
CAIRIS User Manual
Release 2.3.8

Shamal Faily

Feb 01, 2023

Contents:

1 Quick Start 1
1.1 Live Demo . 1
1.2 Video tutorials . 1
1.3 Example models . 1
1.4 Define your contexts of use . 1
1.5 Save early and often . 1
1.6 Supporting UX . 2
1.7 Asset-driven security design . 2
1.8 Threat-driven security design . 2
1.9 Working with requirements . 2
1.10 Thinking about architecture . 2
1.11 Generating documentation . 2

2 Installing CAIRIS 3
2.1 Installation via Vagrant . 3
2.2 Installation via Docker . 3
2.3 Installation and configuration via GitHub (automated) . 5
2.4 Installation and configuration of server with account registration via GitHub (automated) 5
2.5 Installation and configuration via GitHub (manual) . 6

3 Starting CAIRIS 9
3.1 Starting the CAIRIS server . 9
3.2 Starting the web application . 9

4 CAIRIS databases 13
4.1 Default database . 13
4.2 Using other databases . 13
4.3 Providing database access to other users . 14

5 Reserved characters in object names 15

6 Importing and Exporting models 17
6.1 Importing models . 17
6.2 Exporting models . 18

7 Sample models 21
7.1 Exemplars . 21
7.2 Threat and Vulnerability Directories . 22

8 Creating a new project 23

9 Environments 25

i

9.1 Adding a new environment . 25

10 Assets 27
10.1 Adding, updating, and deleting an asset . 28
10.2 Asset modelling . 29

11 Roles 35
11.1 Adding, updating, and deleting a role . 35
11.2 Responsibility modelling . 36

12 Personas 39
12.1 Adding, updating, or deleting a persona . 39
12.2 Assured personas with persona characteristics . 40
12.3 Automating persona characteristic creation . 42

13 Tasks 51
13.1 Adding, updating, or deleting a task . 51
13.2 Task traceability . 53
13.3 Visualising tasks . 53

14 Misusability Cases 55
14.1 Creating concept references . 55
14.2 Creating the skeleton scenario . 55
14.3 Creating task characteristics . 55
14.4 View misusability case models . 55

15 Domain Properties 57
15.1 Adding, updating, and deleting a domain property . 57

16 Goals, Requirements, and Obstacles 59
16.1 Adding, updating, and deleting a goal . 59
16.2 Goal Modelling . 61
16.3 Adding, updating, and deleting an obstacle . 62
16.4 Obstacle Modelling . 64
16.5 Adding, updating, and deleting requirements . 65
16.6 Visualising Requirements Quality using Chernoff Faces . 65
16.7 Attack tree modelling with obstacles . 67

17 Use Cases 69
17.1 Adding, updating, or deleting a use cases . 69
17.2 Add exceptions to use case steps . 73

18 User goals and user goal models 75
18.1 Adding, updating, and deleting user goals . 75
18.2 Adding, updating, and deleting user goal contributions . 76
18.3 Task contributions . 77
18.4 Adding User goal elements to persona characteristics . 77
18.5 Adding GRL elements to use cases (jUCMNav export only) . 79
18.6 Viewing a user goal model . 81
18.7 Working with workbooks . 81
18.8 Generating a jUCMNav compatible GRL model . 82

19 Dependencies 85
19.1 Adding, updating, and deleting a dependency . 85
19.2 Viewing dependencies . 85
19.3 Introducing Personal data into CAIRIS using dependencies . 86

20 Security Patterns 87
20.1 Create a template asset . 87
20.2 Create a security pattern . 88

ii

20.3 Situate a security pattern . 90

21 Vulnerabilities 91
21.1 Create a vulnerability . 91
21.2 Introducing template threats and vulnerabilities . 92

22 Attackers 95
22.1 Adding, updating, and deleting an attacker . 95

23 Threats 97
23.1 Adding, updating, and deleting a threat . 97

24 Threat Modelling 99
24.1 Data flows and Data Flow Diagrams . 99
24.2 Attack trees . 103

25 Using CAIRIS as tool-support for STPA 107
25.1 Overview . 107
25.2 Step 1: Define purpose of the analysis . 107
25.3 Step 2: Model the control structure . 108
25.4 Step 3: Identify unsafe control actions . 109
25.5 Step 4: Identify loss scenarios . 109
25.6 Supporting other STPA outputs . 109

26 Modelling access control needs and policies 111
26.1 Overview . 111
26.2 Modelling access needs . 111
26.3 Modelling access control policies with policy statements . 112
26.4 Access control model validation checks . 113

27 Risks 115
27.1 Adding, updating, and deleting a risk . 115
27.2 Risk Analysis model . 116

28 Locations 121
28.1 Adding, updating, and deleting a locations object . 121
28.2 Viewing location models . 122

29 Risk Responses 125
29.1 Adding, updating, and deleting a response . 125
29.2 Generating goals . 126

30 Countermeasures 127
30.1 Adding, updating, and deleting a countermeasure . 127
30.2 Generating countermeasure assets and security patterns . 130
30.3 Associating countermeasures with pre-existing patterns . 130
30.4 Weakening the effectiveness of countermeasures . 130
30.5 Mitigating weakening effects . 130

31 Traceability 133
31.1 Allowable manual traceability links . 133
31.2 Editing manual traceability links . 133
31.3 Visualising manual traceability links . 134

32 Architectural Patterns 137
32.1 Editing Architectural Patterns . 137
32.2 Viewing Architectural Patterns . 139
32.3 Situating a pattern . 139

iii

33 Model Validation 145
33.1 General validity checks . 145
33.2 Security design checks . 146
33.3 Privacy design checks . 146
33.4 Access control checks . 146

34 Configurable Types and Values 149
34.1 Asset Values . 149
34.2 Asset Types . 149
34.3 Vulnerability and Threat Types . 149
34.4 Other Types . 149

35 Searching model objects 151

36 Tags 153

37 Generating Documentation 159
37.1 Problems with wide models . 159
37.2 Customsing model files . 160

38 CAIRIS server maintenance 161
38.1 Account management . 161
38.2 Importing and exporting models . 161
38.3 Backing up and restoring servers . 162

39 Using the CAIRIS API 163
39.1 API documentation . 163
39.2 Authenticating with the CAIRIS server . 163
39.3 The cairis_test database . 164

40 Extending CAIRIS 167
40.1 1. Define the database tables . 167
40.2 2. Define the database procedures . 167
40.3 3. Update the Python database proxy . 167
40.4 4. Write your model object test case . 167
40.5 5. Update the CAIRIS DTDs . 168
40.6 6. Update the model import / export code . 168
40.7 7. Implement the server end-points . 168
40.8 8. Write your API test case . 168
40.9 9. Update the UI . 168
40.10 10. Update the documentation generation process . 169

41 Troubleshooting 171
41.1 Log files . 171
41.2 Raising issues . 171

42 Indices and tables 173

iv

CHAPTER 1

Quick Start

1.1 Live Demo

A live demo of CAIRIS is available to use on https://demo.cairis.org.

The demo has a test account (user: test@test.com, password: test) with two example databases you can explore:
NeuroGrid , ACME Water. You are also free to create your account to explore CAIRIS’ capabilities on your own.

The live demo is rebuilt every night based on the latest updates to CAIRIS, so please feel free to add, update, or
remove elements in the example models. The test account is dropped and re-created each night with the sample
models. Other accounts created on the server are dropped on Sunday morning each week.

1.2 Video tutorials

The CAIRIS YouTube channel has several short video primers. These include an overview of the UI, and guidance
on using CAIRIS for different design activities.

1.3 Example models

1.4 Define your contexts of use

How you use CAIRIS depends on how you approach the early stages of your design. You will, however, need to
work with environments to represent your contexts of use. Each model comes with a Default environment, but
you may wish to add more later as you learn more about different contexts.

1.5 Save early and often

You should save your working model early and often. Saving a model in CAIRIS entails exporting it. CAIRIS
models are XML, so easy to edit using other tools and easy to version control.

1

https://demo.cairis.org
https://cairis.readthedocs.io/en/latest/examples.html#neurogrid
https://cairis.readthedocs.io/en/latest/examples.html#acme-water
https://m.youtube.com/channel/UC21MvLyGwF9S0f9XlMLBA9Q

CAIRIS User Manual, Release 2.3.8

1.6 Supporting UX

CAIRIS supports the creation and management of personas to represent archetypical users, and tasks to describe
how these interact with the system being designed. You need to define roles that the personas fulfil before creating
personas, and personas before creating tasks. As your design evolves task models and risk analysis models will
summarise the impact that security and usability are having on each other.

1.7 Asset-driven security design

Once you’ve specified at least one environments, you can start modelling assets : the things that are important to
you. You should model relationships between them to help you make sense of your growing design, and identify
new assets you need to protect. As asset models gives you ideas about possible system weaknesses, record these
as vulnerabilities. As you think of new threats, note who you think the attacker might be, and what threats they
might carry out. Armed with these insights, you can then create risks that bring everything together. Based on
these risks, you can decide how to respond and add countermeasures to mitigate them.

1.8 Threat-driven security design

You don’t have to start your design by thinking about assets. CAIRIS encourages the early creation of threat
models, which can be useful if you’re still trying to make sense of what the system is and how attackers might
exploit it. This can help you better understand what your assets are, and even help you understand what the
usability implications of certain threats might be.

1.9 Working with requirements

The earlier you start finding requirements, the easier it will be to spot other issues in your design. CAIRIS lets
you model requirements as goals, requirements, and use cases.

1.10 Thinking about architecture

Requirements aren’t always easy to find, and sometimes thinking about possible architectures can help you work
backwards. You can use architectural patterns as building blocks and introduce these into environments to see
risks they might be exposed to, or how they might impact personas and tasks. You can also use security patterns
to see what their consequences of different pieces of best practice might have on your design.

1.11 Generating documentation

Your stakeholders may not want to work directly with CAIRIS, so you can generate documentation to share your
design documentation with others.

2 Chapter 1. Quick Start

http://cairis.readthedocs.io/en/latest/tasks.html#visualising-tasks
http://cairis.readthedocs.io/en/latest/risks.html#risk-analysis-model
/https://cairis.readthedocs.io/en/latest/threats_tm.html
/https://cairis.readthedocs.io/en/latest/threats_tm.html

CHAPTER 2

Installing CAIRIS

2.1 Installation via Vagrant

If you have Vagrant and VirtualBox installed, you can build your CAIRIS VM in minutes. To start, you need to
clone the cairis server repository:

git clone https://github.com/cairis-platform/cairis

Once in the root directory of the repository type:

vagrant up

This will create and start a CAIRIS virtual machine in VirtualBox and, once complete, this is accessbile via your
web browser at http://localhost:7071. The default username and password is test@test.com and test, but you can
change this by editing vagrant_conf.yaml.

To shutdown the virtual machine:

vagrant halt

To restart the virtual machine:

vagrant up

If you need to login to the virtual machine, i.e. to check the log files, use the vagrant account (password: vagrant).

Note: The Vagrantfile is a simplified version of Ben Coleman’s Cairis_vagrant repository.

2.2 Installation via Docker

If you have Docker installed on your laptop or an available machine, you can download the CAIRIS container from
Docker hub. Like the live demo, this is built from the latest version of CAIRIS in GitHub, and uses mod_wsgi-
express to deliver the CAIRIS web services.

There are two options for running the container, a full install of everything or a smaller install which doesn’t
provide pdf export functionality:

3

https://www.vagrantup.com/downloads.html
https://virtualbox.org
http://localhost:7071
https://github.com/nebloc/Cairis-vagrant
https://hub.docker.com/r/shamalfaily/cairis/
https://pypi.python.org/pypi/mod_wsgi
https://pypi.python.org/pypi/mod_wsgi

CAIRIS User Manual, Release 2.3.8

For the full install (with pdf export functionality) download and run the container, the documentation container,
and its linked mysql container:

sudo docker run --name cairis-mysql -e MYSQL_ROOT_PASSWORD=my-secret-pw -d
→˓mysql:latest --thread_stack=256K --max_sp_recursion_depth=255 --log_bin_trust_
→˓function_creators=1
sudo docker run --name cairis-docs -d -v cairisDocumentation:/tmpDocker -v
→˓cairisImage:/images -t shamalfaily/cairis-docs
sudo docker run --name CAIRIS -d --link cairis-mysql:mysql --link cairis-docs:docs
→˓-P -p 80:8000 --net=bridge -v cairisDocumentation:/tmpDocker -v cairisImage:/
→˓images shamalfaily/cairis

For the smaller install (without pdf export functionality) download and run the container, and its linked mysql
container:

sudo docker run --name cairis-mysql -e MYSQL_ROOT_PASSWORD=my-secret-pw -d
→˓mysql:latest --thread_stack=256K --max_sp_recursion_depth=255 --log_bin_trust_
→˓function_creators=1
sudo docker run --name CAIRIS --link cairis-mysql:mysql -d -P -p 80:8000 --
→˓net=bridge shamalfaily/cairis

If you run the above commands on macOS (and possibly other non-Linux platformns), you might get the error
links are only supported for user-defined networks. If so, you should instead run the below commands to download
and run your containers:

NET=cairisnet
docker network create -d bridge $NET
docker run --name cairis-mysql -e MYSQL_ROOT_PASSWORD=my-secret-pw -d mysql:latest
→˓--thread_stack=256K --max_sp_recursion_depth=255 --log_bin_trust_function_
→˓creators=1
docker network connect $NET cairis-mysql
docker run --name CAIRIS -d -P -p 80:8000 --net=$NET shamalfaily/cairis

If you want to use the containers to support account self-registration and revocation then you can set
MAIL_SERVER, MAIL_PORT, MAIL_USER, and MAIL_PASSWD environment variables to correspond with
the SSL outgiong mail server, mail server port, mail account username, and password for the mail account, i.e.

docker run --name CAIRIS --env MAIL_SERVER=mymailserver.com --env MAIL_PORT=465 --
→˓env MAIL_USER=admin@mymailserver.com --env MAIL_PASSWD=mypassword -d -P -p
→˓80:8000 --net=$NET shamalfaily/cairis

The docker run commands will create and start-up CAIRIS. If you haven’t setup account self-registration then you
will need to create an account before you can use it. To do this, run the below command - replacing test@test.com
and test with your desired username and password.

docker exec -t `docker ps | grep shamalfaily/cairis | head -1 | cut -d ' ' -f 1` /
→˓addAccount.sh test@test.com test TestUser

If you are using PowerSheell on Windows to run the above command then this might fail because grep is not
installed. To work around this, you need to use docker ps to get the Container ID and run the below modified
command:

docker exec -t CONTAINER_ID /addAccount.sh test@test.com test TestUser

Once the containers have been installed then, in the future, you should use docker start rather than docker run to
start up the already downloaded containers.

sudo docker start cairis-mysql
sudo docker start CAIRIS

The containers can be stopped using docker stop, i.e.

4 Chapter 2. Installing CAIRIS

mailto:test@test.com

CAIRIS User Manual, Release 2.3.8

sudo docker stop CAIRIS
sudo docker stop cairis-mysql

To update your docker containers, stop the docker containers and run the below commands to remove any old
containers and volume files. Following that, you can re-run the above docker run commands to install and run the
container. Don’t forget to re-add your user account!

sudo docker rm $(sudo docker ps -aq)
sudo docker rmi --force $(sudo docker images -q)
sudo docker volume rm $(docker volume ls)

2.3 Installation and configuration via GitHub (automated)

If you have a clean Ubuntu VM, you can quickly install and configure CAIRIS and its dependencies with the
command below, replacing my-secret-pw with your desired root password for MySQL.

sudo apt-get update && sudo apt-get upgrade -y && sudo apt-get dist-upgrade -y &&
→˓sudo apt install curl -y && sudo apt install net-tools -y && curl -s https://
→˓cairis.org/quickInstall.sh | bash -s my-secret-pw

In addition to configuring and installing CAIRIS, the script creates an initial user account (username:
test@test.com, password: test), starts the Flask development server as a service, and restarts the VM. You can
use journalctl to check the CAIRIS log file.

journalctl -u cairis.service -f

This script also adds an alias so, in future, you can update CAIRIS by running the below command:

update_cairis

2.4 Installation and configuration of server with account registra-
tion via GitHub (automated)

If you have a clean Ubuntu VM, want to quickly install CAIRIS for multiple users, but don’t want to use the de-
faults associated with the quickInstall.sh script, then you can run the more bespoke serverInstall.sh script as below,
replacing (i) my-secret-pw with your desired MySQL root password, (ii) mymailserver.com with the name of your
private (with SSL) outgoing mail server, (iii) 465 with this mail server’s port, (iv) admin@mymailserver.com with
your mail server username, and (v) mypassword with this account’s password.

sudo apt-get update && sudo apt-get upgrade -y && sudo apt-get dist-upgrade -y &&
→˓sudo apt install curl -y && sudo apt install net-tools -y && curl -s https://
→˓cairis.org/serverInstall.sh | bash -s my-secret-pw mymailserver.com 465
→˓admin@mymailserver.com mypassword

When working with very large models, you may get memory errors when viewing goal models or car-
rying out model validation checks. If you do, you could consider increasing the thread_stack size in
/etc/mysql/conf.d/mysql.cnf. For example, increasing the size to 1024K made it possible to valid even really
big system-of-system models, but you can increase or decrease this size based on your server’s performance and
the number of users you expect the server to support.

If you follow these instructions then, once you’ve restarted your server, CAIRIS should be accessible via http:
//SERVER:8000, where SERVER is the name or IP address of your machine. If you wish to route your http traffic
accordingly (e.g. via DNS) then the CAIRIS service supports acccess via https too. This is the approach currently
taken by the CAIRIS live demo on https://demo.cairis.org.

2.3. Installation and configuration via GitHub (automated) 5

mailto:test@test.com
mailto:admin@mymailserver.com
http://SERVER:8000
http://SERVER:8000
https://demo.cairis.org

CAIRIS User Manual, Release 2.3.8

Although no update_cairis alias is created, we provide a rebuildServer.sh script which, if run from cron each night,
will rebuild and reconfigure CAIRIS while still retaining the user accounts and their default databases created on
the server. This script takes the same command line arguments as the serverInstall.sh script, with the addition of
additional arguments for the name of the account running CAIRIS, and the accounts home directly. For example,
if the account running CAIRIS is sfaily and the home directory in /home/sfaily then, to rebuild the server at 0200
each morning you should run sudo crontab -e and add the following line to your crontab:

0 2 * * * /home/sfaily/rebuildServer.sh my-secret-pw mymailserver.com 465
→˓admin@mymailserver.com mypassword sfaily /home/sfaily > /home/sfaily/rebuild.log
→˓2>&1

This rebuild.log file should be useful for troubleshooting any problems with the rebuild.

Once the server is running, users can register for accounts using the Register link on the login page. The account
name should be a valid email address. When an account is created, an email is sent to the user and the user is
logged in. If the Reset link is clicked and the acccount name is provided, CAIRIS will email instructions for
resetting the password to the user.

2.5 Installation and configuration via GitHub (manual)

If you’re happy to use the command line, you may like to install CAIRIS from the latest source code in GitHub.
CAIRIS can be installed on any platform that its open-source dependencies are available for. The most tested
platform is Ubuntu . Assuming you are using Ubuntu, just follow the steps below:

Begin by installing the required applications and dependencies:

sudo apt-get install python3-dev build-essential mysql-server mysql-client
→˓graphviz docbook dblatex python3-pip python3-mysqldb python3-numpy git
→˓libmysqlclient-dev --no-install-recommends texlive-latex-extra docbook-utils
→˓inkscape libxml2-dev libxslt1-dev poppler-utils python3-setuptools pandoc

If you are installing Ubuntu 18.04 LTS or later, or have not been prompted to set a root database password, you
will need to set this manually. This entails starting mysqld with the –skip-grant-tables option, logging into mysql
as root, and setting the root password by hand. You can find instructions on how to do that here.

In addition to the above, you also need to update my MySQL server system variables. You can do this by adding or
updating the below values to your mysqld.cnf file. In Ubuntu 19.04, you can find this in /etc/mysql/mysql.conf.d,
but the file location might differ depending on your OS and MySQL version:

thread_stack = 256K
max_sp_recursion_depth = 255
log_bin_trust_function_creators = 1

Clone the latest version of the CAIRIS github repository, and use pip to install the dependencies in the root
directory, i.e.

git clone https://github.com/cairis-platform/cairis
cd cairis
sudo pip3 install -r requirements.txt

Run the CAIRIS quick setup initialisation script (which can be found in cairis/). When you run this script, you
should get the below form.

