
CaChannel Documentation
Release 3.2.0

Xiaoqiang Wang

Nov 22, 2022

Contents

1 Overview 1

2 Contents 3
2.1 Installation . 3
2.2 Short Tutorials . 5
2.3 Channel Access API . 7
2.4 Recipes . 32
2.5 ChangeLog . 34

3 Indices and tables 37

Python Module Index 39

Index 41

i

ii

CHAPTER 1

Overview

CaChannel.CaChannel wraps the low level ca functions into a Python class. It provides methods to operate on
the remote process variable over channel access connection.

It was developed in 2000 by Geoff Savage using caPython extension Later on the CA library becomes multi-threaded
with EPICS base 3.14. The original developer did not address this change however.

In 2008 during the transition to EPICS 3.14, a new implementation of CaChannel interface, version 2.x, was devel-
oped based on PythonCA extension from Noboru Yamamoto. It was highly backwards compatible with the original
implementation based on caPython.

In 2014, package caffi was created in place of caPython or PythonCA extension to expose the Channel Access API
using cffi. It aimed to create a Pythonic API of one-to-one map to the counterpart C functions. After that has been
accomplished, CaChannel interface was re-implemented using the caffi.ca module, versioned 3.x.

In 2015-16, with all previous experiences, the CaChannel.ca module was rewritten from scratch using Python/C
API. The new CaChannel.ca module has a compatible API with caffi.ca. Because of that, the CaChannel
interface can use caffi.ca by setting environment variable CACHANNEL_BACKEND=caffi. This is also the
fallback backend if no EPICS installation exists or the C extension fails to import.

1

http://d0server1.fnal.gov/users/savage/www/caPython/caPython.html
http://www-acc.kek.jp/EPICS_Gr/products.html
https://github.com/CaChannel/caffi
http://www.aps.anl.gov/epics/base/R3-14/12-docs/CAref.html
https://pypi.python.org/pypi/cffi
https://caffi.readthedocs.io/en/latest/api.html#module-caffi.ca
https://caffi.readthedocs.io/en/latest/api.html#module-caffi.ca
https://caffi.readthedocs.io/en/latest/api.html#module-caffi.ca

CaChannel Documentation, Release 3.2.0

2 Chapter 1. Overview

CHAPTER 2

Contents

2.1 Installation

2.1.1 Binary Installers

Anaconda

Packages for Anaconda can be installed via:

conda install -c paulscherrerinstitute cachannel

Wheel

The binary packages are distributed at PyPI. They have EPICS 3.14.12.6 libraries statically builtin. Make sure you
have pip and wheel installed,

$ sudo pip install cachannel # macOS
> C:\Python27\Scripts\pip.exe install cachannel :: Windows

Egg

PyPI does not allow upload linux-specific wheels package, yet (as of 2014). The old egg format is used then:

$ sudo easy_install cachannel

Or install only for the current user:

$ easy_install --user cachannel

3

https://pypi.python.org/pypi/CaChannel
https://pypi.python.org/pypi/pip
https://pypi.python.org/pypi/wheel

CaChannel Documentation, Release 3.2.0

2.1.2 Source

If a binary package is not available for your system, you can build from source. If you have a valid EPICS base
installation, as described by Getting EPICS, the C extension will be compiled. Otherwise it will instead use caffi as
the backend.

The source can be downloaded in various ways:

• The released source tarballs can be found at PyPI.

• From the git repository, each release can be downloaded as a zip package.

• Clone the repository if you feel adventurous:

$ git clone https://github.com/CaChannel/CaChannel.git

On Linux, the python header files are normally provided by package like python-devel or python-dev.

numpy is optional, but it can boost the performace when reading large waveform PVs, which are common for areaD-
etector images.

Getting EPICS

In general please follow the official installation instruction. Here is a short guide,

• Get the source tarball from http://www.aps.anl.gov/epics/base/R3-14/12.php.

• Unpack it to a proper path.

• Set the following environment variables:

– EPICS_BASE : the path containing the EPICS base source tree.

– EPICS_HOST_ARCH : EPICS is built into static libraries on Windows.

OS Arch EPICS_HOST_ARCH
Linux 32bit linux-x86

64bit linux-x86_64
Windows 32bit win32-x86

64bit windows-x64
macOS PPC darwin-ppcx86

Intel darwin-x86

• Run make.

