
CachePath Documentation
Release 1.1.1

Hayden Flinner

Dec 09, 2018

Contents

1 Getting Started 3

2 Shameless Promo 7

Python Module Index 13

i

ii

CachePath Documentation, Release 1.1.1

A small package for pythonic parameterized cache paths.

Contents 1

https://pypi.python.org/pypi/cachepath
https://travis-ci.org/haydenflinner/cachepath
https://cachepath.readthedocs.io/en/latest/?badge=latest

CachePath Documentation, Release 1.1.1

2 Contents

CHAPTER 1

Getting Started

Install: pip install cachepath

Import: from cachepath import CachePath, TempPath, Path

Docs: ReadTheDocs | API doc is here

Why?

1. Integrates pathlib with tempfile.gettempdir and shutil.rmtree by providing TempPath
and Path.rm():

path = TempPath()
path.rm()
or would you rather..
path = None
with tempfile.NamedTemporaryFile(delete=False) as f:

path = Path(f.name)
Only now can we use Path. If we tried using it within the With
(for example for path.read_text()), we'd break on Windows
path.unlink() # only if file, doesn't work on folders

2. Wraps pathlib import for Py2/3 compat. (not in six!):

from cachepath import Path
or
try: from pathlib import Path; except ImportError: from pathlib2 import Path

3. Provides CachePath, which lets you quickly get a parameterized temp filename, with all folders automati-
cally created:

r = CachePath(date, userid, 'expensive_results.txt')
assert (r == Path('/tmp/', date, userid, 'expensive_results.txt')

and r.parent.exists())
r.rm() # File remove
r.parent.rm() # Symmetric with folder remove!

(continues on next page)

3

https://cachepath.readthedocs.io/en/latest/
https://cachepath.readthedocs.io/en/latest/cachepath.html
https://cachepath.readthedocs.io/en/latest/cachepath.html#cachepath.CachePath

CachePath Documentation, Release 1.1.1

(continued from previous page)

Without cachepath
p = Path(tempfile.gettempdir(), date, userid, 'expensive_results.txt').
Don't update timestamp if it already exists so that we don't cause
Make-like tools to always think something's changed
if not p.parent.exists():

p.parent.mkdir(parents=True, exist_ok=True)

p.unlink() # Why is it .unlink() instead of .remove()?
Why .remove and .unlink, but mkdir instead of createdir?
p.parent.remove()
.remove() might throw because there was another file in the folder,
but we didn't care, they're tempfiles!
import shutil
shutil.rmtree(p.parent)

Why, but longer:

Do you need a temp path to pass to some random tool for its logfile? Behold, a gaping hole in pathlib:

import tempfile
import os
try: from pathlib import Path; except ImportError: from pathlib2 import Path
def get_tempfile():

fd, loc = tempfile.mkstemp()
os.close(fd) # If we forgot do this, it would stay open until process exit
return Path(loc)

Easier way
from cachepath import TempPath
def get_tempfile():

return TempPath() # Path('/tmp/213kjdsrandom')

But this module is called cachepath, not temppath, what gives?

Suppose I’m running that same imaginary tool pretty often, but I’d like to skip running it if I already have results for
a certain day. Just sticking some identifying info into a filename should be good enough. Something like Path('/
tmp/20181204_toolresults.txt')

try: from pathlib import Path; except ImportError: from pathlib2 import Path
We'll cheat a little to get py2/3 compat without so much ugliness
from cachepath import Path
import tempfile
def get_tempfile(date):

filename = '{}_toolresults.txt'.format(date)
return Path(tempfile.gettempdir(), filename)

Easier to do this...
from cachepath import CachePath
def get_tempfile(date):

return CachePath(date, suffix='.txt')

Not bad, but not great. But our requirements changed, let’s go a step further.

Now I’m running this tool a lot, over a tree of data that looks like this:

4 Chapter 1. Getting Started

CachePath Documentation, Release 1.1.1

2018-12-23
person1
person2

2018-12-24
person1

2018-12-25
person1

I want my logs to be structured the same way. How hard can it be?

