
canyonsubc Documentation
Release 1.0

Susan Allen, Karina Ramos Musalem, Robert Irwin

October 14, 2016

Contents

1 Literature Review, Flow Separation over a Sill 3
1.1 PF Cummins (2000) “Stratified flow over topography: time-dependent comparisons between model

solutions and observations” . 3
1.2 KG Lamb (2004), “On boundary-layer separation and internal wave generation at the Knight Inlet sill” 4

2 Approximating Flow Separation over a Half Cylinder 5
2.1 Potential Flow . 5
2.2 Pressure at the Boundary . 7
2.3 Prandtl’s Boundary Layer Equations . 7

3 Running MITgcm on multiple processors 11
3.1 Specific hints and instructions for mpi runs . 11

4 Calculate numerical diffusivity 13
4.1 Calculate the volume of the domain (function: CalcDomVolume) 13
4.2 1st Term: The volume-weighted average of the squared concentration (function: CalcVariance,

CalcTimeDer) . 13
4.3 2nd Term: The volume-weighted average of the squared horizontal gradient (function: CalcAvgHor-

Grad) . 14
4.4 3rd Term: The volume-weighted average of the squared vertical derivative (function: CalcAvgVerGrad) 14

5 Building and Running MITgcm 15
5.1 Working on orcinus . 15

6 Indices and tables 17

i

ii

canyonsubc Documentation, Release 1.0

Contents:

Contents 1

canyonsubc Documentation, Release 1.0

2 Contents

CHAPTER 1

Literature Review, Flow Separation over a Sill

1.1 PF Cummins (2000) “Stratified flow over topography: time-
dependent comparisons between model solutions and observa-
tions”

Using the Princeton Ocean Model (POM), the author was able to simulate flow over an idealized model of the Knight
Inlet. The results obtained using this model were then compared to data collected over the Inlet. The model does
a poor job of resolving the flow separation in lee of the sill; in particular the model flow demonstrates an apparent
overturning which is not evident in the data. This overturning results in a “high drag state” – defined by Cummins to
be the state of strong spatial acceleration of flow that is associated with a pressure drop across the sill. Essentially, this
state causes an opposing force on the fluid due to the pressure gradient. High drag state is analogous to downslope
windstorms in atmospheric dynamics.

High drag state is well known and is observed in the data, however, the overturning causes the drag state to be reached
too early in the numerical simulations. This discrepency is likely due to the hypothesis put forward by Cummins; a
poor representation of the boundary layer occurring in the lee of the sill.

(a) The numerical model used and parameters used

The author argues that the data obtained during the “Knight Inlet Experiment” suggests that the flow is largely 2D
in the region during the ebb tide. By assuming 2D flow, the model simplifies significantly and resolution may be
increased significantly.

The model uses a free surface, a nonlinear equation of state, suppresses rotational effects, Smagorinsky eddy viscosity,
quadratic drag on the bottom boundary (using a drag coefficient derived from von Karman’s law-of-the-wall). Addi-
tionally, a level 2.5 turbulence closure submodel is used to dissipate high wavenumber energy (Mellor and Yamada,
1982).

The author used 101 sigma levels for the cases presented and stated that increasing the vertical resolution to 201 sigma
levels did not change the solutions significantly. Horizontal grid resolution around the sill was varied between 5m and
30m, with presented results of 10m horizontal resolution.

The tidal forcing is given as an influx condition on the left boundary (see figure 2 of paper). Maximum velocity
acheived is ~62cm/s after 3.5h. The author focusses on the ebb-tide and states that consideration of the response to
flood tide is beyond the scope of interest.

(b) Results

The stratification is analytical and three layer, matching well with observations. Internal normal mode wave solutions
for this stratification were calculated, and the phase speeds were reported for the first and second vertical internal
modes.

