

 Navigation

 	
 index

 	
 next |

 	Canvas codecheck grading 2.3.0 documentation

Canvas codecheck grading

Canvas codecheck grading solves the problem of tediously grading
codecheck [http://horstmann.com/codecheck/] files with Canvas’s
point-and-click interface. Instead of downloading each of the
codecheck files individually, extracting them one-by-one, looking at
the report and grading the files by hand, you can simply edit a single
text file locally on your computer.

All you need to grade a codecheck submission is to give a comment in a
plain text document that’s generated by the script, such as the
snippet shown below:

_dir: lastname--firstname_1234567
_name: lastname--firstname
_canvas_id: 1234567
_total_score: 18/18
_comment:
Good work, Firstname.

Here are where you put your comments, such as...

Clever logic with the if statements!

Try to remove those variables you didn't use at all.

_notes_and_score_changes:

If you need to modify the score, put them here,
like so:

-1 points for nonprivate instance variables
^
this line beginning with '-1' will deduct 1 point from the 18 points
shown above. Now the student will receive 17 points on this assignment.

Every line that doesn't start with an integer will just be a note.

Project dependencies

	Python (2.7 or 3.3) on your system.

	Canvas information (an access token and the course ID), which you will add to
the configuration file to this script.

	Java JDK (for the jar and jarsigner commands)

Features

	Automatic grading/point weighing with the codecheck files

	Easy grading via a single plain text document.

	Quickly open mulitple submitted codecheck report files.

	Uploading grades and comments to Canvas

Code

The code for this project can be found at the Bitbucket repository [https://bitbucket.org/danielmai/code-check-homework-grading].

Documentation Index

	Initial setup
	Python

	JDK tools

	Canvas access token

	Download the scripts

	Modify config.json

	If you are a past grader, or grading for multiple classes

	Overview
	Scripts

	Canvas API

	Workflow

	What to watch out for

	Detailed usage
	Structure

	Summary of the structure

	Aggregate Java files

	Aggregate report files

	Open reports in the browser

	Checking for duplicate submissions

	Grading structure

	Uploading the grades

	Script Optional Arguments

	Development
	Dependencies

	Support

	Changelog

Support

If you have any questions or problems with the scripts, please email me at
daniel.mai01@sjsu.edu.

 Copyright 2014, Daniel Mai.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Canvas codecheck grading 2.3.0 documentation

Initial setup

Python

Python needs to be installed on your system. You can download Python
at the official download page [http://www.python.org/download/].
They should be compatible with any Python 2.7.x and Python 3.x
versions. The scripts were created using Python 2.7.5. I’ve tested
these scripts with Python 3.3 as well, and they seemed to work just
fine.

JDK tools

You need to have the JDK installed and the command-line tools on your
path, because the scripts use the jar and jarsigner commands.
On Windows, refer to instructions at Oracle’s documentation [http://docs.oracle.com/javase/7/docs/webnotes/install/windows/jdk-installation-windows.html#path] to set up
your command-line path to have the Java tools ready. On Linux and OS
X, the tools should automatically be found on your path.

Canvas access token

You must create a Canvas access token in order to grade
assignments. This allows you to submit grades and comments for
homework under your account (so long as you have permission to, which
you should have because you’re a grader). An access token can be
created at the bottom of your Canvas settings [https://sjsu.instructure.com/profile/settings] and clicking on the
blue “+ New Access Token” button, which is shown below.

[image: Canvas settings access token section]
Above: The access token section of the Canvas setting page

Note

An access token is like a password, so keep it away from others, as it
allows anyone to use the Canvas API under your account. You only need
one access token for all of your classes because the token is for
your whole account, not tied to any particular account. So if you’re
grading for multiple courses with this script, you can use the same
access token for all of them.

Download the scripts

You can download the scripts by cloning the repository with the
following command:

git clone https://bitbucket.org/danielmai/code-check-homework-grading.git

By cloning the repository, it will be easier to get the latest
versions of the scripts with a git pull. Remember to pull the
latest scripts from the repository before grading.

Modify config.json

There is a config.json file that contains information necessary to
make calls to the Canvas API. It should contain the correct
information for the following fields:

	access_token

	The API access token for Canvas. To create one for yourself, see
the Canvas access token section (above).

	course_id

	A string of digits representing the Canvas course ID. It can be
found from the URL of the course page on Canvas (the only string
of digits in the URL).

