
Camelot Documentation
Release 0.11.0

Vinayak Mehta

Oct 02, 2023

CONTENTS

1 Why Camelot? 3

2 Support the development 5

3 The User Guide 7
3.1 Introduction . 7
3.2 Installation of dependencies . 8
3.3 Installation of Camelot . 10
3.4 How It Works . 10
3.5 Quickstart . 14
3.6 Advanced Usage . 16
3.7 Frequently Asked Questions . 38
3.8 Command-Line Interface . 40

4 The API Documentation/Guide 41
4.1 API Reference . 41

5 The Contributor Guide 49
5.1 Contributor’s Guide . 49

Python Module Index 53

Index 55

i

ii

Camelot Documentation, Release 0.11.0

Release v0.11.0. (Installation)

Camelot is a Python library that can help you extract tables from PDFs!

Note: You can also check out Excalibur, the web interface to Camelot!

Here’s how you can extract tables from PDFs. You can check out the PDF used in this example here.

>>> import camelot
>>> tables = camelot.read_pdf('foo.pdf')
>>> tables
<TableList n=1>
>>> tables.export('foo.csv', f='csv', compress=True) # json, excel, html, markdown,␣
→˓sqlite
>>> tables[0]
<Table shape=(7, 7)>
>>> tables[0].parsing_report
{

'accuracy': 99.02,
'whitespace': 12.24,
'order': 1,
'page': 1

}
>>> tables[0].to_csv('foo.csv') # to_json, to_excel, to_html, to_markdown, to_sqlite
>>> tables[0].df # get a pandas DataFrame!

Cycle
Name

KI
(1/km)

Distance
(mi)

Percent Fuel Sav-
ings
Improved Speed Decreased Ac-

cel
Eliminate
Stops

Decreased
Idle

2012_2 3.30 1.3 5.9% 9.5% 29.2% 17.4%
2145_1 0.68 11.2 2.4% 0.1% 9.5% 2.7%
4234_1 0.59 58.7 8.5% 1.3% 8.5% 3.3%
2032_2 0.17 57.8 21.7% 0.3% 2.7% 1.2%
4171_1 0.07 173.9 58.1% 1.6% 2.1% 0.5%

Camelot also comes packaged with a command-line interface!

CONTENTS 1

https://travis-ci.org/camelot-dev/camelot
https://camelot-py.readthedocs.io/en/master/
https://codecov.io/github/camelot-dev/camelot?branch=master
https://pypi.org/project/camelot-py/
https://pypi.org/project/camelot-py/
https://pypi.org/project/camelot-py/
https://gitter.im/camelot-dev/Lobby
https://deepsource.io/gh/camelot-dev/camelot/?ref=repository-badge
https://github.com/camelot-dev/excalibur

Camelot Documentation, Release 0.11.0

Note: Camelot only works with text-based PDFs and not scanned documents. (As Tabula explains, “If you can click
and drag to select text in your table in a PDF viewer, then your PDF is text-based”.)

You can check out some frequently asked questions here.

2 CONTENTS

https://github.com/tabulapdf/tabula#why-tabula

CHAPTER

ONE

WHY CAMELOT?

• Configurability: Camelot gives you control over the table extraction process with tweakable settings.

• Metrics: You can discard bad tables based on metrics like accuracy and whitespace, without having to manually
look at each table.

• Output: Each table is extracted into a pandas DataFrame, which seamlessly integrates into ETL and data
analysis workflows. You can also export tables to multiple formats, which include CSV, JSON, Excel, HTML,
Markdown, and Sqlite.

See comparison with similar libraries and tools.

3

https://gist.github.com/vinayak-mehta/e5949f7c2410a0e12f25d3682dc9e873
https://gist.github.com/vinayak-mehta/e5949f7c2410a0e12f25d3682dc9e873
https://github.com/camelot-dev/camelot/wiki/Comparison-with-other-PDF-Table-Extraction-libraries-and-tools

Camelot Documentation, Release 0.11.0

4 Chapter 1. Why Camelot?

CHAPTER

TWO

SUPPORT THE DEVELOPMENT

If Camelot has helped you, please consider supporting its development with a one-time or monthly donation on Open-
Collective!

5

https://opencollective.com/camelot
https://opencollective.com/camelot

Camelot Documentation, Release 0.11.0

6 Chapter 2. Support the development

CHAPTER

THREE

THE USER GUIDE

This part of the documentation begins with some background information about why Camelot was created, takes you
through some implementation details, and then focuses on step-by-step instructions for getting the most out of Camelot.

3.1 Introduction

3.1.1 The Camelot Project

The PDF (Portable Document Format) was born out of The Camelot Project to create “a universal way to communicate
documents across a wide variety of machine configurations, operating systems and communication networks”. The
goal was to make these documents viewable on any display and printable on any modern printers. The invention of
the PostScript page description language, which enabled the creation of fixed-layout flat documents (with text, fonts,
graphics, images encapsulated), solved this problem.

At a high level, PostScript defines instructions, such as “place this character at this x,y coordinate on a plane”. Spaces
can be simulated by placing characters relatively far apart. Extending from that, tables can be simulated by placing
characters (which constitute words) in two-dimensional grids. A PDF viewer just takes these instructions and draws
everything for the user to view. Since a PDF is just characters on a plane, there is no table data structure that can be
extracted and used for analysis!

Sadly, a lot of today’s open data is trapped in PDF tables.

3.1.2 Why another PDF table extraction library?

There are both open (Tabula, pdf-table-extract) and closed-source (smallpdf, PDFTables) tools that are widely used
to extract tables from PDF files. They either give a nice output or fail miserably. There is no in between. This is not
helpful since everything in the real world, including PDF table extraction, is fuzzy. This leads to the creation of ad-hoc
table extraction scripts for each type of PDF table.

Camelot was created to offer users complete control over table extraction. If you can’t get your desired output with the
default settings, you can tweak them and get the job done!

Here is a comparison of Camelot’s output with outputs from other open-source PDF parsing libraries and tools.

7

https://web.archive.org/web/20210203041543/http://www.planetpdf.com/planetpdf/pdfs/warnock_camelot.pdf
https://web.archive.org/web/20210203041543/http://www.planetpdf.com/planetpdf/pdfs/warnock_camelot.pdf
http://tabula.technology/
https://github.com/ashima/pdf-table-extract
https://smallpdf.com
https://pdftables.com/
https://github.com/camelot-dev/camelot/wiki/Comparison-with-other-PDF-Table-Extraction-libraries-and-tools

Camelot Documentation, Release 0.11.0

3.1.3 What’s in a name?

As you can already guess, this library is named after The Camelot Project.

Fun fact: In the British comedy film Monty Python and the Holy Grail (and in the Arthurian legend depicted in the
film), “Camelot” is the name of the castle where Arthur leads his men, the Knights of the Round Table, and then sets
off elsewhere after deciding that it is “a silly place”. Interestingly, the language in which this library is written (Python)
was named after Monty Python.

3.1.4 Camelot License

MIT License

Copyright (c) 2019-2021 Camelot Developers Copyright (c) 2018-2019 Peeply Private Ltd (Singapore)

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associ-
ated documentation files (the “Software”), to deal in the Software without restriction, including without
limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the
Software, and to permit persons to whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions
of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

3.2 Installation of dependencies

The dependencies Ghostscript and Tkinter can be installed using your system’s package manager or by running their
installer.

3.2.1 OS-specific instructions

Ubuntu

$ apt install ghostscript python3-tk

8 Chapter 3. The User Guide

https://web.archive.org/web/20210203041543/http://www.planetpdf.com/planetpdf/pdfs/warnock_camelot.pdf
https://en.wikipedia.org/wiki/Monty_Python_and_the_Holy_Grail
https://en.wikipedia.org/wiki/King_Arthur
https://www.ghostscript.com
https://wiki.python.org/moin/TkInter

Camelot Documentation, Release 0.11.0

MacOS

$ brew install ghostscript tcl-tk

Windows

For Ghostscript, you can get the installer at their downloads page. And for Tkinter, you can download the ActiveTcl
Community Edition from ActiveState.

3.2.2 Checks to see if dependencies are installed correctly

You can run the following checks to see if the dependencies were installed correctly.

For Ghostscript

Open the Python REPL and run the following:

For Ubuntu/MacOS:

>>> from ctypes.util import find_library
>>> find_library("gs")
"libgs.so.9"

For Windows:

>>> import ctypes
>>> from ctypes.util import find_library
>>> find_library("".join(("gsdll", str(ctypes.sizeof(ctypes.c_voidp) * 8), ".dll")))
<name-of-ghostscript-library-on-windows>

Check: The output of the find_library function should not be empty.

If the output is empty, then it’s possible that the Ghostscript library is not available one of the
LD_LIBRARY_PATH/DYLD_LIBRARY_PATH/PATH variables depending on your operating system. In this case,
you may have to modify one of those path variables.

For Tkinter

Launch Python and then import Tkinter:

>>> import tkinter

Check: Importing tkinter should not raise an import error.