3

canyonsubc Documentation, Release 1.0

1.2 KG Lamb (2004), “On boundary-layer separation and internal
wave generation at the Knight Inlet sill”

4 Chapter 1. Literature Review, Flow Separation over a Sill

CHAPTER 2

Approximating Flow Separation over a Half Cylinder

2.1 Potential Flow

Consider a half-cylinder at the bottom boundary of an idealized inviscid fluid with a background flow field moving at
a constant speed 𝑈0 from left-to-right. The governing equations are:

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑤

𝜕𝑢

𝜕𝑧
= −1

𝜌

𝜕𝑝

𝜕𝑥

𝜕𝑤

𝜕𝑡
+ 𝑢

𝜕𝑤

𝜕𝑥
+ 𝑤

𝜕𝑤

𝜕𝑧
= −1

𝜌

𝜕𝑝

𝜕𝑧

𝜕𝑢

𝜕𝑥
+
𝜕𝑤

𝜕𝑧
= 0

The form of topography is given by:

𝑧 = ℎ(𝑥) =

⎧⎪⎨⎪⎩
0, 𝑥 < −𝑅0,√︀
𝑅2

0 − 𝑥2, −𝑅0 < 𝑥 < 𝑅0

0, 𝑥 > 𝑅0

The boundary conditions that will be imposed for the flow away from the cylinder are: far field conditions and no-
normal flow conditions at the boundary.

lim
𝑥,𝑧→∞

𝑢 = 𝑈0,

�⃗� · �̂� = 0, 𝑧 = ℎ(𝑥).

Away from the half-cylinder the flow is irrotational, ∇⃗ × �⃗� = 0⃗, allowing a potential function to be defined:

𝑢 =
𝜕𝜑

𝜕𝑥
, 𝑤 =

𝜕𝜑

𝜕𝑧
.

The incompressibility condition reduces to:

∇2𝜑 = 0.

This is Laplace’s equation. Noting the axial symmetry, the math may be simplified by converting to polar coordinates.
The Laplacian in polar coordinates may be represented by:

𝜕2𝜑

𝜕𝑟2
+

1

𝑟

𝜕𝜑

𝜕𝑟
+

1

𝑟2
𝜕2𝜑

𝜕𝜃2
= 0.

5

canyonsubc Documentation, Release 1.0

This equation may be solved using a separation of variables decomposition, 𝜑(𝑟, 𝜃) = 𝑅(𝑟)𝑇 (𝜃). Substituting this
into the previous equation yields two ordinary differential equations:

𝑟2𝑅′′(𝑟) + 𝑟𝑅′(𝑟)− 𝜇2𝑅(𝑟) = 0,

𝑇 ′′(𝜃) + 𝜇2𝑇 (𝜃) = 0.

Solutions must be considered for both 𝜇 = 0 and 𝜇 ̸= 0.

2.1.1 Case 𝜇 = 0

Solving the ODEs yields:

𝑅(𝑟) = 𝐴1 ln 𝑟 +𝐴2,

𝑇 (𝜃) = 𝐵1𝜃 +𝐵2.

The no-normal flow conditions in polar coordinates are:

𝜕𝜑

𝜕𝜃
= 𝑢𝜃 = 0 = 𝑇 ′(𝜃), 𝜃 = 0, 𝜋

𝜕𝜑

𝜕𝑟
= 𝑢𝑟 = 0 = 𝑅′(𝑅0), 0 < 𝜃 < 𝜋, 𝑟 = 𝑅0

This forces 𝑇 (𝜃) = 𝐵2 and𝑅(𝑟) = 𝐴2. This cannot satisfy the far-field condition and so the 𝜇 = 0 case is degenerate.

2.1.2 Case 𝜇 ̸= 0

The general solution to the ODE for 𝑅(𝑟) is found by substituting an arbitrary polynomial of the form 𝑅(𝑟) = 𝑟𝛾 :[︀
𝛾2 − 𝜇2

]︀
𝑟𝛾 = 0.

If 𝑟 ̸= 0 (which is always true on this domain), then the solution for 𝑅(𝑟) becomes:

𝑅(𝑟) = 𝐴1𝑟
𝜇 +𝐴2𝑟

−𝜇

The solution for 𝑇 (𝜃) becomes:

𝑇 (𝜃) = 𝐵1 sin(𝜇𝜃) +𝐵2 cos(𝜇𝜃).

Applying the polar coordinate boundary conditions to the previous solutions yield:

𝐵1 = 0, 𝐴1𝑅
2𝜇
0 = 𝐴2.