./quick_setup.py

You can accept many of these defaults, except for the database root password, an initial username and password
which need to be supplied. Please note that the username root is reserved, so you should not use this.

Details for the mail server only need to be set if you intend to provide self-service registration and reset of accounts.
This is typically only necessary if you plan to install CAIRIS to a server for multiple users. When these settings
are set, the mail server and port should be for out-going SSL traffic.

6 Chapter 2. Installing CAIRIS

https://cairis.org/rebuildServer.sh
http://www.ubuntu.com
https://linuxconfig.org/how-to-reset-root-mysql-password-on-ubuntu-18-04-bionic-beaver-linux

CAIRIS User Manual, Release 2.3.8

If you want more diagnostic information logged, you find it useful to change the Log Level from warning to
debug.

The static and directory and asset directory will point to the location of UI code, but these directories will not be
created during this step. If you don’t plan to customise your web server setup, you should retain these default
values.

When you select Ok, the script will create a new CAIRIS database, and accompanying CAIRIS configuration file;
this file will ensure that CAIRIS knows what database it needs to refer to when you start up the tool and setup the
necessary environment variables.

Logout of your current account or, alternatively, reload your .bashrc file i.e.

source .bashrc

The final step entails installing the UI code by running the below script in cairis/cairis/bin

sudo -E ./installUI.sh

The CAIRIS UI code is managed in the cairis-ui github repository. Running this script will setup node and yarn,
download the github repo, create a production version of the latest UI code and deploy to cairis/cairis/dist. The -E
flag is required, as the CAIRIS_SRC environment variable needs to be visible to root.

You should now start up your CAIRIS server. If you plan to develop with CAIRIS, you should skip this step as
you’ll find it more useful to manually start the Flask development server. For everyone else, create the following
cairis.service file, substituting cairisuser for the name of your account. Using sudo or root, copy this file to
/etc/systemd/system.

[Unit]
Description=cairisd

[Service]
User=cairisuser
WorkingDirectory=/home/cairisuser/cairis
Environment="FLASK_APP=/home/cairisuser/cairis/cairis/daemon:create_app"
Environment="FLASK_ENV=development"
Environment="CAIRIS_CFG=/home/cairisuser/cairis.cnf"
Environment="PYTHONPATH=${PYTHONPATH}:/home/cairisuser/cairis"
ExecStart=flask run --host 0.0.0.0 --port 7071
Restart=on-failure

(continues on next page)

2.5. Installation and configuration via GitHub (manual) 7

https://github.com/cairis-platform/cairis-ui
https://nodejs.org
https://yarnpkg

CAIRIS User Manual, Release 2.3.8

(continued from previous page)

[Install]
WantedBy=multi-user.target

You can now launch cairisd as a system service:

sudo systemctl enable --now /etc/systemd/system/cairis.service

[Optional] Multiple users using CAIRIS

cairisd relies on the Flask development server, which is fine for a single user, or development and troubleshooting.
However, if multiple users will use the same CAIRIS service at once, or you want to run CAIRIS in a production
environment then it may be sensible to use mod_wsgi-express instead. To do this, you will need to install the
requisite Apache2 packages.

sudo apt-get install apache2 apache2-dev

You will then need to use pip to install the requisite dependencies.

sudo pip3 install -r wsgi_requirements.txt

You should then use mod_wsgi-express to run cairis.wsgi (also in cairis/cairis/bin):

mod_wsgi-express start-server cairis.wsgi

Don’t forget to modify cairis.service accordingly!

[Optional] Additional steps for developers

If you plan to customise CAIRIS, development extensions or fixes, you should install the requisite packages for
running the tests in cairis/cairis/test.

sudo pip3 install -r test_requirements.txt

To start the CAIRIS development server, set the FLASK_APP environment variable to
cairis/cairis/daemon:create_app, the FLASK_ENV environment variable to development, then run:

flask run --port 7071

All logged output is sent to the console where you started the development server, which is useful when it come to
diagnosing any problems. Also, if you plan to use pytest to debug any CAIRIS server code (i.e. by adding import
pytest and pytest.set_trace() before any code you want to debug), the debug prompt will appear in the console.

8 Chapter 2. Installing CAIRIS

CHAPTER 3

Starting CAIRIS

3.1 Starting the CAIRIS server

If you are using Docker then the command used to install the container also starts the CAIRIS server on port 80.

If you are the only person that plans to use CAIRIS, using the Flask development server should be sufficient. Once
the FLASK_APP and FLASK_ENV environment variables have been set, you can run:

flask run --port 7071

If you plan to use mod_wsgi-express then you need to use cairis.wsgi (also in cairis/cairis/bin):

mod_wsgi-express start-server cairis.wsgi

3.2 Starting the web application

You can use CAIRIS on any modern web browser except Microsoft Internet Explorer (although you can use
Microsoft Edge).

In your browser, visit the site hosting the CAIRIS server, and authenticate using credentials you have, or setup if
you ran the quick_setup.py script. If you are not using the live demo, or have not mapped mod_wsgi-express to
port 80, you will need to also specify the port the CAIRIS server is listening on. If you don’t specify otherwise,
cairisd will listen on port 7071, and mod_wsgi-express will listen on port 8000. For example, if you are using
cairisd on germaneriposte.org then you should connect to http://germaneriposte.org:7071

Once you login in you should see the home page, which provides a summary of threats, vulnerabilities and risks,
and the threat model for different environments.

Once you have finished working with CAIRIS, click on the Logout button.

9

http://germaneriposte.org:7071

CAIRIS User Manual, Release 2.3.8

10 Chapter 3. Starting CAIRIS

CAIRIS User Manual, Release 2.3.8

3.2. Starting the web application 11

CAIRIS User Manual, Release 2.3.8

12 Chapter 3. Starting CAIRIS

CHAPTER 4

CAIRIS databases

4.1 Default database

Each CAIRIS account comes with an default database. If you or your team are using CAIRIS to work on a single
project at any given time then you shouldn’t need to worry about additional databases if you are using the same
account.

4.2 Using other databases

There might be times when it might be helpful to setup multiple databases. For example, the live demo on
https//demo.cairis.org has two exemplar databases that people can interact with to see different examples of
CAIRIS projects.

To create a new database, select the System/Databases menu, click on the Add button in the databases table, and
enter the name for a new database. The name must not contain any spaces or reserved characters. After a few
moments, a new database will be created and your CAIRIS application will point to this database. Any databases
you create will be visible only to your account.

Note: Based on the configuration of MySQL, you may find that - on creating a new database - you no longer
see the default database in your database list. If this is the case, you should logout of CAIRIS and log back in to
return to the default database.

To open another database, select the System/Databases menu, and click on the table row corresponding with the
name an existing database. After a few moments, your CAIRIS application will point to the chosen database.

You can delete a database by selecting the System/Databases menu, and clicking on the Delete button next to the
database you want to remove. You cannot delete the database you currently have open.

To empty the contents of a currently open database, select the Systems/Databases menu and click on the Clear
Current button.

13

CAIRIS User Manual, Release 2.3.8

4.3 Providing database access to other users

If you have a created a non default database, you can grant or revoke access to other users by clicking on the
Permissions button. Adding other users to the permissions list grants access, and removing them revokes access.

Note: Based on the configuration of MySQL, you may find the list of users with permission to access the
database may not always show correctly once a permission has been added. If this is the case, and the user granted
access to a database is unable to access it, you can manually grant or revoke permissions on the server using
the dbctl.py script in cairis/cairis/bin, e.g. ./dbctl.py --database MySharedDB --user shamal.
faily@gmail.com --privilege grant .

14 Chapter 4. CAIRIS databases

CHAPTER 5

Reserved characters in object names

When creating most new objects in CAIRIS, you need to provide a name.

The following characters are considered reserved and should be avoided when defining any object name: < > ‘ ‘ ”
\ : % _ * / ? # £ $ &. You should also avoid using any non-ASCII characters.

The CAIRIS UI should warn you if you are about to create or update an object with a reserved character. If your
object includes these characters, it may be possible for you to add the object, but you may get problems update or
deleting them, or exporting model files containing the objects

When using the Persona Helper, you may be diligently ensuring that spurious characters like ampersands don’t
creep into your factoid names. However, you may not notice that the web page you work with may contain
reserved characters like ampersands and, once you create a factoid from the page, an external document will be
created in CAIRIS containing the reserved character/s. This doesn’t cause any problems while working with your
model or even exporting it, but you will likely get errors about your model not being ‘well-formed’ when trying
to import it back into CAIRIS.

There are no easy ways of getting around this problem in the Persona Helper extension, but there are two easy
ways within CAIRIS itself to avoid or work-around this problem.

1. Go to the UX/External Documents menu and, if you see any external documents with reserved characters
in their names, simply remove them from CAIRIS.

2. If you forget to do this and discover an error when importing the model file, you can easily remove the
offending characters from the model file itself. If you have exported your model as ‘Model (XML file)’
then, you can use a tool like xmllint or one of the several free online XML validators available, such as
FreeFormater to check your model. This will flag invalid XML that you should remove or reword. If you
have exported your model as ‘Model’ then you need to (i) unzip the model file, (ii) repeat the above step for
the model.xml file, (iii) re-zip the model file as a .cairis file.

15

https://chrome.google.com/webstore/detail/persona-helper/mhojpjjecjmdbbooonpglohcedhnjkho?hl=en-GB

CAIRIS User Manual, Release 2.3.8

16 Chapter 5. Reserved characters in object names

CHAPTER 6

Importing and Exporting models

6.1 Importing models

You can import models by selecting the System / Import Model menu, selecting the model type to import, and the
model file itself.

You will usually want to stick with the Model package (.cairis) option to import .cairis files. .cairis files are zip
archives with a model file, any supplemental locations and architectural pattern models, and all the image files
associated with the model.

You can, alternatively, select the Model file (.xml) option, which imports a standard CAIRIS XML model file
(as defined by the DTD in https://cairis.org/dtd/cairis_model.dtd). If you select this option, you can choose to
overwrite an existing model (the default option) or you can incrementally import the contents of a model file into
a pre-existing model.

You can also import other types of model into your current working project.

17

https://cairis.org/dtd/cairis_model.dtd

CAIRIS User Manual, Release 2.3.8

Model type DTD (in https://
cairis.org/dtd)

Model elements

Project data cairis.dtd Project background, goal, scope, rich picture, naming conventions,
contributors, revisions

Requirements goals.dtd domain properties, goals, obstacles, requirements, use cases, and
countermeasures

Risk analysis riskanalysis.dtd roles, assets, vulnerabilities, attackers, threats, risks, responses, as-
set associations

Usability usability.dtd personas, external documents, document references, concept refer-
ences, persona characteristics, task characteristics, tasks

Misusability misusability.dtd concept references, task characteristics
Associations associations.dtd manual associations, goal associations, dependencies
Threat and Vulner-
ability Types

tvtypes.dtd vulnerability types, threat types

Domain Values domainvalues.dtd threat values, risk values, countermeasure values, security values,
likelihood values, motivation values, capability values

Threat and Vulner-
ability Directory

directory.dtd vulnerability directory entries, threat directory entries

Security Pattern securitypat-
tern.dtd

security patterns

Architectural Pat-
tern

architec-
tural_pattern.dtd

architectural patterns

Attack Pattern at-
tack_pattern.dtd

attack patterns

Synopsis synopsis.dtd characteristic synopses, reference synopses, step synopses, refer-
ence contributions, usecase contributions

Assets tem-
plate_assets.dtd

template assets

Processes processes.dtd CSP process elements (used by desktop application only)
Locations locations.dtd locations
Dataflows dataflow.dtd dataflows and trust boundaries
Stories stories.dtd User stories
Attack Tree (Dot) N/A Graphviz (Dot) representation of an attack tree
diagrams.net (Data
Flow Diagram)

N/A diagrams.net drawn DFD

diagrams.net (As-
set Model)

N/A diagrams.net drawn asset model

User goals (Work-
book)

N/A CAIRIS generated Excel workbook with user goals and contribu-
tions

6.2 Exporting models

To export a model, select the System / Export Model option. Exporting the current model renders the current
CAIRIS database you are working with as a CAIRIS XML model (conforming to cairis_model.dtd). You can also

18 Chapter 6. Importing and Exporting models

https://cairis.org/dtd
https://cairis.org/dtd

CAIRIS User Manual, Release 2.3.8

export a selected architectural pattern, the security patterns currently loaded into CAIRIS, or a GRL model for a
selected environment and task; this GRL can be imported into jUCMNav.

6.2. Exporting models 19

CAIRIS User Manual, Release 2.3.8

20 Chapter 6. Importing and Exporting models

CHAPTER 7

Sample models

7.1 Exemplars

CAIRIS comes with three complete system specifications. These illustrate how CAIRIS can be used, and – in
some cases – provide templates to inspire your own use of the platform. These specifications are .cairis files can
be found in the cairis/examples/exemplars directory, but their component model files and images can be found in
sub-directories within that directory.

7.1.1 NeuroGrid

NeuroGrid is a a data grid for neuroscience research. The sensitive of clinical data processed by NeuroGrid and its
distributed nature drives the need to find secure and effective ways of accessing and managing it. This exemplar is
restricted to the upload and download of data to and from NeuroGrid. This exemplar also comes with a physical
locations file (Computing Laboratory) and an architectural pattern (WebDAV).

7.1.2 ACME Water

ACME Water is a fictional water company concerned with the delivery of wastewater and cleanwater services
in a specific geographic region of the UK. This exemplar specifies a secure operating environment for SCADA,
telemetry, and control systems associated with assets owned and operated by ACME. This exemplar also comes
with a physical localtions file (Poole Waste Water Treatment Works).

7.1.3 webinos

The webinos platform is a software runtime environment that allows the discovery of devices and services based
on technical and contextual information. It exposes a set of APIs that provide access to cross-user, cross-service,
and cross-device functionality. Unlike the other examples, the consistuent CAIRIS models were generated from a
variety of formats including spreadsheets, text files, and multiple smaller CAIRIS model files. You can find this
design data and the scripts used to generate the model at webinos-design-data GitHub repository.

21

https://en.wikipedia.org/wiki/Webinos
https://github.com/webinos/webinos-design-data

CAIRIS User Manual, Release 2.3.8

7.2 Threat and Vulnerability Directories

These are libraries of importable threats and vulnerabilities, and can be found in the cairis/examples/directories
directory.

7.2.1 CWE/CAPEC

cwecapec_directory.xml contains a selection of threats and vulnerabilities from CWE and CAPEC. To import this,
it is first necessary to import cairis/examples/threat_vulnerability_types/cwecapec_tv_types.xml.

7.2.2 ICS Protection Profile

ics_directory.xml contains a selection of threats and vulnerabilities from the System Protection Pro-
file - Industrial Control Systems issued by NIST. To import this, it is first necessary to import
cairis/examples/threat_vulnerability_types/ics_tv_types.xml.

7.2.3 OWASP

owasp_directory.xml contains a selection of threats and vulnerabilties drawn from the OWASP body of knowledge.
To import this, it is first necessary to import cairis/examples/threat_vulnerability_types/owasp_tv_types.xml.

22 Chapter 7. Sample models

CHAPTER 8

Creating a new project

The first stage of any design process involves establishing the scope of subsequent analysis. CAIRIS supports this
exercise by using the Properties form.

• Select the System/Properties menu to open the Project Settings notebook. By default, the notebook will
open in the Background page. Enter the project name and background in this page.

• Click on the Goals tab and enter the high-level goals of that the system being specified needs to satisfy.

• Click on the Scope tab and enter the scope of the system being specified.

• If a rich picture or context diagram has been agreed, click on the Rich Picture tab, and click on the image
(or avatar if no rich picture has been defined) to import. Permitted image types are jpg, png, giff, and bmp.

• Names or terms that the readership of the specification may be unfamiliar with can be added to the project
on an on-going basis. To add a term, click on the Naming Conventions tab, and click on the Add symbol
This opens a form which allows a name and a definition to be added to the naming convention list. To
modify an existing entry, double click on the try and make the required modifications. Entries can also be
deleted from the right-click speed menu.

23

CAIRIS User Manual, Release 2.3.8

• Clicking on the Contributors tab opens the Contributors page. To add a contributor, click on the Add symbol
to open the Add Contributor form. Contributors can be either a participant, facilitator, or scribe; these reflect
the roles that people take in participatory workshops.

24 Chapter 8. Creating a new project

CHAPTER 9

Environments

An environment might represent a system operating at a particular time of day, or in a particular physical location.
Environments encapsulate visible phenomena such as assets, tasks, personas, and attackers, as well as invisible
phenomena, such as goals, vulnerabilities, and threats. Environments may be identified at any time, although these
may not become apparent until carrying out contextual inquiry and observing how potential users reason about
their context of use.

9.1 Adding a new environment

• Select the UX/Environments menu to open the Environments form, and click on the Add button to open the
new Environment form.

• Enter the name of the environment, a short code, and a description. The short-code is used to prefix require-
ment ids associated with an environment.

• If this environment is to be a composite environment, i.e. encompass artifacts of other environments, then
click on the Add button the environment table, and select the environment to add.

25

CAIRIS User Manual, Release 2.3.8

• It is possible an artifact may appear in multiple environments within a composite environment. It is, there-
fore, necessary to set duplication properties for composite environments. If the maximise radio button is
selected, then the maximal values associated with that artifact will be adopted. This may be the highest
likelihood value for a threat, or the highest security property values for an asset. If the override radio button
is selected then CAIRIS will ensure that the artifact properties are used for the overriding environment.

Note: Composite environments are an experimental feature and you may get errors when using them.

26 Chapter 9. Environments

CHAPTER 10

Assets

Assets are tangible objects of value to stakeholders. By defining an asset in CAIRIS, we implicitly state that this
needs to be secured in light of risks which subsequently get defined.

Assets are situated in one or more environments. Security and Privacy properties are associated with each asset
for every environment it can be found in. These properties are described below:

Prop-
erty

Description Reference

Con-
fiden-
tiality

The property that information is not made available or disclosed to unautho-
rised individuals, entities, or processes.

ISO/IEC 27001

In-
tegrity

The property of safeguarding the accuracy or completeness of assets. ISO/IEC 27001

Avail-
ability

The property of being accessible and usable on demand by an authorised entity. ISO/IEC 27001

Ac-
count-
ability

The property that ensures the actions of an entity may be traced uniquely to an
entity.

ISO 7498-2

AnonymityThe property that other users or subjects are unable to determine the identity of
a user bound to a subject or operation.

Common Criteria
Privacy Require-
ments

PseudonymityThe property that a set of users and/or subjects are unable to determine the
identify of a user bound to a subject or operation, but that this user is still
accountable for its action.

Common Criteria
Privacy Require-
ments

Un-
linka-
bility

The property that users and/or subjects are unable to determine whether the
same user caused certain operations in the system.

Common Criteria
Privacy Require-
ments

Unob-
serv-
ability

The property that users and/or subjects cannot determine whether an operation
is being performed.

Common Criteria
Privacy Require-
ments

Each of these properties is associated with the value of None, Low, Medium, or High. The meaning of each of
these values can be defined in CAIRIS from the Asset Values dialog; this is available via the Options/Asset values
menu.

27

CAIRIS User Manual, Release 2.3.8

10.1 Adding, updating, and deleting an asset

• Select the Risks/Assets menu button to open the assets table, and click on the Add button to open a new
asset form.

• Enter the name of the asset, a short code, description, and significance. The short-code is used to prefix
requirement ids associated with an environment.

• If this asset is deemed critical, click on the Criticality tab, and click on the Critical Asset check-box. A
rationale for declaring this asset critical should also be added. By declaring an asset critical, any risk which
either threatens or exploits this asset will be maximised until the mitigations render the likelihood of the
threat or the severity of the vulnerability inert.

• Click on the Add button in the environment card, and select an environment to situate the asset in. This will
add the new environment to the environment tab.

• After ensuring the environment is selected in the environment table, add the security properties to this asset
for this environment. Security properties are added by clicking on the Add button in the properties table to
open the Choose security property dialog. From this window, a security property, its value its value rationale
can be added.