Build

As soon as the epics base libraries are ready, it is simple,

• On Widnows:

> C:\Python27\python.exe setup.py install

• On Linux/macOS:

$ [sudo] python setup.py install

4 Chapter 2. Contents

https://pypi.python.org/pypi/caffi
https://pypi.python.org/pypi/CaChannel
https://github.com/CaChannel/CaChannel/releases
http://www.aps.anl.gov/epics/base/R3-14/12-docs/README.html
http://www.aps.anl.gov/epics/base/R3-14/12.php

CaChannel Documentation, Release 3.2.0

Note: You might need to pass -E flag to sudo to preserve the EPICS environment variables. If your user account is
not allowed to do so, a normal procedure should be followed,

$ su -
export EPICS_BASE=<epics base path>
export EPICS_HOST_ARCH=<epics host arch>
python setup.py install

2.1.3 Package

After the build succeeds, you may want to create a package for distribution.

Anaconda

Conda recipe is included:

$ conda build -c paulscherrerinstitute conda-recipe

Wheel

$ python setup.py bdist_wheel

RPM

The spec file python-CaChannel.spec is included. Get the source tarball either from PyPI or create it by python
setup.py sdist, and run:

$ rpmbuild -ta CaChannel-3.0.0.tar.gz

The binary and source RPM will be created. The package name is python-CaChannel.

2.2 Short Tutorials

2.2.1 Synchronous Actions

Each of the actions (search, put, get) ending with a “w” signify that the action completes before the function returns.
In CA terms this means that a call to ca_pend_io() is issued to force the action to process and wait for the action to
complete. When an exception occurs the offending CA status return is printed using print ca.message(status).

from CaChannel import CaChannel, CaChannelException
try:

chan = CaChannel('catest')
chan.searchw()
chan.putw(12)
chan.getw()

except CaChannelException as e:
print(e)

2.2. Short Tutorials 5

CaChannel Documentation, Release 3.2.0

2.2.2 Multiple Synchronous Actions

Connection

Multiple channel access connection requests.

from CaChannel import ca, CaChannel, CaChannelException
try:

chan1 = CaChannel('catest')
chan1.search()
chan2 = CaChannel('cabo')
chan2.search()
chan2.pend_io()

except CaChannelException as e:
print(e)

Write

Multiple channel access write requests.

from CaChannel import ca, CaChannel, CaChannelException
try:

chan1 = CaChannel('catest')
chan1.search()
chan2 = CaChannel('cabo')
chan2.search()
chan2.pend_io()
chan1.array_put(1.23)
chan2.array_put(1)
chan2.flush_io()

except CaChannelException as e:
print(e)

2.2.3 Asynchronouse Actions

Asynchronous execution does not require that the user wait for completion of an action. Instead, a user specified
callback function is executed when the action has completed. Each callback takes two arguments:

• epics_args: arguments returned from epics.

• user_args: arguments specified by the user for use in the callback function.

Since we don’t need to wait for actions to complete we use flush_io() instead of pend_io() as in the synchronous
examples. Flush_io() starts execution of actions and returns immediately.

Note: The callback function is not executed in the main thread. It runs in an auxiliary thread managed by CA library.

import time
from CaChannel import ca, CaChannel, CaChannelException
def connectCB(epics_args, user_args):

print("connectCB: Python connect callback function")
print(type(epics_args))
print(epics_args)
print(user_args)
state = epics_args[1]

(continues on next page)

6 Chapter 2. Contents

CaChannel Documentation, Release 3.2.0

(continued from previous page)

if state == ca.CA_OP_CONN_UP:
print("connectCB: Connection is up")

elif state == ca.CA_OP_CONN_DOWN:
print("connectCB: Connection is down")

def putCB(epics_args, user_args):
print("putCB: Python put callback function")
print(type(epics_args))
print(epics_args)
print(ca.name(epics_args['chid']))
print(epics_args['type'])
print(epics_args['count'])
print(epics_args['status'])
print(user_args)

chan = CaChannel()
chan.search_and_connect('catest', connectCB)
chan.flush_io()
time.sleep(1)
chan.array_put_callback(3.3, None, None, putCB)
chan.flush_io()
time.sleep(1)

2.2.4 Asynchronous Monitoring

Watch for changes in value or alarm state of a process variable. A callback is executed when a change is seen.

import sys
import time
from CaChannel import ca, CaChannel, CaChannelException
def eventCB(epics_args, user_args):

print("eventCb: Python callback function"
print(type(epics_args))
print(epics_args)
print(epics_args['status'])
print("new value =", epics_args['pv_value'])
print(epics_args['pv_severity'])
print(epics_args['pv_status'])

chan = CaChannel()
chan.searchw('catest')
chan.add_masked_array_event(

ca.DBR_STS_DOUBLE,
None,
None,
eventCB)

chan.flush_io()
time.sleep(5)

2.3 Channel Access API

EPICS channel access (CA) is the communication protocol used to transfer information between EPICS servers and
clients. Process variables (PV) are accessible though channel access. Interactions with EPICS PV include:

2.3. Channel Access API 7

CaChannel Documentation, Release 3.2.0

• Connect - create a connection between your application and a PV. This must be done before any other commu-
nication with the PV.

