

 Navigation

 	
 index

 	
 modules |

 	Cachual 0.2.2 documentation

Cachual

Cachual is a library that makes it easy to cache the return values from your
Python functions with a simple decorator:

from cachual import RedisCache
cache = RedisCache()

@cache.cached(ttl=360)
def get_user_email(user_id):
 ...

Cachual currently supports Redis as the backing cache, but is very easy to
extend to other caching backends.

	Installation

	Usage

	How it Works

	Key Generation
	Caching Methods

	Caching Different Data Types
	Unpack

	Pack

	API Documentation
	Caching

	Packing and Unpacking Helpers

Installation

Install the library with pip:

$ pip install cachual

Usage

Initialize a cache using the desired implementation, providing the connection
information in the constructor if different from the defaults:

from cachual import RedisCache
cache = RedisCache(host='localhost', port=1234, db=5)

The cache object gives you access to the cached()
decorator, which you can apply to any function whose return value you want to
cache:

@cache.cached()
def get_user_email(user_id):
 ...

If you don’t specify a TTL then Cachual will use the server default, which is
probably forever. In most cases you will want to specify a TTL, which is given
in seconds:

@cache.cached(ttl=300) # 5 minutes
def get_user_email(user_id):
 ...

How it Works

When you decorate a function with the cached() decorator,
before the function is executed, the cache will be checked for a prior return
value for the same function call. This means that the cache key will be
different if the function is called with different argument values.

If the value is found it is immediately returned. Otherwise, the function is
executed and the return value is stored in the cache before returning it.

Any cache failures (get or put) are ignored; if the cache becomes
nonfunctional and starts raising exceptions, your function will execute
normally as if there was no cache.

Key Generation

Keys are generated by first appending the function name to the module where the
function resides. After that one of four strings is appended:

	If the function is called without arguments, then () is appended.

	If the function is called only with positional arguments, then the unicode
value of each argument is joined with ', ' and surrounded by
parentheses. For example:

'my.module.get_user_email(abc)'

	If the function is called only with keyword arguments, they will be included
in key=value form, where value is the unicode value of the argument, in
alphabetical order of the keys. For example:

'my.module.get_user_emails(active=True, age=10, location=US)'

	If the function is called with both, the positional argument values will be
included first, and the keyword arguments will be included in alphabetical
order of the keys after the positional argument values.

Finally, the entire (unicode) key is encoded as UTF-8 and hashed using MD5.
This is to ensure that key format is uniform and consistent, because some
backends (such as Memcached) have restrictions around cache keys, such as
disallowing certain characters and size limits.

For Python 3, all strings are unicode and the default encoding is UTF-8; thus,
the value for each argument will be coerced to unicode using the builtin
str function. Python 2 is a bit more complicated; strings are bytes
by default. If you pass a unicode value, that will be the value used for the
cache key. If you pass a string literal, it will be converted to unicode
(assuming UTF-8 encoding). Anything else will be converted to bytes
(using the builtin str function) and then converted to unicode assuming
UTF-8 encoding.

Arguments should be able to take on any value, but as a best practice, I
highly recommend you only pass the basic types to your functions e.g. string,
integer, float, etc. Even better, stick to unicode values for your strings
regardless of what version of Python you’re using.

Note

Because the unicode value of each argument is used to generate the
cache key, you need to be careful that you are consistent in your function
calls with respect to the types of your arguments. For example, if you have
a function that takes a single argument like so:

def test(a):
 ...

Then these two calls will result in the same cache key:

test(5)
test("5")

Thus, you should not call your cached function with values for an argument
that are different types but have the same unicode value. This is good
practice anyway; mixing types for the same argument value can lead to
unmaintainable code and unexpected bugs.

Caching Methods

New in version 0.2.2.

You will probably find yourself wanting to cache methods as well - both
classmethods and instance methods. Calls to these methods will pass the calling
class (in the former) or the object (in the latter) as the first argument.

For classmethods, you will get the correct behavior: calls to your cached
method with the same arguments from the same class will get the same cache key.
Calling the method with a different class will result in a different cache key
(even if the arguments are the same).