• Click on the Create button to add the new asset.

• Existing assets can be modified by double clicking on the asset in the Risks/Assets table, making the neces-
sary changes, and clicking on the Update button.

28 Chapter 10. Assets

CAIRIS User Manual, Release 2.3.8

• To delete an asset, select the asset to delete in the assets table , and select the Delete button. If any artifacts
are dependent on this asset then a modal dialog stating these dependencies are displayed. The user has the
option of selecting Yes to remove the asset dependencies and the asset itself, or No to cancel the deletion.

10.2 Asset modelling

Understanding how assets can be associated with each other is a useful means of identifying where the weak links
in a prospective architecture might be. CAIRIS supports the association of assets, inconsistency checking between
associated assets, and visualisation of asset models.

The CAIRIS asset model is based on UML class models. Asset models can be viewed for each defined envi-
ronment. As well as explicitly defined asset associations, asset models will also contain associations implicitly
defined. For example, if a task has been defined, and this task concerns within an environment contain one or
more assets, then the participating persona will be displayed as an actor, and an association between this actor
and the asset will be displayed. Additionally, if concern associations have been defined between goals and assets
and/or associations then zooming into the model will display these concerns; the concerns are displayed as blue
comment elements.

10.2.1 Adding an asset association

• You can add an association between assets by selecting the Risk/Asset Association menu, and clicking on
the Add button in the association table.

• In the association form which is opened., set the adornments for the head and tail end of the association.
Possible adornment options are Inheritence, Association, Aggregation, and Composition; the semantics for
these adornments are based on UML.

• Set the multiplicity (nry) for the head and tail ends of the association. Possible multiplicity options are 1,
, and 1...

• Optional role names can also be set at the head or tail end of the association.

• Check the navigation setting for the head and tail ends of the association. By default, this is 0. Setting an
end to 1 indicates that an asset at the opposite end of the association has visibility of assets on the end set.
This is consistent with navigability semantics in UML class diagrams.

• Select the Create (or Update if modifying an existing association) will add the association to the CAIRIS
model.

• You can also add associations between other assets from the environment Associations tab within the Asset
form. You can add a new association by clicking on the Add button in the association table to open the
association form. From this form, you can add details about the nature of the association between the asset
you’re working on and another [tail] asset. Once you click on Update, the association will be added to your
working object, but won’t be committed to the model until you click on the Update/Create button.

Although not possible from the UI, it is possible to add associations between assets directly in a CAIRIS model
file without first defining security or privacy properties for the asset in the model file. If you do this, all the security
and privacy properties for the asset are set to None and the rationale of Implicit is set for each property.

10.2.2 Viewing Asset models

Asset models can be viewed by selecting the Models/Asset menu, and selecting the environment to view the
environment for.

By changing the environment name in the environment combo box, the asset model for a different environment
can be viewed.

Each asset node is shaded red based on its attack surface. This is based on the highest severity value of the
vulnerabilities associated with the asset; the higher the value, the darker the shade of red.

10.2. Asset modelling 29

CAIRIS User Manual, Release 2.3.8

30 Chapter 10. Assets

CAIRIS User Manual, Release 2.3.8

The model can be filtered by selecting an asset. This will display on the asset, and the other asset model elements
immediately associated with it. By default, concern associations are hidden. These are UML comment nodes that
indicate elements from other CAIRIS models associated with asset. These concerns can be shown by changing
the Hide Concerns combo box value to Yes.

By clicking on a model element, information about that artifact can be viewed.

For details on how to print asset models as SVG files, see Generating Documentation.

10.2.3 Template Assets

You can specify libraries of template assets that you might form the basis of security or architectural patterns.

These can be added, updated, and deleted in much the same way as standard assets, but with two differences:

1. Template assets are not environment specific, so you need to specify the general security properties that
need to be protected should this asset be included in a model.

2. You need to first define Access Rights, Surface Types, and Privileges.

10.2.4 Asset modelling with diagrams.net

diagrams.net (previously known a draw.io) is an easy to use, open source diagramming tool; it can be run either
from the browser or from the desktop. diagrams.net has the ability to set shape properties and export to XML and,
as a result, asset models created in this tool can, if defined properly, be imported into CAIRIS by following the
steps below:

1. Create a new blank diagram in diagrams.net .

2. Setup the CAIRIS asset shape library by going to the File >> Open Library from >> URL menu, and entering
the URL https://cairis.org/stencils/cairis_asset.xml.

10.2. Asset modelling 31

https://diagrams.net
https://diagrams.net

CAIRIS User Manual, Release 2.3.8

3. Click on the square (asset) in the cairis_assets.xml palette to place an asset on the canvas. Double click on
the shape to set its label, which represents the asset name. Hoovering the mouse over the asset will display
the asset properties as a tool-tip

4. Right click on the asset and select Edit Data to change the asset properties. When changing the asset, ensure
you enter only a permissible value for the type (Hardware, Software, Information, Systems, or People) and
the security property values (None, Low, Medium, or High).

5. Click on the line (asset association) in the cairis_assets.xml palette to place an asset association on the
canvas. Change the start of end arrow accordingly based on the nature of the asset association. For example,
setting an open arrow on the Telemetry Network asset end of the association indicates navigability from the
Outstation to the Telemetry Network. When adding associations between asset, ensure the association line
is connected to both assets.

6. Once the diagram is ready, select the File >> Export as >> XML. . . menu option, unclick the Compressed
tick box, click on the Export button, and enter the name of the diagram to be exported.

7. In CAIRIS, select the System >> Import menu to open the Import form. Select diagrams.net (Asset Model)
from the Model combo box, click on the File button to choose the exported diagrams.net model to import,
and select the environment to import the asset model into.

Assets that don’t already exist will be created in CAIRIS, with security properties set for the environment the
model is imported into. Assets and associations that already exist will not be overwritten.

Note: We recommend you use the cairis_asset.xml shape library when asset modelling, but you could - in theory
- use any shape in diagrams.net to model assets. However, you must ensure that you use the Edit Data option to
add a type property to the shape, which should be set to a valid asset type.

32 Chapter 10. Assets

CAIRIS User Manual, Release 2.3.8

10.2. Asset modelling 33

CAIRIS User Manual, Release 2.3.8

34 Chapter 10. Assets

CHAPTER 11

Roles

Roles are abstract classes representing human agents; these also encapsulate behaviours and responsibilities.

CAIRIS supports 6 types of role:

Role Description
Stakeholder Human agents the system needs to be directly or indirectly designed for. IRIS Meta-

model
Attacker Human agents behaving maliciously. IRIS Meta-

model
Data Con-
troller

The entity that determines the purposes, conditions and means of the process-
ing of personal data.

GDPR

Data Pro-
cessor

The entity that processes data on behalf of the Data Controller. GDPR

Data Sub-
ject

A natural person whose personal data is processed by a controller or processor. GDPR

Machine Software agents that behave with some level of autonomy.

11.1 Adding, updating, and deleting a role

• Select the Risk/Roles menu to open the Roles table, and click on the Add button to open the Role form.

• Enter a role name and description, and select the role type.

• Click on the Create button to Add the new role to the CAIRIS database.

• Existing roles can be modified by clicking on the role in the roles table, making the necessary changes, and
clicking on the Update button.

• To delete a role, select the role to delete in the roles table, If any artifacts are dependent on this role then a
dialog box stating these dependencies are displayed. The user has the option of selecting Yes to remove the
role dependencies and the role itself, or No to cancel the deletion.

35

CAIRIS User Manual, Release 2.3.8

11.2 Responsibility modelling

Responsibility models can be viewed by selecting the Models/Responsibility menu option and selecting the envi-
ronment to view the environment for.

By changing the environment name in the environment combo box, the responsibility model for a different envi-
ronment can be viewed. By clicking on a model element, information about that artifact can be viewed.

For details on how to print responsibility models as SVG files, see Generating Documentation.

36 Chapter 11. Roles

CAIRIS User Manual, Release 2.3.8

11.2. Responsibility modelling 37

CAIRIS User Manual, Release 2.3.8

38 Chapter 11. Roles

CHAPTER 12

Personas

Personas are specifications of archetypical users that the system needs to directly or indirectly cater for. The
system needs to be specified for Primary Personas, but Secondary Personas cannot be ignored as their thoughts or
concerns provide insight into potential usability problems.

12.1 Adding, updating, or deleting a persona

• Select the UX/Personas menu to open the table of personas, and click on the Add button to open the new
Persona form.

39

CAIRIS User Manual, Release 2.3.8

• Enter a persona name and select the persona type.

• If the persona is grounded in assumption-based data, click on the Assumption-based checkbox.

• If you have decided to personalise the persona with a picture, this can be added by clicking on avatar
silhouette next to the persona description, and selecting a image to represent the persona. Permitted image
types are jpg, png, giff, and bmp.

• Click on the Activities tab and enter the activities carried out by the personas.

• Click on the Attitudes tab and enter the attitudes held by the persona, with respect to the problem domain
the system will be situated in.

• Click on the Aptitudes tab and enter the persona’s aptitudes, with respect to the problem domain the system
will be situated in.

• Click on the Motivations tab and enter the persona’s personal motivations.

• Click on the Skills tab and enter the persona’s skill-set, with respect to the problem domain the system will
be situated in.

• Click on the Contextual Trust tab, and enter information about aspects of this persona with an impact on
contextual trust warranting properties.

• Click on the Contextual Trust tab, and enter information about aspects of this persona with an impact on
intrinsic trust warranting properties.

• If you have decided to personalise the persona with a picture, this can be added by clicking on avatar box
next to the persona properties notebook, to select an image to associated with the persona.

• Click on the Environment card, and click on the Add button to situate the persona in an environment.
Selecting an environment from the modal will open up a new folder for information about persona roles,
and an environment specific narrative.

• After ensuring the environment is selected in the environment window, click on the Roles tab. Select the
Direct User checkbox if the persona is a direct stakeholder with respect to the system being defined, and add
roles fulfilled by the persona in the Roles list-box. These roles can be added by clicking on the add button
in the role table, or deleted by clicking on the button next to the role to be removed.

• Click on the Narrative tab and enter a narrative describing the persona’s relationship with the problem
domain or prospective system within the environment, and any environment specific concerns he or she
might have.

• Click on the Create button to add the new persona.

• Existing personas can be modified by clicking on the persona in the UX/Personas table, making the neces-
sary changes, and clicking on the Update button.

• To delete a persona, click on the delete button next to persona to be removed in the personas table. If any
artifacts are dependent on this persona then a dialog box stating these dependencies are displayed. The user
has the option of selecting Yes to remove the persona dependencies and the persona itself, or No to cancel
the deletion.

12.2 Assured personas with persona characteristics

12.2.1 Overview

Persona specifications are necessary, but not sufficient for indicating the validity of a persona; you should also
describe the basis for each part of the persona specification too. Personas might be created on the basis of some
user research. The results of this user research might be coded as a collection of factoids – statements about the
data that might be true or false – before the user research makes sense of this data using an activity like affinity
diagramming. Clusters of factoids resulting from this exercise form the basis of each aspect of the persona.
Normally, however, this data and the results of the analysis are discarded once the persona is created, which

40 Chapter 12. Personas

CAIRIS User Manual, Release 2.3.8

means there is no rationale to justify the persona should questions of clarification of legitimacy be asked about
them.

To overcome this problem, CAIRIS supports the creation of persona characteristics. These are argumentation
models where the argument is an individual persona characteristic.

Justifying each characteristic is a one or more grounds that provide evidence to support the persona’s validity,
warrants that act as inference rules connecting the grounds to the characteristic, and rebuttals that act as counter-
arguments for the characteristic. A model qualifier is also used to describe the confidence in the validity of the
persona characteristic.

This approach for structuring persona characteristic elements is based on Toulmin’s model of argumentation1 and
can be visualised in CAIRIS using the persona model, accessible from the Models/Persona menu. As shown in
the persona model below, a link can be seen between grounds element and their backing, the originating source of
the grounds.

12.2.2 Creating persona characteristics

• Select the UX/External Documents menu, and click on the Add button to add information about the source
of any assumptions external to CAIRIS. An example of such an External Document might be an interview
transcript. Alternatively, if assumptions are purely based on your own thoughts and feelings then an External
Document can be created to make this explicit. External documents are shown as backing elements in
persona models.

• Select the UX/Document References menu, and click on the Add button. Enter a name that summarises the
factoid that acts as evidence for the persona characteristic. Select the external document from the Document
combobox box to indicate the document that the factoid is taken from, and enter details of the person who
elicited the assumption in the Contributor text box. Finally, in the Excerpt box, enter the extract of text from
the external document from which the factoid is based.

• Select the UX/Persona Characteristics menu, and click on the Add button.

• From the Characteristic folder, enter a definition that summarises the characteristic, and select the Persona
and behavioural variable that this characteristic will be associated with. Possible Enter a Model Qualifier;
this word describes your confidence in the validity of the characteristic. Possible qualifiers might include
always, usually, or perhaps.

• In the Grounds table, click on the Add button to add a grounds for the characteristic. Click on the Add button
to add a new document reference that acts as grounds. When a document reference is selected, a read-only
description of this document reference will also be shown. Clicking Ok will add the new document reference
to the grounds list.

• Repeat the above procedure for Warrants as appropriate.

• If you wish to add a Rebuttal – a counterargument for the characteristic – then click on the Rebuttals tab
and add a rebuttal using the same procedure for Grounds and Warrants.

• Click on the Create button to create the new characteristic.
1 Toulmin, S. The uses of argument, updated ed. Cambridge University Press, 2003.

12.2. Assured personas with persona characteristics 41

CAIRIS User Manual, Release 2.3.8

• Existing characteristics can be modified by double clicking on the characteristics in the persona character-
istics table, making the necessary changes, and clicking on the Update button.

12.3 Automating persona characteristic creation

In the ideal world, personas will be created by dedicated teams of research collecting empirical data, working
collectively in one place to affinity diagram factoids, and persona characteristics that structure them. In reality,
team members might be working individually, remotely, and using open source intelligence or online sources of
data. To provide some automation for this activity, we have created some features for offline and collaborative
creation of persona characteristics.

12.3.1 Working with persona characteristic workbooks

CAIRIS can generate an Excel workbook that makes it possible to add or update persona characteristic elements.

To export a workbook, select the System/Export menu, click on the Persona characteristics (Workbook) radio
button, enter the name of the workbook to be created, and click on the Export button. The workbook name should
be postfixed with .xlsx.

42 Chapter 12. Personas

CAIRIS User Manual, Release 2.3.8

The generated spreadsheet contains three spreadsheets: External Documents, Document References, and Persona
Characteristics.

Pre-existing external documents will be added to the External Documents sheet. Updating existing values will
update the corresponding object when the spreadsheet is uploaded, but changing the name will create a new
external document. To add a new external document, add a row to the spreadsheet and complete the name, author,
version, publication date, and description fields.

Pre-existing document references will be added to the Document References sheet. Updating existing values
will update the corresponding object when the spreadsheet is uploaded, but changing the name will create a new
document reference. To add a new document reference, add a row to the spreadsheet and enter the name, select
the document (external document), and enter the contributor and excerpt. If external documents are changed,
ensure the document fields in the sheet correspond with an external document - either in the spreadsheet or in the
upstream CAIRIS model.

12.3. Automating persona characteristic creation 43

CAIRIS User Manual, Release 2.3.8

44 Chapter 12. Personas

CAIRIS User Manual, Release 2.3.8

Pre-existing persona characteristics will be added to the Persona Characteristics sheet. Updating existing values
will update the corresponding object when the spreadsheet is uploaded, but changing the name will create a new
persona characteristic. To add a new persona characteristic, add a row to the spreadsheet and enter the character-
istic name, corresponding persona name, select the behavioural variable, enter the modal qualifier, and grounds,
warrant, and rebuttal. The grounds, warrant, and rebuttal cells take a comma separated list of document reference
names. You should ensure the named persona exists in the upstream CAIRIS model, and the names of grounds,
warrants, and rebuttals correspond with document reference values in the Document References spreadsheet or
the upstream CAIRIS model.

To import a workbook, select the System/Import menu, select the Persona characteristics (Workbook) radio button,
choose the name of the workbook to be uploaded, and click on the Import button.

Please note that removing rows from any of the spreadsheets does not remove the corresponding object in the
CAIRIS model; these should be removed directly in CAIRIS.

12.3.2 Persona Helper

The Persona Helper is a Chrome Extension that can be used to automatically create document references from
highlighted text on a web page open in Chrome. This might be useful when eliciting factoids from website.

Once the extension has been installed, you need to connect to your CAIRIS server before use. You can do this
right clicking on the CAIRIS extension icon in Chrome and selecting ‘Connect to CAIRIS’. A dialog will open
that will ask for the CAIRIS server URL, before a pop-up appears that allows you to login to your CAIRIS server.

By default, any document references created will be added to the CAIRIS default database, but you can change
this using the ‘Change CAIRIS database’ menu option.

From the extension menu, it also possible to set the Author and Contributor values. Author is the author of the data
source; this will become the author of the external document from which factoids from a website can be drawn.
Contributor is the person eliciting the factoid itself. It is ok to set both author and contributor as the same person,
but – if different people are responsible for different data sources – you might want to change the author value
each time you draw from factoids from a different webpage. If these values have not been previously defined, you
will be prompted to provide them the first time you elicit a factoid.

To elicit a factoid, you need to highlight text on a website and click on the CAIRIS extension icon. This will open
a dialog that will allow a factoid to be created for the associated text. For example, let’s consider we want to build
a persona for a water treatment plant operator, and we find a day in the life of a plant operator from which we want
to elicit factoids.

We find some text that indicates that operators live close to work, so we highlight the relevant text, create some
text that describes the factoid (because just because one person in a blog post indicates that plant operators live
close to work doesn’t mean that most plant operators actually do live close to work), and click on Ok to add the
factoid.

If we look in CAIRIS, we will see the corresponding document reference as indicated above.

Please remember that CAIRIS is sensitive to reserved characters so, when naming factoids, these should avoided.
Colons in factoid names or names of external documents is known to cause particular problems when generating

12.3. Automating persona characteristic creation 45

https://chrome.google.com/webstore/detail/persona-helper/mhojpjjecjmdbbooonpglohcedhnjkho
https://kyocp.wordpress.com/2012/08/14/a-day-in-the-life-of-an-operator

CAIRIS User Manual, Release 2.3.8

46 Chapter 12. Personas

CAIRIS User Manual, Release 2.3.8

persona models.

12.3.3 Online affinity diagramming with Trello

Trello is a collaborative, web-based list manager. It is a popular tool for sharing and collaboratative working
on lists, where lists contain cards. Because the relationship between cards and lists is analogous to the rela-
tionship between factoids and affinity groups, we can use Trello for online affinity diagramming too. Moreover,
becase factoids and affinity groups are also analogous with document referencs and persona characteristics then,
using some simple annotations, we can also use lists and cards to represent persona characteristics and their
grounds/warrants/rebuttals too.

We can export all the document references in a currently open CAIRIS model by selecting the System/Export to
Trello menu. From here, you should enter a Trello board name. This will be created for you once you click on
Export, and the document references will be exported as cards to an Uncategorised Factoids list in your Trello
account as indicated below. If you have not already logged into Trello, you will also be prompted to do this on
clicking Export.

As you affinity diagram, each list will represent an affinity group. From the sample of factoids elicited, there seems
to be an affinity group around factoids indicating that the plant operator is protective of his community. There is

12.3. Automating persona characteristic creation 47

https://trello.com

CAIRIS User Manual, Release 2.3.8

also another group indicating that the operators relies on cues and experience rather than traditional education and
theory.

To turn each of these affinity groups into persona characteristics, we first need to indicate whether each factoid
represents a groups, warrant or rebuttal. To do this, we click on each card, click on the Label and select either
a grounds , warrant or rebuttal label. If you have not imported document references from CAIRIS, these labels
won’t be automatically created, but you can add them manually.

The final step entails indicating the behavioural variable associated with the persona characteristic. You can do this
by postfixing the list name with a colon and the name of the variable. Permissible variable names are: activities,
aptitudes, attitudes, motivations, skills, intrinsic and contextual. Please note, you can only associate a persona
characteristic with a single behavioural variable.