Note

Make sure you have the correct course ID for the course
you are grading for this semester. If you used this
script for a previous course, you may have kept the same
information relevant to your previous course.

If you have the wrong information in your config file,
the script may appear to be working just fine, but bad
things will happen (like uploading the grades with
the same assignment name to the wrong course), so please
double check this.

	course_name

	(Optional) This is used as a label in the config file so you know
what course the config information is pertaining to.

	host

	The host for Canvas. This will be specific to the university’s
Canvas installation. SJSU Canvas’s host is
sjsu.instructure.com.

You can modify the config.json file directly, or by using
grade_config.py (but modifying it directly is probably the way to
go—it’s just a JSON file). If you want to use the provided
grade_config.py script, use grade_config.py --help for instructions.

If you are a past grader, or grading for multiple classes

There is only one config.json file that the script will read from,
so you must make sure that the correct information is in your
configuration file (if that didn’t become apparent in the note above).

If you are grading multiple classes at the same time, then you should
make a copy of the config file and manage them yourself. When you use
the script, make sure you are using the correct config file.

 Copyright 2014, Daniel Mai.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Canvas codecheck grading 2.3.0 documentation

Overview

Here’s an overview of the scripts and the grading workflow.

Scripts

The three scripts that you will use are:

	grade.py
	Organizes the submission files and generates the grading files
for you. For more information, see the Grading structure
section.

	open_reports_in_browser.py
	Opens mulitiple codecheck report files at once for quickly
viewing the reports while grading. For more information, see the
Open reports in the browser section.

	grade_upload.py
	Parses the grades.txt generated by grade.py and uploads the
data to the assignment on Canvas. For more information, see the
Uploading the grades section.

Canvas API

This script communicates with Canvas through the Canvas
API [https://canvas.instructure.com/doc/api/] with the following API
calls:

	List assignments [https://canvas.instructure.com/doc/api/all_resources.html#method.assignments_api.index]

	In grade.py, this is used to get a listing of all the
assignments in the course to find the match with the
assignment name that is passed in when you run the script. It
will grab the assignment ID and the assignment’s maximum
score from Canvas.

	In grade_upload.py, This is used to get the Canvas
assignment ID of the assignment that matches the assignment
name that you pass to the script.

	Grade or comment on a submission [https://canvas.instructure.com/doc/api/all_resources.html#method.submissions_api.update]

	In grade_upload.py, this is used to upload the scores and
your comments for each student written in the grades.txt
file produced by this script.

Workflow

The overall grading workflow is as follows:

	Download the submission files from Canvas. There should be a “Download
Submissions” link on the righthand sidebar on the assignment page on Canvas.

	Extract the files to a new directory.

	Run the grade.py script on the directory. The typical command looks
like:

python grade.py "The Assignment Name on Canvas" path/to/submissionfiles

Where "The Assignment Name on Canvas" is the name of assignment
name you want to grade, and path/to/submissionfiles is path to
the files that you extracted to in Step 2 above.

	Grade the files by looking at the report files for each student with the
open_reports_in_browser.py script. For more detail about this script,
see the Open reports in the browser section.

	When you’re done grading, upload the grades.txt file to Canvas. The
typical command looks like:

python grade_upload.py path/to/grades.txt

Where path/to/grades.txt is the filepath to the grades.txt file.

What to watch out for

These grading scripts don’t do everything, but it tries to catch some
common problems.

What the script detects

The script automatically detects the following issues and informs you if
anything was found in the _notes_and_score_changes section of
grades.txt:

	Duplicate submissions, such as two identical submissions of the
same part. For example, If an assignment had students submit a
Robot.java file for one of the parts, and a student submitted
two codecheck reports for Robot.java, then the script will only
count one of them. In grades.txt, this problem will be described as
“javafile aleady submitted.”

	Draft/Final submissions. Usually this problem happens when
students submit draft files for a final homework. First, the script
counts all of the submissions that are “draft” level and “final”
level. The script then chooses the level with the most submissions
(because most students are going to submit the correct files), a la
the-majority-is-probably-correct. In grades.txt, this problem will be
described as “Incorrect problem level”.

