

Welcome to JacobFK Website’s documentation!

Indices and tables

Section I

	Introduction and Review
	Download and Start Jupyter

	Markdown Cells
	Typing with Markdown

	Images with Markdown and HTML tags

	Python and Code Cells
	Types
	Additional Numbers

	Lists
	Numpy and Arrays

	Range

	For Loops and Sequences
	Combining range, for, and append.

	Functions
	Plotting Functions with Matplotlib

	Plotting Sequences with Matplotlib

	Sequences and Functions of Import

	Modeling with Sequences and Functions
	Arithmetic Sequences and Linear Functions

	Geometric Sequences and Exponential Functions
	Application to Population Growth

	Adjusting the Model

	What is \(\pi\)?
	Rough Approximations

	Recurrence Relationships from Antiquity

	Introduction to Infinite Processes
	Computing Square Roots

	Pi and Trigonometry
	Unit Circle

	Extending the Approximation

	Zeno’s Paradox
	Zeno and Sums

	Sequences and Series
	Patterns within the Sequences
	Partial Sums

	A Different Visualization
	Generalizing the Partial Sums

	Example 2

	Symbolic Solutions by Hand

	SymPy and Summations
	Summations on Symbols

	Other Patterns in Expressions
	Continue the Work

	Summations and Areas
	np.ceil and Step Functions

	Connection to Summation

	Different Heights of Rectangles

	Continuous Functions
	Improving the Approximations

	More Complex Curves
	10 Rectangles

	20 Rectangles

	40 Rectangles

	100 Rectangles

	1,000,000 Rectangles

	Measuring Cardiac Output: Turkeys on Treadymills
	Dye Dillution Method
	Example I

	Example II

	Example III

	Example IV

	Accounting for End Values

	Supply and Demand: Consumer Surplus
	Equilibrium Price

	Price Discrimination

	The Consumer Surplus
	Example

	Increasing the Number of Rectangles
	Definite Integral

	More Curves
	Example II

	Area Between Two Curves

	Wealth Distribution
	Quadratic Fit
	Getting the Fit

	Inequality through Time

	Census Bureau Data and Pandas
	Creating the DataFrame

	Plotting from the DataFrame

	Center of Mass
	The Lever
	The Path

	Generalizing

	Solving A 1-D Problem two ways

	2-D Case: Discrete Point Masses

	2-D Continuous Region

	Problems with Motion
	Velocity, Distance, Slope, and Area
	Forward and Backwards Motion

	Changing Velocity

	Problems
	Defining a Piecewise Function

	Connecting Sums and Differences

	Connections to Slope
	Adding Many Points

	Smaller and Smaller Intervals
	Derivative as Function with Python

	Derivative as Tangent Line

	Arbitrating Disputes with John Nash
	First Example

	Payoff Polygon

	Arithmetic Sequences and Linear Functions
	Interpreting the Solution

	Maximum and Minimum Values
	Smaller Intervals

	Problems

	Optics

	Newton’s Method

	Parametric Descriptions
	Calculus on Parametrically Defined Functions
	Tangent Lines

	Additional Examples

	Problems

	Interpolation

	Bezier Curves

	Composition and the Chain Rule
	Composition of Functions

	Implicitly Defined Functions
	Algorithmic Implicit Differentiation

	Textbook Approach

	Problems

	Regression and Least Squares
	Determining the Line of Best Fit

	Deriving the Equation of the Line

	Other Situations
	Non-Linear Functions

	Logistic Example
	Machine Learning Example

	Problems

	Visualizing Differential Equations

	Approximating Values
	Euler’s Method

	Population Models
	Populations II

	Comparing Exact and Approximates

	Population Models
	Exponential Growth
	The Logistic Differential Equation

	Experimenting with different rates
	Changing r

	Exploration

	Population Models
	Lotka Voltera Model

	Questions

	Discrete Dynamical Systems

	Fixed Point
	Cobweb Plot

	Different Behavior

Introduction and Review

This notebook is meant to introduce the Jupyter notebooks and Python
computing language and to show how they make solving many traditional
mathematics problems easier. After getting started with the notebook, we
run through some typical operations using python including variables,
lists, plots, for loops, and functions. We demonstrate the use of these
tools to solve some review mathematics problems from traditional
Calculus textbook reviews.

Download and Start Jupyter

I recommend downloading and installing the most recent version of
Anaconda available `here <>`__. You should choose the appropriate
installation depending on your operating system. Once downloaded and
installed, you can open the application and you should see something
like the screen below.

[image:]

Click on the Jupyter notebook tab and a browser window should open that
has a file navigator similar to the image below.

[image:]

Add a new folder and rename it calc_notebooks. Now, you can go into
this folder, and start a new Python 3 notebook.

Markdown Cells

In your first notebook, you can click on the toolbar at the top and
change the cell type. If you would like to type in a cell, we use a
markdown cell. Markdown is a way to format typing with some minimal
commands on the computer. Markdown cells also render many HTML tags, so
if you are familiar with HTML you can use this to add effects to your
documents.

[image:]

Typing with Markdown

We use some simple syntax to create text effects in markdown. For
example, to make a word bold we type **bold** and italics are
a single asterisk *italics*. Sections can be denoted with different
level headings using the # key as follows:

Header I
Header II
Header III

Images with Markdown and HTML tags

Images can be added using simple markdown sytanx. Two things should be
considered with images. First, I recommend storing them in a folder in
the same directory as your notebooks. For example, I create a subfolder
named images and place all my images there. For a larger project I
will make image folders for each notebook.

The second important thing to remember is to use a continuous filename
when saving the file. This means no spaces, i.e.

pig_pic.png not pig pic.png

From here, we use the markdown syntax

to refer to an image in the folder images named pig pic. We can also use
HTML image tags to show an image. Here, we can utilize some additional
controls over the height and width of the image displayed. You can use
some additional controls including the center and figure command to add
a caption and center the figure on the page. This would be as follows:

<center>
<figure>

<figcaption> This is a pig picture </figcaption>
</figure>
</center>

Python and Code Cells

To begin, we demonstrate the utility of Python as a calculator within
code cells in Jupyter. The familiar arithmetic operations are as
follows:

	+ Addition

	- Subtraction

	* Multiplication

	/ Division

	** Exponentiation

To execute the cell, press shift + enter.

In [1]:

2 + 3

Out[1]:

5

In [2]:

1 + 3 * 5 * (2-4) - 7**2

Out[2]:

-78

In [3]:

1/2

Out[3]:

0.5

Types

There are different forms of information that Python understands. These
types depend on the nature of the number or whether the entry is
something other than a number like a string of symbols. We can
investigate the type of an object using the type() function.

In [4]:

type(1), type(1/3), type("steve")

Out[4]:

(int, float, str)

In [5]:

a = 5

In [6]:

type(a)

Out[6]:

int

In [7]:

a * (1/3)

Out[7]:

1.6666666666666665

In [8]:

a

Out[8]:

5

Additional Numbers

We are familiar with numbers like \(\pi\) and values for
trigonmetric functions. We will use the numpy library for these
values. More on the numpy library follows, but for now we
demonstrate how to import, abbreviate, and use the numpy library to
numerate \(\pi\) and some trigonmetric functions as follows.

In [9]:

import numpy as np

np.pi, np.sin(30), np.cos(2*np.pi)

Out[9]:

(3.141592653589793, -0.98803162409286183, 1.0)

Lists

The last example demonstrates an important object for us in the form of
a list. A list is an indexed list of objects. For example, the list
above is different than that of [1, 3, 2] because the order of the
objects matters. We can reference items in a list based on their
location.

In Python, lists begin by counting with zero. This image below
demonstrates a simple list L1, its entries
np.sin(30), 1, "robot", 2, "stew", and the corresponding indicies
for each entry.