3.2. Installation of dependencies 9

https://www.ghostscript.com/download/gsdnld.html
https://www.activestate.com/activetcl/downloads
https://www.activestate.com/activetcl/downloads

Camelot Documentation, Release 0.11.0

3.3 Installation of Camelot

This part of the documentation covers the steps to install Camelot.

After installing the dependencies, which include Ghostscript and Tkinter, you can use one of the following methods to
install Camelot:

Warning: The lattice flavor will fail to run if Ghostscript is not installed. You may run into errors as shown in
issue #193.

3.3.1 pip

To install Camelot from PyPI using pip, please include the extra cv requirement as shown:

$ pip install "camelot-py[base]"

3.3.2 conda

conda is a package manager and environment management system for the Anaconda distribution. It can be used to
install Camelot from the conda-forge channel:

$ conda install -c conda-forge camelot-py

3.3.3 From the source code

After installing the dependencies, you can install Camelot from source by:

1. Cloning the GitHub repository.

$ git clone https://www.github.com/camelot-dev/camelot

2. And then simply using pip again.

$ cd camelot
$ pip install ".[base]"

3.4 How It Works

This part of the documentation includes a high-level explanation of how Camelot extracts tables from PDF files.

You can choose between two table parsing methods, Stream and Lattice. These names for parsing methods inside
Camelot were inspired from Tabula.

10 Chapter 3. The User Guide

https://www.ghostscript.com
https://wiki.python.org/moin/TkInter
https://github.com/camelot-dev/camelot/issues/193
https://anaconda.org
https://github.com/tabulapdf/tabula

Camelot Documentation, Release 0.11.0

3.4.1 Stream

Stream can be used to parse tables that have whitespaces between cells to simulate a table structure. It is built on top
of PDFMiner’s functionality of grouping characters on a page into words and sentences, using margins.

1. Words on the PDF page are grouped into text rows based on their y axis overlaps.

2. Textedges are calculated and then used to guess interesting table areas on the PDF page. You can read Anssi
Nurminen’s master’s thesis to know more about this table detection technique. [See pages 20, 35 and 40]

3. The number of columns inside each table area are then guessed. This is done by calculating the mode of number
of words in each text row. Based on this mode, words in each text row are chosen to calculate a list of column x
ranges.

4. Words that lie inside/outside the current column x ranges are then used to extend the current list of columns.

5. Finally, a table is formed using the text rows’ y ranges and column x ranges and words found on the page are
assigned to the table’s cells based on their x and y coordinates.

3.4.2 Lattice

Lattice is more deterministic in nature, and it does not rely on guesses. It can be used to parse tables that have demarcated
lines between cells, and it can automatically parse multiple tables present on a page.

It starts by converting the PDF page to an image using ghostscript, and then processes it to get horizontal and vertical
line segments by applying a set of morphological transformations (erosion and dilation) using OpenCV.

Let’s see how Lattice processes the second page of this PDF, step-by-step.

1. Line segments are detected.

2. Line intersections are detected, by overlapping the detected line segments and “and”ing their pixel intensities.

3.4. How It Works 11

https://euske.github.io/pdfminer/#tools
https://pdfs.semanticscholar.org/a9b1/67a86fb189bfcd366c3839f33f0404db9c10.pdf
https://pdfs.semanticscholar.org/a9b1/67a86fb189bfcd366c3839f33f0404db9c10.pdf
https://en.wikipedia.org/wiki/Logical_conjunction

Camelot Documentation, Release 0.11.0

3. Table boundaries are computed by overlapping the detected line segments again, this time by “or”ing their pixel
intensities.

4. Since dimensions of the PDF page and its image vary, the detected table boundaries, line intersections, and line
segments are scaled and translated to the PDF page’s coordinate space, and a representation of the table is created.

12 Chapter 3. The User Guide

https://en.wikipedia.org/wiki/Logical_disjunction

Camelot Documentation, Release 0.11.0

5. Spanning cells are detected using the line segments and line intersections.

6. Finally, the words found on the page are assigned to the table’s cells based on their x and y coordinates.

3.4. How It Works 13

Camelot Documentation, Release 0.11.0

3.5 Quickstart

In a hurry to extract tables from PDFs? This document gives a good introduction to help you get started with Camelot.

3.5.1 Read the PDF

Reading a PDF to extract tables with Camelot is very simple.

Begin by importing the Camelot module:

>>> import camelot

Now, let’s try to read a PDF. (You can check out the PDF used in this example here.) Since the PDF has a table with
clearly demarcated lines, we will use the Lattice method here.

Note: Lattice is used by default. You can use Stream with flavor='stream'.

>>> tables = camelot.read_pdf('foo.pdf')
>>> tables
<TableList n=1>

Now, we have a TableList object called tables, which is a list of Table objects. We can get everything we need
from this object.

We can access each table using its index. From the code snippet above, we can see that the tables object has only one
table, since n=1. Let’s access the table using the index 0 and take a look at its shape.

>>> tables[0]
<Table shape=(7, 7)>

Let’s print the parsing report.

>>> print tables[0].parsing_report
{

'accuracy': 99.02,
'whitespace': 12.24,
'order': 1,
'page': 1

}

Woah! The accuracy is top-notch and there is less whitespace, which means the table was most likely extracted correctly.
You can access the table as a pandas DataFrame by using the table object’s df property.

>>> tables[0].df

14 Chapter 3. The User Guide

Camelot Documentation, Release 0.11.0

Cycle
Name

KI
(1/km)

Distance
(mi)

Percent Fuel Sav-
ings
Improved Speed Decreased Ac-

cel
Eliminate
Stops

Decreased
Idle

2012_2 3.30 1.3 5.9% 9.5% 29.2% 17.4%
2145_1 0.68 11.2 2.4% 0.1% 9.5% 2.7%
4234_1 0.59 58.7 8.5% 1.3% 8.5% 3.3%
2032_2 0.17 57.8 21.7% 0.3% 2.7% 1.2%
4171_1 0.07 173.9 58.1% 1.6% 2.1% 0.5%

Looks good! You can now export the table as a CSV file using its to_csv() method. Alternatively you can use
to_json(), to_excel() to_html() to_markdown() or to_sqlite()methods to export the table as JSON, Excel,
HTML files or a sqlite database respectively.

>>> tables[0].to_csv('foo.csv')

This will export the table as a CSV file at the path specified. In this case, it is foo.csv in the current directory.

You can also export all tables at once, using the tables object’s export() method.

>>> tables.export('foo.csv', f='csv')

Tip: Here’s how you can do the same with the command-line interface.

$ camelot --format csv --output foo.csv lattice foo.pdf

This will export all tables as CSV files at the path specified. Alternatively, you can use f='json', f='excel',
f='html', f='markdown' or f='sqlite'.

Note: The export() method exports files with a page-*-table-* suffix. In the example above, the single table in
the list will be exported to foo-page-1-table-1.csv. If the list contains multiple tables, multiple CSV files will be
created. To avoid filling up your path with multiple files, you can use compress=True, which will create a single ZIP
file at your path with all the CSV files.

Note: Camelot handles rotated PDF pages automatically. As an exercise, try to extract the table out of this PDF.

3.5.2 Specify page numbers

By default, Camelot only uses the first page of the PDF to extract tables. To specify multiple pages, you can use the
pages keyword argument:

>>> camelot.read_pdf('your.pdf', pages='1,2,3')

Tip: Here’s how you can do the same with the command-line interface.

$ camelot --pages 1,2,3 lattice your.pdf

3.5. Quickstart 15

Camelot Documentation, Release 0.11.0

The pages keyword argument accepts pages as comma-separated string of page numbers. You can also specify page
ranges — for example, pages=1,4-10,20-30 or pages=1,4-10,20-end.

3.5.3 Reading encrypted PDFs

To extract tables from encrypted PDF files you must provide a password when calling read_pdf().

>>> tables = camelot.read_pdf('foo.pdf', password='userpass')
>>> tables
<TableList n=1>

Tip: Here’s how you can do the same with the command-line interface.

$ camelot --password userpass lattice foo.pdf

Camelot supports PDFs with all encryption types supported by pypdf. This might require installing PyCryptodome. An
exception is thrown if the PDF cannot be read. This may be due to no password being provided, an incorrect password,
or an unsupported encryption algorithm.

Further encryption support may be added in future, however in the meantime if your PDF files are using unsupported
encryption algorithms you are advised to remove encryption before calling read_pdf(). This can been successfully
achieved with third-party tools such as QPDF.

$ qpdf --password=<PASSWORD> --decrypt input.pdf output.pdf

Ready for more? Check out the advanced section.

3.6 Advanced Usage

This page covers some of the more advanced configurations for Lattice and Stream.

3.6.1 Process background lines

To detect line segments, Lattice needs the lines that make the table to be in the foreground. Here’s an example of a
table with lines in the background:

Source: PDF

To
pro-
cess
back-
ground
lines,
you
can
pass
process_background=True.