	Irrelevant submissions. Just as the draft/final homework level is
detected with the majority-is-probably-correct heuristic, the
irrelevant submissions are also found the same way. Every codecheck
submission has a problem ID, so all of them are counted, so the top
three (or, more generally, the top
number-of-parts-for-the-assignment) IDs are chosen for the
assignment. Problem IDs that are not part of this top list are not
scored. In grades.txt, this problem will be described as “javafile
is not part of this assignment”.

	Cheating. If multiple students submitted the same codecheck
submissions, then they will not be given credit for those
submissions. In grades.txt, this problem will be described as “This
exact codecheck submission has been turned in by another student.
Submission ID = xxxxxx”, where xxxxxx is the submission ID. You
can search for xxxxxx in the same grades.txt file to see the other
students who have submitted the same files.

What you should look for

	Code structure. This includes the logic of the code, instance
variables, naming, and the like. These scripts don’t check for style,
code logic, hard coding, etc.

 Copyright 2014, Daniel Mai.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Canvas codecheck grading 2.3.0 documentation

Detailed usage

Here’s a detailed page on what happens to the files when you use these scripts.

Structure

Important

The script should only be run on a fresh directory of
submission files from Canvas. In other words, don’t run
the script more than once on the same set of data. If
you want to redo the script again for the same homework
submissions, start over from the beginning with the
initial set of submission files untouched.

For help and more options for running the script, run
python grade.py --help

$ python grade.py --help

usage: grade.py [-h] [-v] [-n NUMBER_PARTS] [--no-verify] [--no-checks] [-r]
 assignment_name directory

positional arguments:
 assignment_name The assignment name. Must match an assignment found on
 Canvas.
 directory the directory containing subdirectories of student
 submissions.

optional arguments:
 -h, --help show this help message and exit
 -v, --verbose print verbose output to stdout.
 -n NUMBER_PARTS, --number-parts NUMBER_PARTS
 provide the number of parts for this assignment
 --no-verify skip jarsigner verification and unarchive all
 submission files
 --no-checks Don't check for warnings/cheating submissions (checks
 by default)
 -r, --remove-existing
 removes grading files from the directory from a
 previous run

The grading script requires a directory of submissions from Canvas.

To grade an assignment, download the .zip file from Canvas and extract
its contents to a directory. The directory structure may look something
like

directory_with_submissions
|
|--studentname1_studentid1_submissionid1_filename1.ext
|--studentname1_studentid1_submissionid2_filename2.ext
|--studentname1_studentid1_submissionid3_filename3.ext
|--studentname2_studentid2_submissionid4_filename4.ext
|--studentname2_studentid2_submissionid5_filename5.ext
|--studentname3_studentid3_submissionid3_filename.ext
+--...

where ext is either signed.zip, zip, or jar. (Note:
There were three possible extensions with codecheck because it first
gave out jar files, and then zip files. Now, codecheck only
provides students with a signed.zip file).

To run the script on the directory, the command will be something like

python grade.py "Assignment Name" directory_with_submissions

Where "Assignment Name" matches the name of the assignment on
Canvas. Don’t forget to enclose the name in quotation marks if it
contains spaces.

When the script runs on a submissions directory, it organizes the
directory by separating each student’s submissions to an individual
directory. So the directory tree above will become

directory_with_submissions
|
|--studentname1_studentid1
| |
| |--studentname1_studentid1_submissionid1_filename1.ext
| |--studentname1_studentid1_submissionid2_filename2.ext
| +--studentname1_studentid1_submissionid3_filename3.ext
|
|--studentname2_studentid2
| |
| |--studentname2_studentid2_submissionid4_filename4.ext
| |--studentname2_studentid2_submissionid5_filename5.ext
|
|--studentname3_studentid3
| |
| +--studentname3_studentid3_submissionid3_filename.ext
|
+--...

Then, the script will extract the files to their own directory (with the
same name as the .ext file). If the --no-verify option is specified,
then all files will be extracted. Otherwise, only those that are
verified by jarsigner will be extracted.

Once all the files are extracted and in their own directories, the
script will begin totaling the codecheck scores from the report.html
files and writing the scores to a file called total_grade.txt. Then,
the script will walk through the directory tree and aggregate the scores
from the total_grade.txt files in each student directory into a file
called grades.txt, which will be found at the root of
directory_with_submissions.

