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CHAPTER 1

Getting started

Overview

Cap is a library for modeling energy storage devices. Its core is implemented in C++ but Python wrappers are also
available.

Cap provides:

1. energy storage device models

2. electrochemical measurement techniques

Guidelines for installation are available. Note that it is not necessary to build Cap from source to use it. For instruc-
tions on how to use Cap without installing it, refer to the following section.

Alternative to the full install procedure

All you need is a working installation of Docker. Follow the Docker Engine installation guide for details on how to
install it on your machine. It is supported on Linux, Cloud, Windows, and OS X.

The following command starts a Docker container with a Jupyter Notebook server listening for HTTP connections on
port 8888. It mounts the present working directory, $PWD, into the container at /notebooks, which is set as the
Jupyter Notebook startup folder. It has pycap already installed on it and comes with a few notebooks as example.

$ docker run --rm -it \
-p 8888:8888 \
-v $PWD:/notebooks \
dalg24/cap

Open your web browser and follow http://localhost:8888.

3
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CHAPTER 2

Installation

This section provide guidelines for installing Cap from source.

Note that it is not necessary to build Cap from source to use it. Refer to the Docker section for instructions on how to
pull the latest image of Cap.

Third-party libraries

Packages Dependency Version
MPI Required
Python Optional
Boost Required 1.59.0
deal.II with p4est/Trilinos Optional 8.5.0

Cap and its dependencies may be built using spack. You would need to install the following packages:

$ spack install boost +graph +icu +mpi +python
$ spack install trilinos ~hypre ~mumps +boost \

^boost+graph+icu+mpi+python
$ spack install dealii~arpack~gsl~oce~petsc+trilinos+mpi \

^trilinos~hypre~mumps+boost ^boost+graph+icu+mpi+python
$ spack install py-mpi4py
$ spack install py-matplotlib
$ spack install py-h5py

Before buiding Cap, you would then need to load the following modules: dealii, boost, mpi, cmake, python, py-
mpi4py, py-matplotlib, py-parsing, py-numpy, and py-h5py.

Message Passing Interface (MPI)

Cap should be working with any of the MPI implementations. It has only been tested with Open MPI, MPICH, and
Intel MPI.

5
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Boost

Boost version 1.59.0 or later is required. Boost can be downloaded from here. Make sure to install all the libraries.
Do not forget to add the using mpi ; directive to your project-config.jam file before building.

deal.II

The open source finite element library deal.II is optional. It is only required to work with energy storage devices of
type SuperCapacitor. Version 8.4.0 or later compiled with C++14/MPI/Boost/p4est/Trilinos support is required.
The development sources can be found here. Please refer to the deal.II documentation to see how to install p4est and
Trilinos.

Install Cap from source

Get the source:

$ git clone https://github.com/ORNL-CEES/Cap.git && cd Cap

Create a configure_cap.sh script such as:

1 #!/usr/bin/env bash
2

3 EXTRA_ARGS=$@
4

5 cmake \
6 -D CMAKE_INSTALL_PREFIX=<your/install/prefix/here> \
7 -D BOOST_DIR=<path/to/boost> \
8 -D ENABLE_DEAL_II=ON \
9 -D DEAL_II_DIR=<path/to/dealii> \

10 $EXTRA_ARGS \
11 ..

Configure, build and install:

$ mkdir build && cd build
$ vi configure_cap.sh
$ chmod +x configure_cap.sh
$ ./configure_cap.sh
$ make -j<N> && make install

Run the tests:

$ ctest -j<N>

Enable the Python wrappers

To build the Python wrappers Cap must be configured with an extra flag -D ENABLE_PYTHON=ON. It is recom-
mended to use Python 3.X but Cap has been successfully built with Python 2.X in the past.

$ ../configure_cap.sh -D ENABLE_PYTHON=ON
$ make install

6 Chapter 2. Installation
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Prepend the Python install directory to your PYTHONPATH environment variable in order to import the pycap module
from your Python interpreter.