⇒ 𝜑(𝑟, 𝜃) = 𝐶
[︁
𝑟𝜇 +𝑅2𝜇

0 𝑟−𝜇
]︁
cos𝜇𝜃.

Applying the far-field condition in polar coordinates:

lim
𝑥,𝑧→∞

𝜕𝜑

𝜕𝑥
= 𝑈0,

lim
𝑟→∞

{︂
cos 𝜃

𝜕𝜑

𝜕𝑟
− sin 𝜃

𝑟

𝜕𝜑

𝜕𝜃

}︂
= 𝑈0,

lim
𝑟→∞

{︁
cos 𝜃 cos𝜇𝜃

[︁
𝑟𝜇−1 −𝑅2𝜇

0 𝑟−𝜇−1
]︁
+ sin𝜇𝜃 sin 𝜃

[︁
𝑟𝜇−1 +𝑅2𝜇

0 𝑟−𝜇−1
]︁}︁

=
𝑈0

𝜇𝐶
.

If this is to be bounded as 𝑟 → ∞, then 𝜇 ∈ [−1, 1]/{0}. It must also be independent of 𝑟, 𝜃 (because the right hand
side is a constant). This is only satisfied when 𝜇 = ±1. The final solution for 𝜑 is the same for either choice of 𝜇:

𝜑(𝑟, 𝜃) = 𝑈0

[︀
𝑟 +𝑅2

0𝑟
−1

]︀
cos 𝜃,

𝜑(𝑥, 𝑧) = 𝑈0𝑥

[︂
1 +

𝑅2
0

𝑥2 + 𝑧2

]︂
.

This will be used as the outer flow field solution when considering the boundary layer solution for flow over cylinder.

6 Chapter 2. Approximating Flow Separation over a Half Cylinder

canyonsubc Documentation, Release 1.0

2.2 Pressure at the Boundary

Using the solution for velocity potential, the pressure field at the boundary can be defined using Bernoulli’s equation
for steady state pressure:

𝑝+
𝜌

2
∇⃗𝜑 · ∇⃗𝜑 = 𝐶.

The undetermined coefficient 𝐶 may be solved by using a predetermined pressure reference. For this example, that
reference will be the left stagnation point pressure (at 𝑥 = −𝑅0, 𝑧 = 0). Here ∇⃗𝜑 = 0⃗, and so 𝐶 = 𝑝𝑠𝑝 (using 𝑝𝑠𝑝 to
denote pressure at the stagnation point). The full equation for pressure becomes:

𝑝 = 𝑝𝑠𝑝 + 𝜌
𝑈2
0

2

[︁(︀
𝑅2

0 − 𝑥2
)︀2

+ 𝑧4 + 2𝑥2𝑧2 + 2𝑅2
0𝑧

2
]︁ (︀
𝑥2 + 𝑧2

)︀−2
.

Solving for pressure along the boundary yields:

𝑝𝑏𝑑𝑦(𝑥) = 𝑝𝑠𝑝 + 2𝜌𝑈2
0

(︂
1− 𝑥2

𝑅2
0

)︂
,

𝑝𝑏𝑑𝑦(𝜃) = 𝑝𝑠𝑝 + 2𝜌𝑈2
0 sin2 𝜃.

2.3 Prandtl’s Boundary Layer Equations

The equations that balance viscosity, pressure and advection near the boundary in a steady state are Prandtl’s boundary
layer equations, given by:

𝑢*
𝜕𝑢*

𝜕𝑥*
+ 𝑤* 𝜕𝑢

*

𝜕𝑧*
= −1

𝜌

𝑑𝑝

𝑑𝑥*
+ 𝜈

𝜕2𝑢*

𝜕𝑧*2
,

𝜕𝑢*

𝜕𝑥*
+
𝜕𝑤*

𝜕𝑧*
= 0.

The components are starred here to denote that the coordinate system differs from the standard Cartesian system. The
𝑥* coordinate denotes the along boundary coordinate, and the 𝑧* coordinate denotes the normal coordinate. In terms
of the half-cylinder problem:

𝑥* = (𝜋 − 𝜃)𝑅0,

𝑧* = 𝑟 −𝑅0.