2018-12-23/
person1_output.txt
person2_output.txt

2018-12-24/
person1_output.txt

2018-12-25/
person1_output.txt

Let’s find out:

Let's get the easy way out of the way first :)
def get_path(date, person):

return CachePath(date, person, suffix='_output.txt')
Automatically ensures /tmp/date/ exists when we create the CachePath!

Now the hard way
def get_path(date, person):

personfilename = '{p}_output.txt'.format(p=person)
returning = Path(tempfile.gettempdir())/date/personfilename
Does this mkdir update the modified timestamp of the folders we're in?
Might matter if we're part of a larger toolset...
returning.parent.mkdir(exist_ok=True, parents=True)
return returning

Suppose we hadn’t remembered to make the $date/ folders. When we passed the Path out to another tool, or tried
to .open it, we may have gotten a Permission Denied error on Unix systems rather than the “File/Folder not found”
you might expect. With CachePath, this can’t happen. Creating a CachePath implicitly creates all of the preceding
directories necessary for your file to exist.

Now, suppose we found a bug in this external tool we were using and we’re going to re-run it for a day. How do we
clear out that day’s results so that we can be sure we’re looking at fresh output from the tool? Well, with CachePath,
it’s just:

def easy_clear_date(date):
CachePath(date).clear() # rm -r /tmp/date/*

But if you don’t have cachepath, you’ll find that most Python libs play it pretty safe when it comes to files.
Path.remove() requires the folder to be empty, and doesn’t provide a way to empty the folder. Not to mention, what
if our results folders had special permissions, or was actually a symlink, and we had write access but not delete? Oh
well, let’s see what we can do:

def hard_clear_date(date):
We happen to know that date is a folder and not a file (at least in our
current design), so we know we need some form of .remove() rather than
.unlink(). Unfortunately, pathlib doesn't offer one for folders with
files still in them. If you google how to do it, you will find plenty of
answers, one of which is a pure pathlib recursive solution! But we're lazy,

(continues on next page)

5

CachePath Documentation, Release 1.1.1

(continued from previous page)

so lets bring in yet another module:
p = Path(tempfile.gettempdir(), date)
import shutil
if p.exists():

shutil.rmtree(p)
p.mkdir(exist_ok=True, parents=True)
This still isn't exactly equivalent to CachePath.clear(), because we've
lost whatever permissions were set on the date folder, and if it were
actually a symlink to somewhere else, that's gone now.

Convinced yet? pip install cachepath or copy the source into your local utils.py (you know you have
one.)

API doc is here.

By the way, as a side effect of importing cachepath, all Paths get the ability to do rm() and clear().

6 Chapter 1. Getting Started

https://github.com/haydenflinner/cachepath/blob/master/cachepath/__init__.py
https://cachepath.readthedocs.io/en/latest/cachepath.html

CHAPTER 2

Shameless Promo

Find yourself working with paths a lot in cmd-line tools? You might like invoke and/or magicinvoke!

2.1 Usage

To use CachePath in a project:

from cachepath import CachePath, Path

2.1.1 Changing Storage Location

import cachepath
cachepath.location = './cache' # Once, anywhere. Default is tempfile.gettempdir()

The order that you import / assign to .location doesn't matter yet
from cachepath import CachePath, Path

2.1.2 Indepth Example

Lets hack together a cache for a website scraper. This could be useful if you were working on your parsing logic or
want the files used in the process to to be available on disk for later debugging instead of just staying in memory until
a crash.