$ export PYTHONPATH=<cap/install/prefix>/lib/pythonX.Y/site-packages:${PYTHONPATH}

X.Y stands for the version of Python that was used to build Cap, for example 2.7 or 3.5.

Launch Python and try:

>>> import pycap
>>> help(pycap)

Note that a number of Python packages are required to use pycap: numpy, matplotlib, mpi4py, and h5py.

Build this documentation

Run the configuration script with the extra flag:

$ ../configure_cap.sh -D ENABLE_DOCUMENTATION=ON

Open the file index.html in the directory docs/html.

2.4. Build this documentation 7
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CHAPTER 3

Energy storage devices

Only the electrical current 𝐼 and voltage 𝑈 of the device are measurable. Several operating conditions are possibles.
One may want to impose:

• The voltage 𝑈 across the device.

• The electrical current 𝐼 that flows through it.

• The load 𝑅 = 𝑈/𝐼 the device is subject to.

• The power 𝑃 = 𝑈𝐼 .

The class pycap.EnergyStorageDevice is an abstract representation for an energy storage device. It can evolve
in time at various operating conditions and return the voltage drop across itself and the electrical current that flows
through it.

The rest of this section describes the energy storage devices that are available in Cap, namely:

• Equivalent circuits

• Supercapacitors

9
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Equivalent circuits

Series RC

A resistor and a capacitor are connected in series (denoted ESR and C in the figure above).

type SeriesRC
series_resistance 5.0e-3 ; [ohm]
capacitance 3.0 ; [fahrad]

Above is the database to build a 3 F capacitor in series with a 50 mΩ resistance.

𝑈 = 𝑈𝐶 + 𝑅𝐼

𝐼 = 𝐶
𝑑𝑈𝐶

𝑑𝑡

𝑈𝐶 stands for the voltage across the capacitor. Its capacitance, 𝐶, represents its ability to store electric charge. The
equivalent series resistance, 𝑅, add a real component to the impedance of the circuit:

𝑍 =
1

𝑗𝐶𝜔
+ 𝑅

As the frequency goes to infinity, the capacitive impedance approaches zero and 𝑅 becomes significant.

Parallel RC

An extra resistance is placed in parallel of the capacitor. It can be instantiated by the following database.

type ParallelRC
parallel_resistance 2.5e+6 ; [ohm]
series_resistance 50.0e-3 ; [ohm]
capacitance 3.0 ; [fahrad]

type has been changed from SeriesRC to ParallelRC. A 2.5 MΩ leakage resistance is specified.

𝑈 = 𝑈𝐶 + 𝑅𝐼

𝐼 = 𝐶
𝑑𝑈𝐶

𝑑𝑡
+

𝑈𝐶

𝑅𝐿

10 Chapter 3. Energy storage devices
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𝑅𝐿 corresponds to the “leakage” resistance in parallel with the capacitor. Low values of 𝑅𝐿 imply high leakage
currents which means the capacitor is not able to hold is charge. The circuit complex impedance is given by:

𝑍 =
𝑅𝐿

1 + 𝑗𝑅𝐿𝐶𝜔
+ 𝑅

Supercapacitors

type is set to SuperCapacitor. dim is used to select two- or three-dimensional simulations.

device {
type SuperCapacitor
dim 2
geometry {

[...]
}
material_properties {

[...]
}

}

Geometry

geometry {
type supercapacitor

anode_collector_thickness 5.0e-4 ; [centimeter]
anode_electrode_thickness 50.0e-4 ; [centimeter]
separator_thickness 25.0e-4 ; [centimeter]
cathode_electrode_thickness 50.0e-4 ; [centimeter]
cathode_collector_thickness 5.0e-4 ; [centimeter]
geometric_area 25.0e-2 ; [square centimeter]

}

The thickness of each layer in the sandwich (anode collector, anode electrode, separator, cathode electrode, cathode
current collector) can be adjusted independently from one another. The specified cross-sectional area applies to the
whole stack.