Instance methods are a little trickier. By default you will get a different
cache key for calls to your instance method with the same arguments if you
are calling from different instances, because the default representation of an
object in Python includes its memory location. This behavior may be undesirable
in some situations, for example if you have a web service that generates a
client object for an external API on every request. In this case you probably
want the same cache key for any external API calls with the same arguments,
even though the there is a new client object each request.

To get the desired behavior you can set the use_class_for_self parameter to
True to use the class representation instead of the instance object
representation of the first parameter, which will use the same cache key for
any calls as long as they are from instances of the same class:

class ExternalAPIClient(object):

 @cache.cached(use_class_for_self=True)
 def get_location_name_by_id(self, id):
 ...

ExternalAPIClient().get_location_name_by_id("test") # Stores in cache
ExternalAPIClient().get_location_name_by_id("test") # Cache hit

Caching Different Data Types

Technically the types of values that your cached functions can return depends
on the underlying cache. For example, Redis’s SET only stores strings;
thus, if you wanted to return something other than a string from your cached
function, you would have to convert the value into the desired datatype if it
comes from a cache hit. To get around this limitation, you can provide two
additional optional arguments to the cached() decorator.

Unpack

The unpack argument specifies a function which will be called with the
value from the cache in the case of a cache hit. The result will be passed
back to the caller.

In this way you can make sure you get back consistent values regardless of
whether the value came from the cache (which may store every value as a string)
or from the actual function call:

def get_int(value):
 return int(value)

@cache.cached(ttl=300, unpack=get_int)
def get_user_id(email):
 ...

Pack

What if you want to cache a more complex data type, like a list or a
dictionary? You can provide a function to the pack argument, which will be
applied before the function’s return value is put into the cache:

@cache.cached(ttl=300, pack=json.dumps, unpack=json.loads)
def get_user_json(user_id):
 ...

While the exact way to pack or unpack a cached value depends on the underlying
cache being used, Cachual provides a number of functions to unpack strings into
common Python data types (since most common cache providers store all data as
strings) and pack JSON values (such as dictionaries and lists that only contain
basic types) so that you don’t have to write these functions yourself. This
allows you to rewrite the examples above:

from cachual import unpack_int, pack_json, unpack_json

@cache.cached(ttl=300, unpack=unpack_int)
def get_user_id(email):
 ...

@cache.cached(ttl=300, pack=pack_json, unpack=unpack_json)
def get_user_json(user_id):
 ...

Note that for Python 3, you will want to use unpack_json_python3 for
JSON data and unpack_bytes for unicode string data because the value
returned from the cache will be bytes (as opposed to the unicode string that
is the default string type in Python 3).

For a complete list of these helper functions see Packing and Unpacking Helpers.

Note

Be careful with packing/unpacking. If your pack/unpack functions have
unintended side effects (such as changing the encoding of the value) you may
get different results when you retrieve values from the cache. Generally it
is best to keep things as simple as possible - don’t try to cache complex
Python datatypes (such as custom objects), and keep your pack/unpack
functions very simple (or use the helpers!). Make sure you understand how
the underlying caching system and library deals with your data,
particularly when it comes to encoding. For example, Redis will encode your
value as bytes if possible, falling back to the unicode
representation otherwise (which is why you need to use the pack/unpack
functions as above for dictionaries).

API Documentation

Caching

	
class cachual.CachualCache

	Base class for all cache implementations. Provides the
cached() decorator which can be applied to methods
whose return value you want to cache. This class should not be used
directly, and is meant to be subclassed.

Subclasses should define a get method, which takes a single string
argument, and returns the value in the cache for that key, or None in
the case of a cache miss; and a put method, which takes three arguments
for the cache key, the value to store, and a TLL (which may be none) and
puts the value in the cache.

	
cached(ttl=None, pack=None, unpack=None, use_class_for_self=False)

	Functions decorated with this will have their return values cached.
It should be used as follows:

cache = RedisCache()

@cache.cached()
def method_to_be_cached(arg1, arg2, arg3='default'):
 ...

A unique cache key will be generated for each function call, so that
different values for the arguments will result in different cache keys.
When you decorate a function with this, the cache will be checked
first; if there is a cache hit, the value in the cache will be
returned. Otherwise, the function is executed and the return value is
put into the cache.