16 Chapter 3. The User Guide

https://pypdf.readthedocs.io/en/latest/user/pdf-version-support.html
https://www.github.com/qpdf/qpdf

Camelot Documentation, Release 0.11.0

>
→˓>
→˓>
→˓␣
→˓tables␣
→˓=␣
→˓camelot.
→˓read_pdf(
→˓'background_
→˓lines.pdf
→˓',␣
→˓process_
→˓background=True)
>>>␣
→˓tables[1].
→˓df

Tip: Here’s how you can do the same with the command-line interface.

$ camelot lattice -back background_lines.pdf

State Date Halt
stations

Halt
days

Persons directly
reached(in lakh)

Persons
trained

Persons
counseled

Persons
testedfor HIV

Delhi 1.12.2009 8 17 1.29 3,665 2,409 1,000
Ra-
jasthan

2.12.2009 to
19.12.2009

Gujarat 20.12.2009 to
3.1.2010

6 13 6.03 3,810 2,317 1,453

Maha-
rashtra

4.01.2010 to
1.2.2010

13 26 1.27 5,680 9,027 4,153

Kar-
nataka

2.2.2010 to
22.2.2010

11 19 1.80 5,741 3,658 3,183

Kerala 23.2.2010 to
11.3.2010

9 17 1.42 3,559 2,173 855

Total 47 92 11.81 22,455 19,584 10,644

3.6.2 Visual debugging

Note: Visual debugging using plot() requires matplotlib which is an optional dependency. You can install it using
$ pip install camelot-py[plot].

You can use the plot() method to generate a matplotlib plot of various elements that were detected on the PDF page
while processing it. This can help you select table areas, column separators and debug bad table outputs, by tweaking
different configuration parameters.

You can specify the type of element you want to plot using the kind keyword argument. The generated plot can be
saved to a file by passing a filename keyword argument. The following plot types are supported:

• ‘text’

3.6. Advanced Usage 17

https://matplotlib.org/
https://matplotlib.org/

Camelot Documentation, Release 0.11.0

• ‘grid’

• ‘contour’

• ‘line’

• ‘joint’

• ‘textedge’

Note: ‘line’ and ‘joint’ can only be used with Lattice and ‘textedge’ can only be used with Stream.

Let’s generate a plot for each type using this PDF as an example. First, let’s get all the tables out.

>>> tables = camelot.read_pdf('foo.pdf')
>>> tables
<TableList n=1>

text

Let’s plot all the text present on the table’s PDF page.

>>> camelot.plot(tables[0], kind='text').show()

Tip: Here’s how you can do the same with the command-line interface.

$ camelot lattice -plot text foo.pdf

This,
as
we
shall
later
see,
is
very
help-
ful
with
Stream
for
not-
ing
ta-
ble
ar-
eas
and
col-
umn
sep-

arators, in case Stream does not guess them correctly.

18 Chapter 3. The User Guide

Camelot Documentation, Release 0.11.0

Note: The x-y coordinates shown above change as you move your mouse cursor on the image, which can help you
note coordinates.

table

Let’s plot the table (to see if it was detected correctly or not). This plot type, along with contour, line and joint is useful
for debugging and improving the extraction output, in case the table wasn’t detected correctly. (More on that later.)

>>> camelot.plot(tables[0], kind='grid').show()

Tip: Here’s how you can do the same with the command-line interface.

$ camelot lattice -plot grid foo.pdf

The
ta-
ble
is
per-
fect!

contour

Now,
let’s
plot
all
ta-
ble
bound-
aries
present
on
the
ta-
ble’s
PDF
page.

>
→˓>
→˓>
→˓␣
→˓camelot.
→˓plot(tables[0],
→˓␣
→˓kind=
→˓'contour

3.6. Advanced Usage 19

Camelot Documentation, Release 0.11.0

(continued from previous page)

→˓').
→˓show()

Tip: Here’s how you can do the same with the command-line interface.

$ camelot lattice -plot contour foo.pdf

line

Cool,
let’s
plot
all
line
seg-
ments
present
on
the
ta-
ble’s
PDF
page.

>
→˓>
→˓>
→˓␣
→˓camelot.
→˓plot(tables[0],
→˓␣
→˓kind=
→˓'line
→˓').
→˓show()

Tip: Here’s how you can do the same with the command-line interface.

$ camelot lattice -plot line foo.pdf

20 Chapter 3. The User Guide

Camelot Documentation, Release 0.11.0

joint

Fi-
nally,
let’s
plot
all
line
in-
ter-
sec-
tions
present
on
the
ta-
ble’s
PDF
page.

>
→˓>
→˓>
→˓␣
→˓camelot.
→˓plot(tables[0],
→˓␣
→˓kind=
→˓'joint
→˓').
→˓show()

Tip: Here’s how you can do the same with the command-line interface.

$ camelot lattice -plot joint foo.pdf

textedge

You
can
also
vi-
su-
al-
ize
the
textedges
found
on
a

3.6. Advanced Usage 21

Camelot Documentation, Release 0.11.0

page
by
spec-
i-
fy-
ing
kind='textedge'.
To
know
more

about what a “textedge” is, you can see pages 20, 35 and 40 of Anssi Nurminen’s master’s thesis.

>>> camelot.plot(tables[0], kind='textedge').show()

Tip: Here’s how you can do the same with the command-line interface.

$ camelot stream -plot textedge foo.pdf

3.6.3 Specify
ta-
ble
ar-
eas

In
cases
such
as
these,
it
can
be
use-
ful
to
spec-
ify
ex-
act
ta-
ble
bound-

aries. You can plot the text on this page and note the top left and bottom right coordinates of the table.

Table areas that you want Camelot to analyze can be passed as a list of comma-separated strings to read_pdf(), using
the table_areas keyword argument.

22 Chapter 3. The User Guide

https://trepo.tuni.fi/bitstream/handle/123456789/21520/Nurminen.pdf

Camelot Documentation, Release 0.11.0

>>> tables = camelot.read_pdf('table_areas.pdf', flavor='stream', table_areas=['316,499,
→˓566,337'])
>>> tables[0].df

Tip: Here’s how you can do the same with the command-line interface.

$ camelot stream -T 316,499,566,337 table_areas.pdf

One Withholding
Payroll Period Allowance
Weekly $71.15
Biweekly 142.31
Semimonthly 154.17
Monthly 308.33
Quarterly 925.00
Semiannually 1,850.00
Annually 3,700.00
Daily or Miscellaneous 14.23
(each day of the payroll period)

Note: table_areas accepts strings of the form x1,y1,x2,y2 where (x1, y1) -> top-left and (x2, y2) -> bottom-right
in PDF coordinate space. In PDF coordinate space, the bottom-left corner of the page is the origin, with coordinates
(0, 0).

3.6.4 Specify table regions

However there may be cases like [1] and [2], where the table might not lie at the exact coordinates every time but in an
approximate region.

You can use the table_regions keyword argument to read_pdf() to solve for such cases. When table_regions
is specified, Camelot will only analyze the specified regions to look for tables.

>>> tables = camelot.read_pdf('table_regions.pdf', table_regions=['170,370,560,270'])
>>> tables[0].df

Tip: Here’s how you can do the same with the command-line interface.

$ camelot lattice -R 170,370,560,270 table_regions.pdf

Età dell’Assicuratoall’epoca del decesso Misura % dimaggiorazione
18-75 1,00%
76-80 0,50%
81 in poi 0,10%

3.6. Advanced Usage 23

https://github.com/camelot-dev/camelot/blob/master/tests/files/tableception.pdf

Camelot Documentation, Release 0.11.0

3.6.5 Specify column separators

In cases like these, where the text is very close to each other, it is possible that Camelot may guess the column separators’
coordinates incorrectly. To correct this, you can explicitly specify the x coordinate for each column separator by plotting
the text on the page.

You can pass the column separators as a list of comma-separated strings to read_pdf(), using the columns keyword
argument.

In case you passed a single column separators string list, and no table area is specified, the separators will be applied
to the whole page. When a list of table areas is specified and you need to specify column separators as well, the length
of both lists should be equal. Each table area will be mapped to each column separators’ string using their indices.

For example, if you have specified two table areas, table_areas=['12,54,43,23', '20,67,55,33'], and only
want to specify column separators for the first table, you can pass an empty string for the second table in the column
separators’ list like this, columns=['10,120,200,400', ''].

Let’s get back to the x coordinates we got from plotting the text that exists on this PDF, and get the table out!

>>> tables = camelot.read_pdf('column_separators.pdf', flavor='stream', columns=['72,95,
→˓209,327,442,529,566,606,683'])
>>> tables[0].df

Tip: Here’s how you can do the same with the command-line interface.

$ camelot stream -C 72,95,209,327,442,529,566,606,683 column_separators.pdf

. .
LICENSE PREMISE
NUMBER TYPE DBA
NAME

LICENSEE
NAME

AD-
DRESS

CITY ST ZIP PHONE
NUMBER

EX-
PIRES

. .

Ah! Since PDFMiner merged the strings, “NUMBER”, “TYPE” and “DBA NAME”, all of them were assigned to the
same cell. Let’s see how we can fix this in the next section.

3.6.6 Split text along separators

To deal with cases like the output from the previous section, you can pass split_text=True to read_pdf(), which
will split any strings that lie in different cells but have been assigned to a single cell (as a result of being merged together
by PDFMiner).