Governing equations

collector electrode separator
𝑖1 = −𝜎∇Φ1

∇ · 𝑖1 = 0
𝑖1 = −𝜎∇Φ1

𝑖2 = −𝜅∇Φ2

−∇ · 𝑖1 = ∇ · 𝑖2 = 𝑎𝑖𝑛

𝑖2 = −𝜅∇Φ2

∇ · 𝑖2 = 0

collector-electrode interface electrode-separator interface
0 = −𝜅 𝜕Φ2

𝜕𝑛

⃒⃒
𝑒

−𝜎 𝜕Φ1

𝜕𝑛

⃒⃒
𝑐

= −𝜎 𝜕Φ1

𝜕𝑛

⃒⃒
𝑒

−𝜅 𝜕Φ2

𝜕𝑛

⃒⃒
𝑒

= −𝜅 𝜕Φ2

𝜕𝑛

⃒⃒
𝑠

−𝜎 𝜕Φ1

𝜕𝑛

⃒⃒
𝑒

= 0

3.2. Supercapacitors 11
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Fig. 3.1: Schematic representation of the supercapacitor conventional sandwich-like configuration. 1: anode electrode,
2: separator, 3: cathode electrode, 4: anode collector, 5: cathode collector.

boundary collector tab
Φ1 = 𝑈
or
−𝜎 𝜕Φ1

𝜕𝑛 = 𝐼/𝑆
or
−𝜎 𝜕Φ1

𝜕𝑛 Φ1 = 𝑃/𝑆
or
−𝜎 𝜕Φ1

𝜕𝑛 𝑅𝑆 = Φ1

Ignoring the influence of the electrolyte concentration, the current density in the matrix and solution phases can be
expressed by Ohm’s law as

𝑖1 = −𝜎∇Φ1

𝑖2 = −𝜅∇Φ2

𝑖 and Φ represent current density and potential; subscript indices 1 and 2 denote respectively the solid and the liquid
phases. 𝜎 and 𝜅 are the matrix and solution phase conductivities.

The total current density is given by 𝑖 = 𝑖1 + 𝑖2. Conservation of charge dictates that

−∇ · 𝑖1 = ∇ · 𝑖2 = 𝑎𝑖𝑛

where 𝑎 is the interfacial area per unit volume and the current transferred from the matrix phase to the electrolyte 𝑖𝑛
is the sum of the double-layer the faradaic currents

𝑖𝑛 = 𝐶
𝜕

𝜕𝑡
(Φ1 − Φ2) + 𝑖0

(︁
𝑒

𝛼𝑎𝐹
𝑅𝑇 𝜂 − 𝑒−

𝛼𝑐𝐹
𝑅𝑇 𝜂

)︁
𝐶 is the double-layer capacitance. 𝑖0 is the exchange current density, 𝛼𝑎 and 𝛼𝑐 the anodic and cathodic charge transfer
coefficients, respectively. 𝐹 , 𝑅, and 𝑇 stand for Faraday’s constant, the universal gas constant and temperature. 𝜂 is
the overpotential relative to the equilibrium potential 𝑈𝑒𝑞

𝜂 = Φ1 − Φ2 − 𝑈𝑒𝑞

12 Chapter 3. Energy storage devices
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Material properties

material_properties {
anode {

type porous_electrode
matrix_phase electrode_material
solution_phase electrolyte

}
cathode {

type porous_electrode
matrix_phase electrode_material
solution_phase electrolyte

}
separator {

type permeable_membrane
matrix_phase separator_material
solution_phase electrolyte

}
collector {

type current_collector
metal_foil collector_material

}

separator_material {
void_volume_fraction 0.6 ;
tortuosity_factor 1.29 ;
pores_characteristic_dimension 1.5e-7 ; [centimeter]
pores_geometry_factor 2.0 ;
mass_density 3.2 ; [gram per cubic centimeter]
heat_capacity 1.2528e3 ; [joule per kilogram kelvin]
thermal_conductivity 0.0019e2 ; [watt per meter kelvin]