• Read - read data (and the meta info, limits, units, precision, statestrings) held in the PV.

• Write - write data to the PV.

• Monitor - notification when a PV’s value or alarm state changes.

• Close - close the connection to the PV.

2.3.1 ca — Low level interface

This is a module to present the interface of low level channel access C library. It has the same API as module caffi.
ca.

Data Types

Each PV has a native EPICS type. The native types are then converted to Python types.

This table also lists the EPICS request types. Users can request that the type of the read or write value be changed
internally by EPICS. Typically this adds a time penalty and is not recommended.

Native Type Request Type C Type Python Type

ca.DBF_INT ca.DBR_INT
16bit short Integer

ca.DBF_SHORT ca.DBR_SHORT
16bit short Integer

ca.DBF_LONG ca.DBR_LONG
32bit int Integer

ca.DBF_CHAR ca.DBR_CHAR
8bit char Integer

ca.DBF_STRING ca.DBR_STRING
array of chars (max 40) String

ca.DBF_ENUM ca.DBR_ENUM
16bit short Integer

ca.DBF_FLOAT ca.DBR_FLOAT
32bit float Float

ca.DBF_DOUBLE ca.DBR_DOUBLE
64bit double Float

The one area where type conversion is extremely useful is dealing with fields of type ca.DBF_ENUM . An ENUM
value can only be one from a predefined list. A list consists of a set of string values that correspond to the ENUM
values (similar to the C enum type). It is easier to remember the list in terms of the strings instead of the numbers
corresponding to each string.

Error Code

Error codes defined in header caerr.h are supported.

8 Chapter 2. Contents

https://caffi.readthedocs.io/en/latest/api.html#module-caffi.ca
https://caffi.readthedocs.io/en/latest/api.html#module-caffi.ca

CaChannel Documentation, Release 3.2.0

Element Count

Each data field can contain one or more data elements. The number of data elements is referred to as the native
element count for a field. The number of data elements written to or read from a data field with multiple elements is
user controllable. All or some data elements can be read. When some data elements are accessed the access is always
started at the first element. It is not possible to read part of the data and then read the rest of the data.

2.3.2 CaChannel

CaChannel module is a (relatively) high level interface to operate on channel access. It provides almost one to one
function map to the channel access C API. So basic knowledge of channel access is assumed.

But it does make it pythonic in other ways, single CaChannel object, flexible parameter input and value return.

CaChannel.USE_NUMPY
If numpy support is enabled at compiling time and numpy package is available at runtime, numeric data types
can be returned as numpy arrays when USE_NUMPY=True. This boosts performance on large size arrays (>1M
elements).

Exception CaChannelException

exception CaChannel.CaChannelException
This is the exception type throwed by any channel access operations. Its string representation shows the descrip-
tive message.

Class CaChannel

class CaChannel.CaChannel(pvName=None)
CaChannel: A Python class with identical API as of caPython/CaChannel.

This class implements the methods to operate on channel access so that you can find their C library counterparts ,
http://www.aps.anl.gov/epics/base/R3-14/12-docs/CAref.html#Function. Therefore an understanding of C API
helps much.

To get started easily, convenient methods are created for often used operations,

Operation Method
connect searchw()
read getw()
write putw()

They have shorter names and default arguments. It is recommended to start with these methods. Study the other
C alike methods when necessary.

>>> chan = CaChannel('catest')
>>> chan.searchw()
>>> chan.putw(12.5)
>>> chan.getw()
12.5
>>> chan.searchw('cabo')
>>> chan.putw('Done')
>>> chan.getw(ca.DBR_STRING)
'Done'

2.3. Channel Access API 9

http://www.aps.anl.gov/epics/base/R3-14/12-docs/CAref.html#Function

CaChannel Documentation, Release 3.2.0

Connect

CaChannel.search(pvName=None)
Attempt to establish a connection to a process variable.

Parameters pvName (bytes, str) – process variable name

Raises CaChannelException – if error happens

Note: All remote operation requests such as the above are accumulated (buffered) and not for-
warded to the IOC until one of execution methods (pend_io(), poll(), pend_event(),
flush_io()) is called. This allows several requests to be efficiently sent over the network in
one message.