[image:]

In [10]:

L1 = [np.sin(30), 1, "robot", 2, "stew"]

In [11]:

type(L1)

Out[11]:

list

In [12]:

L1.append(4)

In [13]:

L1

Out[13]:

[-0.98803162409286183, 1, 'robot', 2, 'stew', 4]

In [14]:

L1[1:3]

Out[14]:

[1, 'robot']

In [15]:

L1[2:]

Out[15]:

['robot', 2, 'stew', 4]

In [16]:

L1 * 5

Out[16]:

[-0.98803162409286183,
 1,
 'robot',
 2,
 'stew',
 4,
 -0.98803162409286183,
 1,
 'robot',
 2,
 'stew',
 4,
 -0.98803162409286183,
 1,
 'robot',
 2,
 'stew',
 4,
 -0.98803162409286183,
 1,
 'robot',
 2,
 'stew',
 4,
 -0.98803162409286183,
 1,
 'robot',
 2,
 'stew',
 4]

In [17]:

L1 + L1

Out[17]:

[-0.98803162409286183,
 1,
 'robot',
 2,
 'stew',
 4,
 -0.98803162409286183,
 1,
 'robot',
 2,
 'stew',
 4]

Numpy and Arrays

Besides offering some basic numerical operations, numpy has
functions built in to generate lists of values. We will use this
frequently to construct domains for functions we are investigating. Two
functions we will use consistently are the arange and linspace
functions. Both are shown below. Remember any NumPy operation will be
preceded by np..

In [18]:

np.arange?

In [19]:

np.arange(0, 10, 1)

Out[19]:

array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

In [20]:

np.arange(0, 10, 0.5)

Out[20]:

array([0. , 0.5, 1. , 1.5, 2. , 2.5, 3. , 3.5, 4. , 4.5, 5. ,
 5.5, 6. , 6.5, 7. , 7.5, 8. , 8.5, 9. , 9.5])

In [21]:

np.linspace?

In [22]:

np.linspace(0, 10, 2)

Out[22]:

array([0., 10.])

In [23]:

np.linspace(0, 10, 11)

Out[23]:

array([0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10.])

In [24]:

np.linspace(0, 100, 101)

Out[24]:

array([0., 1., 2., 3., 4., 5., 6., 7., 8.,
 9., 10., 11., 12., 13., 14., 15., 16., 17.,
 18., 19., 20., 21., 22., 23., 24., 25., 26.,
 27., 28., 29., 30., 31., 32., 33., 34., 35.,
 36., 37., 38., 39., 40., 41., 42., 43., 44.,
 45., 46., 47., 48., 49., 50., 51., 52., 53.,
 54., 55., 56., 57., 58., 59., 60., 61., 62.,
 63., 64., 65., 66., 67., 68., 69., 70., 71.,
 72., 73., 74., 75., 76., 77., 78., 79., 80.,
 81., 82., 83., 84., 85., 86., 87., 88., 89.,
 90., 91., 92., 93., 94., 95., 96., 97., 98.,
 99., 100.])

Range

The range() function can perform a similar function, however we
don’t get an array of values in return. Instead, this simply generates
the ability to count through a sequence of integers by a given step.
According to the help function, range:

Return an object that produces a sequence of integers from start (inclusive)
to stop (exclusive) by step. range(i, j) produces i, i+1, i+2, ..., j-1.
start defaults to 0, and stop is omitted! range(4) produces 0, 1, 2, 3.
These are exactly the valid indices for a list of 4 elements.
When step is given, it specifies the increment (or decrement).

In [25]:

range(10)

Out[25]:

range(0, 10)

In [26]:

range(1, 10, 2)

Out[26]:

range(1, 10, 2)

For Loops and Sequences

A for loop defines a repeated series of operations to be carried out a
finite number of times. For example, the following code demonstrates the
repeated printing of members of range(5).

In [27]:

for i in range(5):
 print(i)

0
1
2
3
4

Combining range, for, and append.

Together, the for loop, the list, and the ability to add elements to
lists with the append function allows us to express repeated
operations easily. For example, suppose we want to form a sequence of
integers. We can understand this as starting at 1 and adding 1 to each
previous term to get the next. Symbolically, we would write this as:

\[a_{i+1} = a_i + 1\]

In Python, we write this as follows.

In [28]:

a = [1]
for i in range(10):
 next = a[i] + 1
 a.append(next)

a

Out[28]:

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]

Note that the second term is the first element generated within the
for loop. We create a variable named next and define it to be
the current term of the sequence + 1. We then tack this term on to the
end of the list, and continue doing so while i ticks through the
values of range(10). Essentially, the loop is building the list
piece by piece as follows:

[1]
[1, 2]
[1, 2, 3]
[1, 2, 3, 4]
.
.
.

In [29]:

b = [1]
for i in range(1, 10, 2):
 next = np.sin(i)
 b.append(next)

b

Out[29]:

[1,
 0.8414709848078965,
 0.14112000805986721,
 -0.95892427466313845,
 0.65698659871878906,
 0.41211848524175659]

In [30]:

c = [300]

In [31]:

for i in range(30):
 next = c[i] + 0.03*c[i]
 c.append(next)

c[-5:] #the last five values

Out[31]:

[646.9773802631524,
 666.386701671047,
 686.3783027211784,
 706.9696518028138,
 728.1787413568982]

Functions

Most of us have seen functions in high school mathematics. For example,
the function

\[f(x) = x^2\]

relates every input to its square. We are quite used to seeing these
expressed as plots in a Cartesian coordinate plane. We will deal more
with the intricacies of functions through the class, however it is
important to be able to define and use basic mathematical functions. For
example, to define the function above in Python, we will write:

def f(x):
 return x**2

After doing this, if we want to find the associated value with some
input, we can evaluate the function using the parenthesis following its
name;

f(3)

We could also evaluate the function for a list of values all at once.
Suppose we want to find the value of the first ten integers squared. We
can make a list of the ten integers and plug this list into the function
rather than evaluating each integer individually.

In [32]:

def f(x):
 return x**2

In [33]:

f(3)

Out[33]:

9

In [34]:

x = np.arange(1, 11, 1) #first ten integers
f(x)

Out[34]:

array([1, 4, 9, 16, 25, 36, 49, 64, 81, 100])

Plotting Functions with Matplotlib

Often, we can understand a situation better by visualizing it. We will
constantly be graphing relationships expressed as function defined as a
formula and as a process. Both are demonstrated below using the
sequences and functions from above.

First, we tell Jupyter to make the graphs in the notebook itself with
the magic command %matplotlib inline. We also import and abbreviate
the plotting library PyPlot as plt. Whenever we call something from
this library, we preface it with plt..

First, we walk through a basic plot of the function \(f(x) = x^2\).
We define the function, the \(x\) values we will evaluate it at, and
then call the plot with the input and output variables as

plt.plot(x, f(x))

In [35]:

%matplotlib inline
import matplotlib.pyplot as plt

In [36]:

x = np.arange(1, 11, 1)

def f(x):
 return x**2

In [37]:

f(x)

Out[37]:

array([1, 4, 9, 16, 25, 36, 49, 64, 81, 100])

In [38]:

plt.plot(x, f(x))

Out[38]:

[<matplotlib.lines.Line2D at 0x114f46fd0>]

[image: _images/0.1_calc_intro_50_1.png]

Plotting Sequences with Matplotlib

In a similar way, we can generate the plot for a sequence. Because we
are interested in the discrete points of the sequence, we will add the
marker key o which tells matplotlib to draw circles at each point.
The plots can be customized easily, and we then demonstrate altering the
size and appearance of the markers as well as how to add titles, labels,
and a legend to a plot.

In [39]:

seq = []
for i in range(1,11):
 next = i**2
 seq.append(next)

seq

Out[39]:

[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

In [40]:

plt.plot(seq, 'o')

Out[40]:

[<matplotlib.lines.Line2D at 0x11555f860>]

[image: _images/0.1_calc_intro_53_1.png]

In [41]:

plt.plot(seq, 'o', c = 'lightblue', markersize = 12, alpha = 0.4)

Out[41]:

[<matplotlib.lines.Line2D at 0x11568b828>]

[image: _images/0.1_calc_intro_54_1.png]

In [42]:

plt.plot(seq, '^', c = 'lightpink', markersize = 12, alpha = 0.7, label = "Sequence I")
plt.title("Adding Elements to the Plot")
plt.xlabel("Index of Term")
plt.ylabel("Value of Term")
plt.legend(loc = "best", frameon = False)

Out[42]:

<matplotlib.legend.Legend at 0x1157afa90>

[image: _images/0.1_calc_intro_55_1.png]

Sequences and Functions of Import

We want to focus on four primary kinds of functions to begin– Linear,
Quadratic, Exponential, and Trigonometric. We want to be able to
recognize situations that can be modeled by these functions as well as
understand the differences between them when expressed as words,
numbers, tables, and plots.