}
electrode_material {

differential_capacitance 3.134 ; [microfarad per square
→˓centimeter]

exchange_current_density 7.463e-10 ; [ampere per square centimeter]
void_volume_fraction 0.67 ;
tortuosity_factor 2.3 ;
pores_characteristic_dimension 1.5e-7 ; [centimeter]
pores_geometry_factor 2.0 ;
mass_density 2.3 ; [gram per cubic centimeter]
electrical_resistivity 1.92 ; [ohm centimeter]
heat_capacity 0.93e3 ; [joule per kilogram kelvin]
thermal_conductivity 0.0011e2 ; [watt per meter kelvin]

}
collector_material {

mass_density 2.7 ; [gram per cubic centimeter]
electrical_resistivity 28.2e-7 ; [ohm centimeter]
heat_capacity 2.7e3 ; [joule per kilogram kelvin]
thermal_conductivity 237.0 ; [watt per meter kelvin]

}
electrolyte {

mass_density 1.2 ; [gram per cubic centimeter]
electrical_resistivity 1.49e3 ; [ohm centimeter]
heat_capacity 0.0 ; [joule per kilogram kelvin]
thermal_conductivity 0.0 ; [watt per meter kelvin]

}
}

3.2. Supercapacitors 13
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The specific surface area per unit volume 𝑎 is estimated using

𝑎 =
(1 + 𝜁)𝜀

𝑟

where 𝜁 is the pore’s geometry factor (𝜁 = 2 for spheres, 1 for cylinders, and 0 for slabs) and 𝑟 is the pore’s character-
istic dimension. [M. W. Verbrugge and B. J. Koch, J. Electrochem. Soc., 150, A374 2003]

The solution electrical conductivity 𝜅 incorporates the effect of porosity and tortuosity

𝜅 =
𝜅∞𝜀

Γ

where 𝜅∞ is the liquid phase (free solution) conductivity, 𝜀 is the void volume fraction, and 𝜅 is the tortuosity factor.

The solid phase conductivity is also corrected for porosity (and tortuosity???)

𝜎 = 𝜎∞(1 − 𝜀)

Batteries

NOT IMPLEMENTED

14 Chapter 3. Energy storage devices



CHAPTER 4

Electrochemical techniques

Cyclic charge discharge

Cyclic Charge-Discharge is a common technique used to test the performance and cycle-life of energy storage devices.
Most often, the charge and discharge are conducted at constant current until a set voltage is reached.

The following implements 4 cycles of a repetitive loop through several steps:

1. constant current charge at 0.5 A until voltage reaches a 2.1 V limit

2. potentiostatic hold until the current falls below 1 mA for a maximum duration time of 3 min

3. rest at open circuit potential for 2 s

4. constant load discharge at 3.33 Ω to 0.7 V

5. rest at open circuit potential for 5 s

from pycap import PropertyTree,CyclicChargeDischarge,EnergyStorageDevice

# setup the experiment
ptree=PropertyTree()
ptree.put_string('start_with','charge')
ptree.put_int ('cycles',4)
ptree.put_double('time_step',0.01)

ptree.put_string('charge_mode','constant_current')
ptree.put_double('charge_current',0.5)
ptree.put_string('charge_stop_at_1','voltage_greater_than')
ptree.put_double('charge_voltage_limit',2.1)
ptree.put_bool ('charge_voltage_finish',True)
ptree.put_double('charge_voltage_finish_max_time',180)
ptree.put_double('charge_voltage_finish_current_limit',1e-3)
ptree.put_double('charge_rest_time',2)

ptree.put_string('discharge_mode','constant_load')
ptree.put_double('discharge_load',3.33)

15
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ptree.put_string('discharge_stop_at_1','voltage_less_than')
ptree.put_double('discharge_voltage_limit',0.7)
ptree.put_double('discharge_rest_time',5)

ccd=CyclicChargeDischarge(ptree)

The property tree is populated interactively here but it can parse directly an input file. Please refer to other examples.

The CCD experiment can be started with a charge or a discharge step. The length of the test is defined by the
cycle number and the loop end criteria.