>>> tables = camelot.read_pdf('column_separators.pdf', flavor='stream', columns=['72,95,
→˓209,327,442,529,566,606,683'], split_text=True)
>>> tables[0].df

Tip: Here’s how you can do the same with the command-line interface.

$ camelot -split stream -C 72,95,209,327,442,529,566,606,683 column_separators.pdf

24 Chapter 3. The User Guide

https://euske.github.io/pdfminer/
https://euske.github.io/pdfminer/

Camelot Documentation, Release 0.11.0

. .
LI-
CENSE

PREMISE

NUM-
BER

TYPE DBA
NAME

LICENSEE
NAME

AD-
DRESS

CITY ST ZIP PHONE NUM-
BER

EX-
PIRES

. .

3.6.7 Flag superscripts and subscripts

There might be cases where you want to differentiate between the text and superscripts or subscripts, like this PDF.

In
this
case,
the
text
that
other
tools
re-
turn,
will
be
24.
912.
This

is relatively harmless when that decimal point is involved. But when it isn’t there, you’ll be left wondering why the
results of your data analysis are 10x bigger!

You can solve this by passing flag_size=True, which will enclose the superscripts and subscripts with <s></s>,
based on font size, as shown below.

>>> tables = camelot.read_pdf('superscript.pdf', flavor='stream', flag_size=True)
>>> tables[0].df

Tip: Here’s how you can do the same with the command-line interface.

$ camelot -flag stream superscript.pdf

. .
Kar-
nataka

22.44 19.59 • • 2.86 1.22 • 0.89 • 0.69

Kerala 29.03 24.91<s>2</s>• • 4.11 1.77 • 0.48 • 1.45

Mad-
hya
Pradesh

27.13 23.57 • • 3.56 0.38 • 1.86 • 1.28

. .

3.6. Advanced Usage 25

https://github.com/camelot-dev/camelot/wiki/Comparison-with-other-PDF-Table-Extraction-libraries-and-tools
https://github.com/camelot-dev/camelot/wiki/Comparison-with-other-PDF-Table-Extraction-libraries-and-tools

Camelot Documentation, Release 0.11.0

3.6.8 Strip characters from text

You can strip unwanted characters like spaces, dots and newlines from a string using the strip_text keyword argu-
ment. Take a look at this PDF as an example, the text at the start of each row contains a lot of unwanted spaces, dots
and newlines.

>>> tables = camelot.read_pdf('12s0324.pdf', flavor='stream', strip_text=' .\n')
>>> tables[0].df

Tip: Here’s how you can do the same with the command-line interface.

$ camelot -strip ' .\n' stream 12s0324.pdf

. .
Forcible rape 17.5 2.6 14.9 17.2 2.5 14.7 – – –
Robbery 102.1 25.5 76.6 90.0 22.9 67.1 12.1 2.5 9.5
Aggravated assault 338.4 40.1 298.3 264.0 30.2 233.8 74.4 9.9 64.5
Property crime 1,396 .4 338 .7 1,057 .7 875 .9 210 .8 665 .1 608 .2 127 .9 392 .6
Burglary 240.9 60.3 180.6 205.0 53.4 151.7 35.9 6.9 29.0
. .

3.6.9 Improve guessed table areas

While using Stream, automatic table detection can fail for PDFs like this one. That’s because the text is relatively far
apart vertically, which can lead to shorter textedges being calculated.

Note: To know more about how textedges are calculated to guess table areas, you can see pages 20, 35 and 40 of Anssi
Nurminen’s master’s thesis.

Let’s see the table area that is detected by default.

>>> tables = camelot.read_pdf('edge_tol.pdf', flavor='stream')
>>> camelot.plot(tables[0], kind='contour').show()

Tip: Here’s how you can do the same with the command-line interface.

$ camelot stream -plot contour edge.pdf

To
im-
prove
the
de-
tected
area,
you
can

26 Chapter 3. The User Guide

https://github.com/camelot-dev/camelot/blob/master/tests/files/tabula/12s0324.pdf
https://github.com/camelot-dev/camelot/blob/master/tests/files/edge_tol.pdf
https://trepo.tuni.fi/bitstream/handle/123456789/21520/Nurminen.pdf?sequence=3
https://trepo.tuni.fi/bitstream/handle/123456789/21520/Nurminen.pdf?sequence=3

Camelot Documentation, Release 0.11.0

in-
crease
the
edge_tol
(de-
fault:
50)
value
to
counter
the
ef-
fect
of

text being placed relatively far apart vertically. Larger edge_tol will lead to longer textedges being detected, leading
to an improved guess of the table area. Let’s use a value of 500.

>>> tables = camelot.read_pdf('edge_tol.pdf', flavor='stream', edge_tol=500)
>>> camelot.plot(tables[0], kind='contour').show()

Tip: Here’s how you can do the same with the command-line interface.

$ camelot stream -e 500 -plot contour edge.pdf

As
you
can
see,
the
guessed
ta-
ble
area
has
im-
proved!

3.6.10 Improve
guessed
ta-
ble
rows

You
can
pass
row_tol=<+int>
to
group

the rows closer together, as shown below.

3.6. Advanced Usage 27

Camelot Documentation, Release 0.11.0

>>> tables = camelot.read_pdf('group_rows.pdf', flavor='stream')
>>> tables[0].df

Clave Clave Clave
Nombre Enti-
dad

Nombre Munici-
pio

Nombre Locali-
dad

Enti-
dad

Munici-
pio

Locali-
dad

01 Aguascalientes 001 Aguas-
calientes

0094 Granja Adelita

01 Aguascalientes 001 Aguas-
calientes

0096 Agua Azul

01 Aguascalientes 001 Aguas-
calientes

0100 Rancho Alegre

>>> tables = camelot.read_pdf('group_rows.pdf', flavor='stream', row_tol=10)
>>> tables[0].df

Tip: Here’s how you can do the same with the command-line interface.

$ camelot stream -r 10 group_rows.pdf

Clave Nombre Enti-
dad

Clave Nombre Munici-
pio

Clave Nombre Locali-
dad

Enti-
dad

Munici-
pio

Locali-
dad

01 Aguascalientes 001 Aguas-
calientes

0094 Granja Adelita

01 Aguascalientes 001 Aguas-
calientes

0096 Agua Azul

01 Aguascalientes 001 Aguas-
calientes

0100 Rancho Alegre

3.6.11 Detect short lines

There might be cases while using Lattice when smaller lines don’t get detected. The size of the smallest line that gets
detected is calculated by dividing the PDF page’s dimensions with a scaling factor called line_scale. By default, its
value is 15.

As you can guess, the larger the line_scale, the smaller the size of lines getting detected.

Warning: Making line_scale very large (>150) will lead to text getting detected as lines.

Here’s a PDF where small lines separating the the headers don’t get detected with the default value of 15.

Let’s
plot

28 Chapter 3. The User Guide

Camelot Documentation, Release 0.11.0

the
ta-
ble
for
this
PDF.

>
→˓>
→˓>
→˓␣
→˓tables␣
→˓=␣
→˓camelot.
→˓read_
→˓pdf(
→˓'short_
→˓lines.
→˓pdf
→˓')
>
→˓>
→˓>
→˓␣
→˓camelot.
→˓plot(tables[0],
→˓␣
→˓kind=
→˓'grid
→˓').
→˓show()

Clearly,
the
smaller
lines
sep-
a-
rat-
ing
the
head-
ers,
couldn’t
be
de-
tected.
Let’s
try
with
line_scale=40,
and
plot

the table again.

3.6. Advanced Usage 29

Camelot Documentation, Release 0.11.0

>>> tables = camelot.read_pdf('short_lines.pdf', line_scale=40)
>>> camelot.plot(tables[0], kind='grid').show()

Tip: Here’s how you can do the same with the command-line interface.

$ camelot lattice -scale 40 -plot grid short_lines.pdf

Voila!
Camelot
can
now
see
those
lines.
Let’s
get
our
ta-
ble.

>
→˓>
→˓>
→˓␣
→˓tables[0].
→˓df

30 Chapter 3. The User Guide

Camelot Documentation, Release 0.11.0

In-
ves-
ti-
ga-
tions

No.
ofHHs

Age/Sex/Physiological
Group

Preva-
lence

C.I*Rel-
a-
tive-
Pre-
ci-
sion

Sam-
ple
sizeper
State

An-
thro-
pom-
e-
try

2400All
. . .

Clin-
i-
cal
Ex-
am-
i-
na-
tion
His-
tory
of
mor-
bid-
ity
Diet
sur-
vey

1200All
. . .