Summary of the structure

Each student’s submissions are moved to his or her own directory named
lastname--firstname-miscname_canvasid. Then, each codecheck file is
unarchived to its own directory. Each student will have a
total_grade.txt file found in his or her own directory, and a
grades.txt file will be found in the directory_of_submissions
(the directory you ran the script with).

Aggregate Java files

Also, the script aggregates the java files and the report files. The
script will aggregate all of the java submission files into one file
called aggregate_java_files.txt in each student directory for
easier viewing of the source files that a student as submitted. Here’s
an example of an aggregated file for a student:

public class StringDemo
{
 public static void main(String[] args)
 {
 String word = "surprise"; //do not change this line

 System.out.println(word.length());

 }

}
/**/
public class TextDemo
{
 public static void main(String[] args)
 {
 Text message = new Text(10, 50, "Hello, World!");
 message.draw();

 }
}
/**/
public class Rainbow
{
 public static void main(String[] args)
 {
 Rectangle box = new Rectangle(0, 0, 100, 20);
 box.setColor(Color.RED);
 box.fill();

 }
}

A /**/ is the
separator between different files.

Aggregate report files

The report.html files will be aggregated into one
aggregate_report.html file per student. These aggregated files are
useful to see the reports of one student’s homework on one page instead
of a page for each part of the homework.

After the above steps, the directory structure will become

directory_with_submissions
|
|--grades.txt
|
|--studentname1_studentid1
| |
| |--studentname1_studentid1_submissionid1_filename1
| | |
| | +--(codecheck files)
| |
| |--studentname1_studentid1_submissionid2_filename2
| | |
| | +--(codecheck files)
| |
| |--studentname1_studentid1_submissionid3_filename3
| | |
| | +--(codecheck files)
| |
| |--studentname1_studentid1_submissionid1_filename1.ext
| |--studentname1_studentid1_submissionid2_filename2.ext
| |--studentname1_studentid1_submissionid3_filename3.ext
| |--aggregate_java_submissions.txt
| |--aggregate_report.html
| +--total_grade.txt
|
+--...

Open reports in the browser

With all of these “aggregate_*” files created to help with looking at the
grades, it sure would be helpful to have a fast way to open all of these files
at once. The script open_reports_in_browser.py will do that for you.

The script opens the aggregate_report.html files for a given
directory with the default application for html files (probably your
browser).

There are optional arguments (documented below) to provide the script if
you only want to open reports for a certain alphabetical range for
students’ last names. This is helpful if you’re taking a break for
grading and you don’t want to open all the report files, but just the
student you left off with and the rest.

To open all the report files, you can run

python open_reports_in_browser.py path/to/directory

Opening all of the report files at once is probably not what you want to
do though, because that’s 100+ tabs in your browser at once.

There are -s and -e options that are optional. They’re shorthand
for --start-letter and --end-letter. (Run
python open_reports_in_browser.py --help for clarification).

For example, to open report files starting with students whose last
names start with ‘G’ and the rest of the students, run

python open_reports_in_browser.py path/to/directory -s G

which will open the reports from the ‘G’ students to the last students
(‘Z’ students, implicitly).

To open report files from the beginning of the list until the ‘N’
students, run

python open_reports_in_browser.py path/to/directory -e N

which will open the reports from the beginning of the alphabet (‘A’
students) to the ‘N’ students.

To open reports in a range, say, from ‘G’ to ‘N’, just combine the
options -s and -e

python open_reports_in_browser.py path/to/directory -s G -e N

There’s a shortcut option, -se, that can be used if you just want to
start and end with the same letter, which will only open reports within
that single letter’s range.

python open_reports_in_browser.py path/to/directory -se A

which is equivalent to the call

python open_reports_in_browser.py path/to/directory -s A -e A

(Note: the last-name letters are case-insensitive. so -s G and
-s g are the same)

And if you would rather open the aggregate_java_files.txt files
instead of the report files, then supply the -j option to the
script. They’ll probably open up in your text editor (because the script
opens the files with the default application depending on the file
extension. “txt” usually opens in text editors). The java files take up
less vertical space overall compared to the report files, but the report
files have colors like red that indicate test cases that failed and the
test results of the program (including graphical results for graphics
programs, so the report files are probably the way to go, but aggregate
java files are also an option.