The charge mode can be constant_current, constant_voltage, or constant_power. Two end criteria
can be selected although only one is required. Note that they are no safeguards and poor end criteria will produce
infinite loops! If voltage_finish is enabled (default value is False), the charge step proceeds to a potentiostatic
step that ends after reaching the specified time voltage_finish_max_time or when the current falls between the
limiting value voltage_finish_current_limit (absolute value). The voltage finish step makes little sense
in case of a constant voltage charge and therefore is not allowed. The charge ends with an optional rest time period
before proceeding with the next step.

The discharge process can be perfomed in four different modes: contant_current, contant_voltage,
constant_power, or constant_load. End criteria must be chosen carfully here as well.

Let’s build an energy storage device, here a simple series RC circuit, with a 40 mΩ resistor and a 3 F capacitor, and
run the experiment.

# build an energy storage device
ptree=PropertyTree()
ptree.put_string('type','SeriesRC')
ptree.put_double('series_resistance',40e-3)
ptree.put_double('capacitance',3)
device=EnergyStorageDevice(ptree)

from pycap import initialize_data,plot_data

# run the experiment and visualize the measured data
data=initialize_data()
steps=ccd.run(device,data)

print "%d steps"%steps

%matplotlib inline
plot_data(data)

11213 time steps (∆𝑡 = 0.01 s) are required to complete the CCD experiment. Below are plotted the measured current
and voltage data versus time.

16 Chapter 4. Electrochemical techniques
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Cyclic voltammetry

Cyclic Voltammetry (CV) is a widely-used electrochemical technique to investigate energy storage devices. It consists
in measuring the current while varying linearly the voltage back and forth over a given range.

The voltage sweep applied to the device creates a current given by

𝐼 = 𝐶
𝑑𝑈

𝑑𝑡

where 𝐼 is the current in ampere and 𝑑𝑈
𝑑𝑡 is the scan rate of the voltage ramp.

The voltage scan rates for testing energy storage devices are usually between 0.1 mV/s and 1 V/s. Scan rates at the
lower end of this range allow slow processes to occur; fast scans often show lower capacitance than slower scans and
may produce large currents on high-value capacitors.

from pycap import PropertyTree, CyclicVoltammetry

# setup the experiment
ptree = PropertyTree()
ptree.put_double('initial_voltage', 0) # volt
ptree.put_double('final_voltage', 0) # volt
ptree.put_double('scan_limit_1', 2.4) # volt
ptree.put_double('scan_limit_2', -0.5) # volt

4.2. Cyclic voltammetry 17
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ptree.put_double('scan_rate', 100e-3) # volt per second
ptree.put_double('step_size', 5e-3) # volt
ptree.put_int('cycles', 2)
cv = CyclicVoltammetry(ptree)

Four parameters define the CV sweep range: The scan starts at initial_voltage, ramps to scan_limit_1,
reverses and goes to scan_limit_2. Additional cycles start and end at scan_limit_2. The scan ends at
final_voltage. Here, the sweep range is [2.4 V, −0.5 V]. It both starts and finishes at 0 V.

The rate of voltage change over time 𝑑𝑈
𝑑𝑡 is specified using scan_rate which is here set to 100 mV/s. The linear

ramp is imposed in increments of 5 mV. The number of sweep is controlled by cycles.

Here we run the experiment with a 3 F capacitor in series with a 50 mΩ resistor.

# build an energy storage device
ptree=PropertyTree()
ptree.put_string('type','SeriesRC')
ptree.put_double('capacitance',3)
ptree.put_double('series_resistance',50e-3)
device=EnergyStorageDevice(ptree)

from pycap import initialize_data,report_data,plot_data
from pycap import plot_cyclic_voltammogram

# run the experiment and visualize the measured data
data=initialize_data()
steps=cv.run(device,data)

print "%d steps"%steps

%matplotlib inline
plot_data(data)
plot_cyclic_voltammogram(data)

2320 steps

18 Chapter 4. Electrochemical techniques
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On the CV plot (current on the y-axis and voltage on the x-axis), we read

𝐼 = 𝐶
𝑑𝑈

𝑑𝑡
= 300 mA

as expected for a 3 F capacitor. For an ideal capacitor (i.e. no equivalent series resistance), the plot would be a perfect
rectangle. The resistor causes the slow rise in the current at the scan’s start and rounds two corners of the rectangle.
The time constant 𝜏 = 𝑅𝐶 controls rounding of corners.