Substituting in the equation for pressure at the boundary:

𝑢*
𝜕𝑢*

𝜕𝑥*
+ 𝑤* 𝜕𝑢

*

𝜕𝑧*
=

4𝑈2
0

𝑅0
sin

𝑥*

𝑅0
cos

𝑥*

𝑅0
+ 𝜈

𝜕2𝑢*

𝜕𝑧*2
= 𝑈𝑏𝑑𝑦(𝑥

*)
𝑑𝑈𝑏𝑑𝑦

𝑑𝑥*
+ 𝜈

𝜕2𝑢*

𝜕𝑧*2
,

𝜕𝑢*

𝜕𝑥*
+
𝜕𝑤*

𝜕𝑧*
= 0.

The separation point is the point along the boundary that satisfies:

𝜕𝑢*

𝜕𝑧*

⃒⃒⃒⃒
𝑧*=0

= 0

The far-field condition satisfies the velocity potential at the boundary. The far-field potential in terms of the boundary
variable 𝑥* is:

𝜑𝑓𝑓 (𝑅0, 𝜃) = 2𝑈0𝑅0 cos 𝜃,

𝜑𝑓𝑓 (𝑥
*) = −2𝑈0𝑅0 cos

𝑥*

𝑅0

2.2. Pressure at the Boundary 7

canyonsubc Documentation, Release 1.0

Explicitly stating the far-field condition:

lim
𝑧*→∞

𝑢* = 𝑈𝑏𝑑𝑦(𝑥
*) =

𝑑𝜑𝑓𝑓
𝑑𝑥*

= 2𝑈0 sin

(︂
𝑥*

𝑅0

)︂
.

Following “Boundary Layer Theory”, Schlichting, 1979, the boundary layer equations may be treated using a Blausius
series. In order to approach this problem, rewrite in terms of the streamfunction, 𝜓:

𝑢* =
𝜕𝜓

𝜕𝑧*
, 𝑤* = − 𝜕𝜓

𝜕𝑥*
,

𝜕𝜓

𝜕𝑧*
𝜕2𝜓

𝜕𝑥*𝜕𝑧*
− 𝜕𝜓

𝜕𝑥*
𝜕2𝜓

𝜕𝑧*2
− 𝜈

𝜕3𝜓

𝜕𝑧*3
=

4𝑈2
0

𝑅0
sin

𝑥*

𝑅0
cos

𝑥*

𝑅0

The solution must satisfy the no-slip condition, and the far field condition:

𝜕𝜓

𝜕𝑥*
=

𝜕𝜓

𝜕𝑧*
= 0, at 𝑧* = 0,

lim
𝑧*→∞

𝜓 = 𝑈𝑏𝑑𝑦(𝑥
)𝑧

To solve this equation, a series solution must be obtained. A general series for 𝜓 is:

𝜓(𝑥*, 𝑧*) =

∞∑︁
𝑛=0

𝑥*𝑛𝑓𝑛(𝑧
*)

Noting the far-field condition is an odd function in 𝑥*:

lim
𝑧*→∞

𝜕𝜓

𝜕𝑧*
= 𝑈𝑏𝑑𝑦(𝑥

*) = 𝑢1𝑥
* + 𝑢3𝑥

*3 + 𝑢5𝑥
*5 + . . .

And so the streamfunction must also be an odd function of 𝑥*. Using the odd expansion of the streamfunction and
substituting into the streamfunction momentum equation:

(DE1)𝑥+ (DE3)𝑥
3 + (DE5)𝑥

5 +𝒪(𝑥7) = 0

Where each of the quantities in brackets are ordinary differential equations in 𝑓𝑖(𝑧*). To write them explicitly:

DE1 : (𝑓 ′1)
2 − 𝑓1(𝑓

′′
1)− 𝜈𝑓 ′′′1 − 4

𝑈2
0

𝑅2
0

= 0

DE3 : 4𝑓 ′1𝑓
′
3 − 𝑓1𝑓

′′
3 − 3𝑓3𝑓

′′
1 − 𝜈𝑓 ′′′3 +

8

3

𝑈2
0

𝑅4
0

= 0

DE5 : 6𝑓 ′1𝑓
′
5 + 3(𝑓 ′3)

2 − 𝑓1𝑓
′′
5 − 5𝑓5𝑓

′′
1 − 3𝑓3𝑓

′′
3 − 𝜈𝑓 ′′′5 − 8

15

𝑈2
0

𝑅6
0

= 0

Where primed quantities denote the derivative with respect to 𝑧*. The initial differential equation is the most difficult
due to the nonlinearity. It must be treated asymptotically and an approximate solution must be acquired before solving
the simpler differential equations (DE3, DE5, etc.).