We define and plot each as closed functions and as sequences. We
introduce the subplot function to place plots side by side. The idea
of the subplot function is to declare the number of rows and
columns of the figure. For each of these examples we want one row
with two columns. Finally, our third value indicates the place of the
figure.

plt.subplot(1, 2, 1)

Means 1 row, 2 columns, and place this plot as the first of the two. It
should be accompanied by another subplot:

plt.subplot(1, 2, 2)

In [43]:

x = np.linspace(1, 10, 11)
def l(x):
 return x

In [44]:

arith = [1]
for i in range(9):
 next = arith[i] + 1
 arith.append(next)

In [45]:

plt.figure(figsize = (12, 6))
plt.subplot(1, 2, 1)
plt.plot(x, l(x), label = "Linear Function")
plt.title("A Linear function $f(x) = x$")
plt.legend(loc = "best", frameon = False)

plt.subplot(1, 2, 2)
plt.plot(arith, 'o', label = "Arithmetic Sequence")
plt.title("An Arithmetic Sequence $a_n = a_{n-1} + 1$")
plt.legend(loc = "best", frameon = False)

Out[45]:

<matplotlib.legend.Legend at 0x115804630>

[image: _images/0.1_calc_intro_59_1.png]

Modeling with Sequences and Functions

A crucial consideration in working with the Calculus is the notion of a
rate of change. This notebook aims to familiarize you with four
important families of functions and their key characteristics. Next, we
present some scenarios where these families serve as appropriate models
for particular kinds of situations because of the nature of the
quantities change.

Arithmetic Sequences and Linear Functions

An arithmetic sequence is one that exhibits a constant change between
terms. Every successive term of the sequence can be determined by
multiplication and/or addition by the exact same constant. When plotted,
the terms of an arithmetic sequence fall on a straight line.

“In mathematics, an arithmetic progression (AP) or arithmetic
sequence is a sequence of numbers such that the difference between
the consecutive terms is constant. For instance, the sequence 5, 7,
9, 11, 13, 15, . . . is an arithmetic progression with common
difference of 2.” – Wikipedia

In [1]:

arith_1 = [1]
for i in range(5):
 next = arith_1[i] + 1
 arith_1.append(next)

arith_1

Out[1]:

[1, 2, 3, 4, 5, 6]

In [2]:

arith_2 = [2]
for i in range(5):
 next = arith_2[i] +3
 arith_2.append(next)

arith_2

Out[2]:

[2, 5, 8, 11, 14, 17]

In [3]:

%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np

In [4]:

plt.figure(figsize = (8,5))
plt.plot(arith_1, '--o', label = "$a_0 = 1$; \n$a_{n+1} = a_n + 1$")
plt.plot(arith_2, '--o', label = "$a_0 = 2$; \n$a_{n+1} = a_n + 3$")
plt.title("Two Arithmetic Sequences in RECURSIVE FORM")
plt.legend(loc = "best", frameon = False)

Out[4]:

<matplotlib.legend.Legend at 0x10e6b4ac8>

[image: _images/0.2_calc_modeling_sequences_functions_5_1.png]

Linear functions exhibit the same behavior. We can recognize linear
situations because of a constant rate of change. A linear function is
usually defined as:

\[f(x) = m x + b\]

where \(m\) is the rate of change or slope, and b is the
\(y\)-intercept, analagous to \(a_0\) or the starting place in
our sequence work. Thus, the sequences above can be defined using our
knowledge of the starting value and rate of change (how much is added
every term).

\[s1(x) = 1x + 1\]

\[s2(x) = 3x + 2\]

We can verify this with a plot.

In [5]:

x = np.arange(0, 6, 1)

def s1(x):
 return x + 1

def s2(x):
 return 3*x + 2

plt.figure()
plt.plot(x, s1(x), '--o', label = '$s1(x) = x + 1$')
plt.plot(x, s2(x), '--o', label = '$s2(x) = 3x + 2$')
plt.title("Two Linear Functions in CLOSED FORM")
plt.legend(loc = "best", frameon = False)

Out[5]:

<matplotlib.legend.Legend at 0x10ef3fa90>

[image: _images/0.2_calc_modeling_sequences_functions_7_1.png]

Geometric Sequences and Exponential Functions

In a Geometric Sequence we generate terms through multiplication.

“In mathematics, a geometric progression, also known as a geometric
sequence, is a sequence of numbers where each term after the first
is found by multiplying the previous one by a fixed, non-zero number
called the common ratio. For example, the sequence 2, 6, 18, 54, ...
is a geometric progression with common ratio 3. Similarly 10, 5,
2.5, 1.25, ... is a geometric sequence with common ratio
1/2.”–Wikipedia

The graphs of these sequences exhibit a constant ratio in the rate of
change and produce a curve the increases increasingly fast by this
multiplier.

In [6]:

geom_1 = [1]
for i in range(5):
 next = geom_1[i]*2
 geom_1.append(next)

geom_1

Out[6]:

[1, 2, 4, 8, 16, 32]

In [7]:

geom_2 = [3]
for i in range(5):
 next = geom_2[i]*2.034
 geom_2.append(next)

geom_2

Out[7]:

[3,
 6.101999999999999,
 12.411467999999998,
 25.244925911999992,
 51.34817930500798,
 104.44219670638623]

In [8]:

plt.figure()
plt.plot(geom_1, '--o', label = "$a_0 = 1$\n$a_{n+1} = a_n *2$")
plt.plot(geom_2, '--o', label = "$a_0 = 3$\n$a_{n+1} = a_n *2.034$")
plt.title("Two Geometric Sequences in RECURSIVE FORM")
plt.legend(loc = "best", frameon = False)

Out[8]:

<matplotlib.legend.Legend at 0x10ed9cdd8>

[image: _images/0.2_calc_modeling_sequences_functions_11_1.png]

Exponential functions exhibit the same behavior. Typically, exponential
functions are defined as:

\[f(x) = ab^x\]

where \(a\) is analagous to our starting value and \(b\) to the
common ration between terms. Thus, we can define the two sequences in
closed form as follows:

\[g1(x) = 2^x\]

\[g2(x) = 3(2.034)^x\]

In [9]:

x = np.arange(0, 6, 1)

def s1(x):
 return 2**x

def s2(x):
 return 3*(2.034)**x

plt.figure()
plt.plot(x, s1(x), '--o', label = '$s1(x) = 2^x$')
plt.plot(x, s2(x), '--o', label = '$s2(x) = 3(2.034)^x$')
plt.title("Two Exponential Functions in CLOSED FORM")
plt.legend(loc = "best", frameon = False)

Out[9]:

<matplotlib.legend.Legend at 0x10f1d0ba8>

[image: _images/0.2_calc_modeling_sequences_functions_13_1.png]

Application to Population Growth

A typical application of arithmetic and geometric sequences is to
investigate population growth. A very simple model for a population may
be:

	Population Model I: Population is currently 500. Every year we
add 37 new people.

	Population Model II: Population is currently 500. Every year the
population grows by 5.1%.

Model each of these with a recursive sequence and discuss which kind of
sequence and closed form is appropriate for each. Then make a side by
side plot showing the results of a recursively defined sequence and plot
and a closed form function and plot.

Adjusting the Model

Perhaps the scenarios above seem a little to simplistic. It maybe that
rather than changing by the same rate every year, that this rate of
change increases as the population grows. If we suppose a constant
increase in the rate of change, we are looking at a sequence whose rate
of change changes linearly. If we make a sequence whose change is an
arithmetic sequence, we should have this.

Note the rate of change between the terms in the sequence below.