>>> chan = CaChannel()
>>> chan.search('catest')
>>> status = chan.pend_io()
>>> chan.state()
<ChannelState.CONN: 2>

CaChannel.search_and_connect(pvName, callback, *user_args)
Attempt to establish a connection to a process variable.

Parameters

• pvName (bytes, str) – process variable name

• callback (callable) – function called when connection completes and con-
nection status changes later on.

• user_args – user provided arguments that are passed to callback when it is in-
voked.

Raises CaChannelException – if error happens

The user arguments are returned to the user in a tuple in the callback function. The order of the
arguments is preserved.

Each Python callback function is required to have two arguments. The first argument is a tuple
containing the results of the action. The second argument is a tuple containing any user arguments
specified by user_args. If no arguments were specified then the tuple is empty.

Note: All remote operation requests such as the above are accumulated (buffered) and not for-
warded to the IOC until one of execution methods (pend_io(), poll(), pend_event(),
flush_io()) is called. This allows several requests to be efficiently sent over the network in
one message.

>>> chan = CaChannel('catest')
>>> def connCB(epicsArgs, _):
... chid = epicsArgs[0]
... connection_state = epicsArgs[1]
... if connection_state == ca.CA_OP_CONN_UP:
... print(ca.name(chid), "is connected")
>>> chan.search_and_connect(None, connCB, chan)
>>> status = chan.pend_event(3) # doctest: +SKIP
catest is connected

(continues on next page)

10 Chapter 2. Contents

CaChannel Documentation, Release 3.2.0

(continued from previous page)

>>> chan.search_and_connect('cabo', connCB, chan)
>>> status = chan.pend_event(3) # doctest: +SKIP
cabo is connected
>>> chan.clear_channel()

CaChannel.searchw(pvName=None)
Attempt to establish a connection to a process variable.

Parameters pvName (str, None) – process variable name

Raises CaChannelException – if timeout or error happens

Note: This method waits for connection to be established or fail with exception.

>>> chan = CaChannel('non-exist-channel')
>>> chan.searchw() # doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):

...
CaChannelException: User specified timeout on IO operation expired

CaChannel.clear_channel()
Close a channel created by one of the search functions.

Clearing a channel does not cause its connection handler to be called. Clearing a channel does
remove any monitors registered for that channel. If the channel is currently connected then resources
are freed only some time after this request is flushed out to the server.

Note: All remote operation requests such as the above are accumulated (buffered) and not for-
warded to the IOC until one of execution methods (pend_io(), poll(), pend_event(),
flush_io()) is called. This allows several requests to be efficiently sent over the network in
one message.

CaChannel.change_connection_event(callback, *user_args)
Change the connection callback function

Parameters

• callback (callable) – function called when connection completes and con-
nection status changes later on. The previous connection callback will be replaced.
If an invalid callback is given, no connection callback will be used.

• user_args – user provided arguments that are passed to callback when it is in-
voked.

>>> chan = CaChannel('catest')
>>> chan.search() # connect without callback
>>> def connCB(epicsArgs, _):
... chid = epicsArgs[0]
... connection_state = epicsArgs[1]
... if connection_state == ca.CA_OP_CONN_UP:
... print(ca.name(chid), "is connected")
>>> chan.change_connection_event(connCB) # install connection callback
>>> status = chan.pend_event(3) # doctest: +SKIP
catest is connected
>>> chan.change_connection_event(None) # remove connection callback

2.3. Channel Access API 11

CaChannel Documentation, Release 3.2.0

Read

CaChannel.array_get(req_type=None, count=None, **keywords)
Read a value or array of values from a channel.

The new value is not available until a subsequent pend_io() returns ca.ECA_NORMAL. Then it
can be retrieved by a call to getValue().

Parameters

• req_type (int, None) – database request type (ca.DBR_XXXX). Defaults to
be the native data type.

• count (int, None) – number of data values to read, Defaults to be the native
count.

• keywords – optional arguments assigned by keywords

key-
word

value

use_numpyTrue if waveform should be returned as numpy array. Default
CaChannel.USE_NUMPY .

Raises CaChannelException – if error happens

Note: All remote operation requests such as the above are accumulated (buffered) and not for-
warded to the IOC until one of execution methods (pend_io(), poll(), pend_event(),
flush_io()) is called. This allows several requests to be efficiently sent over the network in
one message.

See also:

getValue()

>>> chan = CaChannel('catest')
>>> chan.searchw()
>>> chan.putw(123)
>>> chan.array_get()
>>> chan.pend_io()
>>> chan.getValue()
123.0

CaChannel.getValue()
Return the value(s) after array_get() has completed.