Checking for duplicate submissions

Usage:

python check_duplicate_submission_ids.py <directory>

check_duplicate_submission_ids.py is a script that will check the
submissions directory (that you will pass as an argument to the
script) for any duplicate submission ids in the directory. If any
duplicates are found, then the script will display them like so:

Here are the students who have the same submission id:
Submission id: xxxxxxxxxxxxxxxxxxxxxxxxxxxx
 Students:
 lastname1--firstname1
 lastname2--firstname2
Submission id: yyyyyyyyyyyyyyyyyyyyyyyyyyyy
 Students:
 lastname3--firstname3
 lastname4--firstname4
[... and so on]

If there are no duplicate submission ids, the script will output:

There are no duplicate submission ids.

Grading structure

Each student’s submissions are moved to his or her own directory named
lastname--firstname-miscname_canvasid. Then, each codecheck file is
unarchived to its own directory. Each student will have a
total_grade.txt file found in his or her own directory, and a
grades.txt file will be found in the directory_of_submissions
(the directory you ran the script with).

At the top of grades.txt there are two fields that are used to
identify the assignment:

	_canvas_assignment_name: The name of this assignment.

	_canvas_assignment_id: The ID of this assignment.

These are used for uploading grades to the correct assignment later when
you use grade_upload.py.

For each student, grades.txt file has several fields:

	_dir shows the name of the directory of the student’s submissions

	_name shows the name of the student

	_canvas_id shows the Canvas ID of the student

	_total_score shows the score that the student received for the
assignment

	_comment holds the comments that you put in for a student’s
submission. This will be sent to Canvas and appear as a comment on
the student’s assignment. It will only be treated as text, with the
beginning and ending whitespace stripped out. This field does not
affect the score in any way.

	_notes_and_score_changes holds the options to mutate the score.
If you want to change the score, the first token of a line must
be an integer, and that integer must be followed by a single
space. You can also write your own personal notes here which will
not sent to Canvas.

Both the _comment and _notes_and_score_changes fields can be
empty, but you should comment on something with each student. Give some
good feedback :). All other fields should be treated as read-only.
You should only need to write in the _comment and
_notes_and_score_changes fields.

Students who’ve received full credit for the assignment will
automatically have a comment complimenting them for their good work,
including their first name (and middle name, if any. Sometimes including
the middle name is appropriate for a name such as “Yin Yan”, but not as
much for names such as “Chris Joseph”). Examples include “Good job,
Joe.” “Good work, Sally.”, and “Well done, Jessica.”

Example

Here’s an example student submission in grades.txt:

_dir: last_first_0123456
_name: last_first
_canvas_id: 0123456
_total_score: 18/18
_comment:

Good job, but remember to make your instance variables private.

_notes_and_score_changes:

-1 didn't make instance variables private
-2 let's deduct more points for this example
+1 we can add points too
Here's a note. This line won't change the score at all.

The student last_first with the ID 0123456 would receive 16 (=
18 - 1 - 2 + 1) and see the above comment on Canvas. The
_notes_and_score_changes field doesn’t get published. It is only
used to modify the score (or write notes), and only the numerical value
at the beginning of a line matters. The label is optional; its only
purpose is to give the score change context. For instance, the above
_notes_and_score_changes field would function exactly the same as

_notes_and_score_changes:
-1
-2
+1

Uploading the grades

Uploading the grades to Canvas will publish the grades automatically
with the grades given by the grades.txt file for students who
submitted the grades. For students who did not do the homework (i.e.,
they did not submit anything), they will receive a “No submission.”
comment along with a score of 0 automatically when the grades are
submitted.

Run grades_upload.py to upload the grades to Canvas.

python grades_upload.py path/to/grades.txt

path/to/grades.txt is the filepath to the grades.txt file you
edited with your grades and comments.

Script Optional Arguments

Here’s some detailed description for the optional arguments you can
pass to the scripts.

grade.py

	Indicate the number of parts with -n NUMBER (or --number-parts NUMBER)
	If you don’t want to deal with the prompt and provide the number
of parts to the assignment at runtime, you can provide the
number of parts as an option when you run the script with
this option, with NUMBER being the number of parts for this
assignment. (e.g., 3)

	Skip verifying the submission files with --no-verify
	Instead of checking if the codecheck file is verified before
extracting it, the script will skip verifying any files and just
extract it. If you want the script to extract all the submission
files, regardless of whether or not the codecheck file is
actually signed, then use this option. Beware that the script
will grade any codecheck file that’s structured correctly even
if it’s not signed.

grade_upload.py

	Don’t upload comments with --no-comments
	By default the upload script will upload both scores and comments.
If you only want to upload the grades, you can use the
--no-comments option when running the script. Say, you want to
reupload all the grades again due to a correction after already
submitting grades. If you upload the grades again with comments,
the comments will be duplicated. This options avoids duplication.