When you’re ready, you can import this Trello board back into CAIRIS. However, before you can do you need to
create a persona object for each board you import. For example, an empty persona called Bob will be created to
represent a water treatment plant operator.

To import the board, return to CAIRIS and select the System / Import from Trello menu. From this form, you
should select the Trello board you are exporting, select the persona associated with the persona characteristics that
will be generated, and click on Import.

The persona characteristic generated will, as shown above, have a modal qualifier set to Perhaps. This should be
updated based on your confidence in the characteristic.

48 Chapter 12. Personas

CAIRIS User Manual, Release 2.3.8

12.3. Automating persona characteristic creation 49

CAIRIS User Manual, Release 2.3.8

If you have exported your document references from CAIRIS then each ground/warrant/rebuttal document refer-
ence will be associated with its apopriate external document. However, if you have created the cards manually
in Trello then CAIRIS will create new document references for each card, and an Unknown external document to
indicates that, at the time of import, the factoids were of uncertin origin. If you know the origin of the factoids, you
can create external documents to represent these origins, and re-associate the document references accordingly.

Armed with your persona characteristics, you can now write narrative text in your persona corresponding with
these characteristics. In doing so, you may surface possible assumptions or ambiguity. For example, the above
persona characteristic seems to suggest a non-traditional education is the basis for managing by cues but this
assumption might not be warranted, particularly as all the factoids come from a single source. As such, this could
trigger a return to the affinity diagrams or the weakening of the modal qualifier to indicate reduced confidence.

Note: Due to how Trello’s client.js file works, you may get errors connecting to Trello during Trello exports and
imports. You can get around this by raising an issue in CAIRIS to get your CAIRIS server’s URL recognized as
an allowable origin You can also get around this by running the CAIRIS UI in debug mode. To do this by (i) clone
the CAIRIS UI GitHub repository, (ii) Follow the instructions in the README to setup the CAIRIS UI project by
running yarn install in the root directory, (iii) setup the indicated .env.development file as indicated, (iv) running
yarn run serve to locally run the CAIRIS UI, (v) point your web browser to http://localhost:8080 .

50 Chapter 12. Personas

https://github.com/cairis-platform/cairis-ui
http://localhost:8080

CHAPTER 13

Tasks

Tasks model the work carried out by one or more personas. This work is described in environment-specific
narrative scenarios, which illustrate how the system is used to augment the work activity.

13.1 Adding, updating, or deleting a task

• Click on the UX/Tasks menu to open the Tasks table, and click on the Add button to open the Task form.

51

CAIRIS User Manual, Release 2.3.8

• Enter a task name, short code, author, and the objective of carrying out the task.

• Click on the Add button in the environment card, and select an environment to situate the task in. This will
add the new environment to the environment list.

• In the Narrative folder, enter the task scenario. This narrative should describe how the persona (or personas)
carry out the task to achieve the pre-defined objective.

• In the Dependencies folder, enter any dependencies needing to hold before this task can take place.

• In the Consequences folder, enter any consequences (positive or negative) associated with this task.

• In the Benefits folder, enter the value that completing this task will bring.

• In the Participants folder, click on the Add button to associate a persona with this task. In the Participating
Persona form, select the person, the task duration (seconds, minutes, hours or longer), frequency (hourly
or more, daily-weekly, monthly or less),demands (none, low, medium, high), and goal conflict (none, low,
medium, high). The values for low, medium, and high should be agreed with participants before hand.

• If any aspect of the task concerns one or more assets, then these can be added to the concern list. Adding an
asset concern causes a concern comment to be associated to the asset in the asset model. If the task concerns
an association between assets, the association can be added by clicking on the Concern Association tab and
adding the source and target assets and association multiplicity to the concern association list. In the asset
model, this association is displayed and a concern comment is associated to each asset in the association.

• Click on the Create button to add the new task.

• Existing tasks can be modified by clicking on the task in the Tasks table, making the necessary changes, and
clicking on the Update button.

• To delete a task, select the task to delete in the Tasks dialog box, and click the Delete button. If any artifacts
are dependent on this task then a dialog box stating these dependencies are displayed. The user has the
option of selecting Yes to remove the task dependencies and the task itself, or No to cancel the deletion.

52 Chapter 13. Tasks

CAIRIS User Manual, Release 2.3.8

13.2 Task traceability

Tasks can be manually traced to certain artifacts via the Tasks table. A task may contribute to a vulnerability, or
be supported by a requirement or use case. To add a traceability link, right click on the task name, click on the left
or right arrows next to the task name to open a Support or Contribution traceability modal respectively. From this
editor, select the object on the right hand side of the editor to trace to and click the Add button to add this link.

Manual traceability links can be removed by selecting the Options/Traceability menu option, to open the Trace-
ability Relations form. In this form, manual traceability relations be removed from specific environments.

13.3 Visualising tasks

Task models show the contribution that behavioural concepts in security and usability can have on each other.
These models are centred around tasks, show the personas that interact with them, and indicate how threats or
vulnerabilities might impact them. These models also show the assets used in the tasks or threatened/exploited by
misuse cases. If traceability associations have been added between tasks and use cases, then these links are also
shown. Finally, if use case actors are also roles associated with personas in visible tasks, then the relationship
between the roles and personas is also shown. This is useful when putting use cases and their actors in context in
tasks.

Task models can be viewed by selecting the Models/Task menu, and selecting the environment to view the model
for.

By changing the environment name in the environment combo box, the task model for a different environment can
be viewed. The model can also be filtered by task or misuse case name.

By clicking on a model element, information about that artifact can be viewed.

For details on how to print task models as SVG files, see Generating Documentation.

13.2. Task traceability 53

CAIRIS User Manual, Release 2.3.8

54 Chapter 13. Tasks

CHAPTER 14

Misusability Cases

Misusability Cases are scenarios which describe how design decisions may lead to usability problems subsequently
leading to system misuse. These can be useful if you feel some aspect of a design might be open to exploitation,
and you need to make a case for how the rationale design makes this possible.

14.1 Creating concept references

To create the evidence that forms the basis of your misusability case, you need to create one or more concept
references. These can be based on personas, requirements, use cases, or other tasks. The functionality for creating,
updating, or deleting concept references is accessible from the UX / Concept References menu, and procedures
for working with concept references are very similar to those used for working with document references.

14.2 Creating the skeleton scenario

You need to create a task to encapsulate the misusability case scenario (or scenarios if these are specific to envi-
ronment).

14.3 Creating task characteristics

Task characteristics form the basis of the argumentation model behind each misusability case. The functionality
for creating, updating, or deleting task characteristics is accessible from the UX / Task Characteristics menu,
and procedures for working with task characteristics are very similar to those used for working with persona
characteristics.

14.4 View misusability case models

You can visualise misusability cases and their supporting argumentation models by selecting the Models / Misus-
ability menu option, and selecting a misusability case to view.

55

CAIRIS User Manual, Release 2.3.8

56 Chapter 14. Misusability Cases

CHAPTER 15

Domain Properties

Domain Properties are descriptive properties about the statement world. Domain Properties may be either hypoth-
esis or invariants.

15.1 Adding, updating, and deleting a domain property

• Click on the Requirements/Domain Properties menu to open the Domain Properties table, and click on the
Add button to open the Domain Property form.

• Enter a domain property name, description, and select the type of domain property from the type combo
box.

• Click on the Create button to add the new domain property.

57

CAIRIS User Manual, Release 2.3.8

• Existing domain properties can be modified by clicking on the domain property name in the Domain Prop-
erties table, making the necessary changes, and clicking on the Update button.

58 Chapter 15. Domain Properties

CHAPTER 16

Goals, Requirements, and Obstacles

In CAIRIS, a requirements specification is analogous to a safety case. In a safety case, a system is only considered
safe if its safety goals have been satisfied. In a similar manner, requirements are leaf nodes in a goal tree and
satisfying stakeholder needs is only possible if the high-level goals – stipulated by stakeholders – can be satisfied.

We define goals as prescriptive statements of system intent that are achievable by one or more agents. Goals can be
refined to requirements, which are achievable by only agent. Goals and requirements may also be operationalised
as tasks. Alternatively, we may decide to specify tasks and ask what goals or requirements need to hold in order
that a given task can be completed successfully.

To satisfy a goal, one or more sub-goals may need to be satisfied; satisfaction may require satisfying a conjunction
of sub-goals, i.e. several AND goals, or a disjunction of sub-goals, i.e. several OR goals.

Goals or requirements may be obstructed by obstacles, which are conditions representing undesired behaviour;
these prevent an associated goal from being achieved. By progressively refining obstacles, we can obtain the origin
of some undesired behaviour; this may be reflected as a vulnerability or a threat, and contribute to risk analysis.

16.1 Adding, updating, and deleting a goal

• Click on the Requirements/Goals button to open the Goals table. As the above figure illustrates, next to goal
name is the current status for the goal. If a goal is defined as OK, then this goal is refined by a requirement,
or by one or more goals. Goals with the status to refine have yet to be refined or operationalised. Goals with
the status Check have been refined by one or more obstacle, and these should be examined to find a root
threat or vulnerability.

• Click on the Add button to open the Goal form, and enter the name of the goal.

• Click on the Add button in the environment card, and select an environment to situate the goal in. This will
add the new environment to the environment tab.

• In the Definition folder, enter the goal definition, and select the goal category and priority. Possible goal
categories are: Achieve, Maintain, Avoid, Improve, Increase, Maximise, and Minimise. Possible priority
values are Low, Medium, and High. Enter the fit criteria which must hold for this goal to be satisfied, and
any issues or comments relating to this goal.

• If this goal refines a parent goal, click on the Goals tab, click on Add button in the goals table to to open
the Add Goal Refinement form. In this form, select the Goal from the Type combo box, and select the Sub-
goal, refinement type, and an Alternate value. Possible refinement types are: and, or, conflict, responsible,
obstruct, and resolve. The alternative value (Yes or No) indicates whether or not this goal affords a goal-tree

59

CAIRIS User Manual, Release 2.3.8

60 Chapter 16. Goals, Requirements, and Obstacles

CAIRIS User Manual, Release 2.3.8

for an alternate possibility for satisfying the parent goal. It is also possible to enter a rationale for this goal
refinement in the refinement text book. Clicking on Update will add the refinement association to memory,
but this will not be committed to the database until the goal is added or updated.

• If this goal refines to sub-goals already specified, Click on the Sub-Goals tab and add a goal refinement
association as described in the previous step. A goal may refine to artifacts other than goals, specifically
tasks, requirements, obstacles, and domain properties.

• Goal refinements can also be specified independently of goal creation or modification via the Requirements
/ KAOS Associations menu.

• If any aspect of the goal concerns one or more assets, then these can be added by clicking on the Concerns
folder and adding the asset/s to the concern list. Adding an asset concern causes a concern comment to be
associated to the asset in the asset model. If the goal concerns an association between assets, the associa-
tion can be added by clicking on the Concern Association tab and adding the source and target assets and
association multiplicity to the concern association list. In the asset model, this association is displayed and
a concern comment is associated to each asset in the association.

• Click on the Create button to add the new goal.

• Existing goals can be modified by clicking on the goal name in the Goals table, making the necessary
changes, and clicking on the Update button.

• To delete a goal, select the goal to delete in the Goals table, and select the Delete button. If any artifacts are
dependent on this goal then a dialog box stating these dependencies are displayed. The user has the option
of selecting Yes to remove the goal dependencies and the goal itself, or No to cancel the deletion.

16.2 Goal Modelling

Goal models can be viewed by clicking on the Models/Goal menu option, and selecting the environment to view
the environment for.

By changing the environment name in the environment combo box, the goal model for a different environment
can be viewed.

By clicking on a model element, information about that artifact can be viewed.

Goal models can also be filtered by goal. Applying a filter causes the selected goal to be displayed as the root
goal. Consequently, goals are only displayed if they are direct or indirect leafs of the filtered goal.

For details on how to print goal models as SVG files, see Generating Documentation.

16.2. Goal Modelling 61

CAIRIS User Manual, Release 2.3.8

16.2.1 Template Goals

You can specify libraries of template goals that you might form the basis of architectural patterns.

These can be added, updated, and deleted in much the same way as standard goals.

16.3 Adding, updating, and deleting an obstacle

• Click on the Requirements/Obstacle menu to open the Obstacles table box, and click on the Add button to
open the Obstacle dform.

• Enter the name of the obstacle, and click on the Add button in the environment card, and select an environ-
ment to situate the obstacle in. This will add the new environment to the environment list.

• In the Definition page, enter the obstacle definition, and select the obstacle category. Possible obstacle
categories are: Confidentiality Threat, Integrity Threat, Availability Threat, Accountability Threat, Vulner-
ability, Duration, Frequency, Demands, and Goal Support.

• Enter a probability value (if known), together with a rationale statement justifying the value. When set,
probability values need to be between 0 and 1, e.g. 0.2.

• Like goals, obstacle refinements can be added via the Goals and Sub-Goals tabs.

• If any aspect of the obstacle concerns one or more assets, then these can be added by clicking on the
Concerns add and adding the asset/s to the concern list. Adding an asset concern causes a concern comment
to be associated to the asset in the asset model.

• Click on the Create button to add the new obstacle.

• Existing obstacles can be modified by selecting the obstacle in the Obstacles table, making the necessary
changes, and clicking on the Update button.

• To delete an obstacle , select the obstacle to delete in the Obstacles table, and select the Delete button. If
any artifacts are dependent on this obstacle then a dialog box stating these dependencies are displayed. The
user has the option of selecting Yes to remove the obstacle dependencies and the obstacle itself, or No to
cancel the deletion.

62 Chapter 16. Goals, Requirements, and Obstacles

CAIRIS User Manual, Release 2.3.8

16.3. Adding, updating, and deleting an obstacle 63

CAIRIS User Manual, Release 2.3.8

16.4 Obstacle Modelling

Obstacle models can be viewed by clicking on the Models/Obstacle menu button, and selecting the environment
to view the environment for.

In many ways, the obstacle model is very similar to the goal model. The main differences are goal filtering is not
possible, only the obstacle tree is displayed, and obstacles refine to obstacles, as opposed to goals.

A KAOS obstacle model can be seen as a goal-driven form of a Fault Tree. However, unlike fault trees, obstacle
modelling is closely tied to other artifacts such as previous knowledge about attacks and information about the
attackers that might carry these out.

Where useful statistical data about possible attacks exists, this information can help us predict the likelihood of
particular obstacles being satisfied. When a probability value is specified in obstacles for this likelihood then a
rationale statement also needs to be provided to justify it. This is necessary because, when attack patterns are
imported into a CAIRIS model, it may not be immediately obvious that the obstacle or the obstacle model arose
from them. By proving this justification, we have some way of understanding the thinking that motivated this
value. Based on these values, we can evaluate the probability of a particular cut of an obstacle tree based on the
same equations used to evaluate the faults in a fault tree. For example, for an obstacle O with leaf goals O1 and O2,
the probability of O1 where O1 and O2 are AND-refinements is O1 x O2; where O1 and O2 are OR-refinements
then the probability is O1 + O2.

Obstacles are coloured with a shade of red based on the probability set when defining the obstacle. The probability
can be a real number between 0 and 1, where the default value is 0.

For details on how to print obstacle models as SVG files, see Generating Documentation.

64 Chapter 16. Goals, Requirements, and Obstacles

CAIRIS User Manual, Release 2.3.8

16.5 Adding, updating, and deleting requirements

Requirements are accessible by selecting the Requirements/Requirements menu option. Each requirement is as-
sociated with an asset, or an environment. Requirements associated with assets may specify the asset, constrain
the asset, or reference it in some way. Requirements associated with an environment are considered transient, and
remain associated with an environment only until appropriate assets are identified.

• To add a requirement, click on the Add button in the requirements table.

• Enter the requirement description, rationale, fit criterion, and originator in the appropriate cells, select the
priority (1,2, 3), and the requirement type (Functional, Data, Look and Feel, Usability, Performance, Oper-
ational, Maintainability, Portability, Security, Cultural and Political, and Legal).

• When the attributes have been entered, click on the Create button to add the requirement.

• When a requirement has been added or update, the asset/environment filter will be updated based on the
asset or environment the new/updated requirement is associated with.

• In the requirements table, a requirement can be deleting by clicking on the delete button.

16.6 Visualising Requirements Quality using Chernoff Faces

Requirements quality is automatically scored based on requirements completeness, the presence of an imperative
phrase, and ambiguity.

These are displayed using cartoon Chernoff Faces. Eye-brow shape indicates the completeness of a given require-
ment. If no text is found in certain fields, or phrases like TBC, none, or not defined are present, the completeness
score is marked down accordingly, and the eye-brows convey a negative mood.

The eye shape indicates whether or not an imperative phrase exists in the requirement description. If such a phrase
exists then the eyes become vertically elongated. The mouth indicates the presence of weak or fuzzy phrases, such
as mostly, appropriate, normal, or adequate; the presence of these phrases turn the smile into a frown.

16.5. Adding, updating, and deleting requirements 65

CAIRIS User Manual, Release 2.3.8

66 Chapter 16. Goals, Requirements, and Obstacles

CAIRIS User Manual, Release 2.3.8

Chernoff Faces can be seen by viewing the Requirements model (accessible via the Models/Requirements menu)
or the Risk model (accessible via the Models/Risk menu).

16.6.1 Template Requirements

alt TemplateRequirementDialog

You can specify libraries of template requirements that you might form the basis of security and architectural
patterns.

These can be added, updated, and deleted in much the same way as other CAIRIS objects.

16.7 Attack tree modelling with obstacles

Attack trees are a formal methodological way of describing the security of systems. Together with Data Flow
Diagrams (DFDs) these are a standard for visualising threat models.

Because obstacle models are represented using the same top-down notation as attack trees, they are a good candi-
date for representing attack.

You can import attack trees represented as Dot files directly into a CAIRIS model. See the ‘Importing and
Exporting models‘_ section for more details on how to import models into CAIRIS.

16.7. Attack tree modelling with obstacles 67

CAIRIS User Manual, Release 2.3.8

68 Chapter 16. Goals, Requirements, and Obstacles

CHAPTER 17

Use Cases

Use cases are sequences of actions a system performs that yields an observable result of value to a particular actor;
in CAIRIS, actors are analogous to roles.

17.1 Adding, updating, or deleting a use cases

• Click on the Requirements/Use Case menu to open the Use Cases table, and click on the Add button to open
the Use Case form.

• Enter a use case name, a short code, details of the author, and – in the Description folder – the objective
of carrying out the use case. In the Actors folder, you should also add one or more roles that constitute the
actors for this use case.

• Click on the Add button in the environment card, and select an environment to situate the use case in. This
will add the new environment to the environment list.

• In the Preconditions folder, enter any pre-conditions that need to hold in this context of use before the use
case begins.

• In the Postconditions folder, enter any post-conditions that need to hold in this context of use once the use
case completes.

• In the Flow folder, click on the Add button in the Step table to add a step to the use case. In the Use Case
Step dialog, you should describe how the actor or system interact within this step. You should then click on
Update to add the step to the use case.

• Click on the Create button to add the new use case.

• Existing use cases can be modified by clicking on the use case in the Use Cases table, making the necessary
changes, and clicking on the Update button.

• To delete a use case, select the use case to delete in the Use Cases, and click the Delete button. If any
artifacts are dependent on this use case then a dialog box stating these dependencies are displayed. The user
has the option of selecting Yes to remove the use case dependencies and the use case itself, or No to cancel
the deletion.

69

CAIRIS User Manual, Release 2.3.8

70 Chapter 17. Use Cases

CAIRIS User Manual, Release 2.3.8

17.1. Adding, updating, or deleting a use cases 71

CAIRIS User Manual, Release 2.3.8

72 Chapter 17. Use Cases

CAIRIS User Manual, Release 2.3.8

17.2 Add exceptions to use case steps

• Select the step and click on the Add button in the Exceptions table.

• In the Use Case Step Exception dialog, enter the name of the exception, the category of threat, vulnerability,
or usability conflict associated with this exception, and a definition of the exception.

• Select the goal or requirement that this step conflicts with, otherwise select the None radio button. Goals are
visible only if you have added a sub-goal refinement relationship between goals and this use case. Require-
ments are visible only if you have added a manual ‘Supported by’ traceability link between requirements
and this use case.

• Click Add to add the exception to the Exceptions table. When the use case is created or update, obstacles
are generated based on exceptions associated with goals or requirements.