Returns the value returned from the last array_get

Return type int, float, str, list, array, dict

If the req_type was not a plain type, the returned value is of dict type. It contains the same keys as
in array_get_callback().

See also:

array_get()

12 Chapter 2. Contents

CaChannel Documentation, Release 3.2.0

>>> chan = CaChannel('cabo')
>>> chan.searchw()
>>> chan.putw(1)
>>> chan.array_get(req_type=ca.DBR_CTRL_ENUM)
>>> chan.pend_io()
>>> for k,v in sorted(chan.getValue().items()):
... if k in ['pv_severity', 'pv_status']:
... print(k, v.name)
... else:
... print(k, v)
pv_nostrings 2
pv_severity Minor
pv_statestrings ('Done', 'Busy')
pv_status State
pv_value 1

CaChannel.array_get_callback(req_type, count, callback, *user_args, **keywords)
Read a value or array of values from a channel and execute the user supplied callback after the get
has completed.

Parameters

• req_type (int, None) – database request type (ca.DBR_XXXX). Defaults to
be the native data type.

• count (int, None) – number of data values to read, Defaults to be the native
count.

• callback (callable) – function called when the get is completed.

• user_args – user provided arguments that are passed to callback when it is in-
voked.

• keywords – optional arguments assigned by keywords

key-
word

value

use_numpyTrue if waveform should be returned as numpy array. Default
CaChannel.USE_NUMPY .

Raises CaChannelException – if error happens

Each Python callback function is required to have two arguments. The first argument is a dictionary
containing the results of the action.

2.3. Channel Access API 13

CaChannel Documentation, Release 3.2.0

field type comment request type
DBR_XXXXDBR_STS_XXXXDBR_TIME_XXXXDBR_GR_XXXXDBR_CTRL_XXXX

chid int channels id num-
ber

X X X X X

type int database re-
quest type
(ca.DBR_XXXX)

X X X X X

count int number of values
to transfered

X X X X X

status int CA status
return code
(ca.ECA_XXXX)

X X X X X

pv_value PV value X X X X X
pv_status int PV alarm status X X X X
pv_severityint PV alarm severity X X X X
pv_secondsint seconds part of

timestamp
X

pv_nsecondsint nanoseconds part
of timestamp

X

pv_nostringsint ENUM PV’s num-
ber of states

X X

pv_statestringsstring
list

ENUM PV’s states
string

X X

pv_units string units X X
pv_precisionint precision X X
pv_updislimfloat upper display limit X X
pv_lodislimfloat lower display limit X X
pv_upalarmlimfloat upper alarm limit X X
pv_upwarnlimfloat upper warning

limit
X X

pv_loalarmlimfloat lower alarm limit X X
pv_lowarnlimfloat lower warning

limit
X X

pv_upctrllimfloat upper control limit X
pv_loctrllimfloat lower control limit X

The second argument is a tuple containing any user arguments specified by user_args. If no argu-
ments were specified then the tuple is empty.

Note: All remote operation requests such as the above are accumulated (buffered) and not for-
warded to the IOC until one of execution methods (pend_io(), poll(), pend_event(),
flush_io()) is called. This allows several requests to be efficiently sent over the network in
one message.

>>> def getCB(epicsArgs, _):
... for item in sorted(epicsArgs.keys()):
... if item in ['pv_severity', 'pv_status']:
... print(item,epicsArgs[item].name)
... elif item.startswith('pv_'):
... print(item,epicsArgs[item])
>>> chan = CaChannel('catest')

(continues on next page)

14 Chapter 2. Contents

CaChannel Documentation, Release 3.2.0

(continued from previous page)

>>> chan.searchw()
>>> chan.putw(145)
>>> chan.array_get_callback(ca.DBR_CTRL_DOUBLE, 1, getCB)
>>> status = chan.pend_event(1)
pv_loalarmlim -20.0
pv_loctrllim 0.0
pv_lodislim -20.0
pv_lowarnlim -10.0
pv_precision 4
pv_severity Major
pv_status HiHi
pv_units mm
pv_upalarmlim 20.0
pv_upctrllim 0.0
pv_updislim 20.0
pv_upwarnlim 10.0
pv_value 145.0
>>> chan = CaChannel('cabo')
>>> chan.searchw()
>>> chan.putw(0)
>>> chan.array_get_callback(ca.DBR_CTRL_ENUM, 1, getCB)
>>> status = chan.pend_event(1)
pv_nostrings 2
pv_severity No
pv_statestrings ('Done', 'Busy')
pv_status No
pv_value 0

CaChannel.getw(req_type=None, count=None, **keywords)
Read the value from a channel.