If this seems like a lot, try reading Getting Started first.

from cachepath import CachePath, Path
from itertools import takewhile

def get_scraped_ebay_stats(user, product_id):

(continues on next page)

7

https://www.pyinvoke.org
https://magicinvoke.readthedocs.io/en/latest/

CachePath Documentation, Release 1.1.1

(continued from previous page)

'/tmp/ebay/user/product_id.html'
return dumb_parser(CachePath('ebay', user, product_id, suffix='html'))

def clear_cache(user=None, product_id=None):
args = takewhile(lambda x: x != None, ('ebay', user, product_id))
return CachePath(*args).clear()

def get_tempfile():
return CachePath()

Without cachepath
try:

from pathlib import Path
except: # py2

from pathlib2 import Path

If we don't put everything under a folder, we'll try to rm -rf /tmp/ later..
import tempfile
ebay = Path(tempfile.gettempdir())/'ebay'

import shutil # Needed to remove a folder recursively

def get_scraped_ebay_stats(user, product_id):
p = Path(ebay, user, product_id).with_suffix('html')
p.parent.mkdir(exist_ok=True, parents=True) # Does this update timestamp
and thus break Make-like tools? Turns out no (on Linux at least),
but who would have known?
dumb_parser(p)

def clear_cache(user=None, product_id=None):
if product_id:

if product_id ever starts pointing to a folder, this will break
return (ebay/user/product_id).unlink()

p = ebay/user if user else ebay
Not exactly equivalent: cachepath.clear() just removes the contents of
a folder, it doesn't remove and recreate. Helpful to avoid messing up
permissions or requiring a personal folder to place things.
shutil.rmtree(p) # No rm -rf for folder paths in pathlib

def get_tempfile():
return tempfile.mkstemp()

def dumb_parser(html_path):
if not p.exists():

sh('wget {}'.format(p))
return myprocess(p.read_text())

2.2 cachepath module

Package that provides CachePath, as well as exporting a Python2/3 compatible Path.

cachepath.TempPath(cls, *args, **kwargs)
See CachePath for more details:

8 Chapter 2. Shameless Promo

CachePath Documentation, Release 1.1.1

TempPath('x', 'y', suffix='.z')
Is safer, easier, and explains your intent to always have a new file better than
CachePath('x', 'y', 'randomstringhere', suffix='.z')

However,
TempPath() == CachePath() # for convenience

class cachepath.CachePath
Bases: pathlib2.Path

Construct a CachePath from one or several strings/Paths.

Constructing a CachePath automatically creates the preceding folders necessary for the file to exist, if they’re
not already there.

CachePaths also have a few helper methods:

CachePath().clear()

CachePath().rm()

By accident, these methods are also attached to regular Paths after constructing a CachePath, but it’s
not recommended to depend on this behavior.

Examples

Basic Usage:

CachePath() == '/tmp/xyz123randomfile'
CachePath('myfilename') == '/tmp/myfilename'
CachePath('myfolder', dir=True) == '/tmp/myfolder/'
TempPath('myfolder') == '/tmp/myfolder/zsdskjrandom'

Multi-component Paths:

p = CachePath('date/processed_data', dir=True)
Or, Alternate constructor to avoid {}/{}.format()
p = CachePath('date', 'processed_data', dir=True)

For an example of real usage, here’s a quick cache for an arbitrary function/arg combo

def get_scraped_ebay_stats(product_id):
p = CachePath('ebay_results/{}'.format(product_id))
if not p.exists():

sh('wget {}'.format(p))
return parser.parse(p.read_text())

Parameters

• args ([str], optional) – List of strings to join for Path. If None, getempfile is
used.

• dir (bool, optional) – Is the path intended to be a directory? Useful when you just
need a tempdir for lots of files, and you don’t want to make a CachePath out of each.

d = CachePath(date, dir=True)
(d/'tool1results').touch()

(continues on next page)

2.2. cachepath module 9

CachePath Documentation, Release 1.1.1

(continued from previous page)

(d/'tool2results').touch()
list(d.iterdir()) == ['tool1results', 'tool2results']

• suffix (str, optional) – Appended to the last path in *args, i.e. CachePath(‘a’, ‘b’,
suffix=’_long_suff.txt’) == ‘/tmp/a/b_long_suff.txt’

• mode (int, optional, default=0o777) – Mode to create folder with, if it doesn’t
already exist.

cachepath.clear(path)
Clear the file/dir, leaving it empty (dir) or 0 length (file).

Monkey-patched onto all Paths on import. Creates file if path doesn’t exist.

cachepath.rm(path)
Delete the file/dir, even if it’s a dir with files in it.