In [10]:

p3 = [500]
for i in range(10):
 next = p3[i] + (2*i + 3)
 p3.append(next)

p3

Out[10]:

[500, 503, 508, 515, 524, 535, 548, 563, 580, 599, 620]

In [11]:

plt.plot(p3, '--o')

Out[11]:

[<matplotlib.lines.Line2D at 0x10f31c0b8>]

[image: _images/0.2_calc_modeling_sequences_functions_17_1.png]

We will return to the closed form of this function later. What is
important to notice now is the difference in the way that the sequence
is generated. Each term changes by an additively changing amount. We can
look closely a the difference in the terms of the sequence.

In [12]:

p3_diff = [1]
for i in range(10):
 next = p3[i+1] - p3[i]
 p3_diff.append(next)

In [13]:

p3_diff

Out[13]:

[1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21]

In [14]:

plt.plot(p3_diff, '--o')
plt.title("A Plot of the Difference in Terms of Sequence p3")

Out[14]:

<matplotlib.text.Text at 0x10f4f2320>

[image: _images/0.2_calc_modeling_sequences_functions_21_1.png]

What is \(\pi\)?

In his book The Historical Development of the Calculus, C.H. Edwards
relates an early history of \(\pi\). Around 430 BC, Hippocrates of
Chios showed that the ratio of the area of two circles is equal to the
ratio of the squares of their diameters. Later, Eudoxus and Archimedes
worked to deploy the method of exhaustion in determining this value.

Rough Approximations

For Archimedes, he began with a hexagon inscribed and circumscribed on a
circle with unit radius. Of course, we’ve probably seen the relationship
for the area of a circle as

\[A = \pi r^2\]

Thus, if we have \(r = 1\), the area of our circle is equal to
\(\pi\). We can use some rough approximations and our knowledge of
square roots to determine a first approximation as Archimedes did by
using a unit circle and inscribed and circumscribed hexagons as seen in
the image below.

Here, we decompose the inscribed and circumscribed polygons using our
knowledge of triangles. As we saw in class, we can understand the
inscribed triangles through the Pythagorean theorem, and some elementary
knowledge about equilateral triangles. To find the height of these
triangles, we recognize that dropping a perpendicular to the base
creates a right triangle with hypotenuse 1 and short leg
\(\frac{1}{2}\) shown below.

Thus, we can find the height using the Pythagorean theorem. This gives
us:

\[\frac{1}{2}^2 + ?^2 = 1^2\]

\[?^2 = 1 - \frac{1}{4}\]

\[? = \frac{\sqrt{3}}{2}\]

and an area for each of the six triangles of

\[A = \frac{1}{2}(\text{base})(\text{height}) \quad \text{or} \quad A = \frac{1}{2}\times 1\times\frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{8}\]

Thus, for all six triangles we have

\[6 \times \frac{\sqrt{3}}{4} \quad \text{or} \quad \frac{3\sqrt{3}}{2}\]

We can use Python to compute this as a number using our tenth
approximation for \(\sqrt{3}\).

In [1]:

a = [1.6]

for i in range(9):
 next = 0.5*(a[i]+3/a[i])
 a.append(next)

print("The first approximation for pi is", (3*a[-1]/2))

The first approximation for pi is 2.598076211353316

Recurrence Relationships from Antiquity

While we could continue to determine the successive relationships as we
go, there are actually patterns that develop in both Eudoxus who started
with a square and Archimedes who began with a hexagon. As Bruce Shapiro
notes in his book Scientific Computation: Python Hacking for Math
Junkies, the Eudoxean relationship is contingent on the length of an
outer edge of a polygon \(H_n\) and the perimeter of that polygone
\(P_n\), as follows:

\[P_n = 2^n H_n \quad \text{thus} \quad \pi_n = \frac{1}{2}P_n = 2^{n-1}H_n\]

Further, we have a recursive relationship on \(H_n\) as:

\[H_n^2 = 2 - 2\sqrt{1-\big(\frac{H_{n-1}}{2}\big)^2}\]

Thus, if we have an initial approximation, we can deploy this
relationship to iterate and find better and better approximations.

For Archimedes, we have a similar relationship where \(I_n\) is the
inscribed polygon and \(C_n\) is the circumscribed polygon, thus

\[I_n < \pi < C_n\]

and the recurrence relationships

\[C_{2n} = \frac{2C_nI_n}{C_n + I_n}\]

\[~\]

\[I_{2n} = \sqrt{C_{2n}I_{n}}\]

If you need something to do, you can establish these relationships.

Introduction to Infinite Processes

This notebook introduces two of the earliest known examples of
mathematics motivated by the difficulty of representation. Both
\(\sqrt{2}\) and \(\pi\) are problematic numbers. We can easily
describe them geometrically, but when it comes to actually representing
them, the best we can do is approximate them.

GOALS:

	Use Babylonian Square Root Algorithm

	Use Archimedes method of Exhaustion to approximate Pi

	Represent Zeno’s Paradox of the Tortoise and Achilles

Computing Square Roots

Suppose we have a guess that we think is close to \(\sqrt{2}\)

\[x_1 \approx \sqrt{2} \quad \rightarrow \quad x_1 \times x_1 \approx 2 \quad \rightarrow \quad x_1 \approx \frac{2}{x_1}\]

Either \(x_1\) is a better guess or \(\frac{2}{x}\), but even
better still would be the average of the two:

\[x_2 = \frac{1}{2} \big(x_1 + \frac{2}{x_1}\big)\]

If we continue in this manner we will get better and better
approximations:

\[x_3 = \frac{1}{2} \big(x_2 + \frac{2}{x_2}\big)\]

\[x_4 = \frac{1}{2} \big(x_3 + \frac{2}{x_3}\big)\]

\[x_5 = \frac{1}{2} \big(x_4 + \frac{2}{x_4}\big)\]

\[\vdots\]

\[x_{n+1} = \frac{1}{2} \big(x_n + \frac{2}{x_n}\big)\]

We can use our familiar for loop structure to generate successive
approximations for \(\sqrt{2}\) based on this formulation.

In [1]:

sqrt = [2]
for i in range(10):
 next = 0.5*(sqrt[i] + 2/(sqrt[i]))
 sqrt.append(next)

sqrt

Out[1]:

[2,
 1.5,
 1.4166666666666665,
 1.4142156862745097,
 1.4142135623746899,
 1.414213562373095,
 1.414213562373095,
 1.414213562373095,
 1.414213562373095,
 1.414213562373095,
 1.414213562373095]

In [2]:

%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt

In [3]:

plt.plot(sqrt, '--o')
plt.ylim(0,2)
plt.title("Successive Approximations to $\sqrt{2}$")

Out[3]:

<matplotlib.text.Text at 0x112313940>

[image: _images/0.4_calc_Intro_to_Infinite_4_1.png]

Pi and Trigonometry

Recall that we can understand \(\pi\) as the ratio between the
diameter and circumference of a circle. Thus, if we have a circle with
diameter 1, the circumference would be \(\pi\). We use this to
approximate the value of \(\pi\).

In a similar manner we can approximate the value of \(\pi\).
Following Aristarchus, we can consider a sqaure mounted inside a circle
of radius 1, with its vertices located at
\((1, 0), (0, 1), (-1, 0),\) and \((0, -1)\). We can use the
perimeter of the square as an approximation for the circumference of the
circle.

[image:]

A better approximation would be if we used a regular polygon with twice
as many sides. We can understand this as placing points at the halfway
between each existing vertex. To mathematize this, let’s refresh our
memory of the unit circle.

Unit Circle

The unit circle describes the location of points around a circle of
radius 1. For us, we care about the use of \(\cos\) and \(\sin\)
to place coordinates on the circle. If we cut our square in half, we
would have points every \(45^o\) or \(\frac{\pi}{2}\), and can
use the trigonometric measures of these angles as ways to find the
coordinates.

[image:]

We demonstrate the first two iterations of this below using
matplotlib.patches Circle and RegularPolygon Functions.