Cache get/put failures are logged but ignored; if the cache goes down,
the function will continue to execute as normal.

	Parameters:	
	ttl (integer) – The time-to-live in seconds. For caches that support TTLs,
the keys will expire after this time. If None (the
default), the cache default will be used (usually no
expiration).

	pack (function) – If specified, this function will be called with the
decorated function’s return value, and the result will be
stored in the cache. This can be used to alter the value
that actually gets stored in the cache in case you need to
process it first (e.g. dump a JSON string that is properly
escaped).

	unpack (function) – If specified, this function will be called with the
value from the cache in the event of a cache hit, and
the result will be returned to the caller. This can be
used to alter the value that gets returned from a cache
hit, in case you need to process it first (e.g. turn a
JSON string into a Python dictionary).

	use_class_for_self (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, cache keys will use the class
representation of the first parameter
instead of the object representation. This
is useful when you want to cache instance
methods, but you want the same cache key if
the instance method’s arguments are the same.
An example would be a stateless class that
is a client wrapper for an external service.
The first argument would be the instance
object, whose default representation
contains the memory location of the object
(and thus would be different for every
instance, which is undesirable for a
stateless class).

Changed in version 0.2.2: Added use_class_for_self parameter.

	
class cachual.RedisCache(host='localhost', port=6379, db=0, **kwargs)

	A cache using Redis [https://redis.io/] as the backing cache. All
values will be stored as strings, meaning if you try to store non-string
values in the cache, their unicode equivalent will be stored. If you want
to alter this behavior e.g. to store Python dictionaries, use the
pack/unpack arguments when you specify your @cached decorator.

	Parameters:	
	host (string [https://docs.python.org/3/library/string.html#module-string]) – The Redis host to use for the cache.

	port (integer) – The port to use for the Redis server.

	db (integer) – The Redis database to use on the server for the cache.

	kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Any additional args to pass to the CachualCache
constructor.

	
get(key)

	Get a value from the cache using the given key.

	Parameters:	key (string [https://docs.python.org/3/library/string.html#module-string]) – The cache key to get the value for.

	Returns:	The value for the cache key, or None in the case of cache
miss.

	
put(key, value, ttl=None)

	Put a value into the cache at the given key. If the value is not a
string, its unicode value will be used. This behavior is defined by the
underlying Redis library, and could be subject to change in future
versions; thus it is safest to only store strings in Redis (although
basic types should serialize into a string cleanly, you will need to
unpack them when they are retrieved from the cache).

	Parameters:	
	key (string [https://docs.python.org/3/library/string.html#module-string]) – The cache key to use for the value.

	value – The value to store in the cache.

	ttl (integer) – The time-to-live for key in seconds, after which it will
expire.

	
class cachual.MemcachedCache(host='localhost', port=11211, **kwargs)

	A cache using Memcached [https://memcached.org/] as the backing
cache. The same caveats apply to keys and values as for Redis - you should
only try to store strings (using the packing/unpacking functions). See the
documentation on Keys and Values here:
pymemcache.client.base.Client [https://pymemcache.readthedocs.io/en/latest/apidoc/pymemcache.client.base.html#pymemcache.client.base.Client].

	Parameters:	
	host (string [https://docs.python.org/3/library/string.html#module-string]) – The Memcached host to use for the cache.

	port (integer) – The port to use for the Memcached server.

	kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Any additional args to pass to the CachualCache
constructor.

	
get(key)

	Get a value from the cache using the given key.

	Parameters:	key (string [https://docs.python.org/3/library/string.html#module-string]) – The cache key to get the value for.

	Returns:	The value for the cache key, or None in the case of cache
miss.

	
put(key, value, ttl=None)

	Put a value into the cache at the given key. For constraints on keys
and values, see pymemcache.client.base.Client [https://pymemcache.readthedocs.io/en/latest/apidoc/pymemcache.client.base.html#pymemcache.client.base.Client].

	Parameters:	
	key (string [https://docs.python.org/3/library/string.html#module-string]) – The cache key to use for the value.

	value – The value to store in the cache.

	ttl (integer) – The time-to-live for key in seconds, after which it will
expire.