Monkey-patched onto all Paths on import. Does nothing if path doesn’t exist.

2.3 History

2.3.1 1.0.0 (2018-12-08)

• Big doc updates. 1.0.0 to symbolize SemVer adherence.

2.3.2 0.1.0 (2018-12-08)

• First release on PyPI. Adds CachePath, TempPath, Path.

2.4 Contributing

Have an idea to contribute, or hungry to fix bugs? https://github.com/haydenflinner/cachepath/issues.

2.4.1 Setting Up for Development

Here’s how to set up cachepath for local development.

1. Fork the cachepath repo on GitHub.

2. Clone your fork locally:

$ git clone git@github.com:your_name_here/cachepath.git

3. Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up
your fork for local development:

$ mkvirtualenv cachepath
$ cd cachepath/
$ python setup.py develop

4. Create a branch for local development:

10 Chapter 2. Shameless Promo

https://github.com/haydenflinner/cachepath/issues

CachePath Documentation, Release 1.1.1

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

5. When you’re done making changes, check that your changes pass flake8 and the tests, including testing other
Python versions with tox:

$ py.test
$ tox

6. Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

7. Submit a pull request through the GitHub website.

2.4.2 Tips

To run a subset of tests:

$ py.test tests.test_cachepath

2.4.3 Deploying

A reminder for the maintainers on how to deploy. Make sure all your changes are committed (including an entry in
HISTORY.rst). Then run:

$ bumpversion patch # possible: major / minor / patch
$ git push
$ git push --tags

Travis will then deploy to PyPI if tests pass.

2.5 All Tests

Useful to see how CachePaths behave or to see if a case you’re concerned about is tested for.

#!/usr/bin/env python
-*- coding: utf-8 -*-

"""Tests for `cachepath` package."""

import pytest
from cachepath import CachePath, Path

@pytest.fixture
def cachepath(tmpdir):

import cachepath
cachepath.location = tmpdir
return cachepath

(continues on next page)

2.5. All Tests 11

CachePath Documentation, Release 1.1.1

(continued from previous page)

def test_works(cachepath):
p = cachepath.CachePath('lolfile')
p.open('w').writelines([u'hi'])
assert 'hi' == p.read_text()

def test_rm_clear_file(cachepath):
p = cachepath.CachePath()
p.write_text(u'lol')
p.clear()
assert p.read_text() == ''
p.rm()
assert not p.exists()

def test_clear_folder(cachepath):
p = cachepath.CachePath('lolfolder', dir=True)
We would get surprising behavior if / created CachePaths given the side
effecting constructor, so don't do that!
(p/'file').touch()
p.clear()
assert len(list(p.iterdir())) == 0
assert not (p/'file').exists()
p.rm()
assert not p.exists()

def test_tmp(cachepath, tmpdir):
p = cachepath.TempPath('folder/path/here')
p.touch()
assert str(tmpdir) in str(p.parent)

def test_can_change_location():
Old test, now the rest of the tests depend on this to work, but can't hurt.
import cachepath
cachepath.location = './dummy'
assert cachepath.CachePath('innerfile') == Path('./dummy/innerfile')

def test_import_side_effects(tmpdir):
This isn't encouraged to depend on, but if someone does, would rather not break

→˓them.
import cachepath
tmpdir = str(tmpdir)
Path(tmpdir).clear()
Path(tmpdir, 'test_file').rm()

@pytest.mark.xfail
def test_tmp_removes_self(cachepath, tmpdir):

TODO
p = cachepath.TempPath('hi', delete=True)
with p:

pass
assert not p.exists() # Might throw?

12 Chapter 2. Shameless Promo

Python Module Index

c
cachepath, 8

13

CachePath Documentation, Release 1.1.1

14 Python Module Index

Index

C
CachePath (class in cachepath), 9
cachepath (module), 8
clear() (in module cachepath), 10

R
rm() (in module cachepath), 10

T
TempPath() (in module cachepath), 8

15

	Getting Started
	Shameless Promo
	Python Module Index