In [4]:

import matplotlib.pyplot as plt
import matplotlib.patches as patches

fig1 = plt.figure()
ax1 = fig1.add_subplot(111, aspect = 'equal')
ax1.add_patch(patches.RegularPolygon((0,0), 4,1, alpha = .2))
ax1.add_patch(patches.Circle((0,0), 1, fill = False))
plt.xlim(-1,1)
plt.ylim(-1,1)

Out[4]:

(-1, 1)

[image: _images/0.4_calc_Intro_to_Infinite_6_1.png]

In [5]:

import matplotlib.pyplot as plt
import matplotlib.patches as patches

fig1 = plt.figure()
ax1 = fig1.add_subplot(111, aspect = 'equal')
ax1.add_patch(patches.RegularPolygon((0,0),8,1, alpha = 0.2)) #center with 8 sides, radius 1
ax1.add_patch(patches.Circle((0, 0), 1, fill = False))
plt.xlim(-1,1)
plt.ylim(-1,1)

Out[5]:

(-1, 1)

[image: _images/0.4_calc_Intro_to_Infinite_7_1.png]

The coordinate values of the points can be found with some creative use
of a list comprehension and our knowledge of the angles.

In [6]:

square_approx = [[np.cos(i*np.pi/2), np.sin(i*np.pi/2)] for i in range(4)]

In [7]:

square_approx

Out[7]:

[[1.0, 0.0],
 [6.123233995736766e-17, 1.0],
 [-1.0, 1.2246467991473532e-16],
 [-1.8369701987210297e-16, -1.0]]

Extending the Approximation

The work above is a strict under approximation for \(\pi\). We will
always get a value less than it, as we will never completely fill the
circle.

We could arrive at an upper bound for \(\pi\) by constructing a
square outside of the circle and continually bisecting the sides to
limit an upper boundary for out guess. Archimedes performed this in
writing in the second century BC.

Zeno’s Paradox

The philosopher Zeno of Elea is said to be the product of a series of
paradoxical questions, one of which dealt with the difficulty in
quantifying the continuum. Here, the problem involved a race between a
tortise and Achilles (a man). The tortise got a head start. Aristotle
describes the problem in his Physics as follows:

“This claims that the slowest funner will never be caught by the
fastest runner, because the one behind has first to reach the point
from which the one in front started, and so the slower one is obound
always to be in front” Aristotle”, Physics 239b14 - 18

The problem, according to Zeno, has been interpreted to mean that it is
impossible to cross any unit distance before crossing half of it. It is
impossible to cross this half without having crossed half of the half.
Continue the argument to infinity and how can we ever move?! The image
below offers a visualization of the problem.

[image:]

Zeno and Sums

If we examine the image above, it should make sense to us that the sum
of the terms of Zeno’s sequence add to one. It may be counter intuitive
to think that an infinite number of terms add to a finite number,
however this is one of the fundamental problems for us. What happens in
the realm of the infinitely small?

We can use our tools to investigate this. First, let us create a
sequence of Zeno’s terms as follows.

\[\displaystyle \text{Zeno =} \quad [~ \frac{1}{2}, ~ \frac{1}{2^2}, ~ \frac{1}{2^3}, ...]\]

Now, we will create a sequence that provides the partial sums of the
terms of Zeno as:

\[\displaystyle \text{Partial Sums = } ~ [\frac{1}{2}, ~ \frac{1}{2} + ~ \frac{1}{4}, ~ \frac{1}{2} + \frac{1}{4} + \frac{1}{16}, ...]\]

We will also plot these side by side to compare.

\(~\)

Sum Function! Note the use of the function sum in the construction
of the partial sums.

In [8]:

zeno = [1/2**(i+1) for i in range(10)]
zeno

Out[8]:

[0.5,
 0.25,
 0.125,
 0.0625,
 0.03125,
 0.015625,
 0.0078125,
 0.00390625,
 0.001953125,
 0.0009765625]

In [9]:

zeno_sums = [sum(zeno[:i]) for i in range(10)]

In [10]:

zeno_sums

Out[10]:

[0,
 0.5,
 0.75,
 0.875,
 0.9375,
 0.96875,
 0.984375,
 0.9921875,
 0.99609375,
 0.998046875]

In [11]:

plt.figure(figsize = (12, 5))
plt.subplot(1, 2, 1)
plt.plot(zeno, '--o')
plt.title("Zeno's Sequence of Terms")

plt.subplot(1, 2, 2)
plt.plot(zeno_sums, '--o')
plt.title("Partial Sums of Zeno's Terms")

Out[11]:

<matplotlib.text.Text at 0x112c85898>

[image: _images/0.4_calc_Intro_to_Infinite_17_1.png]

Sequences and Series

This notebook picks up on Zeno’s problem to investigate some further
applications of sequences and their sums; series. We will focus on
four sequences of integers and their powers:

int1 = [1, 2, 3, 4, 5, ...]
intsq = [1**2, 2**2, 3**2, 4**2, 5**2, ...]
intcbd = [1**3, 2**3, 3**3, 4**3, 5**3, ...]
intfrth = [1**4, 2**4, 3**4, 4**4, 5**4, ...]

Let’s create these sequences and then plot them all on a
\(2 \times 2\) grid.

In [1]:

int1 = [(i+1) for i in range(10)]
intsq = [(i+1)**2 for i in range(10)]
intcbd = [(i+1)**3 for i in range(10)]
intfrth = [(i+1)**4 for i in range(10)]

In [2]:

%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np

plt.figure(figsize = (11, 7))
plt.subplot(221)
plt.plot(int1, 'o')
plt.title("int1 = [1, 2, 3, 4, 5, ...]")

plt.subplot(222)
plt.plot(intsq, 'o')
plt.title("intsq = $[1^2, 2^2, 3^2, 4^2, 5^2, ...]$")

plt.subplot(223)
plt.plot(intcbd, 'o')
plt.title("intcbd = $[1^3, 2^3, 3^3, 4^3, 5^3, ...]$")

plt.subplot(224)
plt.plot(intfrth, 'o')
plt.title("intfrth = $[1^4, 2^4, 3^4, 4^4, 5^4, ...]$")

Out[2]:

<matplotlib.text.Text at 0x11303db70>

[image: _images/0.5_calc_summations_3_1.png]

In [3]:

plt.figure(figsize = (8, 6))
plt.plot(int1, '--o', label = "Sequence I")
plt.plot(intsq, '--o', label = "Sequence II")
plt.plot(intcbd, '--o', label = "Sequence III")
plt.plot(intfrth, '--o', label = "Sequence IV")
plt.ylim(0, 1000)
plt.legend()
plt.title("All Four Sequences Together")

Out[3]:

<matplotlib.text.Text at 0x1138f4d30>

[image: _images/0.5_calc_summations_4_1.png]

Patterns within the Sequences

We are interested in being able to do something similar with what we had
accomplished in recognizing the patterns in sequences. We will be
interested in two specific patterns– that of the sequence itself and
those of its partial sums. Let’s look at these patterns for sequence I,
the integers.

Partial Sums

With Zeno’s problem, we were also interested in the addition of all the
pieces of the picture. We will do the same for the sequences above. To
begin, we will look if there is an easily discernable pattern in the
partial sums of the sequence. This means we will form another
sequence based on the sum of the first \(n\) terms of int1. This
would mean:

\[\text{psum_s1} = [1, 1+2, 1+2+3, 1+2+3+4, ...]\]

Since we already have the sequence seq1, we can use a list
comprhension to easily form the sequence of partial sums and a side by
side plot of the sequence and its partial sums.

In [4]:

psum_s1 = [sum(int1[:i+1]) for i in range(10)]
psum_s1

Out[4]:

[1, 3, 6, 10, 15, 21, 28, 36, 45, 55]

In [5]:

plt.figure(figsize = (10, 5))
plt.subplot(121)
plt.plot(int1, '--o')
plt.title("Sequence")

plt.subplot(122)
plt.plot(psum_s1, '--o')
plt.title("Partial Sums")

Out[5]:

<matplotlib.text.Text at 0x113f4bc18>

[image: _images/0.5_calc_summations_8_1.png]

We have seen these patterns before with our arithmetic and quadratic
sequences. Notice the constant difference and first term of the integer
sequence, and the constant rate of change between terms in its partial
sums, leading to the quadratic case. It may not be immediately obvious
what quadratic, but this is an important relationship nonetheless. The
partial sums of an arithmetic sequence form a quadratic.