• Existing exceptions can be modified by double clicking on the step in the Exceptions table, making the
necessary changes, and clicking on the Update button.

17.2. Add exceptions to use case steps 73

CAIRIS User Manual, Release 2.3.8

74 Chapter 17. Use Cases

CHAPTER 18

User goals and user goal models

CAIRIS supports the specification, modelling, and validation of user goal models. These models are based on a
subset of the Goal-oriented Requirements Language (GRL) : a language for modelling intentional relationships
between goals.

There are several reasons why you might find working with user goals useful.

• Expressing persona data using user goals can help elicit intentional relationships that support or refute
aspects of a persona’s behaviour.

• Agent-oriented goal modelling language are popular in Requirements Engineering, making a user goal
model a potential vehicle for interchange between RE methods, techniques, and tools.

• By exploring the way that user goals contribute to other user goals, it is possible to identify new require-
ments, threats, or vulnerabilities resulting from goals that are satisfied or denied.

User goals represent the intentional desires of actors, where actors are personas. Three types of user goals can be
specified in CAIRIS:

• [Hard] goals are user goals that can be measurably satisfied.

• Soft goals are user goals with less well-defined success criteria that can be satisficed.

• Beliefs capture perceptions or opinions that are important to the actor.

User goal models can be generated in CAIRIS or, alternatively, can be exported to jUCMNav.

18.1 Adding, updating, and deleting user goals

Before you can create a user goal, you first need to create a document reference. If document references represent
the factoids upon which a persona is based, a user goal is this factoid expressed in intentional terms.

• To create a user goal, click on the UX/User Goals menu to open the user goals table, and click on the Add
button to open the user goal form.

• Enter the name of the user goal. Because they expressed intentions, user goals should follow the naming
convention of “goal [be] achieved”, e.g. “AJS task captured”.

• Select the persona associated with this user goal.

• Indicate whether the user goal is a belief, [hard] goal, or soft goal.

75

https://en.wikipedia.org/wiki/Goal-oriented_Requirements_Language
http://jucmnav.softwareengineering.ca/foswiki/ProjetSEG

CAIRIS User Manual, Release 2.3.8

• Select the Reference grounding the user goal. If this is a document reference, select Document as the
element type and select the document reference name from the combo box. If the user goal is based on a
persona characteristic, select Persona as the element type. To help you phrase the user goal, details of the
document reference or persona characteristic are displayed.

• If you wish, you can override the calculated satisfaction score with an initial satisfaction value. The available
values are Satisfied (100), Weakly Satisfied (50), None (0), Weakly Denied (-50), Denied (50).

• If you wish to associate the user goal with a KAOS goal, click on the Add button in the System Goal table
to select the goal.

• Click on the Create button to add a new user goal.

• Existing user goals can be modified by clicking on the user goal in the User Goals table, making the neces-
sary changes, and clicking on the Update button.

• To delete a user goal, select the user goal to delete in the User Goals table, and click on the Delete button.

18.2 Adding, updating, and deleting user goal contributions

• To create a user goal contribution, click on the UX/User Goal Contributions menu to open the user goal
contributions table, and click on the Add button to open the user goal contribution form.

• Depending on the reference grounding the source user goal, select Document or Persona as the source type,
and select the source user goal name.

• Depending on the reference grounding the destination user goal, select Document or Persona as the source
type, and select the destination user goal name.

• Indicate whether the source user goal is the means or the end of the user goal contribution link.

76 Chapter 18. User goals and user goal models

CAIRIS User Manual, Release 2.3.8

• Select the strength of the contribution link. The options available are Make (100), SomePositive (50), Help
(25), Hurt (-25), SomeNegative (-50), and Break (-100).

• Click on the Create button button to add a new user goal contribution.

• Existing contribution links can be modified by clicking on the contribution in the user goal contributions
table, making the necessary changes, and clicking on the Update button.

• To delete a user goal contribution, select the contribution link to delete in the user goal contributions table,
and click on the Delete button.

18.3 Task contributions

In addition to adding an initial satisfaction level for user goals, you can also set the contribution level that a task
has on one or more user goals.

• To add such a contribution link, in the appropriate task, click on the Add button in the User Goal Contribu-
tion table in the Concerns folder for the appropriate task environment.

• From the Task Contribution dialog box, select the user goal concerned with the task in this environment and
click Ok. The task-goal contribution link will be added when the task is created or updated.

18.4 Adding User goal elements to persona characteristics

User goals can be associated with persona characteristics, and their supporting grounds, warrants, or rebut-
tals. User goals drawn from persona characteristics are implicitly linked with user goals associated with these
grounds/warrants/rebuttal elements, so adding user goals while working with persona characteristics is a good
way of initially specifying user goal models.

• To add these User goal elements, open the persona characteristic you want to update, and click on the User
Goal Elements folder.

• Select the Element type for the user goal. This can be either a belief, goal, soft goal, or task (tasks are
relevant only if exporting to jUCMNav).

18.3. Task contributions 77

CAIRIS User Manual, Release 2.3.8

78 Chapter 18. User goals and user goal models

CAIRIS User Manual, Release 2.3.8

• Enter a user goal that expresses the characteristic in intentional terms.

• For each appropriate grounds, warrant, and rebuttal reference, click on the reference to open the character-
istic reference dialog.

• Expresses the ground, warrant, or rebuttal reference in intentional terms.

• Select the element type for this synopsis this can be a belief, goal or soft goal.

• Given the intentional relationship between this element and the belief, goal, softgoal, or task associated with
the persona characteristic, indicate whether this element is a means for achieving the characteristic element’s
end by selecting Means in the Means/End combo box. Alternatively, if the characteristic’s element is a
means for achieving this user goal element end then select End.

• Use the Contribution box to indicate how much this reference contributes to achieving its means or end.
Possible values are Make (100), SomePositive (50), Help (25), Hurt (-25), SomeNegative (-50), and Break
(-100).

• Click on the Save button to update the persona characteristic, and close the dialog.

• Click on the Update button on the persona characteristic form to save the persona characteristic.

18.5 Adding GRL elements to use cases (jUCMNav export only)

Use cases can make a contribution to GRL elements associated with persona characteristics. These use cases are
associated with GRL goals, and the use case steps are refined as GRL tasks. These are associated with either asset,
component, or role actors.

• To add these GRL elements and contribution relationships, open the use case to be updated, and select the
Contribution folder.

• Select the goal or soft goal the use case contributes to, indicate whether the use case is a means or an end in
the intention relationships, and – using the Contribution box – indicate how much the use case contributes
to achieving its means or ends.

• Click on the Flow folder, and double click on the step you want to associate the GRL task with.

• Enter a synopsis that expresses the use case step in intentional terms.

• Select the GRL actor type and actor to associate the GRL task with. Permissable actor types are assets,
components, and roles.

• Click on the Update button to update the use case step, and close the dialog.

• Click on the Update button on the use case form to save the use case.

18.5. Adding GRL elements to use cases (jUCMNav export only) 79

CAIRIS User Manual, Release 2.3.8

80 Chapter 18. User goals and user goal models

CAIRIS User Manual, Release 2.3.8

18.6 Viewing a user goal model

To view the user goal model, click on the Models/User Goal model. Like other models, clicking on model nodes
provides more details on the user goal or task.

18.7 Working with workbooks

CAIRIS can generate an Excel workbook for capturing user goals and contribution links from persona charactac-
teristics. To create a workbook, select the System/Export menu, click on the User goals (Workbook) radio button,
enter the spreadsheet file to be created, and click on the Export button.

Note: If you have server access, you can also run the cairis/bin/ug2wb.py script, indicating the user account,
database, and name of the XLSX file to be generated, i.e. ./ug2wb.py --user test --database
default RickGoals.xlsx.

The generated Excel workbook (which is compatible with LibreOffice), contains UserGoal and UserContribution
worksheets. Edited cells for both sheets are coloured green.

18.6. Viewing a user goal model 81

CAIRIS User Manual, Release 2.3.8

The UserGoal worksheet is pre-populated with read-only data on the persona characteristic or document reference
name, its description, the persona it is associated with, and an indicator to whether the reference corresponds
to a persona [characteristic] or document reference. When completing the worksheet, you should indicate the
intentional elements associated with the persona characteristics or document references providing their grounds,
warrants, or rebuttals. You should also indicate the element type (goal, softgoal, or belief), and - if you wish - the
initial satisfaction level using the dropdown lists provided. When generating a CAIRIS model, new user goals will
only be created if cell values for each row are complete.

The source and destination cells in the ContributionsSheet are pre-populated once user goals have been added in
the UserGoal sheet, so you only need to ensure the means/end and contribution links are set. When generating a
CAIRIS model, contribution links will only be created if both Source AND Destination values have been set, i.e.
their associated user goals have been defined.

To re-import the completed workbook back to CAIRIS, select the System/Import menu, select User goals (Work-
book) from the dropdown box, select the workbook to be imported, and click on the Import button.

Note: If you have server access, you can also run the cairis/bin/wb2ug.py script, indicating the name of the
XLSX file to be imported and the name of the CAIRIS model file to be created, i.e. ./wb2ug.py --xlsx
RickGoals.xlsx RickGoals.xml. The resulting model can be imported into CAIRIS, but take care not
to overwrite existing data.

18.8 Generating a jUCMNav compatible GRL model

• To generate a GRL model, select the System/Export GRL menu to open the Export GRL modal dialog.

• Select the Environment, Task, and Persona to create the GRL model for, together with the name of the
output GRL file. Persona GRL elements will be present in the exported model only GRL elements have
been associated with persona cases. Task GRL elements will be present only if (i) a traceability link has
been added between the use cases where GRL elements are elements.

• Click on the Export button to generate a GRL file.

• Assuming you have a project open in jUCMNav, you can import this GRL file by selecting the File/Import
menu in Eclipse to open the Import wizard, selecting the Other | Import UCM / GRL / URN option, and
then selecting the generated GRL file.

82 Chapter 18. User goals and user goal models

CAIRIS User Manual, Release 2.3.8

18.8. Generating a jUCMNav compatible GRL model 83

CAIRIS User Manual, Release 2.3.8

84 Chapter 18. User goals and user goal models

CHAPTER 19

Dependencies

CAIRIS supports the modelling of strategic dependencies between roles, where these dependers depend on de-
pendees for a dependum (goals, assets, or tasks).

19.1 Adding, updating, and deleting a dependency

19.2 Viewing dependencies

Dependencies can be viewed by Responsibility models by clicking on the Models/Responsibility menu, and se-
lecting the environment to view the environment for.

Dependencies are indicated by the rounded arrows that flow from the depender to the dependee through the de-
pendum.

85

CAIRIS User Manual, Release 2.3.8

19.3 Introducing Personal data into CAIRIS using dependencies

Personal data can be recognised in CAIRIS by carrying out the following steps.

1. Create or edit a Data Subject role, and associate with this with a new persona; this could represent the
natural person whose data is subject to processing, or a data controller or processor from another system
contributing this data. The persona will be useful for capturing any assumptions or expectations this entity
might have.

2. Create or edit a Data Controller role.

3. Create a dependency between the Data Subject dependee role and the Data Controller depender, where the
dependum is a newly created or existing asset that you wish to designate as personal data.

86 Chapter 19. Dependencies

CHAPTER 20

Security Patterns

Security Patterns are solution structures, which prescribe a solution to a security problem arising in a context.
Many components and connectors in secure system architectures are instances of security patterns but, in many
cases, the reasoning for a given pattern’s inclusion is not always clear. The requirements needed to realise these
patterns are also often omitted, making the job of reasoning about the consequences of situating the pattern dif-
ficult. Moreover, security patterns may be described in a context, but not all collaborating assets in a security
pattern may be evident in all possible contexts of a system’s use. The following sections describe how CAIRIS
treats security patterns and deals with these weaknesses.

Security Patterns in CAIRIS consist of the following elements:

• A description of the context a pattern is relevant for.

• A problem statement motivating the need for the pattern.

• A solution statement describing the intrinsics of the pattern.

• The pattern structure, modelled as associations between collaborating asset classes.

• A set of requirements, which need to be fulfilled in order to realise the pattern. These requirements are
based on template requirements.

Before a security pattern can be defined in CAIRIS, template assets – which represent the collaborating asset
classes – need to be first defined.

Before a security pattern can be situated in CAIRIS environments, the environments themselves need to be first
created.

20.1 Create a template asset

Template assets can be best described as context-free assets. When they are created, template assets do not form
part of analysis unless they are implicitly introduced. This ‘implicit introduction’ occurs when a security pattern
is situated.

The Template Patterns dialog can be opened by selecting the Options/Template Assets menu option.

The process for creating, updating, and deleting a template asset is almost identical to the processes uses for
normal assets. The only difference is the lack of environment-specific properties. Security properties are only
defined once for the asset.

87

CAIRIS User Manual, Release 2.3.8

To situate an asset in an environment, click on the situate button in the template assets list, and specify the
environments to situate the template asset in. After a template asset is situated within an environment, these
properties should be revised in the assets generated on the basis of these. This is because the values associated
with the template asset properties may not be inline with assumptions held about Low, Medium, and High assets
in the specification being developed.

20.2 Create a security pattern

• Select the Risks/Security Patterns menu option to open the Security Patterns table, and click on the Add
button to open the Security Pattern dialog form.

• Enter the security pattern name, and description of the context the security pattern is relevant for,

• a problem description motivationg the security pattern, and the intrinsics of how the security pattern solves
the pre-defined problem.

• Click on the Structure tab, and the Add button in the associations table to add associations between tem-
plate assets; these associations form the collaborative structure for the pattern. The procedure for entering
associations is based on that used for associating assets.

• Click on the Requirements tab, and the Add button in the requirements table to add names of template
requirements needing to be satisfied to realise the pattern.

• Click on the Create button to add the new security pattern.

• Existing security patterns can be modified by double clicking on the security pattern in the security patterns
table, making the necessary changes, and clicking on the Update button.

• To delete a security pattern, click on the Delete button besides pattern to delete in the security patterns table.

88 Chapter 20. Security Patterns

CAIRIS User Manual, Release 2.3.8

20.2. Create a security pattern 89

CAIRIS User Manual, Release 2.3.8

20.3 Situate a security pattern

• To introduce a security pattern into the working project, select the Risks/Security Patterns menu, click on
the situate button for the pattern to be situated.

• Select the environment to situate the environment in, and click on Ok to situate the pattern.

Template assets will be instantiated as assets, and situate in the stipulated assets. Requirements associated with
the pattern, will be introduce and associated with the stipulated assets in the pattern definition. These assets will
be ordered based on the order of definition in the pattern structure.

90 Chapter 20. Security Patterns

CHAPTER 21

Vulnerabilities

Vulnerabilities are weaknesses of a system that are liable to exploitation.

21.1 Create a vulnerability

91

CAIRIS User Manual, Release 2.3.8

• Select the Risk/Vulnerabilities menu to open the Vulnerabilities table.

• Click on the Add button to open the Vulnerability form.

• Enter the vulnerability name and description, and select the vulnerability type from the combo box.

• Click on the Add button in the environment card, and select an environment to situate the vulnerability in.
This will add the new environment to the environment list.

• Select the vulnerability’s severity for this environment, and add exposed assets by clicking on the Add
button in the assets table, and selecting one or more assets from the selected environment.

• Click on the Create button to add the new vulnerability.

• Existing vulnerabilities can be modified by clicking on the vulnerability in the Vulnerabilities table box,
making the necessary changes, and clicking on the Update button.

• To delete an vulnerability, click on the delete button next to the vulnerability to be deleted in the Vulnerabil-
ities table. If any artifacts are dependent on this vulnerability then a dialog box stating these dependencies
are displayed. The user has the option of electing Yes to remove the vulnerability dependencies and the
vulnerability itself, or No to cancel the deletion.

21.2 Introducing template threats and vulnerabilities

Libraries of template vulnerabilities can be imported into the CAIRIS database and introduced to the current
CAIRIS model. Examples of such libraries in cairis/examples/directories. To import one of these, click on the blue
Add button at from the top of Vulnerabilities or Threats table to open the Introduce from vulnerability directory

92 Chapter 21. Vulnerabilities

CAIRIS User Manual, Release 2.3.8

dialog. When a vulnerability is selected, the Vulnerability form is opened, and pre-populated with information
from the directory entry.

21.2. Introducing template threats and vulnerabilities 93

CAIRIS User Manual, Release 2.3.8

94 Chapter 21. Vulnerabilities

CHAPTER 22

Attackers

Attackers launch attacks in the form of threats. Attackers are similar to personas in that they fulfill one or more
roles, and can be personalised with additional information.

Certain capabilities and motivations may be associated with attackers. CAIRIS is pre-loaded with a selection of
these, but these can be modified, or new capabilities and motivations created by selecting the Options/Capabilities
or Options/Motivations menu options.

22.1 Adding, updating, and deleting an attacker

• Select the Risk/Attackers toolbar menu to open the Attackers table, and click on the Add button to open the
Attacker form.

• Enter the attacker name, and a description for the attacker.

• If you have decided to personalise the attacker with a picture, this can be added by clicking on avatar
silhouette next to the attacker description, and selecting a image to represent the attacker. Permitted image
types are jpg, png, giff, and bmp.

• Click on the Add button in the environment card, and select an environment to situate the attacker in. This
will add the new environment to the environment list.

• Click on the Add button on the Roles table to associate one or more roles to the attacker.

• Click on the Add button on the Motivation and Capability tables to add one or more motive and capability
values. For the capability, a value of Low, Medium, or High also needs to be selected.

• Click on the Create button to add the new attacker.

• Existing attackers can be modified by clicking on the attacker in the Attackers table, making the necessary
changes, and clicking on the Update button.

• To delete an attacker, click on the Delete button next to the attacker to be removed in the Attackers table.
If any artifacts are dependent on this attacker then a dialog box stating these dependencies are displayed.
The user has the option of selecting Yes to remove the attacker dependencies and the attacker itself, or No
to cancel the deletion.

95

CAIRIS User Manual, Release 2.3.8

96 Chapter 22. Attackers

CHAPTER 23

Threats

23.1 Adding, updating, and deleting a threat

Threats are synonymous with attacks, and can therefore only be defined if an associated attacker has also been
defined. Like vulnerabilities, threats are associated with one or more assets. However, threats may also target
certain security properties as well, in line with security values that an attacker wishes to exploit.

A threat is also of a certain type. CAIRIS is pre-loaded with a selection of these, but these can be modified, or
new threat types created by selecting the Options/Threat Types menu option.

• Select the Risks/Threats menu to open the Threats table, and click on the Add button to open the Threat
form.

• Enter the threat name, the method taken by an attacker to release the threat, and select the threat type.

• Click on the Add button in the environment card, and select an environment to situate the threat in. This
will add the new environment to the environment list.

• Select the threat’s likelihood for this environment

• Associate attackers with this threat by clicking on the Add button above the Attacker table, and selecting
one or more attackers specific to the environment.

• Add threatened assets by clicking on the Add button above the Assets table, and selecting one or more assets
specific to the environment.

• Add the security properties to this threat by clicking on the Add button above the properties table, and
selecting a security property, value, and rationale.

• Click on the Create button to add the new threat.

• Existing threats can be modified by clicking on the threat in the Threats table, making the necessary changes,
and clicking on the Update button.

• To delete a threat, click on the Delete button threat next to the threat to be removed in the Threats table. If
any artifacts are dependent on this attacker then a dialog box stating these dependencies are displayed. The
user has the option of selecting Yes to remove the threat dependencies and the threat itself, or No to cancel
the deletion.

97

CAIRIS User Manual, Release 2.3.8

98 Chapter 23. Threats

CHAPTER 24

Threat Modelling

CAIRIS supports two different techniques for threat modelling.

24.1 Data flows and Data Flow Diagrams

Data flow diagrams (DFDs) are graphical models that model the flow of information (data flows) between ex-
ternal human or system actors external to the system (entities), activities that manipulate data (processes), and
persistent data storage (data stores). Together with attack trees. In threat modelling, DFD model elements can be
encompassed by trust boundaries; these occur where entities with different privileges interact.

24.1.1 Adding, updating, and deleting entities, processes, and data stores

Entities are synonyms for assets of type Systems, Hardware, or People. Data stores are synonyms for assets of type
Information. To add, update, or delete entities and data stores, you need to add, delete or update the synonymous
asset.