Blood
Pres-
sure
#

2400Men
(
18yrs)

10%95%20%1728

Women
(
18
yrs)

1728

Fast-
ing
blood
glu-
cose

2400Men
(
18
yrs)

5%95%20%1825

Women
(
18
yrs)

1825

Knowl-
edge
&Prac-
tices
on
HTN
&DM

2400Men
(
18
yrs)

• • •1728

2400Women
(
18
yrs)

• • •1728

3.6. Advanced Usage 31

Camelot Documentation, Release 0.11.0

3.6.12 Shift
text

in spanning cells

By default, the Lattice method shifts text in spanning cells, first to the left and then to the top, as you can observe in
the output table above. However, this behavior can be changed using the shift_text keyword argument. Think of it
as setting the gravity for a table — it decides the direction in which the text will move and finally come to rest.

shift_text expects a list with one or more characters from the following set: ('', l', 'r', 't', 'b'), which
are then applied in order. The default, as we discussed above, is ['l', 't'].

We’ll use the PDF from the previous example. Let’s pass shift_text=[''], which basically means that the text will
experience weightlessness! (It will remain in place.)

>
→˓>
→˓>
→˓␣
→˓tables␣
→˓=␣
→˓camelot.
→˓read_
→˓pdf(
→˓'short_
→˓lines.
→˓pdf
→˓',
→˓␣
→˓line_
→˓scale=40,
→˓␣
→˓shift_
→˓text=[
→˓'
→˓'])
>
→˓>
→˓>
→˓␣
→˓tables[0].
→˓df

32 Chapter 3. The User Guide

Camelot Documentation, Release 0.11.0

Investiga-
tions

No. ofHHs Age/Sex/Physiological
Group

Preva-lence C.I* RelativePre-
cision

Sample
sizeper State

Anthropome-
try
Clinical
Examination

2400 All . . .

History of
morbidity
Diet survey 1200 All . . .

Men (18yrs) 1728
Blood Pres-
sure #

2400 Women (18
yrs)

10% 95% 20% 1728

Men (18 yrs) 1825
Fasting blood
glucose

2400 Women (18
yrs)

5% 95% 20% 1825

Knowledge
&Practices
on HTN &

2400 Men (18 yrs) • • • 1728

DM 2400 Women (18
yrs)

• • • 1728

No surprises there — it did remain in place (observe the strings “2400” and “All the available individuals”). Let’s pass
shift_text=['r', 'b'] to set the gravity to right-bottom and move the text in that direction.

>>> tables = camelot.read_pdf('short_lines.pdf', line_scale=40, shift_text=['r', 'b'])
>>> tables[0].df

Tip: Here’s how you can do the same with the command-line interface.

$ camelot lattice -scale 40 -shift r -shift b short_lines.pdf

3.6. Advanced Usage 33

Camelot Documentation, Release 0.11.0

Investiga-
tions

No. ofHHs Age/Sex/Physiological
Group

Preva-lence C.I* RelativePre-
cision

Sample
sizeper State

Anthropome-
try
Clinical
Examination
History of
morbidity

2400 All . . .

Diet survey 1200 All . . .
Men (18yrs) 1728

Blood Pres-
sure #

2400 Women (18
yrs)

10% 95% 20% 1728

Men (18 yrs) 1825
Fasting blood
glucose

2400 Women (18
yrs)

5% 95% 20% 1825

2400 Men (18 yrs) • • • 1728

Knowledge
&Practices
on HTN
&DM

2400 Women (18
yrs)

• • • 1728

3.6.13 Copy text in spanning cells

You can copy text in spanning cells when using Lattice, in either the horizontal or vertical direction, or both. This
behavior is disabled by default.

copy_text expects a list with one or more characters from the following set: ('v', 'h'), which are then applied in
order.

Let’s try it out on this PDF. First, let’s check out the output table to see if we need to use any other configuration
parameters.

>>> tables = camelot.read_pdf('copy_text.pdf')
>>> tables[0].df

34 Chapter 3. The User Guide

Camelot Documentation, Release 0.11.0

Sl. No. Name of
State/UT

Name of
District

Disease/
Illness

No. of
Cases

No. of
Deaths

Date
of start
of out-
break

Date of
report-
ing

Current
Status

. . .

1 Kerala Kollam
i.

Food
Poi-
son-
ing

19 0 31/12/13 03/01/14 Under
control

. . .

2 Maha-
rashtra

Beed
i.

Dengue
&
Chikun-
gunya
i

11 0 03/01/14 04/01/14 Under
control

. . .

3 Odisha Kala-
handi iii.

Food
Poi-
son-
ing

42 0 02/01/14 03/01/14 Under
control

. . .

4 West
Bengal

West
Me-
dinipur

iv.
Acute
Di-
ar-
rhoeal
Dis-
ease

145 0 04/01/14 05/01/14 Under
control

. . .

Birb-
hum

v.
Food
Poi-
son-
ing

199 0 31/12/13 31/12/13 Under
control

. . .

Howrah
vi.

Vi-
ral
Hep-
ati-
tis
A
&E

85 0 26/12/13 27/12/13 Under
surveil-
lance

. . .

We don’t need anything else. Now, let’s pass copy_text=['v'] to copy text in the vertical direction. This can save
you some time by not having to add this step in your cleaning script!

3.6. Advanced Usage 35

Camelot Documentation, Release 0.11.0

>>> tables = camelot.read_pdf('copy_text.pdf', copy_text=['v'])
>>> tables[0].df

Tip: Here’s how you can do the same with the command-line interface.

$ camelot lattice -copy v copy_text.pdf

36 Chapter 3. The User Guide

Camelot Documentation, Release 0.11.0

Sl. No. Name of
State/UT

Name of
District

Disease/
Illness

No. of
Cases

No. of
Deaths

Date
of start
of out-
break

Date of
report-
ing

Current
Status

. . .

1 Kerala Kollam
i.

Food
Poi-
son-
ing

19 0 31/12/13 03/01/14 Under
control

. . .

2 Maha-
rashtra

Beed
i.

Dengue
&
Chikun-
gunya
i

11 0 03/01/14 04/01/14 Under
control

. . .

3 Odisha Kala-
handi iii.

Food
Poi-
son-
ing

42 0 02/01/14 03/01/14 Under
control

. . .

4 West
Bengal

West
Me-
dinipur

iv.
Acute
Di-
ar-
rhoeal
Dis-
ease

145 0 04/01/14 05/01/14 Under
control

. . .

4 West
Bengal

Birb-
hum

v.
Food
Poi-
son-
ing

199 0 31/12/13 31/12/13 Under
control

. . .

4 West
Bengal

Howrah
vi.

Vi-
ral
Hep-
ati-
tis
A
&E

85 0 26/12/13 27/12/13 Under
surveil-
lance

. . .

3.6. Advanced Usage 37

Camelot Documentation, Release 0.11.0

3.6.14 Tweak layout generation

Camelot is built on top of PDFMiner’s functionality of grouping characters on a page into words and sentences. In
some cases (such as #170 and #215), PDFMiner can group characters that should belong to the same sentence into
separate sentences.

To deal with such cases, you can tweak PDFMiner’s LAParams kwargs to improve layout generation, by passing the
keyword arguments as a dict using layout_kwargs in read_pdf(). To know more about the parameters you can
tweak, you can check out PDFMiner docs.

>>> tables = camelot.read_pdf('foo.pdf', layout_kwargs={'detect_vertical': False})

3.6.15 Use alternate image conversion backends

When using the Lattice flavor, Camelot uses ghostscript to convert PDF pages to images for line recognition. If you
face installation issues with ghostscript, you can use an alternate image conversion backend called poppler. You
can specify which image conversion backend you want to use with:

>>> tables = camelot.read_pdf(filename, backend="ghostscript") # default
>>> tables = camelot.read_pdf(filename, backend="poppler")

Note: ghostscript will be replaced by poppler as the default image conversion backend in v0.12.0.

If you face issues with both ghostscript and poppler, you can supply your own image conversion backend:

>>> class ConversionBackend(object):
>>> def convert(pdf_path, png_path):
>>> # read pdf page from pdf_path
>>> # convert pdf page to image
>>> # write image to png_path
>>> pass
>>>
>>> tables = camelot.read_pdf(filename, backend=ConversionBackend())

3.7 Frequently Asked Questions

This part of the documentation answers some common questions. To add questions, please open an issue here.

3.7.1 Does Camelot work with image-based PDFs?

No, Camelot only works with text-based PDFs and not scanned documents. (As Tabula explains, “If you can click and
drag to select text in your table in a PDF viewer, then your PDF is text-based”.)

38 Chapter 3. The User Guide

https://github.com/camelot-dev/camelot/issues/170
https://github.com/camelot-dev/camelot/issues/215
https://github.com/euske/pdfminer/blob/master/pdfminer/layout.py#L33
https://pdfminersix.rtfd.io/en/latest/reference/composable.html
https://github.com/camelot-dev/camelot/issues/new
https://github.com/tabulapdf/tabula#why-tabula

Camelot Documentation, Release 0.11.0

3.7.2 How to reduce memory usage for long PDFs?

During table extraction from long PDF documents, RAM usage can grow significantly.

A simple workaround is to divide the extraction into chunks, and save extracted data to disk at the end of every chunk.