It should be noted here that these equations may be used to derive a natural scale for the boundary layer thickness. In
the middle of the boundary layer, each term of Prandtl’s equations are balanced, and so must be the terms in DE1. If
𝛿 represents this natural scale for boundary layer thickness, use a scaled vertical component, 𝜂 = 𝑧*/𝛿, in order, the
terms are scaled as:

𝐹 2

𝛿2
,
𝐹 2

𝛿2
,
𝜈𝐹

𝛿3
, 4
𝑈2
0

𝑅2
0

where 𝐹 is the natural scaling for 𝑓1. This leads to the termwise balance:

𝐹 ∼ 𝜈/𝛿, 𝑅2
0𝜈

2/4𝑈2
0 ∼ 𝛿4

⇒ 𝛿 ∼
√︂
𝑅0𝜈

2𝑈0

⇒ 𝐹 ∼
√︂

2𝑈0𝜈

𝑅0

8 Chapter 2. Approximating Flow Separation over a Half Cylinder

canyonsubc Documentation, Release 1.0

For numerical simulations, values of

𝑅0 = 2.5𝑐𝑚,𝑈0 = 1𝑐𝑚 · 𝑠−1, 𝜈 = 10−6𝑚2 · 𝑠−1

are used, yielding a boundary thickness of 𝛿 ∼ 1.12𝑚𝑚.

The boundary and far-field conditions are important to determine for 𝑓𝑛. Explicitly:

BCs : 𝑓𝑛(0) = 0, 𝑓 ′𝑛(0) = 0

FFCs : lim
𝑧*→∞

𝑓 ′𝑛(𝑧
*) =

2𝑈0

𝑛!𝑅𝑛
0

, 𝑛 = 2𝑗 + 1 for 𝑗 = 0 . . .∞

2.3.1 Solving 𝑓1

DE1 must be treated approximately. Because this analysis is concerned with separation processes, series solutions in
𝑧* will be sufficiently accurate. The series solution to DE1 reads:

𝑓1(𝑧
*) ≈ 𝐴1

2
𝑧*2 − 2

3

𝑈2
0

𝑅2
0𝜈
𝑧*3 for 𝑧* ≪ 𝛿

In order to solve for𝐴1, this will have to be matched to the outer solution. The outer solution is obtained by considering
the far field condition. Second-order and higher derivatives of 𝑓𝑛 vanish as 𝑧* → ∞ and so high order derivatives are
ignored. This leaves a solution of the form:

𝑓1(𝑧
*) ≈ 2𝑈0

𝑅0
𝑧* +𝐵1, for 𝑧* ≫ 𝛿

The inner and outer solutions are matched as 𝑧* → 𝛿. By making the matched solution continuous and smooth, the
values of 𝐴1 and 𝐵1 may be solved:

𝐴1 = 3

√︂
2

𝜈

𝑈
3/2
0

𝑅
3/2
0

,

𝐵1 = − 5

12

√︂
2

𝜈

𝜈𝑈
1/2
0

𝑅
1/2
0

2.3. Prandtl’s Boundary Layer Equations 9

canyonsubc Documentation, Release 1.0

10 Chapter 2. Approximating Flow Separation over a Half Cylinder

CHAPTER 3

Running MITgcm on multiple processors

The main source of information is the model’s manual compilation section:
http://mitgcm.org/public/r2_manual/latest/online_documents/node94.html . You can get the code from MITgcm.org
via CVS.