If the request type is omitted the data is returned to the user as the Python type corresponding to
the native format. Multi-element data has all the elements returned as items in a list and must be
accessed using a numerical type. Access using non-numerical types is restricted to the first element
in the data field.

ca.DBF_ENUM fields can be read using ca.DBR_ENUM and ca.DBR_STRING types. ca.
DBR_STRING reads of a field of type ca.DBF_ENUM returns the string corresponding to the cur-
rent enumerated value.

ca.DBF_CHAR fields can be read using ca.DBR_CHAR and ca.DBR_STRING types. ca.
DBR_CHAR returns a scalar or a sequnece of integers. ca.DBR_STRING assumes each integer
as a character and assemble a string.

Parameters

• req_type (int, None) – database request type. Defaults to be the native data
type.

• count (int, None) – number of data values to read, Defaults to be the native
count.

• keywords – optional arguments assigned by keywords

key-
word

value

use_numpyTrue if waveform should be returned as numpy array. Default
CaChannel.USE_NUMPY .

2.3. Channel Access API 15

CaChannel Documentation, Release 3.2.0

Returns If req_type is plain request type, only the value is returned. Otherwise a dict
returns with information depending on the request type, same as the first argument
passed to user’s callback by array_get_callback().

Raises CaChannelException – if timeout error happens

>>> chan = CaChannel('catest')
>>> chan.searchw()
>>> chan.putw(0)
>>> value = chan.getw(ca.DBR_TIME_DOUBLE)
>>> for k,v in sorted(value.items()): # doctest: +ELLIPSIS
... if k in ['pv_severity', 'pv_status']:
... print(k, v.name)
... else:
... print(k, v)
pv_nseconds ...
pv_seconds ...
pv_severity No
pv_status No
pv_value 0.0

Changed in version 3.0: If req_type is DBR_XXX_STRING for a char type PV, a string will be
returned from composing each element as a character.

Write

CaChannel.array_put(value, req_type=None, count=None)
Write a value or array of values to a channel

Parameters

• value (int, float, bytes, str, list, tuple, array) – data to
be written. For multiple values use a list or tuple

• req_type (int, None) – database request type (ca.DBR_XXXX). Defaults to
be the native data type.

• count (int, None) – number of data values to write. Defaults to be the native
count.

Note: All remote operation requests such as the above are accumulated (buffered) and not for-
warded to the IOC until one of execution methods (pend_io(), poll(), pend_event(),
flush_io()) is called. This allows several requests to be efficiently sent over the network in
one message.

>>> chan = CaChannel('catest')
>>> chan.searchw()
>>> chan.array_put(123)
>>> chan.flush_io()
>>> chan.getw()
123.0
>>> chan = CaChannel('cabo')
>>> chan.searchw()
>>> chan.array_put('Busy', ca.DBR_STRING)
>>> chan.flush_io()
>>> chan.getw()

(continues on next page)

16 Chapter 2. Contents

CaChannel Documentation, Release 3.2.0

(continued from previous page)

1
>>> chan = CaChannel('cawavec')
>>> chan.searchw()
>>> chan.array_put([1,2,3])
>>> chan.flush_io()
>>> chan.getw()
[1, 2, 3, 0, 0]
>>> chan.getw(count=3, use_numpy=True)
array([1, 2, 3], dtype=uint8)
>>> chan = CaChannel('cawavec')
>>> chan.searchw()
>>> chan.array_put('1234',count=3)
>>> chan.flush_io()
>>> chan.getw(count=4)
[49, 50, 51, 0]

CaChannel.array_put_callback(value, req_type, count, callback, *user_args)
Write a value or array of values to a channel and execute the user supplied callback after the put has
completed.

Parameters

• value (int, float, bytes, str, list, tuple, array) – data to
be written. For multiple values use a list or tuple.

• req_type (int, None) – database request type (ca.DBR_XXXX). Defaults to
be the native data type.

• count (int, None) – number of data values to write, Defaults to be the native
count.

• callback (callable) – function called when the write is completed.

• user_args – user provided arguments that are passed to callback when it is in-
voked.

Raises CaChannelException – if error happens

Each Python callback function is required to have two arguments. The first argument is a dictionary
containing the results of the action.

field type comment
chid capsule channels id structure
type int database request type (ca.DBR_XXXX)
count int number of values to transfered
status int CA status return code (ca.ECA_XXXX)

The second argument is a tuple containing any user arguments specified by user_args. If no argu-
ments were specified then the tuple is empty.