A Different Visualization

This is a more advanced graphic to make on the computer, but it serves a
nice purpose for understanding the general pattern to the partial sums.
Here, we create a rectangular grid that helps us understand the
triangular numbers. We create an array of values where each row has one
more 1, and color these. We should recognize the connection to the Red
and Blue pieces of the series. Here, the area of the figures represents
the sum of the terms. In the first figure for example, we have a
geometric representation of the sum of the first four terms of the
sequence of integers.

In [6]:

from ipywidgets import interact, widgets, fixed

In [7]:

np.zeros((3,4))

Out[7]:

array([[0., 0., 0., 0.],
 [0., 0., 0., 0.],
 [0., 0., 0., 0.]])

In [8]:

def tri_numplot(n=4):
 plt.figure(figsize=(6.0, 6.0))
 a=np.zeros((n,n+1))#creates an n by n+1 array of zeros
 for i in range(n):
 for j in range(i+1):
 a[i,j]=1
 a=np.flipud(a)
 plt.pcolor(a, edgecolors='k', linewidths=4)
 plt.axis('tight')
 plt.axis('off')
 plt.title("Geometry of Partial Sums")

In [9]:

tri_numplot(4)

[image: _images/0.5_calc_summations_14_0.png]

Generalizing the Partial Sums

Now, we can investigate to whether this pattern will hold for larger
values of n with a slider. Pay attention to the area of the figures.

In [10]:

interact(tri_numplot, n=widgets.IntSlider(min=1, max=100, step=1, value=1));

[image: _images/0.5_calc_summations_16_1.png]

Notice the geometry forms a rectangle with dimensions:

\[n \times (n +1)\]

This is the total for two sequences though, and we only want one so we
can divide this in half and we’ve determined a formula for the partial
sums as:

\[\displaystyle \frac{n(n+1)}{2} = \frac{1}{2}n^2 + \frac{1}{2}n\]

We should be able to verify this with a plot of this function and a plot
of the partial sums together. Here, we plot a function

\[s(n) = \frac{1}{2}n^2 + \frac{1}{2}n\]

Be careful about the indicies to see that your plot begins with the same
terms.

In [11]:

def s(n):
 return 0.5*n**2 + 0.5*n

n = np.arange(1, 10)

plt.figure(figsize = (10, 6))
plt.plot(s(n), '-o', alpha = 0.7, color = 'lightblue', label = "$s(n)$")
plt.plot(psum_s1, '-x', markersize = 16, color = 'red', label = "$\sum_i ^n i$")
plt.title("The Partial Sums and Function Agree")
plt.legend(loc = "best", frameon = False)

Out[11]:

<matplotlib.legend.Legend at 0x11464cb70>

[image: _images/0.5_calc_summations_18_1.png]

Example 2

Let’s look at the same patterns for our sequence III, the integers cubed
and its partial sums. As a reminder, here we have

intcbd = [1**3, 2**3, 3**3, 4**3, ...]

We will form the partial sums of the sequence in a similar manner to
before, and see if we recognize a pattern.

In [12]:

psum_cbd = [sum(intcbd[:i+1]) for i in range(10)]

In [13]:

intcbd, psum_cbd

Out[13]:

([1, 8, 27, 64, 125, 216, 343, 512, 729, 1000],
 [1, 9, 36, 100, 225, 441, 784, 1296, 2025, 3025])

The values of cb_sums should look familiar. They are
\(1^2, 3^2, 6^2, 10^2, ...\) the squares of the partial sums of
int1.

In [14]:

plt.figure(figsize = (10, 5))

plt.plot(intcbd, '--o', label = "$1^3, 2^3, 3^3, ...$")
plt.plot(psum_cbd, '--o', label = "Partial Sums")
plt.title("Sequence $a_i = i^3$ and its Partial Sums")
plt.legend()

Out[14]:

<matplotlib.legend.Legend at 0x114ad2f28>

[image: _images/0.5_calc_summations_23_1.png]

Recalling our earlier results, we have a formula for the partial sums of
the integers as \(\frac{1}{2}(n^2 +n)\).

We can use this to generalize the partial sums here as:

\[\sum_i^n i^3 = \big[\frac{1}{2}n^2 +n \big]^2\]

Again, we can create a function based on the pattern in the partial sums
and compare it to the sequence of partial sums as follows.

In [15]:

psum_cbd = [sum(intcbd[:i+1]) for i in range(10)]

def s(n):
 return (0.5*n**2 + 0.5*n)**2

n = np.arange(1, 10)

plt.figure(figsize = (10, 6))
plt.plot(s(n), '-o', alpha = 0.7, markersize = 12, color = 'purple', label = "$s(n)$")
plt.plot(psum_cbd, '-x', markersize = 16, color = 'blue', label = "$\sum_i ^n i^3$")
plt.title("The Partial Sums and Function Agree Again")
plt.legend(loc = "best", frameon = False)

Out[15]:

<matplotlib.legend.Legend at 0x114655470>

[image: _images/0.5_calc_summations_25_1.png]

Symbolic Solutions by Hand

Here, we were able to recognize the pattern and generalize this by
relating it to another pattern we knew. This allows us to simplify the
expression we found above and represented as a closed function as
follows:

\[(\frac{1}{2}n^2 + \frac{1}{2}n)^2\]

\[(\frac{1}{2}n^2 + \frac{1}{2}n) \times (\frac{1}{2}n^2 + \frac{1}{2}n)\]

\[(\frac{1}{2}n^2 \times \frac{1}{2}n^2) ~ + (\frac{1}{2}n^2 \times \frac{1}{2}n) ~
+ (\frac{1}{2}n \times \frac{1}{2}n^2) ~ + (\frac{1}{2}n \times \frac{1}{2}n)\]

\[\frac{n^4}{4} + \frac{n^2}{2} + \frac{n}{4}\]

This isn’t always so easy to see, and we will often resort to other
means for recognizing the general form of patterns. One way to do so is
to use the SymPy library to solve these symbolic problems. We
demonstrate finding these general forms using SymPy below.

SymPy and Summations

[image:]

SymPy allows us to use the computer to perform operations on symbols
like we did above. We demonstrate the solution to the above problem to
begin.

First, we import the SymPy library and abbreviate it as sy. Next, we
declare n a symbol. This is an important step. Whenever we want to
work on something symbolically, we need to be sure to tell Python to
consider the object a symbol.

Then, we name an expression based on our above formulation.

SymPy can easily factor and expand expressions, and then we can
substitute values in for \(n\) using .subs.

In [16]:

import sympy as sy

n = sy.Symbol('n')

exp = (.5*n**2 + .5*n)**2

In [17]:

exp

Out[17]:

(0.5*n**2 + 0.5*n)**2

In [18]:

sy.expand(exp)

Out[18]:

0.25*n**4 + 0.5*n**3 + 0.25*n**2

In [19]:

sy.factor(exp)

Out[19]:

0.25*n**2*(n + 1)**2

In [20]:

exp.subs(n, 3)

Out[20]:

36.0000000000000

Summations on Symbols

Besides being able to factor, expand, and evaluate known expressions, we
can use SymPy to find the general expressions using its summation
command. Here, we enter the expression we want to sum, the index value,
and the start and stop points. We can find the symbolic expression and
determine the value as n gets bigger and bigger.

We would represent the problem of the two summations as follows:

\[\sum_{i = 1} ^ n i\]

We write this similarly in Sympy. We must add the symbol i first,
then ask the summation function to find the sum of i from 1 to
n.

In [21]:

i = sy.Symbol('i')
sum1 = sy.summation(i, (i, 1, n))

We can get these results to appear in nice printing with the pprint
function.

In [22]:

sy.pprint(sum1)

 2
n n
── + ─
2 2

In [23]:

sum2 = sy.summation(i**2, (i, 1, n))
sy.pprint(sum2)

 3 2
n n n
── + ── + ─
3 2 6

In [24]:

sum3 = sy.summation(i**3, (i, 1, n))
sy.pprint(sum3)

 4 3 2
n n n
── + ── + ──
4 2 4

In [25]:

sum4 = sy.summation(i**4, (i, 1, n))
sy.pprint(sum4)

 5 4 3
n n n n
── + ── + ── - ──
5 2 3 30

Do you see a pattern here?