For more details, check out this code snippet from @anakin87:

import camelot

def chunks(l, n):
"""Yield successive n-sized chunks from l."""
for i in range(0, len(l), n):

yield l[i : i + n]

def extract_tables(filepath, pages, chunks=50, export_path=".", params={}):
"""
Divide the extraction work into n chunks. At the end of every chunk,
save data on disk and free RAM.

filepath : str
Filepath or URL of the PDF file.

pages : str, optional (default: '1')
Comma-separated page numbers.
Example: '1,3,4' or '1,4-end' or 'all'.

"""

get list of pages from camelot.handlers.PDFHandler
handler = camelot.handlers.PDFHandler(filepath)
page_list = handler._get_pages(filepath, pages=pages)

chunk pages list
page_chunks = list(chunks(page_list, chunks))

extraction and export
for chunk in page_chunks:

pages_string = str(chunk).replace("[", "").replace("]", "")
tables = camelot.read_pdf(filepath, pages=pages_string, **params)
tables.export(f"{export_path}/tables.csv")

3.7.3 How can I supply my own image conversion backend to Lattice?

When using the Lattice flavor, you can supply your own image conversion backend by creating a class with a convert
method as follows:

>>> class ConversionBackend(object):
>>> def convert(pdf_path, png_path):
>>> # read pdf page from pdf_path
>>> # convert pdf page to image
>>> # write image to png_path
>>> pass

(continues on next page)

3.7. Frequently Asked Questions 39

https://github.com/anakin87

Camelot Documentation, Release 0.11.0

(continued from previous page)

>>>
>>> tables = camelot.read_pdf(filename, backend=ConversionBackend())

3.8 Command-Line Interface

Camelot comes with a command-line interface.

You can print the help for the interface by typing camelot --help in your favorite terminal program, as shown below.
Furthermore, you can print the help for each command by typing camelot <command> --help. Try it out!

Usage: camelot [OPTIONS] COMMAND [ARGS]...

Camelot: PDF Table Extraction for Humans

Options:
--version Show the version and exit.
-q, --quiet TEXT Suppress logs and warnings.
-p, --pages TEXT Comma-separated page numbers. Example: 1,3,4

or 1,4-end.
-pw, --password TEXT Password for decryption.
-o, --output TEXT Output file path.
-f, --format [csv|json|excel|html]

Output file format.
-z, --zip Create ZIP archive.
-split, --split_text Split text that spans across multiple cells.
-flag, --flag_size Flag text based on font size. Useful to

detect super/subscripts.
-strip, --strip_text Characters that should be stripped from a

string before assigning it to a cell.
-M, --margins <FLOAT FLOAT FLOAT>...

PDFMiner char_margin, line_margin and
word_margin.

--help Show this message and exit.

Commands:
lattice Use lines between text to parse the table.
stream Use spaces between text to parse the table.

40 Chapter 3. The User Guide

CHAPTER

FOUR

THE API DOCUMENTATION/GUIDE

If you are looking for information on a specific function, class, or method, this part of the documentation is for you.

4.1 API Reference

4.1.1 Main Interface

camelot.read_pdf(filepath: str | IO | Path, pages='1', password=None, flavor='lattice', suppress_stdout=False,
layout_kwargs=None, **kwargs)

Read PDF and return extracted tables.

Note: kwargs annotated with ^ can only be used with flavor=’stream’ and kwargs annotated with * can only be
used with flavor=’lattice’.

Parameters

• filepath (str, Path, IO) – Filepath or URL of the PDF file.

• pages (str, optional (default: '1')) – Comma-separated page numbers. Example:
‘1,3,4’ or ‘1,4-end’ or ‘all’.

• password (str, optional (default: None)) – Password for decryption.

• flavor (str (default: 'lattice')) – The parsing method to use (‘lattice’ or ‘stream’).
Lattice is used by default.

• suppress_stdout (bool, optional (default: True)) – Print all logs and warn-
ings.

• layout_kwargs (dict, optional (default: {})) – A dict of
pdfminer.layout.LAParams kwargs.

• table_areas (list, optional (default: None)) – List of table area strings of the
form x1,y1,x2,y2 where (x1, y1) -> left-top and (x2, y2) -> right-bottom in PDF coordinate
space.

• columns^ (list, optional (default: None)) – List of column x-coordinates strings
where the coordinates are comma-separated.

• split_text (bool, optional (default: False)) – Split text that spans across mul-
tiple cells.

• flag_size (bool, optional (default: False)) – Flag text based on font size. Use-
ful to detect super/subscripts. Adds <s></s> around flagged text.

41

https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/stdtypes.html#dict
https://github.com/euske/pdfminer/blob/master/pdfminer/layout.py#L33
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#bool

Camelot Documentation, Release 0.11.0

• strip_text (str, optional (default: '')) – Characters that should be stripped
from a string before assigning it to a cell.

• row_tol^ (int, optional (default: 2)) – Tolerance parameter used to combine text
vertically, to generate rows.

• column_tol^ (int, optional (default: 0)) – Tolerance parameter used to combine
text horizontally, to generate columns.

• process_background* (bool, optional (default: False)) – Process back-
ground lines.

• line_scale* (int, optional (default: 15)) – Line size scaling factor. The larger
the value the smaller the detected lines. Making it very large will lead to text being detected
as lines.

• copy_text* (list, optional (default: None)) – {‘h’, ‘v’} Direction in which text
in a spanning cell will be copied over.

• shift_text* (list, optional (default: ['l', 't'])) – {‘l’, ‘r’, ‘t’, ‘b’} Direction
in which text in a spanning cell will flow.

• line_tol* (int, optional (default: 2)) – Tolerance parameter used to merge
close vertical and horizontal lines.

• joint_tol* (int, optional (default: 2)) – Tolerance parameter used to decide
whether the detected lines and points lie close to each other.

• threshold_blocksize* (int, optional (default: 15)) – Size of a pixel neigh-
borhood that is used to calculate a threshold value for the pixel: 3, 5, 7, and so on.

For more information, refer OpenCV’s adaptiveThreshold.

• threshold_constant* (int, optional (default: -2)) – Constant subtracted from
the mean or weighted mean. Normally, it is positive but may be zero or negative as well.

For more information, refer OpenCV’s adaptiveThreshold.

• iterations* (int, optional (default: 0)) – Number of times for erosion/dilation
is applied.

For more information, refer OpenCV’s dilate.

• resolution* (int, optional (default: 300)) – Resolution used for PDF to PNG
conversion.

Returns
tables

Return type
camelot.core.TableList

42 Chapter 4. The API Documentation/Guide

https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
https://docs.opencv.org/2.4/modules/imgproc/doc/miscellaneous_transformations.html#adaptivethreshold
https://docs.python.org/2/library/functions.html#int
https://docs.opencv.org/2.4/modules/imgproc/doc/miscellaneous_transformations.html#adaptivethreshold
https://docs.python.org/2/library/functions.html#int
https://docs.opencv.org/2.4/modules/imgproc/doc/filtering.html#dilate
https://docs.python.org/2/library/functions.html#int

Camelot Documentation, Release 0.11.0

4.1.2 Lower-Level Classes

class camelot.handlers.PDFHandler(filepath: str | IO | Path, pages='1', password=None)
Handles all operations like temp directory creation, splitting file into single page PDFs, parsing each PDF and
then removing the temp directory.

Parameters

• filepath (str) – Filepath or URL of the PDF file.

• pages (str, optional (default: '1')) – Comma-separated page numbers. Example:
‘1,3,4’ or ‘1,4-end’ or ‘all’.

• password (str, optional (default: None)) – Password for decryption.

parse(flavor='lattice', suppress_stdout=False, layout_kwargs=None, **kwargs)
Extracts tables by calling parser.get_tables on all single page PDFs.

Parameters

• flavor (str (default: 'lattice')) – The parsing method to use (‘lattice’ or
‘stream’). Lattice is used by default.

• suppress_stdout (str (default: False)) – Suppress logs and warnings.

• layout_kwargs (dict, optional (default: {})) – A dict of
pdfminer.layout.LAParams kwargs.

• kwargs (dict) – See camelot.read_pdf kwargs.

Returns
tables – List of tables found in PDF.

Return type
camelot.core.TableList

class camelot.parsers.Stream(table_regions=None, table_areas=None, columns=None, split_text=False,
flag_size=False, strip_text='', edge_tol=50, row_tol=2, column_tol=0,
**kwargs)

Stream method of parsing looks for spaces between text to parse the table.

If you want to specify columns when specifying multiple table areas, make sure that the length of both lists are
equal.

Parameters

• table_regions (list, optional (default: None)) – List of page regions that may
contain tables of the form x1,y1,x2,y2 where (x1, y1) -> left-top and (x2, y2) -> right-bottom
in PDF coordinate space.

• table_areas (list, optional (default: None)) – List of table area strings of the
form x1,y1,x2,y2 where (x1, y1) -> left-top and (x2, y2) -> right-bottom in PDF coordinate
space.

• columns (list, optional (default: None)) – List of column x-coordinates strings
where the coordinates are comma-separated.

• split_text (bool, optional (default: False)) – Split text that spans across mul-
tiple cells.

• flag_size (bool, optional (default: False)) – Flag text based on font size. Use-
ful to detect super/subscripts. Adds <s></s> around flagged text.