Packing and Unpacking Helpers

These functions are helpers for packing/unpacking common Python data types for
a cache which stores everything as a string.

	
cachual.pack_json(value)

	Pack the given JSON structure for storage in the cache by dumping it as
a JSON string.

	Parameters:	value – The JSON structure (e.g. dict, list) to pack.

	Return type:	string [https://docs.python.org/3/library/string.html#module-string]

	Returns:	The JSON structure as a JSON string.

	
cachual.unpack_json(value)

	Unpack the given string by loading it as JSON.

	Parameters:	value (string [https://docs.python.org/3/library/string.html#module-string]) – The string to unpack.

	Returns:	The string as JSON.

	
cachual.unpack_json_python3(value)

	Unpack the given Python 3 bytes by loading them as JSON.

	Parameters:	value (bytes [https://docs.python.org/3/library/functions.html#bytes]) – The bytes to unpack.

	Returns:	The bytes as JSON.

	
cachual.unpack_bytes(value)

	Unpack the given Python 3 bytes by loading them as a Python 3 unicode
string, assuming UTF-8 encoding.

	Parameters:	value (bytes [https://docs.python.org/3/library/functions.html#bytes]) – The bytes to unpack.

	Returns:	The bytes as a Python 3 unicode string, assuming UTF-8 encoding.

	
cachual.unpack_int(value)

	Unpack the given string into an integer.

	Parameters:	value (string [https://docs.python.org/3/library/string.html#module-string]) – The string to unpack.

	Return type:	integer

	Returns:	The string as an integer.

	
cachual.unpack_long(value)

	Unpack the given string into a long.

	Parameters:	value (string [https://docs.python.org/3/library/string.html#module-string]) – The string to unpack.

	Return type:	long

	Returns:	The string as a long.

	
cachual.unpack_float(value)

	Unpack the given string into a float.

	Parameters:	value (string [https://docs.python.org/3/library/string.html#module-string]) – The string to unpack.

	Return type:	float [https://docs.python.org/3/library/functions.html#float]

	Returns:	The string as a float.

	
cachual.unpack_bool(value)

	Unpack the given string into a boolean. ‘True’ will become True, and
‘False’ will become False (as per the unicode values of booleans); anything
else will result in a ValueError.

	Parameters:	value (string [https://docs.python.org/3/library/string.html#module-string]) – The string to unpack.

	Return type:	bool [https://docs.python.org/3/library/functions.html#bool]

	Returns:	The string as a boolean.

 Copyright 2017, Alex Landau.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	Cachual 0.2.2 documentation

 Python Module Index

 c

 			

 		
 c	

 	
 	
 cachual	

 Copyright 2017, Alex Landau.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	Cachual 0.2.2 documentation

Index

 C
 | G
 | M
 | P
 | R
 | U

C

 	

 	cached() (cachual.CachualCache method)

 	cachual (module)

 	

 	CachualCache (class in cachual)

G

 	

 	get() (cachual.MemcachedCache method)

 	

 	(cachual.RedisCache method)

M

 	

 	MemcachedCache (class in cachual)

P

 	

 	pack_json() (in module cachual)

 	

 	put() (cachual.MemcachedCache method)

 	

 	(cachual.RedisCache method)

R

 	

 	RedisCache (class in cachual)

U

 	

 	unpack_bool() (in module cachual)

 	unpack_bytes() (in module cachual)

 	unpack_float() (in module cachual)

 	unpack_int() (in module cachual)

 	

 	unpack_json() (in module cachual)

 	unpack_json_python3() (in module cachual)

 	unpack_long() (in module cachual)

 Copyright 2017, Alex Landau.
 Created using Sphinx 1.3.5.

 _static/plus.png

_static/ajax-loader.gif

search.html

 Navigation

 		
 index

 		
 modules |

 		Cachual 0.2.2 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2017, Alex Landau.
 Created using Sphinx 1.3.5.

_static/file.png

_static/up.png

_static/up-pressed.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/comment-close.png

_static/comment-bright.png

_static/comment.png