Other Patterns in Expressions

We can also use sympy to expand binomial expressions. Here we look
to see if there is a pattern in the coefficients.

In [26]:

from sympy import Symbol, expand
x= Symbol('x')
y = Symbol('y')
expr1 = (x + y)**1
expand(expr1)

Out[26]:

x + y

In [27]:

expr2= (x+y)**2
sy.pprint(expand(expr2))

 2 2
x + 2⋅x⋅y + y

Continue the Work

Continue to expand expressions

\[(x+y)^n \quad \text{for} \quad n=1,2,3,4,\text{and} \quad 5.\]

Do you recognize the pattern in coefficients?

In [28]:

for i in range(1,5):
 expr3 = (x+y)**i
 sy.pprint(expand(expr3))

x + y
 2 2
x + 2⋅x⋅y + y
 3 2 2 3
x + 3⋅x ⋅y + 3⋅x⋅y + y
 4 3 2 2 3 4
x + 4⋅x ⋅y + 6⋅x ⋅y + 4⋅x⋅y + y

Summations and Areas

The aim of this notebook is to put the work with summations to use in
finding the area under a curve. We start with a simple function that
returns integer values. From here we use our knowledge of summations to
determine the area under the curve.

np.ceil and Step Functions

The np.ceil function returns the “ceiling” of values in an interval.
This means the integer value that is closest above all the values in the
interval. For example, the ceiling of numbers between 0 and 1 is 1,
between 1 and 2 is 2, etc.

These functions look like staircases, and provide a nice example for how
to use rectangles to determine the area under the curve. In the example
of the step function, we get an exact answer for the area because of the
stairstep geometry. We will take this exact answer and use it to
approximate solutions to more complicated curves.

In [1]:

%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
import sympy as sy
import pandas as pd

In [2]:

x = np.linspace(0, 10, 1000)
def step(x):
 return np.ceil(x)

In [3]:

plt.plot(x, step(x))
plt.title("A Simple Step Function")

Out[3]:

<matplotlib.text.Text at 0x11ce43e10>

[image: _images/0.6_calc_summations_and_areas_5_1.png]

In [4]:

n = np.arange(0, 10, 1)
plt.plot(x, step(x))
plt.fill_between(x, step(x), alpha = 0.7, color = "lightblue")
plt.title("Area as Rectangles")

for xc in n:
 plt.axvline(x=xc)

[image: _images/0.6_calc_summations_and_areas_6_0.png]

Connection to Summation

Now, we see that this comes down to finding the areas of 10 rectangles.
The forumla for the area of a rectangle is \(A = l \times w\), so we
have the area under the curve as:

\[\text{Area under step function} = 1\times(1) + 1\times(2) + 1\times(3) + ... 1\times(10)\]

\[1 + 2 + 3 + ... + 10\]

We recognize this sum from before. We know how to compute this sum, and
in fact, the sum for any number \(n\)!. Hence, for \(n = 10\),
the area is:

\[\frac{10(11)}{2}\]

If we were asked for the area under the same curve but from
\(x = 4\) to \(x = 20\), what would the area be?

Different Heights of Rectangles

We can easily extend the problem to involve step functions whose inputs
are as follows:

def step2(x):
 return x**2

In [5]:

def step2(x):
 return np.ceil(x)**2

In [6]:

plt.plot(x, step2(x))
plt.fill_between(x, step2(x), color = "burlywood")
plt.title("Rectangles with Height n^2")

for xc in n:
 plt.axvline(x=xc, color = "black")

[image: _images/0.6_calc_summations_and_areas_10_0.png]

Again, we can use our knowledge about summations to determine the area
under the curve here.

\[\text{Area Under Step(10)}^2 = 1 \times 1^2 + 1 \times 2^2 + 1 \times 3^2 + ... + 1 \times 10^2\]

\[= 1^2 + 2^2 + 3^2 + ... + 10^2\]

In [7]:

x, n = sy.symbols('x n')
sy.summation(x**2, (x, 1, 10))

Out[7]:

385

In [8]:

sy.pprint(sy.summation(x**2, (x, 1, n)))

 3 2
n n n
── + ── + ─
3 2 6

Continuous Functions

We can use these patterns to approximate the area underneath other
functions. Both of the examples above could be used to approximate the
area under the \(f(x) = x\) and \(g(x) = x^2\). By superimposing
these curves we can see the connection to approximating with rectangles.

In [9]:

n = np.arange(0, 10, 1)
x = np.linspace(0, 10, 1000)

plt.figure(figsize = (12, 5))
plt.subplot(121)
plt.plot(x, step(x))
plt.plot(x, x, lw = 7, c = "black")
plt.fill_between(x, step(x), alpha = 0.7, color = "lightblue")
plt.title("Approximate Area Under $f(x) = x$")

for xc in n:
 plt.axvline(x=xc)

plt.subplot(122)
plt.plot(x, step2(x))
plt.plot(x, x**2, lw = 8, c = "black")
plt.fill_between(x, step2(x), color = "burlywood")
plt.title("Approximate Area Under $q(x) = x^2$")

for xc in n:
 plt.axvline(x=xc, color = "black")

[image: _images/0.6_calc_summations_and_areas_15_0.png]

Combining our above results with these images, we can say that 10
rectanges approximates the area from \(x = 0\) to \(x = 10\) for
\(f(x) = x\) as 55, and for \(g(x)\) as 385. We want to improve
these approximations.

Improving the Approximations

We can get a better approximation in each of the above examples by using
more rectangles. Let’s begin by considering the case of the same
functions and intervals, however now we want to use 20 rectangles.
First, let us determine the width of the rectangles.

Assuming the rectangles are the same width, we will have 20 rectangles
over 10 spaces, so each will be 1/2 a unit wide in both cases.

Now, the height of the rectangles. These are not all the same. For
\(f(x) = x\), the first rectangle would be 1/2 tall. The second
would be 2/2, third 3/2, fourth 4/2, etc.

We can make lists for each of these using Python instead of writing them
all out. Let’s use Pandas to make a table of the results, and look at
the first five rows. We do this with the pd.DataFrame() command that
combines the list into the table that we name df. Then, we display
the top of the table with the df.head() command.

In [10]:

width = [0.5 for i in range(20)]
height = [(i+1)/2 for i in range(20)]

In [11]:

df = pd.DataFrame({"Width": width, "Height": height})

In [12]:

df.head()

Out[12]:

 	
 	Height
 	Width

 	0
 	0.5
 	0.5

 	1
 	1.0
 	0.5

 	2
 	1.5
 	0.5

 	3
 	2.0
 	0.5

 	4
 	2.5
 	0.5

Now, we can compute the areas by multiplying each element together.
Below, we create a list of areas and add a column named “Areas” to the
DataFrame.

In [13]:

areas = [(width[i]*height[i]) for i in range(20)]
df["Areas"] = areas
df.head()

Out[13]:

 	
 	Height
 	Width
 	Areas

 	0
 	0.5
 	0.5
 	0.25

 	1
 	1.0
 	0.5
 	0.50

 	2
 	1.5
 	0.5
 	0.75

 	3
 	2.0
 	0.5
 	1.00

 	4
 	2.5
 	0.5
 	1.25

Similarly, we can sum our list to calculate the updated approximation.

In [14]:

sum(areas)

Out[14]:

52.5

Let’s see what happens if we approximate this region with 40 rectangles.

In [15]:

width = [10/40 for i in range(40)]
height = [(i+1)/4 for i in range(40)]

In [16]:

areas_40 = [(width[i] * height[i]) for i in range(40)]
sum(areas_40)

Out[16]:

51.25

More Complex Curves

Suppose we wanted to approximate the area under the curve
\(h(x) = (x-1)(x-4)(x-5)\) from \(x = 0\) to \(x = 5\) as
shown below. First we use 10, then 20, 40, 100, and 1,000,000 rectangles
to approximate this and compare our answers, and consider the best way
to find areas using rectangles.