99

CAIRIS User Manual, Release 2.3.8

Procesess are synonyms for use cases. To add, update, or delete processes, you need to add, delete or update the
synonymous use cases.

24.1.2 Adding, updating, or deleting data flows

• To add a data flow, select the UX / Data Flows menu to open the Data Flows table. Click on the Add button
to open a dialog for adding a new data flow.

• Enter the name for the data flow, select the environment the data flow is specific to, and select the data
flow type. You should also select the from and to types associated with the flow. These types are Entities,
Data Stores, and Processes, where Entities are information, hardware, or people assets, Data Stores are
information assets, and Processes are use cases.

• Click the Add button in the Asset table to choose one or more assets carried by this data flow.

• Should there be any obstructions to the data flow, click the Add button in the Obstacle table to add associated
obstacles.

• Click on the Create button to add the data flow to the Data Flows table.

• An existing data flow can be edited by clicking on a data flow in the Data Flow table, updating any aspect
of the data flow, and clicking on the Update button.

• Data flows can be deleted by clicking on the Delete button associated with the data flow to be removed in
the Data Flows table.

24.1.3 Adding, updating, or deleting trust boundaries

alt Trust Boundary dialog

• To add a trust boundary, select the UX / Trust Boundaries menu to open the Trust Boundaries table. Click
on the Add button to open a dialog for adding a new trust boundary.

• Enter the name, select the type, and enter a description for the trust boundary.

100 Chapter 24. Threat Modelling

CAIRIS User Manual, Release 2.3.8

24.1. Data flows and Data Flow Diagrams 101

CAIRIS User Manual, Release 2.3.8

• Click on the Add button in the environment card, and select an environment to situate the trust boundary in.
This will add the new environment to the environment list.

• Click the Add button in the Components table to situate a process or data store within this environment
specific trust boundary.

• Select the level of privilege that the components in this trust boundary operate at.

• Click on the Create button to add the trust boundary to the Trust Boundary table.

• An existing trust boundary can be edited by clicking on a trust boundary in the Trust Boundaries table,
updating any aspect of the trust boundary, and clicking on the Update button.

• Data flows can be deleted by clicking on the Delete button associated with the trust boundary to be removed
in the Trust Boundaries table.

24.1.4 Viewing Data Flow Diagrams

DFDs can be viewed by selecting the Models/Data Flow menu, and selecting the environment to view the model
for.

alt DFD

By changing the environment name in the environment combo box, the DFD for a different environment can be
viewed. The model can also be filtered by DFD model element.

By clicking on a model element, information about that artifact can be viewed.

For details on how to print DFDs as SVG files, see Generating Documentation.

24.1.5 Modelling DFDs with diagrams.net

You can use diagrams.net to import DFDs into CAIRIS by following the steps below:

1. Create a new blank diagram in diagrams.net .

2. Setup the CAIRIS DFD shape library by going to the File >> Open Library from >> URL menu, and
entering the URL https://cairis.org/stencils/cairis_dfd.xml.

3. To add an entity, click on the square in the cairis_dfd.xml palette to place an entity on the canvas. Double
click on the shape to set its label, which represents the entity name. When importing the model, if an asset
corresponding with the entity does not exist, CAIRIS will create a corresponding asset with some default
values.

102 Chapter 24. Threat Modelling

https://diagrams.net
https://diagrams.net

CAIRIS User Manual, Release 2.3.8

4. To add a process, click on the rounded box in the cairis_dfd.xml palette to place a process on the canvas.
Double click on the shape to set its label, which represents the process name. When importing the model, if
a use case corresponding with the process does not exist, CAIRIS will create a corresponding use case (and
associated role) with some default values.

5. To add a data store, click on the parallel lines in the cairis_dfd.xml palette to place a data store on the canvas.
Double click on the shape to set its label, which represents the data store name. When importing the model,
if an asset corresponding with the data store does not exist, CAIRIS will create a corresponding asset with
some default values.

6. To add a data flow between DFD elements, click on the arrow in the cairis_dfd.xml palette to place a data
flow on the canvas. Double click on the data flow to set its label, which represents the data flow name. Right
click on the data flow and select Edit Data to set the assets carried in the flow. By default, this is set to
UndefinedInformation. This should be changed to represent the information assets carried by the data flow.
Multiple assets should be separated by a comma. When importing the model, if assets corresponding with
this comma separated list do not exist, CAIRIS will create them.

7. To encompass processes and data stores in a trust boundary, click on the dashed square in the cairis_dfd.xml
palete to place a trust boundary on the canvas. Right click on the shape and select Edit Data to set the trust
boundary name. Once set, move the processes and data stores within the trust boundary. Please note that,
as external systems, entities should not be place within trust boundaries.

6. Once the diagram is ready, select the File >> Export as >> XML. . . menu option, unclick the Compressed
tick box, click on the Export button, and enter the name of the diagram to be exported.

7. In CAIRIS, select the System >> Import menu to open the Import form. Select diagrams.net (Data Flow
Diagram) from the Model combo box, click on the File button to choose the exported diagrams.net model
to import, and select the environment to import the DFD into.

Note: We recommend you use the cairis_dfd.xml shape library when data flow diagramming, but you could -
in theory - use any shape in diagrams.net to model DFD elements. However, you must ensure that you use the
Edit Data option to add a type property to the shape, which should be set to a valid DFD type (entity, process,
datastore, or trustboundary). You also need to set a name property for trust boundaries. Similarly, you also use
any line to link DFD elements, but you need to use the Edit Data option to add a assets property and define at
least one asset as it value.

24.2 Attack trees

Attack trees are a formal, methodical way of describing the security of systems. They are a lightweight approach
for modelling attacks; this is a good thing as they are simple enough that people can quickly create and contribute
to them.

CAIRIS doesn’t support attack trees, but obstacle models are represented using the same top-down approach
notation as attack tree. This makes them a good candidate for representing the attacks, and the sort of things that
need to hold for an attack to be successful.

Attack trees represented in Dot can be imported into CAIRIS by selecting the File/Import Model menu, selecting
‘Attack Tree (Dot)’ from the combo box, and choosing the .dot file to import. You will then be prompted for an
environment to import the newly generated obstacles and obstacle associations into, together with the name of the
contributor who created or imported the tree.

More details on using attack trees with CAIRIS can be found in this blog post .

24.2. Attack trees 103

https://graphviz.gitlab.io/_pages/doc/info/lang.html
https://cairis.org/cairis/attacktrees/

CAIRIS User Manual, Release 2.3.8

104 Chapter 24. Threat Modelling

CAIRIS User Manual, Release 2.3.8

24.2. Attack trees 105

CAIRIS User Manual, Release 2.3.8

106 Chapter 24. Threat Modelling

CHAPTER 25

Using CAIRIS as tool-support for STPA

25.1 Overview

STPA (System-Theoretic Process Analysis) is a hazard analysis technique; it assumes accidents may be caused by
unsafe interactions between system components, which may or may not have failed. CAIRIS can support the use
of STPA because the concepts it supports are analogous with those required by STPA.

You may wish to use pen and paper to start your design exploration with STPA; this is entirely appropriate. How-
ever, as the STPA outputs become more complex, software tool support becomes useful. CAIRIS can help by
providing automatic traceability between STPA elements, automatic generation of visual models and documenta-
tion, and reasoning support to help identify and validate casual scenarios. As such, using CAIRIS can to support
your use of STPA could improve your efficiency as your analysis evolves.

One particular benefit of CAIRIS is its interoperability. For example, you may wish to rely on Excel to maintain
a hazard list or other control structure data. Because Excel is machine readable by many scripting tools, it is
comparatively easy to turn Excel spreadsheets into CAIRIS models, which can be incrementally imported into
CAIRIS, or convert CAIRIS models back to Excel.

In the following sections, we describe how CAIRIS can help with the four steps of STPA. Like the rest of the
CAIRIS documentation, please help us help you by raising an issue about anything unclear, inaccurate, or to raise
request additional content you think might be useful.

25.2 Step 1: Define purpose of the analysis

25.2.1 Identifying losses

You can add losses by creating obstacles with a Loss category.

25.2.2 Identifying system-level hazards

You can add hazards by creating an obstacle with a Hazard category. To link hazards to losses, add a KAOS asso-
ciatio where the head element is the loss obstacle, the tail element in the hazard obstacle, and an And association
type to indicate that the refined hazard needs to be satisfied for the loss to be achieved.

107

https://psas.scripts.mit.edu/home/get_file.php?name=STPA_handbook.pdf
http://github.com/cairis-platform/cairis/issues

CAIRIS User Manual, Release 2.3.8

25.2.3 Defining system-level constraints

System-level constraints can be modelled as goals in CAIRIS. To indicate that the constraint attends to a hazard,
add a KAOS association where the head element is a hazard obstacle, the tail element is the goal representing the
constraint, and the association type is Resolve, to indicate the constraint is necessary for preventing the hazard.

25.2.4 Refining the system-level hazards

Additional obstacles and KAOS associations can model how hazards can be refined.

25.3 Step 2: Model the control structure

This entails creating a data flow diagram (DFD), where processes and data stores are analogous with STPA control
algorithms and process models respectively. To create processes and data stores, you need to create use cases and
information assets respectively. These DFD elements should be encompassed in a trust boundary; the type of trust
boundary can be set to be a Controller, Controlled Process, Sensor or Actuator.

DFD elements interact with each other via data flows. When creating data flows, the type of these data flows can
be set as Control, Feedback, of Information. You also need to specify information asset/s carried by each control,
feedback, or information flow.

CAIRIS now supports a control structure model. As shown in the figure below, which is based on ATC example
in this STPA tutorial . CAIRIS automatically visualises the relationship between trust boundaries - in their role of
controllers, controlled processes, sensor or actuators - and entities, which could represent external systems.

108 Chapter 25. Using CAIRIS as tool-support for STPA

http://psas.scripts.mit.edu/home/wp-content/uploads/2013/04/Basic_STPA_Tutorial1.pdf

CAIRIS User Manual, Release 2.3.8

25.4 Step 3: Identify unsafe control actions

Unsafe control actions can be represented as obstacles. Once identified for a control flow, these can be associated
with data flow. When associating the obstacle, you need to indicate the appropriate UCA keyword (does not
provide, provides, provides too early, provides too late, provides out of order, stopped too soon, applied too long,
not applicable) and provide some textual context for the unsafe action. In the future, we may add support for
automatically generating these obstacles based on the data flow elements, keyword and context but, for now, this
obstacle needs to be manually created.

Once the obstacle has been created, this can be linked with hazards using KAOS associations, where the head
elements are hazard obstacle, and the tail elements are obstacle constituting the unsafe control actions.

25.5 Step 4: Identify loss scenarios

Tasks can be created and linked to hazards and system constraints using the KAOS associations, i.e. where the
task is the tail element and obstacles and/or goals are head elements. Tasks might be used to illustrate why unsafe
control actions occur, and why control actions could be improperly (or not) executed – possibly in the presence of
safety constraints – leading to hazards.

CAIRIS model validation checks can highlight design-level issues that could lead to such scenarios. We are
currently working on STPA specific validation checks, e.g. to identify control actions without feedback.

25.6 Supporting other STPA outputs

KAOS associations can be created to indicate system roles that are responsible for the satisfaction of goals (i.e.
safety constraints).

CAIRIS can automatically generate requirement specifications from CAIRIS models. We are considering the idea
of generating a more specific STPA specification document. We welcome requests for what its format should be.

25.4. Step 3: Identify unsafe control actions 109

https://github.com/cairis-platform/cairis/issues

CAIRIS User Manual, Release 2.3.8

110 Chapter 25. Using CAIRIS as tool-support for STPA

CHAPTER 26

Modelling access control needs and policies

26.1 Overview

Access control needs can be modelled in CAIRIS, together with access control policy statements. If both needs
and policies are captured then model validation checks can identify potentially undesirable or insecure access
possibilities.

26.2 Modelling access needs

Indicating the need subjects have for accessing resources is captured in asset associations, where subjects and
resources are system, information, or people assets. The table below indicates permitted access needs for the
different asset types. For example, a person might read some information, but not vice-versa. It may seem odd
that information should be permitted to access resources but, during early stages of design, stakeholders might
model some system that stores information as an information asset, or an information asset needs to access some
resource because some out-of-scope system or person is handling that information, but capturing information-
information access has some value.

Table 1: Permitted access needs between subjects (rows) and resources
(columns)

System Information People
System Y Y N
Information Y Y N
People Y Y Y

Asset models visually model desired access between subjects and resources, and the ends of asset associations can
capture access control information.

Possible adornments for access needs are one or more of read (r), write (w), and interact (x). The choice of x
is inspired by the execute permission used in unix, but the use of the term interact allows for a wider range of
interaction affordances than execution. Where r, w, or x adornment are not shown on the end of an association, it
is assumed no access needs to take place.

For example, the figure above shows the relationship between a Works Diary and Diary Event. Both are infor-
mation assets and the former contains one or more of the latter. The adornment on the tail end of the Works

111

CAIRIS User Manual, Release 2.3.8

Diary-Diary Event association should be read as a works diary needs to read a diary event. The figure also
indicates that diary events do not need to read, write, or interact with work diaries.

Multiple access needs can be captured in a comma-separated need list. For example, replacing r with r,w in the
above example indicates that a works diary needs to read and write a diary event.

26.3 Modelling access control policies with policy statements

An access control policy captures the set of authorised and unauthorised interactions between assets. These
interactions are captured using policy statements, where statement is defined as Subject X Access X Resource
X Permission, where Access = {read, write, interact} and Permission = {allow,deny}.

A single KAOS goal is associated with a single policy statement. The goal needs to specify concern links to both
the subject and resource assets. The goal should be precise enough to specify the conditions or capabilities the
system needs to satisfy for the policy statement to hold. Where this is not possible, the goal needs to be refined.
Consequently, a complete access control policy should correspond with a complete specification describing the
intent the system needs to satisfy for compliance with the policy.

Access needs should correspond with goals and policy statements, but the absence of needs do not, i.e. adding
deny policy statements. There are other means for capturing the rationale for non-inclusion, and goals may not be
within the scope of analysis. This approach does not preclude the addition of goals and policy statements if they
are.

If there is a goal and policy statement for interaction between a subject and resource, we would expect this to be
refined to read and/or write interactions between the two.

• To add a policy statement, click on the Requirements / Policy Statement menu to open the Policy Statement
table, and click on the Add button to open the Policy Statement form.

• Select the environment and goal with concern links to the subject and resource assets.

112 Chapter 26. Modelling access control needs and policies

CAIRIS User Manual, Release 2.3.8

• Select the subject, access type, resource, and permission.

• Click on the Create button to add the new policy statement.

• Policy statements can be updated and deleted in a similar manner to other CAIRIS objects.

Note: At the time of writing, policy statements are not added to any generated documentation. When they are,
this note will be removed from the documentation.

26.4 Access control model validation checks

A number of access control specific model validation checks are supported, e.g. No-read down violation checks
for conflicting Integrity values. See Access control checks for a full list of supported checks.

26.4. Access control model validation checks 113

CAIRIS User Manual, Release 2.3.8

114 Chapter 26. Modelling access control needs and policies

CHAPTER 27

Risks

A risk is the detriment arising from an attacker launching an attack, in the form of a threat, exploiting a system
weakness, in the form of a vulnerability. Associated with each risk is a misuse case. This describes how the
attacker (or attackers) behind the risk’s threat exploits the risk’s vulnerability to realise the risk.

The current status of Risk Analysis can be quickly ascertained by viewing the Risk Analysis model. This displays
the current risks, the artifacts contributing to the risk, and the artifacts which potentially mitigate it.

27.1 Adding, updating, and deleting a risk

• Select the Risk/Risks menu to open the Risks table, and click on the Add button to open the Risk dialog
form.

• Enter a risk name and select a threat and vulnerability from the respective combo boxes. A risk is valid only
if the threat and vulnerability exist within the same environment (or environments).

• Clicking on the environment name in the environment card populates the risk details card. The impact
folder shows qualitative risk rating, and the mitigated and un-mitigated risk score associated with each risk
response.

• Before a risk can be created, an associated Misuse Case needs to be defined. To do this, click on the Misuse
Case folder.

• Most of the fields in the Misuse Case form have already been completed based on the risk analysis carried
out up to this point. Enter a scenario which describes how the attacker realises the associated risk, i.e.
carries out the threat by exploiting the vulnerability. The scenario written should be written in line with the
attributes and values displayed.

• Click on the Create button to add the new risk.

• Existing risks can be modified by clicking on the risk in the Risks table, making the necessary changes, and
clicking on the Update button.

• To delete a risk, click the Delete button next to the risk to be removed in the Risks table. If any artifacts are
dependent on this risk then a dialog box stating these dependencies are displayed. The user has the option
of selecting Yes to remove the risk dependencies and the risk itself, or No to cancel the deletion.

115

CAIRIS User Manual, Release 2.3.8

27.2 Risk Analysis model

Risk Analysis models show the contribution different design elements make to a risk, as shown below:

Risk Analysis models can be viewed by clicking on the Model/Risks Model menu, and selecting the environment
to view the environment for.

By changing the environment name in the environment combo box, the risk analysis model for a different envi-
ronment can be viewed.

The orientation of the model can be changed by layout radio button. By default, the orientation is set to Vertical
but, if you are creating a kill chain that connects risk to threats or vulnerabilities, you might find a Horizontal
layout helpful.

By clicking on a model element, information about that artifact can be viewed.

The risk analysis model can also be filtered by artifact type and artifact type. Filtering by type displays only the
artifacts of the filtered type, and its directly associated assets. Filtering by artifact name displays only the filtered
artifact, and its directly associated artifacts.

For details on how to print risk analysis models as SVG files, see Generating Documentation.

116 Chapter 27. Risks

CAIRIS User Manual, Release 2.3.8

27.2. Risk Analysis model 117

CAIRIS User Manual, Release 2.3.8

118 Chapter 27. Risks

CAIRIS User Manual, Release 2.3.8

27.2. Risk Analysis model 119

CAIRIS User Manual, Release 2.3.8

120 Chapter 27. Risks

CHAPTER 28

Locations

A Locations object is a collection of location objects connected by links. A location could be anything ranging
from a room, corridor, or even a building. Within a location it is possible to specify instances of assets or personas.
CAIRIS makes it possible to overlay risks onto location models, to explore the impact security might have on a
physical location.

28.1 Adding, updating, and deleting a locations object

• Select the UX / Locations menu to view the list of Locations objects.

• Click on the Add button to open the Locations form, and enter the name of the Locations object.

• To add a location to this object, click on the Add button in the locations card.

• In the Objects folder, click on the Add button to open the Asset Instance dialog. Enter the name of the asset
instance, select the asset name, and click on Add to add the instance object.

• In the Peopler folder, click on the Add button to open the Persona Instance dialog. Enter the name of the
persona instance, select the persona name, and click on the Add button to add the instance object.

121

CAIRIS User Manual, Release 2.3.8

• In the Links folder, click on the Add button to open the Location Link dialog. Select the location you wish
to link this location to, and click on the Add button to add the link between locations. When a link is added,
a corresponding is added to the linked location.

• Click on the Update button to add this location to the Locations object.

• Existing Locations objects can be modified by clicking on the Locations name in the Locations table, click-
ing on individual location rows in the table of locations, and adding or deleting asset instances, persona
instances, or links, before clicking on the Update button.

28.2 Viewing location models

Location models can be viewed by clicking on the Models/Locations menu option, selecting the Locations object
and a specific environment.

122 Chapter 28. Locations

CAIRIS User Manual, Release 2.3.8

28.2. Viewing location models 123

CAIRIS User Manual, Release 2.3.8

124 Chapter 28. Locations

CHAPTER 29

Risk Responses

A risk can be treated in several ways.

By choosing to Accept a risk, we indicate we are prepared to accept the consequences of the risk being realised.
Accepting the risk comes with a cost, and responsibility for accepting a risk must fall on one or more roles.

By choosing to Transfer a risk, we acknowledge that dealing with a risk is out of scope for this project. It may,
however, have a cost associated with it and, by accepting the risk, the risk must become the responsibility of one
or more roles.