Compile the code:

As described on the documentation, MITgcm uses the “make” program to compile the code. MITgcm provides a
script genmake2 that creates a makefile used by make. This file allows the model to pre-process source files, specify
the compiler and figure out dependencies. Afterwards, you need to build the dependencies and compile the code.

Again, there is a detailed explanation of how to build the code in the documentation above.

3.1 Specific hints and instructions for mpi runs

The two machines where we have run MITgcm in multiple processors are Westgrid’s Bugaboo and Salish. The optfiles
for each machine are under the optfiles repo. They have been adapted from other example optfiles on the MITgcm
website.

Tips and hints for Westgrid’s Bugaboo

• optfile: bugaboo_mpi.opt.

Tips and hints for Salish

• optfile: salish_mpi.opt

• To avoid broken pipe errors, execute mitgcmuv in the background (use & at the end of the mpi run command)
and exit the session. If you want to monitor the process, start a new session.

11

http://mitgcm.org/public/r2_manual/latest/online_documents/node94.html

canyonsubc Documentation, Release 1.0

12 Chapter 3. Running MITgcm on multiple processors

CHAPTER 4

Calculate numerical diffusivity

This module has functions to calculate the numerical diffusivity experienced by a tracer, associated to a specific
configuration of the MITgcm. In particular, it was developed to calculate the equivalent diffusivity $kappa$, defined
(here) as $kappa = kappa_{pres}+kappa_{num}$, where $kappa_{pres}$ is the prescibed or explicit tracer diffusivity
one imposes on the model and $$k_{num}$$ is the additional diffusivity due to numerical truncation errors. Note that
there are two $$kappa_{pres}$$ and therefore two $kappa$, one for the horizontal dimensions and one for the vertical
one.

These calculations try to reproduce the method used by [1] Abernathy et al. 2010, [2] Hill et al. 2011, and [3]
Leibensperger and Plumb, 2013 to determine the numerical diffusivity MITgcm Southern Ocean configurations [1,2]
and a baroclinic flow simulation simulation [3].

The idea is that from the evolution equation for the variance of the tracer concentration in the model output

begin{equation} frac{1}{2}frac{partial{overline{q^{2}}}}{partial{t}}=-kappa_{h} overline{|nabla_h q|^2}-
kappa_{v} overline{(frac{partial{q}}{partial {z}})^{2}} end{equation}

one can fit by a least squares regression, suitable values of $kappa_h$ and $kappa_v$ that satisfy the equation.

4.1 Calculate the volume of the domain (function: CalcDomVolume)

The volume of a tracer cell (remember we have an Arakawa C grid, so this changes depending on which kind of cell
we are thinking about) is given by

$V(i,j,k)=depth times area = (hfacC(i,j,k)times dRf(k)) times rA(i,j) = (hfacC(i,j,k)times dRf(k)) times dXg(i,j) times
dYg(i,j)$,

where hfacC is the fraction of the cell that is open (not occupied with land). So, the total volume of the domain is

$sumlimits_{i=1}^{nx}{sumlimits_{j=1}^{ny}{sumlimits_{k=1}^{nz}{(hfacC(i,j,k)times dRf(k)) times rA(i,j)}}}$

4.2 1st Term: The volume-weighted average of the squared concen-
tration (function: CalcVariance, CalcTimeDer)

The first term in the variance evolution equation is $frac{1}{2}frac{partial{overline{q^{2}}}}{partial{t}}$. Note
that we care about the time derivative of the variance, so that the mean concentration that usually appears in the
definition of variance will not play a role here, since it is constant in time (we are not putting in or letting out any
tracer).

We are going to calculate $overline{q^2}$, the volume-weighted average of the squared concentration, and then the
time derivative of that using a centered difference scheme.

13

canyonsubc Documentation, Release 1.0

4.3 2nd Term: The volume-weighted average of the squared horizon-
tal gradient (function: CalcAvgHorGrad)

The second term in the variance evolution equation is $-kappa_{h} overline{|\nabla_h
q|^2}$. Next, we calculate the square of the horizontal gradient $|nabla_h
q|^2=(frac{partial{q}}{partial{x}})^2+(frac{partial{q}}{partial{y}})^2$.

Spatial derivatives are approximated using a centered-difference scheme.