Note: All remote operation requests such as the above are accumulated (buffered) and not for-
warded to the IOC until one of execution methods (pend_io(), poll(), pend_event(),
flush_io()) is called. This allows several requests to be efficiently sent over the network in
one message.

2.3. Channel Access API 17

CaChannel Documentation, Release 3.2.0

>>> def putCB(epicsArgs, _):
... print(ca.name(epicsArgs['chid']), 'put completed')
>>> chan = CaChannel('catest')
>>> chan.searchw()
>>> chan.array_put_callback(145, None, None, putCB)
>>> status = chan.pend_event(1)
catest put completed
>>> chan = CaChannel('cabo')
>>> chan.searchw()
>>> chan.array_put_callback('Busy', ca.DBR_STRING, None, putCB)
>>> status = chan.pend_event(1)
cabo put completed
>>> chan = CaChannel('cawave')
>>> chan.searchw()
>>> chan.array_put_callback([1,2,3], None, None, putCB)
>>> status = chan.pend_event(1)
cawave put completed
>>> chan = CaChannel('cawavec')
>>> chan.searchw()
>>> chan.array_put_callback('123', None, None, putCB)
>>> status = chan.pend_event(1)
cawavec put completed

CaChannel.putw(value, req_type=None)
Write a value or array of values to a channel.

If the request type is omitted the data is written as the Python type corresponding to the native
format. Multi-element data is specified as a tuple or a list. Internally the sequence is converted to
a list before inserting the values into a C array. Access using non-numerical types is restricted to
the first element in the data field. Mixing character types with numerical types writes bogus results
but is not prohibited at this time. ca.DBF_ENUM fields can be written using ca.DBR_ENUM and
ca.DBR_STRING types. ca.DBR_STRING writes of a field of type ca.DBF_ENUM must be
accompanied by a valid string out of the possible enumerated values.

Parameters

• value (int, float, bytes, str, tuple, list, array) – data to
be written. For multiple values use a list or tuple

• req_type (int, None) – database request type (ca.DBR_XXXX). Defaults to
be the native data type.

Raises CaChannelException – if timeout or error happens

Note: This method does flush the request to the channel access server.

>>> chan = CaChannel('catest')
>>> chan.searchw()
>>> chan.putw(145)
>>> chan.getw()
145.0
>>> chan = CaChannel('cabo')
>>> chan.searchw()
>>> chan.putw('Busy', ca.DBR_STRING)
>>> chan.getw()
1

(continues on next page)

18 Chapter 2. Contents

CaChannel Documentation, Release 3.2.0

(continued from previous page)

>>> chan.getw(ca.DBR_STRING)
'Busy'
>>> chan = CaChannel('cawave')
>>> chan.searchw()
>>> chan.putw([1,2,3])
>>> chan.getw(req_type=ca.DBR_LONG,count=4)
[1, 2, 3, 0]
>>> chan = CaChannel('cawavec')
>>> chan.searchw()
>>> chan.putw('123')
>>> chan.getw(count=4)
[49, 50, 51, 0]
>>> chan.getw(req_type=ca.DBR_STRING)
'123'
>>> chan = CaChannel('cawaves')
>>> chan.searchw()
>>> chan.putw(['string 1','string 2'])
>>> chan.getw()
['string 1', 'string 2', '']

Monitor

CaChannel.add_masked_array_event(req_type, count, mask, callback, *user_args,
**keywords)

Specify a callback function to be executed whenever changes occur to a PV.

Creates a new event id and stores it on self.__evid. Only one event registered per CaChannel object.
If an event is already registered the event is cleared before registering a new event.

Parameters

• req_type (int, None) – database request type (ca.DBR_XXXX). Defaults to
be the native data type.

• count (int, None) – number of data values to read, Defaults to be the native
count.

• mask (int, None) – logical or of ca.DBE_VALUE, ca.DBE_LOG, ca.
DBE_ALARM. Defaults to be ca.DBE_VALUE|ca.DBE_ALARM.

• callback (callable) – function called when the get is completed.

• user_args – user provided arguments that are passed to callback when it is in-
voked.

• keywords – optional arguments assigned by keywords

key-
word

value

use_numpyTrue if waveform should be returned as numpy array. Default
CaChannel.USE_NUMPY .

Raises CaChannelException – if error happens

Note: All remote operation requests such as the above are accumulated (buffered) and not for-
warded to the IOC until one of execution methods (pend_io(), poll(), pend_event(),

2.3. Channel Access API 19

CaChannel Documentation, Release 3.2.0

flush_io()) is called. This allows several requests to be efficiently sent over the network in
one message.