Electrochemical impedance spectroscopy

Electrochemical Impedance Spectroscopy (EIS) is a powerful experimental method for characterizing electrochemical
systems. This technique measures the complex impedance of the device over a range of frequencies.

A sinusoidal excitation signal (potential or current) is applied:

𝐸 = 𝐸0 +
∑︁
𝑘

𝐸𝑘 sin(𝜔𝑘𝑡 + 𝜙𝑘)

That signal consists in the superposition of AC sine waves with amplitude 𝐸𝑘, angular frequency 𝜔𝑘 = 2𝜋𝑘𝑓 , and
phase shift 𝜑𝑘. 𝐸0 is the DC component.

; `eis.info` file

frequency_upper_limit 1e+3 ; hertz

20 Chapter 4. Electrochemical techniques
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frequency_lower_limit 1e-2 ; hertz
steps_per_decade 6

cycles 2
ignore_cycles 1
steps_per_cycle 128

harmonics 1
dc_voltage 0 ; volt
amplitudes 5e-3 ; volt
phases 0 ; degree

In the input data above:

• frequency_upper_limit, frequency_lower_limit, and steps_per_decade define the fre-
quency range and the resolution on a log scale (for the fundamental frequency). Frequencies are scanned from
the upper limit to the lower one.

• Electric current and potential signals are sampled at regular time interval and steps_per_cycle controls
the size of that interval. ignore_cycles allows to truncate the data in the Fourier analysis. It is best when
(cycles - ignore_cycles) * steps_per_cycle is a power of two (most efficient in the discrete
Fourier transform) but this does not have to be so.

• harmonics allows to select what harmonics 𝑘 of the fundamental frequency 𝑓 to excite. amplitudes and
phases are used to specify 𝐸𝑘 and 𝜙𝑘, respectively. They may be given as arrays and must have the same
size. This multi-sine feature is experimental though. In principle, exciting simultaneously multiple frequencies
reduces the computational cost associated with a full spectrum acquisition, but in practice, it is hard to maintain
the quality of the data measurement without increasing the number of steps.

Below is an example of EIS measurement using Cap:

from pycap import PropertyTree, ElectrochemicalImpedanceSpectroscopy,\
NyquistPlot

# setup the experiment
ptree = PropertyTree()
ptree.parse.info('eis.info')
eis = ElectrochemicalImpedanceSpectroscopy(ptree)

# build an energy storage device and run the EIS measurement
eis.run(device)

# visualize the impedance spectrum
nyquist = NyquistPlot(filename='nyquist.png')
nyquist.update(eis)

On the Nyquist plot above, the solid blue line shows the impedance of a supercapacitor on the complex plane with the
typical 45 degrees slope for the higher frequencies. The vertical dashed green line corresponds to an equivalent RC
circuit.

Ragone plot

Conceptually, the y-axis describes how much energy is available and the the x-axis shows how quickly that energy can
be delivered.

4.4. Ragone plot 21
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CHAPTER 5

Examples

Constant current charge constant voltage discharge

This is based on [Journal of The Electrochemical Society, 152 (5) D79-D87 (2005)] by M. Verbrugge and P. Liu. It
illustrates how easy it is to specify complex operating conditions for energy storage devices in pycap.

from pycap import EnergyStorageDevice,PropertyTree
from pycap import initialize_data,report_data,plot_data
from matplotlib import pyplot
%matplotlib inline

The supercapacitor is initially fully discharged. It is charged to 1.7 V at a constant current of 100 A. Subsequently,
a constant 1.4 V is applied for 5 s and the supercapacitor is allowed to rest at open circuit potential for 3 min. This
sequence is repeated for a series of charge potentials at 0.1 V increments from 1.8 to 2.4 V. The routine defined below,
run_verbrugge_experiment, implements that experiment and records measurements for the time, current and
voltage.