By choosing to Mitigate a risk, we may either Prevent, Deter, Detect, or React to a risk. For detective responses,
the response must detect the risk before, during, or after the risk’s realisation. For reactive responses, the response
must be associated with an countermeasure asset derived from a detective response.

29.1 Adding, updating, and deleting a response

• Select the Risk/Responses menu to open the Responses table, and click on the Add button. Select the
response to take from the available options presented.

• Select the risk to associate this response with.

• Click on the Add button in the environment table, and select an environment to situate the threat in. This
will add the new environment to the environment list.

• When the risk name and response type is selected, the response name is automatically generated.

• If an accept or transfer response was selected, a cost and rationale needs to be entered. For transfer re-
sponses, one or more roles also need to be associated with the response.

• If a Detect response is selected, select the Detection Point (Before, Medium, or After).

• If a React response is selected, Click on the Add button above the Detection Mechanism table, and select a
detection mechanism asset.

• Click on the Create button to add the new response.

• Existing responses can be modified by clicking on the response in the Responses table, making the necessary
changes, and clicking on the Update button.

• To delete a response, click the Delete button next to the response to be removed in the Responses table. If
any artifacts are dependent on this response then a dialog box stating these dependencies are displayed. The

125

CAIRIS User Manual, Release 2.3.8

user has the option of selecting Yes to remove the response dependencies and the response itself, or No to
cancel the deletion.

29.2 Generating goals

A goal can be generated from a response by clicking on the Goal button in the responses table. This generates
a goal in each of the environments the response is situated in. The goal name corresponds to the name of the
response.

126 Chapter 29. Risk Responses

CHAPTER 30

Countermeasures

After a response goal has been generated, goal modelling continues until one or more countermeasure require-
ments have been defined and associated with their parent goals. Following this, a countermeasure can be defined.
Defining a countermeasure also has the effect of satisfying a response goal and resolving any obstacles associated
with the underlying risk’s threat or vulnerability.

Countermeasures target a risk’s threat, vulnerability, or both. Countermeasures also have a level of effectiveness.
This effectiveness level determines how much the countermeasure reduces the likelihood of the associated threat,
or severity of the associated vulnerability.

Countermeasures are associated with roles, who may be responsible for developing, maintaining or using the
countermeasure. Consequently, countermeasures are also associated with tasks and, when defining a countermea-
sure, it is also necessary to indicate how much the countermeasure helps or hinders the properties of associated
tasks.

30.1 Adding, updating, and deleting a countermeasure

• Select the Risk/Countermeasures menu to open the Countermeasures form, and click on the Add button to
open the Countermeasure form.

• Enter the countermeasure name and description, and select the countermeasure type. A countermeasure
may be one of the following type: Information, Systems, Software, Hardware, or People.

• Click on the Add button in the environment card, and select an environment to situate the countermeasure
in. This will add the new environment to the environment list.

• Select the countermeasure cost to indicate the general cost of implementing the countermeasure within the
selected environment.

• Click on the Security tab to display the security page. Click on the Add button above the Requirements table,
and select the requirement (or requirements) this countermeasure refines. Following this, click on the Add
button above the Targets table to select the countermeasure’s target/s, together with the countermeasure’s
effectiveness. Finally, add the security properties fostered by this countermeasure via the security properties
box at the bottom of the page.

• Click on the Usability tab to display the usability page. Click on the Add button above the Roles table, and
select the roles associated with this countermeasure. Any tasks associated with these roles are automatically
populated in the Task box at the bottom of the page, together with the person/s carrying out the task. If the
countermeasure helps or hinders a task, double click on the task and modify the task’s attributes accordingly.

127

CAIRIS User Manual, Release 2.3.8

128 Chapter 30. Countermeasures

CAIRIS User Manual, Release 2.3.8

30.1. Adding, updating, and deleting a countermeasure 129

CAIRIS User Manual, Release 2.3.8

• Click on the Create button to add the new countermeasure.

• Existing countermeasures can be modified by clicking on the countermeasure in the Countermeasures table,
making the necessary changes, and clicking on the Update button.

• To delete a countermeasure, click the Delete button next to the countermeasure to be removed in the Coun-
termeasures table. If any artifacts are dependent on this countermeasure then a dialog box stating these
dependencies are displayed. The user has the option of selecting Yes to remove the countermeasure depen-
dencies and the countermeasure itself, or No to cancel the deletion.

30.2 Generating countermeasure assets and security patterns

By clicking on the situate button in the countermeasures list, an associated asset can be generated. If defined,
this will retain the same security properties associated with the countermeasure. The asset will be situated in
whatever environments the countermeasure was situated in. In the asset model, a << safeguard >> association
is added between the countermeasure asset and any assets threatened or exposed by the risk the countermeasure
helps mitigate.

Assets can be generated directly based on the countermeasure properties, or on the basis of a pre-existing template
asset. It is also possible to situate security patterns based on a countermeasure, rather than an asset.

Security Patterns can be imported into the tool by selecting the System/Import Model menu option and, when
selecting the XML model file to be imported, selecting Security Pattern option. An example catalogue file, schu-
macher_patterns.xml, which incorporates a number of patterns from the Security Patterns text book by Schu-
macher et al is included in the cairis/examples/architecture directory.

30.3 Associating countermeasures with pre-existing patterns

In the situate form, you can also associate a countermeasure with a pre-existing security pattern. However, a list
of possible security patterns to choose from will only be displayed if the components of the security pattern are
present in ALL of the environments the countermeasure is situated for.

30.4 Weakening the effectiveness of countermeasures

Countermeasures mitigate risks by targeting its risk elements, i.e. its threats or vulnerabilities. However, when
one or more assets are generated from these countermeasures, several factors may weaken the effect of the coun-
termeasure.

First, situating assets may cause you to look at the environments where the assets are situated in a different light.
Changing properties of assets, or existing threats or vulnerabilities could increase the potency of the risk, thereby
weakening the effect of the countermeasure.

Existing threats or vulnerabilities can also explicitly weaken countermeasures. If a countermeasure asset is as-
sociated with a threat or vulnerability then, when either artifact is created or modified, CAIRIS allows users to
override the effectiveness of the related countermeasure. The detail associated with the risk scores in the Risk
Dialog box will indicate cases where countermeasures have been weakened by threats and/or vulnerabilities.

30.5 Mitigating weakening effects

If a countermeasure is weakened, the weakness by removed by generating a new countermeasure which targets the
weakening threat or vulnerability. If this is carried out, the detail associated with the risk score in the Risk Dialog
box will indicate cases where, although the effectiveness score for the countermeasure holds, this is by virtue of a
countermeasure targeting the weakening threat or vulnerability.

130 Chapter 30. Countermeasures

CAIRIS User Manual, Release 2.3.8

Countermeasures cannot, however, be simply defined on the fly. They arise as the result of rational risk analysis,
so risks need to be defined based on the weakening threats or vulnerabilities.

30.5. Mitigating weakening effects 131

CAIRIS User Manual, Release 2.3.8

132 Chapter 30. Countermeasures

CHAPTER 31

Traceability

31.1 Allowable manual traceability links

CAIRIS is based on the IRIS meta-model. In most cases, traceability between model elements is automatic
because the CAIRIS database knows how model elements are connected based on this meta-model. In some
cases, however, it is necessary to add manual traceability relationships, e.g. between one requirement and other.

The table below indicates what manual links are allowed to be set between elements.

From To
Requirement Task
Task Vulnerability
Requirement Vulnerability
Asset Requirement
Requirement Role
Requirement Use Case
Use Case Task
Requirement Requirement
Requirement Document Reference
Risk Threat
Risk Vulnerability
Component Use Case
Document Reference Vulnerability
Document Reference Obstacle

31.2 Editing manual traceability links

To add manual traceability links, right click on the left arrow for a Supported by (pre-traceability) link, or the
right arrow for a Contributes to (post-traceability link). This will open a modal box for adding the forward or
backwards traceability link.

If the traceability link is between two requirements, you will also be able to add a label describing the nature of
the traceability.

133

CAIRIS User Manual, Release 2.3.8

To delete a manual traceability link, select the Options / Traceability menu, select the environment that the trace-
ability link is specific to if appropriate, and select the delete icon.

31.3 Visualising manual traceability links

Manual traceability links might be visualised in different ways. For example, in this example, a consequences link
is added between the Log Event use cases and Modify PLC software task, which is visible on task models.

134 Chapter 31. Traceability

CAIRIS User Manual, Release 2.3.8

31.3. Visualising manual traceability links 135

CAIRIS User Manual, Release 2.3.8

136 Chapter 31. Traceability

CHAPTER 32

Architectural Patterns

Designing software doesn’t start with a blank page, but with a bricolage of different model elements.

Architectural patterns model pre-defined components, connectors, responsibilities, and requirements or goals that
the model elements satisfy.

32.1 Editing Architectural Patterns

• Select the Requirements / Architectural Patterns table to view the table of Architectural Patterns. The table
provides a summary of the Damage-Effort Ratios for Interfaces, Channels, and Untrusted Surfaces. These
metrics are explained in more detail here.

• To create a new Architectural Pattern in CAIRIS, click on the Add button to open the Architectural Pattern
form.

• Enter the name for the architectural pattern and provide a synopsis for the pattern.

• Select the Component tab, lick on the Add button to add a new Component folder for the component being
created.

• Enter a name for component.

137

http://reports-archive.adm.cs.cmu.edu/anon/isr2011/CMU-ISR-11-121.pdf

CAIRIS User Manual, Release 2.3.8

• Select the Interfaces folder, and click on the Add button to add a new interface.

• Enter the name of the interface, and select whether the interface is provided or required, the interface access
right, and privilege. Click on Add to add the interface to the component.

• Select the Structure folder, and click on the Add button to add a new template asset association to the
component.

• For both the head and tail end of the template asset association, select the template asset, navigability indi-
cator (0 or 1), adornment (inheritance, association, aggregation, composition, or dependency), cardinality
nry (1, , or 1..), and an optional role. Click on Add to add the association to the component template asset
structure.

• If there are template requirements associated with the component, click on the Requirements folder and
click on the Add button to select a requirement, and click on the Add button to add the template requirement
to the component.

• If there are template goals associated with the component, click on the Goals folder and click on the Add
button to select a goal, and click on the Add button to add the template goal to the component.

• To add relationships between template goals associated with the component, click on the Goal Associations
folder and click on the Add button to add a new Goal Association.

• Select the template goal and sub-goals, the form of refinement (and / or), and enter some rationale for this
relationship. Click on the Add button to add this goal association to the component.

• Click on the Update button to add the component to the architectural pattern.

• Select the Connectors folder, and click on the Add button to open the Connector form.

• Enter a name for the connector.

138 Chapter 32. Architectural Patterns

CAIRIS User Manual, Release 2.3.8

• Select the From folder to enter details of the from end of the connector. Enter the role name, and select the
component and component interface.

• Select the To folder to enter details of the to end of the connector. Enter the role name, and select the
component and component interface.

• Select the Details folder to enter information about the connector itself. Select the asset being carried by
the connector, the connector protocol, and the access right needed to interact with the connector. Available
assets are drawn from the asset structure of both components.

• Click on the Update button to add the connector to the architectural pattern.

• Click on the Create button to add the architectural pattern.

32.2 Viewing Architectural Patterns

Architectural patterns can be viewed by clicking on the Models/Architectural Patterns menu option, and selecting
the architectural pattern to display

Components in this model are shaded red based on the component attack surface, This value is based on the DERi
metric.

It is also possible to view asset and goal models associated with a component in an architectural pattern by clicking
on the Models/Component Asset and Models/Component Goal respectively.

32.3 Situating a pattern

• To introduce an architectural pattern into the working project.

32.2. Viewing Architectural Patterns 139

CAIRIS User Manual, Release 2.3.8

140 Chapter 32. Architectural Patterns

CAIRIS User Manual, Release 2.3.8

32.3. Situating a pattern 141

CAIRIS User Manual, Release 2.3.8

142 Chapter 32. Architectural Patterns

CAIRIS User Manual, Release 2.3.8

32.3. Situating a pattern 143

CAIRIS User Manual, Release 2.3.8

• Click on the situate button next to the desired architectural pattern in the architectural patterns table, fol-
lowed by the environment to situate the pattern in. A weakness analysis dialog is displayed, which sum-
marises the threats and vulnerabilities that will become associated with the pattern, the impact to persona
task scores, and obstacles mitigated by goals introduced by the pattern.

• Click on the Ok button introduces the patterns template goals, requirements, and assets as standard goals,
requirements, and assets respectively.

144 Chapter 32. Architectural Patterns

CHAPTER 33

Model Validation

CAIRIS can validate models for a given environment based on potential security and privacy design problems.

To validate a current CAIRIS model, click on the Models/Validate menu and select the environment to check the
CAIRIS model for.

33.1 General validity checks

The general validity checks currently supported are as follows:

Check Description
Reserved characters Check object names for the presence of reserved characters.

145

CAIRIS User Manual, Release 2.3.8

33.2 Security design checks

The security design checks currently supported are as follows:

Check Description
Composi-
tion/Aggregation
Integrity

For Hardware/Software/Information assets, checks asset integrity for the head asset
isn’t lower than the tail asset.

Implicit asset inclu-
sion

Asset implicitly included in an environment because of an asset association but no
security or privacy properties have been set.

Implicit vulnerability Checks whether a goal dependency is obstructed or a related user goal is denied,
thereby introducing a vulnerability due to goal non-fulfilment.

Inherited asset incon-
sistency

Checks an asset inheriting from another asset doesn’t have weaker security or privacy
properties.

Inherited asset type Checks an asset inheriting from another asset have the same asset type.
New risk contexts Risks present in environments that haven’t been accounted for.
Obstructed tasks Where goals operationalise tasks, check root goals can be satisfied if any of its refined

goals are obstructed.
STPA: potential con-
trol action conflict

Checks if multiple control flows feed into controlled processes.

Uncovered exception Exception present in use case without a related obstacle.
Vulnerable non-valued
asset

Asset is vulnerable but no security or privacy properties have been set for it.

33.3 Privacy design checks

If personal data has been introduced then the CAIRIS model is checked to ensure it doesn’t violate any General
Data Protection Regulation (GDPR) principles. The checks carried out are described below:

GDPR Principle Check Description
Lawfulness, Fair-
ness, and Trans-
parency

Fair data pro-
cessing

Data with privacy properties is processed only if it’s recognised as
personal data.

Lawfulness, Fair-
ness, and Trans-
parency

Lawful data
handling

A persona working with a task or use case involving personal data is
a Data Processor, Data Controller, or Data Subject.

Lawfulness, Fair-
ness, and Trans-
parency

Necessary
processing

Use cases involving personal data are associated with a necessary
goal or requirement.

Purpose Limitation Data purpose Use cases involving personal data are associated with a necessary
goal concerned with that personal data.

Data Minimisation Private data
processing

Data with privacy properties are accounted for in processes.

Accuracy Personal data
integrity

Personal data has an Integrity security property.

Storage Limitation Unprocessed
personal data

Personal data in data stores is processed.

Integrity & Confi-
dentiality

Unmitigated
privacy risks

Personal information has confidentiality, integrity, and privacy prop-
erties that threats target are not exposed to unmitigated risks.

33.4 Access control checks

These checks occur only if access needs and policy statements have been defined.

146 Chapter 33. Model Validation

CAIRIS User Manual, Release 2.3.8

Check Description
Unauthorised ac-
cess

Subject needs access to a resource, but this access is denied in a policy statement.

Absent policy
statement

Subject needs access to a resource, but no policy statement specifies this access.

Ambiguous
policy statement

Subject needs access to a resource, but multiple policy statements specify this access.

No read-up viola-
tion

Subject needs access to a resource, but reading up when the Confidentiality value of the
resource is higher than the subject is undesirable.

No write-down
violation

Subject needs access to a resource, but writing down when the Confidentiality value of
the subject is higher than the resource is undesirable.

No read-down vi-
olation

Subject needs access to a resource, but reading down when the Integrity value of the
subject is higher than the resource is undesirable.

No write-up vio-
lation

Subject needs access to a resource, but writing up when the Integrity value of the resource
is higher than the subject is undesirable.

No interaction up
violation

Subject needs access to a resource, but interacting up when the Integrity value of the
subject is lower than the resource is undesirable.

33.4. Access control checks 147

CAIRIS User Manual, Release 2.3.8

148 Chapter 33. Model Validation

CHAPTER 34

Configurable Types and Values

34.1 Asset Values

You can assign descriptions for None, Low, Medium, and High asset values by selecting the Options / Asset Value
value menu, and clicking on the Value to be updated.

34.2 Asset Types

By default, CAIRIS databases are pre-defined with Information, Systems, Software, Hardware, and People asset
types.

You can add a new asset type by selecting the Options / Asset Types menu and clicking on the Add button. You
should then enter an asset type name and description, before clicking the Create button.

Existing asset type name and descriptions can be modified by clicking on an asset type to be updated, making the
required changes, and clicking on Update.

A selected asset type can be deleted by clicking on its delete button. Although possible, we do not recommend
deleting the standard asset types that come with CAIRIS.

If you are modelling a System of Systems, you may also benefit from using the asset type of Systems - General,
used to reperesent organisations, groups, or social systems, and asset type System of Systems representing the
combination of Independent Systems (collaborating to achieve a new combined purpose and goal).

34.3 Vulnerability and Threat Types

By default, CAIRIS models are pre-configured with vulnerability and threat types in the ICS Protection Profile.
These can be updated or overwritten, e.g. using one of the other threat and vulnerability type XML models.

34.4 Other Types

You can add a selection of types associated with risk and architectural models from the appropriate Options sub-
menu by clicking on the Add button. You should then enter a name, score, description, and – where appropriate –
score and rationale before clicking on the Create button.

149

https://cairis.readthedocs.io/en/latest/examples.html#ics-protection-profile

CAIRIS User Manual, Release 2.3.8

Existing values can be modified by clicking on the to be updated, making the required changes, and clicking the
Update button.

A selected type can be deleted by clicking on its delete button.

150 Chapter 34. Configurable Types and Values

CHAPTER 35

Searching model objects

It is possible to search for a requirement or any other model object with a particular text string from the Search
box in the menu bar. Entering text will search the CAIRIS database and return a table of model elements where
the text is present. Clicking on the selected row in this table will open the associated model object.

151

CAIRIS User Manual, Release 2.3.8

152 Chapter 35. Searching model objects

CHAPTER 36

Tags

Most objects in CAIRIS can be assigned one or more tags to categorise them. Tags can aid searching, i.e. by
searching for objects where the tag has been set.

These tags can be entered in the Tags field in the appropriate form. Multiple tags can be added by separate
individual tags with commas.

Tags can also be used to group objects in risk models. The example below shows a risk model with a kill chain
categorised by ATT&CK tactic.

Some assets might represent entities in DFDs and, when it does and where appropriate, we can use asset tags to
indicate roles that are synonymous with assets. For example, if the people asset of Technician is synonymous with
the role Instrument Technician, you can indicate this by setting the asset tag as role=Instrument Technician .

If, in the asset model, the persona fulfils a role linked to a suitably tagged asset, a persona-asset inheritance
relationship will be shown.

153

https://attack.mitre.org

CAIRIS User Manual, Release 2.3.8

154 Chapter 36. Tags

CAIRIS User Manual, Release 2.3.8

155

CAIRIS User Manual, Release 2.3.8

156 Chapter 36. Tags

CAIRIS User Manual, Release 2.3.8

157

CAIRIS User Manual, Release 2.3.8

158 Chapter 36. Tags

CHAPTER 37

Generating Documentation

The current contents of the CAIRIS database can be rendered as a requirements specification by selecting the
System/Documentation menu. After choosing the type of specification, the output file name, and the output type
– PDF, Word Document (.docx), OpenDocument Text (.odt), Rich Text Format (.rtf) – clicking on Generate will
generate and download the specification document.

CAIRIS currently supports the generation of 3 types of specification:

Template Description
Requirements A requirements specification that conforms to the Volere Requirements Specifi-

cation Template
Personas A specification document for personas.
Data Protection Impact As-
sessment

A DPIA specification that conforms with the ICO Data Protection Impact As-
sessments draft template.

37.1 Problems with wide models

Very wide goal or obstacle models can cause problems when generating PDFs, e.g. the webinos sample model.
The workaround to such problems is to generate the documentation in Word, and export the model from Word to
PDF.

