fields

Field Type Description
title string The title of the session
comments string The comments of the session
session_id string The session id
layers object The layers activated in this session
filters object The filters and active datasets
zoom double Map zoom property
pitch double Map pitch proterty
bearing double Map bearing property
center array of doubles Center of map [long, lat]
created_at datetime Date the session was saved

6.26. GET ALL USER SESSIONS 55

	Introduction
	Project members

	Administrators
	Installation
	Configuration

	Database setup
	Chado
	Trees
	Layers
	Sessions

	Users
	The Left Panel
	Select dataset sources to include
	Select and filter trees
	Select environmental data
	Get location information
	Navigation Controls
	Saving and loading saved searches and config
	Analyze data

	Developer Documentation
	About
	Coding style specifications
	Project Structure
	Mapbox
	TreeSnap
	BIEN
	Adding a new Tree Dataset source
	Adding Geoserver Tileset layers
	Customizing icons on the map that represent the points
	Filtering using a Query Builder
	Updating the NodeJS API
	Extracting tree data
	Extracting layer data
	Adding and Removing layers from the map
	Adding layer filters for environmental layers
	Adding layer legend box HTML
	Generating analysis tables and passing to Sambada
	Saving and loading sessions

	CartograTree API Reference
	CONFIGURATION
	ADMIN API FUNCTIONS
	REMOVE TREEGENES TREES
	TREES RELOAD
	TREES RELOAD STATUS
	CACHE CLEAR
	CONSOLIDATE DRYAD TREES FROM TREEGENES
	CONSOLIDATE TREESNAP SUBKINGDOMS
	CONSOLIDATE TREESNAP FAMILIES
	RELOAD TREESNAP
	FORCE RELOAD TREESNAP
	FORCE RELOAD BIENv4 TREES
	FORCE RELOAD BIENv4 ENDANGERED TAXA
	NORMAL USER API FUNCTIONS
	GET TREES
	GET TREES BASED ON QUERY
	GET TREES BASED ON SOURCE
	GET TREE BASIC INFORMATION
	GET TREE PHENOTYPES
	GET TREE GENOTYPES
	GET TREE MARKERS
	GET TREE PUBLICATIONS
	GET TREE TREESNAP COMPLETE
	GET SESSION DATA
	GET USER SESSION
	GET ALL USER SESSIONS