def run_verbrugge_experiment(device):
charge_current=1.65e-3 # ampere
discharge_voltage=1.4 # volt
discharge_time=5.0 # second
rest_time=180.0 # second
time_step=0.1 # second
time=0.0
data=initialize_data()
for charge_voltage in [1.7,1.8,1.9,2.0,2.1,2.2,2.3,2.4]:

# constant current charge
while device.get_voltage()<charge_voltage:

time+=time_step
device.evolve_one_time_step_constant_current(time_step,charge_current)
report_data(data,time,device)

# constant voltage discharge
tick=time
while time-tick<discharge_time:

23
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time+=time_step
device.evolve_one_time_step_constant_voltage(time_step,discharge_voltage)
report_data(data,time,device)

# rest at open circuit
tick=time
while time-tick<rest_time:

time+=time_step
device.evolve_one_time_step_constant_current(time_step,0.0)
report_data(data,time,device)

return data

Make an energy storage device (here a supercapacitor) and run the experiment.

input_database=PropertyTree()
input_database.parse_xml('super_capacitor.xml')
# no faradaic processes
input_database.put_double('device.material_properties.electrode_material.exchange_
→˓current_density',0.0)
device=EnergyStorageDevice(input_database.get_child('device'))
# run experiment
data=run_verbrugge_experiment(device)

Postprocess the results.

time=data['time']
current=data['current']
voltage=data['voltage']
label_fontsize=30
tick_fontsize=20
labelx=-0.05
labely=0.5
plot_linewidth=3
f,axarr=pyplot.subplots(2,sharex=True,figsize=(16,12))
axarr[0].plot(time,1e+3*current,'b-',lw=plot_linewidth)
axarr[0].set_ylabel(r'$\mathrm{Current\ [mA]}$',fontsize=label_fontsize)
axarr[0].get_yaxis().set_tick_params(labelsize=tick_fontsize)
axarr[0].yaxis.set_label_coords(labelx,labely)
axarr[1].plot(time,voltage,'g-',lw=plot_linewidth)
axarr[1].set_ylabel(r'$\mathrm{Voltage\ [V]}$',fontsize=label_fontsize)
axarr[1].set_xlabel(r'$\mathrm{Time\ [s]}$',fontsize=label_fontsize)
axarr[1].get_yaxis().set_tick_params(labelsize=tick_fontsize)
axarr[1].get_xaxis().set_tick_params(labelsize=tick_fontsize)
axarr[1].yaxis.set_label_coords(labelx,labely)
pyplot.show()
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Plot the power versus time. The red surface area represents the energy used to charge the supercapacitor and the green
on the power pulses is the energy recovered.

power=current*voltage
pyplot.figure(figsize=(16,12))
pyplot.fill_between(time,1e+3*power,0,where=power>0,facecolor='r')
pyplot.fill_between(time,1e+3*power,0,where=power<0,facecolor='g')
pyplot.xlabel(r'$\mathrm{Time\ [s]}$',fontsize=label_fontsize)
pyplot.ylabel(r'$\mathrm{Power\ [mW]}$',fontsize=label_fontsize)
pyplot.gca().get_xaxis().set_tick_params(labelsize=tick_fontsize)
pyplot.gca().get_yaxis().set_tick_params(labelsize=tick_fontsize)
pyplot.show()

5.1. Constant current charge constant voltage discharge 25
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CHAPTER 6

Frequently Asked Questions
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CHAPTER 7

Troubleshooting

Cap is under active development. To find out what version of Cap you are using, you may use:

>>> print("pycap Branch: {0} Commit: {1}"\
... .format(pycap.__git_branch__, pycap.__git_commit_hash__))

29
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CHAPTER 9

Appendix: Weak Formulation

Strong formulation

• In the collector: 𝑖1 = −𝜎∇Φ1 ∇ · 𝑖1 = 0

• In the electrode: 𝑖1 = −𝜎∇Φ1 𝑖2 = −𝜅∇Φ2 ∇ · 𝑖1 = ∇ · 𝑖2 = 𝑎𝑖𝑛

• In the seperator: 𝑖2 = −𝜅∇Φ2 ∇ · 𝑖2 = 0

Weak formulation

• In the collector:

−
∫︁
Ω𝑐

𝑑𝑟𝜑1,𝑖𝜎∆Φ1,𝑗𝜑1,𝑗 = −
∫︁
𝜕Ω𝑐

𝑑𝑟𝜑1,𝑖𝜎∇Φ1,𝑗𝜑1,𝑗 +

∫︁
Ω𝑐

𝑑𝑟∇𝜑1,𝑖𝜎∇Φ1,𝑗𝜑1,𝑗

• In the electrode:(︃∫︀
Ω𝑒

𝑑𝑟𝜑1,𝑖(−𝜎)∆Φ1,𝑗𝜑1,𝑗 + 𝑎𝐶
𝜕Φ1,𝑗𝜑1,𝑗

𝜕𝑡 −
∫︀
Ω𝑒

𝑑𝑟𝜑1,𝑖𝑎𝐶
𝜕Φ2,𝑗𝜑2,𝑗

𝜕𝑡

−
∫︀
Ω𝑒

𝑑𝑟𝜑2,𝑖𝑎𝑐
𝜕𝜑1,𝑗

𝜕𝑡

∫︀
Ω2

𝑑𝑟𝜑2,𝑖(−𝜅)∆Φ2,𝑗𝜑2,𝑗 − 𝜑2,𝑖𝑎𝐶
𝜕Φ2,𝑗𝜑2,𝑗

𝜕𝑡

)︃
=

(︃
−
∫︀
𝜕Ω𝑒

𝑑𝑟𝜑1,𝑖 𝑠𝑖𝑔𝑚𝑎∇Φ1,𝑗𝜑1,𝑗 +
∫︀
Ω𝑒

𝑑𝑟∇𝜑1,𝑖𝜎)∇Φ1,𝑗𝜑1,𝑗 + 𝑎𝐶
𝜕Φ1,𝑗𝜑1,𝑗

𝜕𝑡 −
∫︀
Ω𝑒

𝑑𝑟𝜑1,𝑖𝑎𝐶
𝜕Φ2,𝑗𝜑2,𝑗

𝜕𝑡

−
∫︀
Ω𝑒

𝑑𝑟𝜑2,𝑖𝑎𝐶
𝜕𝜑1,𝑗

𝜕𝑡 −
∫︀
𝜕𝜔𝑒

𝑑𝑟𝜑2,𝑖𝜅∇Φ2,𝑗𝜑2,𝑗 +
∫︀
Ω𝑒

𝑑𝑟∇𝜑2,𝑖𝜅∇Φ2,𝑗𝜑2,𝑗 − 𝜑2,𝑖𝑎𝐶
𝜕Φ2,𝑗𝜑2,𝑗

𝜕𝑡

)︃
• In the seperator:

−
∫︁
Ω𝑠

𝑑𝑟𝜑2,𝑖𝜅∆Φ2,𝑗𝜑2,𝑗 = −
∫︁
𝜕Ω𝑠

𝑑𝑟𝜑2,𝑖𝜅∇Φ2,𝑗𝜑2,𝑗 +

∫︁
Ω𝑠

𝑑𝑟∇𝜑2,𝑖𝜎∇Φ2,𝑗𝜑2,𝑗 ‘
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CHAPTER 10

Indices and tables

• genindex

• modindex

• search

35


	Getting started
	Overview

	Installation
	Third-party libraries
	Install Cap from source
	Enable the Python wrappers
	Build this documentation

	Energy storage devices
	Equivalent circuits
	Supercapacitors
	Batteries

	Electrochemical techniques
	Cyclic charge discharge
	Cyclic voltammetry
	Electrochemical impedance spectroscopy
	Ragone plot

	Examples
	Constant current charge constant voltage discharge

	Frequently Asked Questions
	Troubleshooting
	Acknowledgements
	Appendix: Weak Formulation
	Strong formulation
	Weak formulation

	Indices and tables