4.4 3rd Term: The volume-weighted average of the squared vertical
derivative (function: CalcAvgVerGrad)

The third term in the variance evolution equation is $-kappa_{v} overline{(frac{partial{q}}{partial{z}})^2}$. Next,
we calculate the square of the vertical gradient $(frac{partial{q}}{partial{z}})^2$.

The vertical derivative is approximated using a centered-difference scheme.

14 Chapter 4. Calculate numerical diffusivity

CHAPTER 5

Building and Running MITgcm

5.1 Working on orcinus

This section describes the steps to set up and run the MITgcm code for the UBC EOAS Canyons group configurations
on the orcinus.westgrid.ca HPC cluster.

When working on the Westgrid clusters the module command must be used to load extra software components. The
required modules vary from cluster to cluster. On orcinus load the python module with:

$ module load python

to make Python 2.7, the python-netCDF4 package, and Mercurial available to you.

5.1.1 Create a Workspace and Get the Repos

$ mkdir -p $HOME/canyons
$ cd $HOME/canyons

Use the CVS version control tool to do a checkout of the latest MITgcm source code. Use the password cvsanon
when the cvs login command prompts you for a password:

$ export CVSROOT=':pserver:cvsanon@mitgcm.org:/u/gcmpack'
$ cvs login
$ cvs co -P MITgcm

Use the Mercurial version control tool to clone the CanyonsUBC optfiles repo from Bitbucket:

$ hg clone ssh://hg@bitbucket.org/canyonsubc/optfiles

5.1.2 Building the Code

The MITgcm docs describe several ways of building the code. Here, we will do the build in a directory outside of the
MITgcm and optfiles directory trees.

Note: For the purposes of developing the build instructions for orcinus the
MITgcm/verification/rotating_tank/ configuration is used, but the steps below should be adapt-
able to your research configuration(s).

Create a configuration build directory:

15

https://www.westgrid.ca/orcinus
https://bitbucket.org/canyonsubc/optfiles
http://mitgcm.org/public/r2_manual/latest/online_documents/node94.html

canyonsubc Documentation, Release 1.0

$ cd $HOME/canyons
$ mkdir -p rotating_tank/build
$ cd rotating_tank/build

Build the code:

$ $HOME/canyons/MITgcm/tools/genmake2 \
-rootdir=$HOME/canyons/MITgcm \
-mods=$HOME/canyons/MITgcm/verification/rotating_tank/code
-of=$HOME/canyons/optfiles/orcinus_mpi.opt \
-mpi

$ module load intel
$ module load intel/14.0/netcdf_hdf5
$ make depend
$ make

The module load commands bring the Intel OpenMPI Fortran compiler, and its netcdf and hdf5 libraries into your
environment for the make steps. Those modules are also required to run the code, so you need to include those
module load commands in your PBC script. However, due to some weirdness in the orcinus modules setup,
they must not be loaded when you run MITgcm/tools/genmake2. So, if you need to run genmake2 again, make
sure that you first do:

$ module unload intel
$ module unload intel/14.0/netcdf_hdf5

and then re-load the modules before running make.

16 Chapter 5. Building and Running MITgcm

CHAPTER 6

Indices and tables

• genindex

• modindex

• search

17

	Literature Review, Flow Separation over a Sill
	PF Cummins (2000) ``Stratified flow over topography: time-dependent comparisons between model solutions and observations''
	KG Lamb (2004), ``On boundary-layer separation and internal wave generation at the Knight Inlet sill''

	Approximating Flow Separation over a Half Cylinder
	Potential Flow
	Pressure at the Boundary
	Prandtl's Boundary Layer Equations

	Running MITgcm on multiple processors
	Specific hints and instructions for mpi runs

	Calculate numerical diffusivity
	Calculate the volume of the domain (function: CalcDomVolume)
	1st Term: The volume-weighted average of the squared concentration (function: CalcVariance, CalcTimeDer)
	2nd Term: The volume-weighted average of the squared horizontal gradient (function: CalcAvgHorGrad)
	3rd Term: The volume-weighted average of the squared vertical derivative (function: CalcAvgVerGrad)

	Building and Running MITgcm
	Working on orcinus

	Indices and tables