4.1. API Reference 43

https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/stdtypes.html#dict
https://github.com/euske/pdfminer/blob/master/pdfminer/layout.py#L33
https://docs.python.org/2/library/stdtypes.html#dict
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#bool

Camelot Documentation, Release 0.11.0

• strip_text (str, optional (default: '')) – Characters that should be stripped
from a string before assigning it to a cell.

• edge_tol (int, optional (default: 50)) – Tolerance parameter for extending
textedges vertically.

• row_tol (int, optional (default: 2)) – Tolerance parameter used to combine text
vertically, to generate rows.

• column_tol (int, optional (default: 0)) – Tolerance parameter used to combine
text horizontally, to generate columns.

class camelot.parsers.Lattice(table_regions=None, table_areas=None, process_background=False,
line_scale=15, copy_text=None, shift_text=['l', 't'], split_text=False,
flag_size=False, strip_text='', line_tol=2, joint_tol=2,
threshold_blocksize=15, threshold_constant=-2, iterations=0,
resolution=300, backend='ghostscript', **kwargs)

Lattice method of parsing looks for lines between text to parse the table.

Parameters

• table_regions (list, optional (default: None)) – List of page regions that may
contain tables of the form x1,y1,x2,y2 where (x1, y1) -> left-top and (x2, y2) -> right-bottom
in PDF coordinate space.

• table_areas (list, optional (default: None)) – List of table area strings of the
form x1,y1,x2,y2 where (x1, y1) -> left-top and (x2, y2) -> right-bottom in PDF coordinate
space.

• process_background (bool, optional (default: False)) – Process background
lines.

• line_scale (int, optional (default: 15)) – Line size scaling factor. The larger
the value the smaller the detected lines. Making it very large will lead to text being detected
as lines.

• copy_text (list, optional (default: None)) – {‘h’, ‘v’} Direction in which text
in a spanning cell will be copied over.

• shift_text (list, optional (default: ['l', 't'])) – {‘l’, ‘r’, ‘t’, ‘b’} Direction in
which text in a spanning cell will flow.

• split_text (bool, optional (default: False)) – Split text that spans across mul-
tiple cells.

• flag_size (bool, optional (default: False)) – Flag text based on font size. Use-
ful to detect super/subscripts. Adds <s></s> around flagged text.

• strip_text (str, optional (default: '')) – Characters that should be stripped
from a string before assigning it to a cell.

• line_tol (int, optional (default: 2)) – Tolerance parameter used to merge close
vertical and horizontal lines.

• joint_tol (int, optional (default: 2)) – Tolerance parameter used to decide
whether the detected lines and points lie close to each other.

• threshold_blocksize (int, optional (default: 15)) – Size of a pixel neighbor-
hood that is used to calculate a threshold value for the pixel: 3, 5, 7, and so on.

For more information, refer OpenCV’s adaptiveThreshold.

44 Chapter 4. The API Documentation/Guide

https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
https://docs.opencv.org/2.4/modules/imgproc/doc/miscellaneous_transformations.html#adaptivethreshold

Camelot Documentation, Release 0.11.0

• threshold_constant (int, optional (default: -2)) – Constant subtracted from
the mean or weighted mean. Normally, it is positive but may be zero or negative as well.

For more information, refer OpenCV’s adaptiveThreshold.

• iterations (int, optional (default: 0)) – Number of times for erosion/dilation
is applied.

For more information, refer OpenCV’s dilate.

• resolution (int, optional (default: 300)) – Resolution used for PDF to PNG
conversion.

4.1.3 Lower-Lower-Level Classes

class camelot.core.TableList(tables)
Defines a list of camelot.core.Table objects. Each table can be accessed using its index.

n

Number of tables in the list.

Type
int

export(path, f='csv', compress=False)
Exports the list of tables to specified file format.

Parameters

• path (str) – Output filepath.

• f (str) – File format. Can be csv, excel, html, json, markdown or sqlite.

• compress (bool) – Whether or not to add files to a ZIP archive.

class camelot.core.Table(cols, rows)
Defines a table with coordinates relative to a left-bottom origin. (PDF coordinate space)

Parameters

• cols (list) – List of tuples representing column x-coordinates in increasing order.

• rows (list) – List of tuples representing row y-coordinates in decreasing order.

df

Type
pandas.DataFrame

shape

Shape of the table.

Type
tuple

accuracy

Accuracy with which text was assigned to the cell.

Type
float

4.1. API Reference 45

https://docs.python.org/2/library/functions.html#int
https://docs.opencv.org/2.4/modules/imgproc/doc/miscellaneous_transformations.html#adaptivethreshold
https://docs.python.org/2/library/functions.html#int
https://docs.opencv.org/2.4/modules/imgproc/doc/filtering.html#dilate
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#bool
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/2/library/functions.html#float

Camelot Documentation, Release 0.11.0

whitespace

Percentage of whitespace in the table.

Type
float

order

Table number on PDF page.

Type
int

page

PDF page number.

Type
int

property data

Returns two-dimensional list of strings in table.

property parsing_report

Returns a parsing report with %accuracy, %whitespace, table number on page and page number.

set_all_edges()

Sets all table edges to True.

set_border()

Sets table border edges to True.

set_edges(vertical, horizontal, joint_tol=2)
Sets a cell’s edges to True depending on whether the cell’s coordinates overlap with the line’s coordinates
within a tolerance.

Parameters

• vertical (list) – List of detected vertical lines.

• horizontal (list) – List of detected horizontal lines.

set_span()

Sets a cell’s hspan or vspan attribute to True depending on whether the cell spans horizontally or vertically.

to_csv(path, **kwargs)
Writes Table to a comma-separated values (csv) file.

For kwargs, check pandas.DataFrame.to_csv().

Parameters
path (str) – Output filepath.

to_excel(path, **kwargs)
Writes Table to an Excel file.

For kwargs, check pandas.DataFrame.to_excel().

Parameters
path (str) – Output filepath.

46 Chapter 4. The API Documentation/Guide

https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_csv.html#pandas.DataFrame.to_csv
https://docs.python.org/2/library/functions.html#str
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_excel.html#pandas.DataFrame.to_excel
https://docs.python.org/2/library/functions.html#str

Camelot Documentation, Release 0.11.0

to_html(path, **kwargs)
Writes Table to an HTML file.

For kwargs, check pandas.DataFrame.to_html().

Parameters
path (str) – Output filepath.

to_json(path, **kwargs)
Writes Table to a JSON file.

For kwargs, check pandas.DataFrame.to_json().

Parameters
path (str) – Output filepath.

to_markdown(path, **kwargs)
Writes Table to a Markdown file.

For kwargs, check pandas.DataFrame.to_markdown().

Parameters
path (str) – Output filepath.

to_sqlite(path, **kwargs)
Writes Table to sqlite database.

For kwargs, check pandas.DataFrame.to_sql().

Parameters
path (str) – Output filepath.

class camelot.core.Cell(x1, y1, x2, y2)
Defines a cell in a table with coordinates relative to a left-bottom origin. (PDF coordinate space)

Parameters

• x1 (float) – x-coordinate of left-bottom point.

• y1 (float) – y-coordinate of left-bottom point.

• x2 (float) – x-coordinate of right-top point.

• y2 (float) – y-coordinate of right-top point.

lb

Tuple representing left-bottom coordinates.

Type
tuple

lt

Tuple representing left-top coordinates.

Type
tuple

rb

Tuple representing right-bottom coordinates.

Type
tuple

4.1. API Reference 47

http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_html.html#pandas.DataFrame.to_html
https://docs.python.org/2/library/functions.html#str
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_json.html#pandas.DataFrame.to_json
https://docs.python.org/2/library/functions.html#str
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_markdown.html#pandas.DataFrame.to_markdown
https://docs.python.org/2/library/functions.html#str
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_sql.html#pandas.DataFrame.to_sql
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#float

Camelot Documentation, Release 0.11.0

rt

Tuple representing right-top coordinates.

Type
tuple

left

Whether or not cell is bounded on the left.

Type
bool

right

Whether or not cell is bounded on the right.

Type
bool

top

Whether or not cell is bounded on the top.

Type
bool

bottom

Whether or not cell is bounded on the bottom.

Type
bool

hspan

Whether or not cell spans horizontally.

Type
bool

vspan

Whether or not cell spans vertically.

Type
bool

text

Text assigned to cell.

Type
string

48 Chapter 4. The API Documentation/Guide

https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#bool

CHAPTER

FIVE

THE CONTRIBUTOR GUIDE

If you want to contribute to the project, this part of the documentation is for you.

5.1 Contributor’s Guide

If you’re reading this, you’re probably looking to contributing to Camelot. Time is the only real currency, and the fact
that you’re considering spending some here is very generous of you. Thank you very much!

This document will help you get started with contributing documentation, code, testing and filing issues. If you have
any questions, feel free to reach out to Vinayak Mehta, the author and maintainer.

5.1.1 Code Of Conduct

The following quote sums up the Code Of Conduct.

Be cordial or be on your way. –Kenneth Reitz

Kenneth Reitz has also written an essay on this topic, which you should read.