In [17]:

def h(x):
 return (x - 1)*(x - 4)*(x - 5)

In [18]:

x = np.linspace(0, 5, 100)
plt.plot(x, h(x))
plt.fill_between(x, h(x), alpha = 0.1)
plt.axhline()
plt.title("Area Under the Curve $h(x) = (x-1)(x-4)(x-5)$")

Out[18]:

<matplotlib.text.Text at 0x11fd6de80>

[image: _images/0.6_calc_summations_and_areas_30_1.png]

10 Rectangles

Over an interval of width 5, with 10 rectangles each would have width
1/2. You should notice the general approach for the width of the
rectangles by now as the length of the interval divided by the number of
rectangles.

Also, with a more complex curve like this example, we want to find an
easy way to determine the heights of the rectangles. The rectangles
occur every 1/2 a unit. The height of the first rectangle would be at
f(1/2), the second at f(2/2), the third at f(3/2), ... up to f(9/2),
f(10/2).

There is a pattern to the heights. Every one is an integer multiple of
the width. Hence, we have a loose definition for our approximation under
the curve \(h(x)\) on the interval [0, 5] as:

Area = width times height

Area = (5/10) times [f(i/2) for i = 1, 2, 3, ..., 10]

We can easily implement this logic with Python and our list structures.

In [19]:

width = [5/10 for i in range(10)]
height = [h(5/10*i) for i in range(10)]
area = [(width[i] * height[i]) for i in range(10)]
sum(area)

Out[19]:

-3.4375

In [20]:

plt.figure(figsize = (10, 7))
n = np.arange(0, 5, .5)
plt.plot(x, h(x), linewidth = 4)
plt.axhline(color = 'black')
plt.bar(n, height, width = 0.5, alpha = 0.1)
plt.title("Approximating the Area under $h(x) = (x-1)(x-4)(x-5)$ with 10 Rectangles")

Out[20]:

<matplotlib.text.Text at 0x120099080>

[image: _images/0.6_calc_summations_and_areas_33_1.png]

20 Rectangles

In [21]:

width2 = [5/20 for i in range(20)]
height2 = [h(5/20*i) for i in range(20)]
area2 = [(width2[i] * height2[i]) for i in range(20)]
sum(area2)

Out[21]:

-0.546875

40 Rectangles

In [22]:

width3 = [5/40 for i in range(40)]
height3 = [h(5/40*i) for i in range(40)]
area3 = [(width3[i] * height3[i]) for i in range(40)]
sum(area3)

Out[22]:

0.80078125

100 Rectangles

In [23]:

width4 = [5/100 for i in range(100)]
height4 = [h(5/100*i) for i in range(100)]
area4 = [(width4[i] * height4[i]) for i in range(100)]
sum(area4)

Out[23]:

1.5781250000000033

1,000,000 Rectangles

In [24]:

width5 = [5/100000 for i in range(100000)]
height5 = [h(5/100000*i) for i in range(100000)]
area5 = [(width5[i] * height5[i]) for i in range(100000)]
sum(area5)

Out[24]:

2.08283332812496

Measuring Cardiac Output: Turkeys on Treadymills

GOALS:

	Connect Summations to Cardiac Output problems

	Use summations to solve problems from biology

This notebook applies our techniques for area approximation to the
problem of measuring Cardiac Output. This is a measure of how fast the
heart is circulating blood, and has obvious important consequences for
humans and animals. The image below comes from a study on the cardiac
output of Turkeys.

[image:]

Dye Dillution Method

The main idea of the Dye Dillution method is to inject dye into a
subjects blood, and measure how much of the dye flows through the heart
over small time intervals. From Wikipedia.

The dye dilution method is done by rapidly injecting a dye,
indocyanine green, into the right atrium of the heart. The dye flows
with the blood into the aorta. A probe is inserted into the aorta to
measure the concentration of the dye leaving the heart at equal time
intervals [0, T] until the dye has cleared. Let c(t) be the
concentration of the dye at time t. By dividing the time intervals
from [0, T] into subintervals Δt...

In the example of the Turkey on the Treadmill, a device was implanted to
monitor the dispersion of dye in the Turkey while running on a
treadmill. This could then be compared to Turkey’s hear rates who were
relaxing in soft armchairs. This example comes from the study Effect of
Exercis on Cardiac Output and Other Cardiovascular Parameters of Heavy
Turkeys and Relevance to the Sudden Death Syndrome, by Boulianne, et al
in the Journal of Avian Diseases, 37, 1993.

Example I

Imagine that we have the following data on dye concentration over the
course of 26 seconds. The intervals are equal at 1 second. Let’s create
two lists for the time intervals and the concentration measurements to
plot them.

In [1]:

time = [i for i in range(25)]

In [2]:

concentration = [0, 0, 0, 0.1, 0.6, 0.85, 1.38, 1.9, 2.6, 2.9, 3.4, 3.9, 4.0, 4.1, 4.0, 3.7, 2.9, 2.2, 1.5, 1.1, 0.8, 0.8, 0.9, 0.9, 0.9]

In [3]:

%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np

In [4]:

plt.plot(time, concentration, 'o')
plt.title("Data for Dye Dillution Technique")
plt.xlabel("Time in Seconds")
plt.ylabel("Concentration in mg/liter")

Out[4]:

<matplotlib.text.Text at 0x115fbeb38>

[image: _images/0.7_measuring_cardiac_output_6_1.png]

We can consider the cardiac output as the total volume of dye measured
divided by the time as follows:

\[R = V/T\]

Similarly, we can express this as the amount of dye(D) over the
volume(CT) as

\[R = D/CT\]

Hence, in our example above, the \(CT\) is the sum of our list
concentration.

In [5]:

sum(concentration)

Out[5]:

45.42999999999999

Suppose, for example, that we injected 5 liters of dye in the example
above. The cardiac output would be:

\[R = \frac{6}{45.43}\]

In [6]:

6/45.43

Out[6]:

0.13207131851199647

Or 0.1321 liters per second.

In [7]:

6/45.43*60

Out[7]:

7.924279110719788

7.9243 liters per minute.

Example II

Suppose we have the following information about the flow of dye as
follows. Find the cardiac output for this example.

In [8]:

t2 = [i for i in range(27)]
c2 = [0, 0.1, 0.2, 0.6, 1.2, 2.0, 3.0, 4.2, 5.5, 6.3, 7.0, 7.5, 7.8, 7.9, 7.9, 7.9, 7.8, 6.9, 6.1, 5.4, 4.7, 4.1, 3.5, 2.8, 2.1, 2.1, 2.2]

In [9]:

plt.plot(t2, c2, 'o')

Out[9]:

[<matplotlib.lines.Line2D at 0x118a1da58>]

[image: _images/0.7_measuring_cardiac_output_15_1.png]

Example III

The table below gives measurements after an injection of 5.5 mg of dye.
The readings are given in mg/L.

	time
	concentration in mg/L

	0
	0.0

	2
	4.1

	4
	8.9

	6
	8.5

	8
	6.7

	10
	4.3

	12
	2.5

	14
	1.2

	16
	0.2

Example IV

The table below demonstrates a 6 mg injection of dye into a heart. Use
the data to approximate the cardiac output. What kind of a creature
could this be?

	time
	concentration in mg/L

	0
	0

	2
	1.9

	4
	3.3

	6
	5.1

	8
	7.6

	10
	7.1

	12
	5.8

	14
	4.7

	16
	3.3

	18
	2.1

	20
	1.1

	22
	0.5

	24
	0

Accounting for End Values

As we noticed in the examples, the monitor may return values towards the
end of the readings that do not agree with our assumptions. In order to
check this, we impose values that decrease on the end of the sequence.
For example, in the list below, we change the final four values to
better reflect the pattern we expect.

In [12]:

time = [i for i in range(25)]
concentration = [0, 0, 0, 0.1, 0.6, 0.85, 1.38, 1.9, 2.6, 2.9, 3.4, 3.9, 4.0, 4.1, 4.0, 3.7, 2.9, 2.2, 1.5, 1.1, 0.8, 0.8, 0.9, 0.9, 0.9]
%matplotlib notebook
import matplotlib.pyplot as plt
import numpy as np

In [13]:

plt.figure()
plt.plot(time[:21], concentration[:21], 'o')
plt.plot(time[21:], concentration[21:], 'ro', label='Readin