159

http://www.volere.co.uk/template.htm
http://www.volere.co.uk/template.htm
https://ico.org.uk/media/about-the-ico/consultations/2258461/dpia-template-v04-post-comms-review-20180308.pdf
https://ico.org.uk/media/about-the-ico/consultations/2258461/dpia-template-v04-post-comms-review-20180308.pdf

CAIRIS User Manual, Release 2.3.8

37.2 Customsing model files

Models in CAIRIS are rendered as SVG, and it can be useful to edit these models for improved readability. You
can extract these models directly from the web app by installing the SVG Crowbar bookmarklet in your browser.
The resulting SVG file can then be tweaked using an SVG editor like Inkscape , exported to the graphics format
of your choice, and then added to your specification document.

160 Chapter 37. Generating Documentation

http://nytimes.github.io/svg-crowbar
https://inkscape.org

CHAPTER 38

CAIRIS server maintenance

If you have shell access to your CAIRIS host, there a number of scripts to aid in general server maintenance.
These can be found in cairis/cairis/bin directory.

Calling these scripts with the –help flag will provide detailed information on the parameters they take.

38.1 Account management

You can add new accounts using the add_cairis_user.py script. Account names should be email addresses.

./add_cairis_user.py test@test.com test "Test user"

cairis_users.py provides a list of current users.

./cairis_users.py

rm_cairis_user.py can be used to remove accounts. All accounts will be removed if the parameter used is ‘all’.

./rm_cairis_user.py test@test.com

The default database associated with CAIRIS accounts can sometimes get corrupted due to destructive operations
(e.g. importing models) being interrupted. To re-create the default database for an account, you can use the
reset_cairis_user.py script

./reset_cairis_user.py --reload 1 test@test.com

If you set the reload parameter 1 then CAIRIS will attempt to export the contents of the default database, and
– once the default database has been re-created – attempt to re-import it. This can sometimes fail if the model
contains reserved characters, but this can be overridden by setting the ignore_validity parameter to 1.

38.2 Importing and exporting models

Models can be imported using the cimport.py script. The below command, which is run from cairis/cairis/bin,
imports the ACME Water sample model into the default database of the test@test.com user.

161

mailto:test@test.com

CAIRIS User Manual, Release 2.3.8

./cimport.py --user test@test.com --database default --type package --overwrite 1 .
→˓./../examples/exemplars/NeuroGrid.cairis

The cexport.py script can be used to export models.

./cexport.py --user test@test.com --database default --type package /tmp/NG.cairis

38.3 Backing up and restoring servers

backup_server.py creates a tarball containing exported model packages for all the default databases on a CAIRIS
server, and a copy of the password hashes for each account.

./backup_server.py /tmp/backup140221.tar

If you have a clean CAIRIS server (i.e. with no accounts setup), you can use restore_server.py to recreate the
accounts and account contents from a backup tarball.

./restore_server.py /tmp/backup140221.tar

162 Chapter 38. CAIRIS server maintenance

CHAPTER 39

Using the CAIRIS API

39.1 API documentation

API documentation can be found on SwaggerHub.

SwaggerHub provides a virtual server at https://virtserver.swaggerhub.com/failys/CAIRIS you can use to quickly
test get/post/put/delete methods on end-points without setting up CAIRIS, authenticating, etc.

curl https://virtserver.swaggerhub.com/failys/CAIRIS/1.0.9/api/attackers
[{

"theName" : "Carol",
"theImage" : "Carol.jpg",
"theDescription" : "Carol is a freelance journalist working in the South East of
→˓England. Having heard stories about data theft, she is currently investigating
→˓a number of e-Science projects, including NeuroGrid, to see if she can find a
→˓story.",
"theTags" : [],
"theEnvironmentProperties" : [{

"theMotives" : ["Headlines/press"],
"theRoles" : ["Social Engineer"],
"theCapabilities" : [{
"name" : "Resources/Personnel and Time",
"value" : "Medium"

}, {
"name" : "Resources/Funding",
"value" : "Low"

}],
"theEnvironmentName" : "Psychosis"

}]

}]

39.2 Authenticating with the CAIRIS server

For a more representative test, you’ll want to run up cairisd and import a model. If you do this, the first thing
you need to do is authentication to get a session. You can get this by posting to /api/session with your credentials.
Let’s assume our username and password is test@test.com and test:

163

https://app.swaggerhub.com/apis/failys/CAIRIS
https://virtserver.swaggerhub.com/failys/CAIRIS
mailto:test@test.com

CAIRIS User Manual, Release 2.3.8

curl -u test@test.com -X POST http://localhost:7071/api/session
Enter host password for user 'test@test.com':
{"message": "Session created", "session_id": "S9A3U7XkKEzqPwjwzKqR8jPGPVK0dvtf",
→˓"user": "test@test.com"}

By default, the session will point to the user’s default database, but posting to api/settings/database/{name}/open
can change the database the session points to, where name is the name of the database you want to point to.

When using the API in production use, the session should be included in header but, for development, you can
add session_id as a parameter to the URL, e.g

curl http://localhost:7071/api/roles?session_id=S9A3U7XkKEzqPwjwzKqR8jPGPVK0dvtf
[{"theDescription": "Authorises access requests for NeuroGrid and responsible for
→˓day-to-day administration.", "theName": "Certificate Authority", "theShortCode":
→˓"CA", "theType": "Stakeholder"}, {"theDescription": "Uses NeuroGrid data",
→˓"theName": "Data Consumer", "theShortCode": "DCON", "theType": "Stakeholder"}, {
→˓"theDescription": "Supplies data to NeuroGrid", "theName": "Data Provider",
→˓"theShortCode": "DPRO", "theType": "Stakeholder"}, {"theDescription": "Develops
→˓NeuroGrid applications based on the provided NeuroGrid API and services.",
→˓"theName": "Developer", "theShortCode": "DEV", "theType": "Stakeholder"}, {
→˓"theDescription": "Professional or semi-professional hacker", "theName": "Hacker
→˓", "theShortCode": "AKR", "theType": "Attacker"}, {"theDescription": "Uses and
→˓supplies data to NeuroGrid", "theName": "Researcher", "theShortCode": "RCHR",
→˓"theType": "Stakeholder"}, {"theDescription": "Uses human frailty to access
→˓computational resources.", "theName": "Social Engineer", "theShortCode": "SENG",
→˓"theType": "Stakeholder"}, {"theDescription": "Responsible for day-to-day
→˓administration of NeuroGrid, including authorisation of access requests.",
→˓"theName": "Sysadmin", "theShortCode": "SYSADMIN", "theType": "Stakeholder"}]

39.3 The cairis_test database

As part of the quick setup process, a cairis_test database is created (password: cairis_test). Associated with this
database is the session_id test . This database makes it possible to do general front-end development and testing
without worrying about authentication.

You can import models directly into this database by using cimport.py without setting the user and database
parameters. You can also use any end-points with this session_id, e.g.

curl http://localhost:7071/api/requirements?session_id=test
[

{
"theDescription": "Access to a NeuroGrid data-set shall be governed by an

→˓access control policy.",
"theFitCriterion": "None",
"theLabel": "AC-1",
"theName": "Dataset policy",
"theOriginator": "Interview data",
"thePriority": 1,
"theRationale": "Need to determine which users can do what.",
"theType": "Functional"

},
{
"theDescription": "Requests for NeuroGrid access shall be authorised by the

→˓nominated clinical exemplar sponsor.",
"theFitCriterion": "None",
"theLabel": "AC-2",
"theName": "Access sponsor",
"theOriginator": "Interview data",
"thePriority": 1,
"theRationale": "None",

(continues on next page)

164 Chapter 39. Using the CAIRIS API

CAIRIS User Manual, Release 2.3.8

(continued from previous page)

"theType": "Operational"
}

]

39.3. The cairis_test database 165

CAIRIS User Manual, Release 2.3.8

166 Chapter 39. Using the CAIRIS API

CHAPTER 40

Extending CAIRIS

Over the years, CAIRIS has evolved to support new concepts and types of model. Its architecture has also evolved
to make it easy for its [sadly] small development team to effectively maintain several hundred thousand lines of
code. As a corollary, it is comparatively easy to extend CAIRIS, provided you follow the steps below.

40.1 1. Define the database tables

Each CAIRIS model is stored in its own MySQL database, so any new concept needs it own table or collection of
tables. These tables need to be defined in cairis/sql/init.sql . This SQL script is called every time a new model is
created, so it’s important this script contains no errors. In many cases, errors occur if you forget to delete tables
before creating them, or you define a table with foreign keys before defining its dependent data.

40.2 2. Define the database procedures

You need to create stored procedures for manipulating with your model data. These are defined in
cairis/sql/procs.sql. As a rule, each model concept has stored procedures for (i) retrieving objects, (i) adding
objects, (ii) updating objects, and (iii) deleting objects. As most objects are environment specific, there may be
multiple procedures for (i) - (iii) depending on how complex the model object is. Take a look at some existing
concepts like assets, attackers, and goals to see how these idioms are implemented.

40.3 3. Update the Python database proxy

cairis/core/MySQLDatabaseProxy.py is the module responsible for interacting with the model database, so you’ll
need to add methods for retrieving, adding, updating, and deleting objects. Again, looking at how this implemented
using other CAIRIS should be a good source of inspiration.

40.4 4. Write your model object test case

Each model concept in CAIRIS should have its own test case in cairis/test. This effectively tests your stored
procedures and methods in cairis/core/MySQLDatabaseProxy.py work correctly. The idiom used is to create test
data in JSON, and to create a test case that retrieves, adds, updates and deletes model objects.

167

https://github.com/cairis-platform/cairis/blob/master/cairis/sql/init.sql
https://github.com/cairis-platform/cairis/blob/master/cairis/sql/procs.sql
https://github.com/cairis-platform/cairis/blob/master/cairis/core/MySQLDatabaseProxy.py
https://github.com/cairis-platform/cairis/tree/master/cairis/test
https://github.com/cairis-platform/cairis/blob/master/cairis/core/MySQLDatabaseProxy.py

CAIRIS User Manual, Release 2.3.8

40.5 5. Update the CAIRIS DTDs

CAIRIS XML models are defined in DTDs within cairis/config. If your concept needs to go in a standard CAIRIS
model file, it will need to be defined in cairis_model.dtd, but you may want to update other DTDs too. Because
of how CAIRIS models are imported, the location of the concept in the DTD is important because you’ll want to
ensure any dependent objects are created first.

40.6 6. Update the model import / export code

To ensure your exported CAIRIS model contains your model object, you need to make a number of changes.

First, within cairis/sql/procs.sql are a collection of stored procedures for generating XML for model objects, e.g.
riskAnalysisToXml for risk analysis related concepts. You need to edit the appropriate procedures to include the
SQL necessary for retrieving your model objects and adding them to the generated XML. If you don’t have to add
a new stored procedure for your concept/s then this is all you need to do to ensure your exported model contains
your new concept.

Second, CAIRIS uses SAX to parse model files during the import process. The different content handler classes
used by the parser can be found in cairis/mio , and the appropriate class will need to be modified to create CAIRIS
python objects to represent your model concepts. You will then need to update cairis/mio/ModelImport.py to
ensure these objects are subsequently added to the CAIRIS database the model is being imported into.

Finally, depending on how fundamental your changes are, it might be sensible to also update the server-side import
and export scripts too. These will provide you with a quick way of testing your import and export logic before
delving too deeply into your API changes.

40.7 7. Implement the server end-points

At this stage, you can start thinking about implementing the code that will handle the API end-points. This in-
volves updating and creating a number of files. First, you need to create a Data Access Object (DAO) objects for
your model concept in cairis/data . In addition to acting as a wrapper for the database proxy, these objects are
also responsible for marshalling Python objects to JSON (when retrieving objects), and vice-versa (when creat-
ing, updating, and deleting objects). Second, you need to define the object in cairis/tools/ModelDefinitions.py
so Flask understands how to work this object. Third, you need to define the end-points themselves in
cairis/daemon/main/views.py. Associated with each end-point will be an appropriate controller object in
cairis/controllers . The object you choose will depend on the methods (i.e. get, post, put, del) you need to
implement, and parameters you intend to use.

40.8 8. Write your API test case

At this point, you should add a test case to cairis/test to test your model API. If you look at other test cases, you’ll
see the norm is to import a CAIRIS model before kicking off your tests. To test the model import is working as it
should, you might want to add your new model concepts to a CAIRIS model, import that, and try retrieving these
in the tests. The other API tests should provide inspiration for how you should go about testing the different API
end-points

40.9 9. Update the UI

Until now, all the changes made will have been to the CAIRIS GitHub repository. However, to update the UI, you
will need to update the code in the cairis-ui repository. Once the UI changes have been pushed to that repo, you
should run the installUI.sh as described the cairis-ui repository README.

168 Chapter 40. Extending CAIRIS

https://github.com/cairis-platform/cairis/tree/master/cairis/config
https://github.com/cairis-platform/cairis/blob/master/cairis/config/cairis_model.dtd
https://github.com/cairis-platform/cairis/blob/master/cairis/sql/procs.sql
https://github.com/cairis-platform/cairis/tree/master/cairis/mio
https://github.com/cairis-platform/cairis/blob/master/cairis/mio/ModelImport.py
https://github.com/cairis-platform/cairis/blob/master/cairis/bin/cimport.py
https://github.com/cairis-platform/cairis/blob/master/cairis/bin/cexport.py
https://github.com/cairis-platform/cairis/tree/master/cairis/data
https://github.com/cairis-platform/cairis/blob/master/cairis/tools/ModelDefinitions.py
https://github.com/cairis-platform/cairis/blob/master/cairis/daemon/main/views.py
https://github.com/cairis-platform/cairis/tree/master/cairis/controllers
https://github.com/cairis-platform/cairis/tree/master/cairis/test
https://github.com/cairis-platform/cairis
https://github.com/cairis-platform/cairis-ui
https://github.com/cairis-platform/cairis/blob/master/cairis/bin/installUI.sh
https://github.com/cairis-platform/cairis-ui/blob/master/README.md

CAIRIS User Manual, Release 2.3.8

40.10 10. Update the documentation generation process

cairis/misc/DocumentBuilder.py is responsible for interacting with the Python database proxy to rendering a Doc-
Book specification, which forms the basis of generated documentation. This will need to update this to ensure
your model objects appear in the specification. The module contains helper functions for generating things like
lists and tables, so looking at how other model objects are handled should give you the knowledge necessary for
incorporating your objects too.

40.10. 10. Update the documentation generation process 169

https://github.com/cairis-platform/cairis/blob/master/cairis/misc/DocumentBuilder.py

CAIRIS User Manual, Release 2.3.8

170 Chapter 40. Extending CAIRIS

CHAPTER 41

Troubleshooting

41.1 Log files

The CAIRIS log files are a good place to look for signs of errors in the event of any problems.

If you are using the CAIRIS development server then the daemon will log directly to the console.

If you are using mod_wsgi-express then the log file will be saved to /tmp/mod_wsgi-localhost:8000:0 (or similar
depending on the port you’ve used).

If you are running Docker, you can get the latest entries and a running update of the log file with the following
command:

docker exec -t `docker ps | grep shamalfaily/cairis | head -1 | cut -d ' ' -f 1`
→˓tail -f /tmp/mod_wsgi-localhost:8000:0/error_log

If you have setup CAIRIS to run as a system service then you can use journalctl to access the logs. For example,
the command below will give you the latest log files and a running update.

journalctl -u cairis.service -f

For detailed logging information, change the log_level value in cairis.cnf to debug.

41.2 Raising issues

If you experience any problems using CAIRIS then please raise an issue in GitHub.

When raising an issue, please provide the version of CAIRIS you are using. You can find this by clicking on the
System/About menu.

171

CAIRIS User Manual, Release 2.3.8

172 Chapter 41. Troubleshooting

CHAPTER 42

Indices and tables

• genindex

• modindex

• search

173

	Quick Start
	Live Demo
	Video tutorials
	Example models
	Define your contexts of use
	Save early and often
	Supporting UX
	Asset-driven security design
	Threat-driven security design
	Working with requirements
	Thinking about architecture
	Generating documentation

	Installing CAIRIS
	Installation via Vagrant
	Installation via Docker
	Installation and configuration via GitHub (automated)
	Installation and configuration of server with account registration via GitHub (automated)
	Installation and configuration via GitHub (manual)

	Starting CAIRIS
	Starting the CAIRIS server
	Starting the web application

	CAIRIS databases
	Default database
	Using other databases
	Providing database access to other users

	Reserved characters in object names
	Importing and Exporting models
	Importing models
	Exporting models

	Sample models
	Exemplars
	Threat and Vulnerability Directories

	Creating a new project
	Environments
	Adding a new environment

	Assets
	Adding, updating, and deleting an asset
	Asset modelling

	Roles
	Adding, updating, and deleting a role
	Responsibility modelling

	Personas
	Adding, updating, or deleting a persona
	Assured personas with persona characteristics
	Automating persona characteristic creation

	Tasks
	Adding, updating, or deleting a task
	Task traceability
	Visualising tasks

	Misusability Cases
	Creating concept references
	Creating the skeleton scenario
	Creating task characteristics
	View misusability case models

	Domain Properties
	Adding, updating, and deleting a domain property

	Goals, Requirements, and Obstacles
	Adding, updating, and deleting a goal
	Goal Modelling
	Adding, updating, and deleting an obstacle
	Obstacle Modelling
	Adding, updating, and deleting requirements
	Visualising Requirements Quality using Chernoff Faces
	Attack tree modelling with obstacles

	Use Cases
	Adding, updating, or deleting a use cases
	Add exceptions to use case steps

	User goals and user goal models
	Adding, updating, and deleting user goals
	Adding, updating, and deleting user goal contributions
	Task contributions
	Adding User goal elements to persona characteristics
	Adding GRL elements to use cases (jUCMNav export only)
	Viewing a user goal model
	Working with workbooks
	Generating a jUCMNav compatible GRL model

	Dependencies
	Adding, updating, and deleting a dependency
	Viewing dependencies
	Introducing Personal data into CAIRIS using dependencies

	Security Patterns
	Create a template asset
	Create a security pattern
	Situate a security pattern

	Vulnerabilities
	Create a vulnerability
	Introducing template threats and vulnerabilities

	Attackers
	Adding, updating, and deleting an attacker

	Threats
	Adding, updating, and deleting a threat

	Threat Modelling
	Data flows and Data Flow Diagrams
	Attack trees

	Using CAIRIS as tool-support for STPA
	Overview
	Step 1: Define purpose of the analysis
	Step 2: Model the control structure
	Step 3: Identify unsafe control actions
	Step 4: Identify loss scenarios
	Supporting other STPA outputs

	Modelling access control needs and policies
	Overview
	Modelling access needs
	Modelling access control policies with policy statements
	Access control model validation checks

	Risks
	Adding, updating, and deleting a risk
	Risk Analysis model

	Locations
	Adding, updating, and deleting a locations object
	Viewing location models

	Risk Responses
	Adding, updating, and deleting a response
	Generating goals

	Countermeasures
	Adding, updating, and deleting a countermeasure
	Generating countermeasure assets and security patterns
	Associating countermeasures with pre-existing patterns
	Weakening the effectiveness of countermeasures
	Mitigating weakening effects

	Traceability
	Allowable manual traceability links
	Editing manual traceability links
	Visualising manual traceability links

	Architectural Patterns
	Editing Architectural Patterns
	Viewing Architectural Patterns
	Situating a pattern

	Model Validation
	General validity checks
	Security design checks
	Privacy design checks
	Access control checks

	Configurable Types and Values
	Asset Values
	Asset Types
	Vulnerability and Threat Types
	Other Types

	Searching model objects
	Tags
	Generating Documentation
	Problems with wide models
	Customsing model files

	CAIRIS server maintenance
	Account management
	Importing and exporting models
	Backing up and restoring servers

	Using the CAIRIS API
	API documentation
	Authenticating with the CAIRIS server
	The cairis_test database

	Extending CAIRIS
	1. Define the database tables
	2. Define the database procedures
	3. Update the Python database proxy
	4. Write your model object test case
	5. Update the CAIRIS DTDs
	6. Update the model import / export code
	7. Implement the server end-points
	8. Write your API test case
	9. Update the UI
	10. Update the documentation generation process

	Troubleshooting
	Log files
	Raising issues

	Indices and tables