As the Requests Code Of Conduct states, all contributions are welcome, as long as everyone involved is treated with
respect.

5.1.2 Your first contribution

A great way to start contributing to Camelot is to pick an issue tagged with the help wanted or the good first issue tags.
If you’re unable to find a good first issue, feel free to contact the maintainer.

5.1.3 Setting up a development environment

To install the dependencies needed for development, you can use pip:

$ pip install "camelot-py[dev]"

Alternatively, you can clone the project repository, and install using pip:

$ pip install ".[dev]"

49

https://vinayak.io
https://kennethreitz.org/essays/2013/01/27/be-cordial-or-be-on-your-way
http://docs.python-requests.org/en/master/dev/contributing/#be-cordial
https://github.com/camelot-dev/camelot/labels/help%20wanted
https://github.com/camelot-dev/camelot/labels/good%20first%20issue

Camelot Documentation, Release 0.11.0

5.1.4 Pull Requests

Submit a pull request

The preferred workflow for contributing to Camelot is to fork the project repository on GitHub, clone, develop on a
branch and then finally submit a pull request. Here are the steps:

1. Fork the project repository. Click on the ‘Fork’ button near the top of the page. This creates a copy of the code
under your account on the GitHub.

2. Clone your fork of Camelot from your GitHub account:

$ git clone https://www.github.com/[username]/camelot

3. Create a branch to hold your changes:

$ git checkout -b my-feature

Always branch out from master to work on your contribution. It’s good practice to never work on the master branch!

Note: git stash is a great way to save the work that you haven’t committed yet, to move between branches.

4. Work on your contribution. Add changed files using git add and then git commit them:

$ git add modified_files
$ git commit

5. Finally, push them to your GitHub fork:

$ git push -u origin my-feature

Now it’s time to go to the your fork of Camelot and create a pull request! You can follow these instructions to do the
same.

Work on your pull request

We recommend that your pull request complies with the following guidelines:

• Make sure your code follows pep8.

• In case your pull request contains function docstrings, make sure you follow the numpydoc format. All function
docstrings in Camelot follow this format. Following the format will make sure that the API documentation is
generated flawlessly.

• Make sure your commit messages follow the seven rules of a great git commit message:

– Separate subject from body with a blank line

– Limit the subject line to 50 characters

– Capitalize the subject line

– Do not end the subject line with a period

– Use the imperative mood in the subject line

– Wrap the body at 72 characters

– Use the body to explain what and why vs. how

50 Chapter 5. The Contributor Guide

https://github.com/camelot-dev/camelot
https://help.github.com/articles/creating-a-pull-request-from-a-fork/
http://pep8.org
https://numpydoc.readthedocs.io/en/latest/format.html
https://chris.beams.io/posts/git-commit/

Camelot Documentation, Release 0.11.0

• Please prefix your title of your pull request with [MRG] (Ready for Merge), if the contribution is complete and
ready for a detailed review. An incomplete pull request’s title should be prefixed with [WIP] (to indicate a work
in progress), and changed to [MRG] when it’s complete. A good task list in the PR description will ensure that
other people get a fair idea of what it proposes to do, which will also increase collaboration.

• If contributing new functionality, make sure that you add a unit test for it, while making sure that all previous
tests pass. Camelot uses pytest for testing. Tests can be run using:

$ python setup.py test

5.1.5 Writing Documentation

Writing documentation, function docstrings, examples and tutorials is a great way to start contributing to open-source
software! The documentation is present inside the docs/ directory of the source code repository.

The documentation is written in reStructuredText, with Sphinx used to generate these lovely HTML files that you’re
currently reading (unless you’re reading this on GitHub). You can edit the documentation using any text editor and
then generate the HTML output by running make html in the docs/ directory.

The function docstrings are written using the numpydoc extension for Sphinx. Make sure you check out how its format
guidelines before you start writing one.

5.1.6 Filing Issues

We use GitHub issues to keep track of all issues and pull requests. Before opening an issue (which asks a question or
reports a bug), please use GitHub search to look for existing issues (both open and closed) that may be similar.

Questions

Please don’t use GitHub issues for support questions. A better place for them would be Stack Overflow. Make sure you
tag them using the python-camelot tag.

Bug Reports

In bug reports, make sure you include:

• Your operating system type and Python version number, along with the version numbers of NumPy, OpenCV
and Camelot. You can use the following code snippet to find this information:

import platform; print(platform.platform())
import sys; print('Python', sys.version)
import numpy; print('NumPy', numpy.__version__)
import cv2; print('OpenCV', cv2.__version__)
import camelot; print('Camelot', camelot.__version__)

• The complete traceback. Just adding the exception message or a part of the traceback won’t help us fix your issue
sooner.

• Steps to reproduce the bug, using code snippets. See Creating and highlighting code blocks.

• A link to the PDF document that you were trying to extract tables from, telling us what you expected the code to
do and what actually happened.

5.1. Contributor’s Guide 51

https://blog.github.com/2013-01-09-task-lists-in-gfm-issues-pulls-comments/
https://docs.pytest.org/en/latest/
https://en.wikipedia.org/wiki/ReStructuredText
http://www.sphinx-doc.org/en/master/
https://numpydoc.readthedocs.io/en/latest/format.html
https://github.com/camelot-dev/camelot/issues
http://stackoverflow.com
https://help.github.com/articles/creating-and-highlighting-code-blocks/

Camelot Documentation, Release 0.11.0

52 Chapter 5. The Contributor Guide

PYTHON MODULE INDEX

c
camelot, 41

53

Camelot Documentation, Release 0.11.0

54 Python Module Index

INDEX

A
accuracy (camelot.core.Table attribute), 45

B
bottom (camelot.core.Cell attribute), 48

C
camelot

module, 41
Cell (class in camelot.core), 47

D
data (camelot.core.Table property), 46
df (camelot.core.Table attribute), 45

E
export() (camelot.core.TableList method), 45

H
hspan (camelot.core.Cell attribute), 48

L
Lattice (class in camelot.parsers), 44
lb (camelot.core.Cell attribute), 47
left (camelot.core.Cell attribute), 48
lt (camelot.core.Cell attribute), 47

M
module

camelot, 41

N
n (camelot.core.TableList attribute), 45

O
order (camelot.core.Table attribute), 46

P
page (camelot.core.Table attribute), 46
parse() (camelot.handlers.PDFHandler method), 43

parsing_report (camelot.core.Table property), 46
PDFHandler (class in camelot.handlers), 43

R
rb (camelot.core.Cell attribute), 47
read_pdf() (in module camelot), 41
right (camelot.core.Cell attribute), 48
rt (camelot.core.Cell attribute), 47

S
set_all_edges() (camelot.core.Table method), 46
set_border() (camelot.core.Table method), 46
set_edges() (camelot.core.Table method), 46
set_span() (camelot.core.Table method), 46
shape (camelot.core.Table attribute), 45
Stream (class in camelot.parsers), 43

T
Table (class in camelot.core), 45
TableList (class in camelot.core), 45
text (camelot.core.Cell attribute), 48
to_csv() (camelot.core.Table method), 46
to_excel() (camelot.core.Table method), 46
to_html() (camelot.core.Table method), 46
to_json() (camelot.core.Table method), 47
to_markdown() (camelot.core.Table method), 47
to_sqlite() (camelot.core.Table method), 47
top (camelot.core.Cell attribute), 48

V
vspan (camelot.core.Cell attribute), 48

W
whitespace (camelot.core.Table attribute), 45

55

	Why Camelot?
	Support the development
	The User Guide
	Introduction
	The Camelot Project
	Why another PDF table extraction library?
	What’s in a name?
	Camelot License

	Installation of dependencies
	OS-specific instructions
	Ubuntu
	MacOS
	Windows

	Checks to see if dependencies are installed correctly
	For Ghostscript
	For Tkinter

	Installation of Camelot
	pip
	conda
	From the source code

	How It Works
	Stream
	Lattice

	Quickstart
	Read the PDF
	Specify page numbers
	Reading encrypted PDFs

	Advanced Usage
	Process background lines
	Visual debugging
	text
	table
	contour
	line
	joint
	textedge

	Specify table areas
	Specify table regions
	Specify column separators
	Split text along separators
	Flag superscripts and subscripts
	Strip characters from text
	Improve guessed table areas
	Improve guessed table rows
	Detect short lines
	Shift text in spanning cells
	Copy text in spanning cells
	Tweak layout generation
	Use alternate image conversion backends

	Frequently Asked Questions
	Does Camelot work with image-based PDFs?
	How to reduce memory usage for long PDFs?
	How can I supply my own image conversion backend to Lattice?

	Command-Line Interface

	The API Documentation/Guide
	API Reference
	Main Interface
	Lower-Level Classes
	Lower-Lower-Level Classes

	The Contributor Guide
	Contributor’s Guide
	Code Of Conduct
	Your first contribution
	Setting up a development environment
	Pull Requests
	Submit a pull request
	Work on your pull request

	Writing Documentation
	Filing Issues
	Questions
	Bug Reports

	Python Module Index
	Index