	Verbose output with --verbose
	Use this option to have the script print out the grades before
confirming the upload and print out more information with the URLs
during the upload process. For more information on the possible
options, run python grade_upload.py --help.

 Copyright 2014, Daniel Mai.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Canvas codecheck grading 2.3.0 documentation

Development

This program is written and tested on a computer running Mac OS X 10.9
running Python 2.7.5 and Python 3.3.3.

Canvas API documentation [https://canvas.instructure.com/doc/api/]
was used to figure out what API calls to make in this script.

This script makes HTTP requests to Canvas’s API with the help of
Python’s Requests library (it has made development easier and the code
cleaner). More information and documentation on the library can be found
here [http://docs.python-requests.org/].

Dependencies

	Requests [http://docs.python-requests.org/] (used in terms with
the Apache License, Version
2.0 [http://www.apache.org/licenses/LICENSE-2.0])

	Java JDK tools (jar and jarsigner)

	Canvas API [https://canvas.instructure.com/doc/api/]

	Canvas submission zip file structure

	codecheck report structure

	Python and its standard library

Support

If you have any questions or problems with the scripts, please email me
at daniel.mai01@sjsu.edu.

 Copyright 2014, Daniel Mai.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 previous |

 	Canvas codecheck grading 2.3.0 documentation

Changelog

	v2.2.9 (2016-02-21)
	Removes student name from kudos comment (e.g., “Good job, NAME” or
“Well done, NAME”, because the script was actually writing out
“Good job, None” and “Well done, None” (Canvas’s zip format
changed. See BitBucket Issue #3).

	Change DEBUG level log format to have the filename, line number,
function name, and message.

	v2.2.8 (2015-07-01)
	Check all assignments when searching for one by name, not just
the first 50 results. (The changes in v2.2.3 was not good enough.)

	v2.2.7 (2015-03-16)
	Before uploading grades, check if the assignment exists first.

	v2.2.6 (2015-02-06)
	Ignore 404s when uploading grades. The previous behavior was for
the script to fail-fast when there is an assignment ID error.
However, this also makes the script crash when the student canvas
ID isn’t found in the API, usually because of a student dropping
the course.

	v2.2.5 (2014-10-12)
	Change the way the score is searched in the grading file comments.
The scores can only happen at the beginning of a line, not
anywhere in the line (this unintentionally made multiple score
changes made to a submission).

	v2.2.4 (2014-10-10)
	Fix an issue with the codecheck files not being verified correctly
by the keystore file.

	v2.2.3 (2014-10-07)
	list_assignments returns up to 50 assignments instead of the
default 10.

	v2.2.2 (2014-09-06)
	Add public key, codecheck-public.jks to handle the codecheck
files from the new server (cs19).

	v2.2.1 (2014-09-05)
	Bug fix: UnicodeDecodeError when reading from java files.
Solution: Remove file reading encoding when reading java files.

	v2.2.0 (2014-02-23)
	Add the check_duplicate_submission_ids.py script to check for
duplicate submission ids within an assignment.

 Copyright 2014, Daniel Mai.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	Canvas codecheck grading 2.3.0 documentation

Index

 Copyright 2014, Daniel Mai.
 Created using Sphinx 1.3.4.

 _static/minus.png

search.html

 Navigation

 		
 index

 		Canvas codecheck grading 2.3.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Daniel Mai.
 Created using Sphinx 1.3.4.

_static/comment-close.png

_static/comment.png

_static/up.png

_static/down.png

_static/file.png

_static/plus.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/up-pressed.png

_images/user-settings-access-token.png
jser Settings: Daniel Mai |

bag

https://sjsu.instructure.com/ profile/settings

Approved Integrations:

‘These are the third-party applications you have authorized to access the
Canvas site on your behalf:

App Pupose Dates
User-Generated API AGGeSS Bxpies: nover details

LastUsed: Fob 15 st 828m
© New Access Token