>>> def eventCB(epicsArgs, _):
... print('pv_value', epicsArgs['pv_value'])
... print('pv_status', epicsArgs['pv_status'].name)
... print('pv_severity', epicsArgs['pv_severity'].name)
>>> chan = CaChannel('cabo')
>>> chan.searchw()
>>> chan.putw(1)
>>> chan.add_masked_array_event(ca.DBR_STS_ENUM, None, None, eventCB)
>>> status = chan.pend_event(1)
pv_value 1
pv_status State
pv_severity Minor
>>> chan.add_masked_array_event(ca.DBR_STS_STRING, None, None, eventCB)
>>> status = chan.pend_event(1)
pv_value Busy
pv_status State
pv_severity Minor
>>> chan.clear_event()

CaChannel.clear_event()
Remove previously installed callback function.

Note: All remote operation requests such as the above are accumulated (buffered) and not for-
warded to the IOC until one of execution methods (pend_io(), poll(), pend_event(),
flush_io()) is called. This allows several requests to be efficiently sent over the network in
one message.

Execute

CaChannel.pend_io(timeout=None)
Flush the send buffer and wait until outstanding queries (search(), array_get()) complete or
the specified timeout expires.

Parameters timeout (float) – seconds to wait

Raises CaChannelException – if timeout or other error happens

CaChannel.pend_event(timeout=None)
Flush the send buffer and process background activity (connect/get/put/monitor callbacks) for
timeout seconds.

It will not return before the specified timeout expires and all unfinished channel access labor has
been processed.

Parameters timeout (float) – seconds to wait

Returns ca.ECA_TIMEOUT

CaChannel.poll()
Flush the send buffer and execute any outstanding background activity.

Returns ca.ECA_TIMEOUT

20 Chapter 2. Contents

CaChannel Documentation, Release 3.2.0

Note: It is an alias to pend_event(1e-12).

CaChannel.flush_io()
Flush the send buffer and does not execute outstanding background activity.

Raises CaChannelException – if error happens

Information

CaChannel.field_type()
Native type of the PV in the server, ca.DBF_XXXX.

>>> chan = CaChannel('catest')
>>> chan.searchw()
>>> ftype = chan.field_type()
>>> ftype
<DBF.DOUBLE: 6>
>>> ca.dbf_text(ftype)
'DBF_DOUBLE'
>>> ca.DBF_DOUBLE == ftype
True

CaChannel.element_count()
Maximum array element count of the PV in the server.

>>> chan = CaChannel('catest')
>>> chan.searchw()
>>> chan.element_count()
1

CaChannel.name()
Channel name specified when the channel was created.

>>> chan = CaChannel('catest')
>>> chan.searchw()
>>> chan.name()
'catest'

CaChannel.state()
Current state of the CA connection.

States Value Meaning
ca.cs_never_conn 0 PV not found
ca.cs_prev_conn 1 PV was found but unavailable
ca.cs_conn 2 PV was found and available
ca.cs_closed 3 PV not closed
ca.cs_never_search 4 PV not searched yet

>>> chan = CaChannel('catest')
>>> chan.state()
<ChannelState.NEVER_SEARCH: 4>
>>> chan.searchw()

(continues on next page)

2.3. Channel Access API 21

CaChannel Documentation, Release 3.2.0

(continued from previous page)

>>> chan.state()
<ChannelState.CONN: 2>

CaChannel.host_name()
Host name that hosts the process variable.

>>> chan = CaChannel('catest')
>>> chan.searchw()
>>> host_name = chan.host_name()

CaChannel.read_access()
Access right to read the channel.

Returns True if the channel can be read, False otherwise.

>>> chan = CaChannel('catest')
>>> chan.searchw()
>>> chan.read_access()
True

CaChannel.write_access()
Access right to write the channel.

Returns True if the channel can be written, False otherwise.

>>> chan = CaChannel('catest')
>>> chan.searchw()
>>> chan.write_access()
True

Misc

CaChannel.setTimeout(timeout)
Set the timeout for this channel object. It overrides the class timeout.

Parameters timeout (float) – timeout in seconds

>>> chan = CaChannel()
>>> chan.setTimeout(10.)
>>> chan.getTimeout()
10.0

CaChannel.getTimeout()
Retrieve the timeout set for this channel object.

Returns timeout in seconds for this channel instance

Return type float

>>> chan = CaChannel()
>>> chan.getTimeout() == CaChannel.ca_timeout
True

CaChannel.replace_access_rights_event(callback=None, user_args=None)
Install or replace the access rights state change callback handler for the specified channel.

The callback handler is called in the following situations.

22 Chapter 2. Contents

CaChannel Documentation, Release 3.2.0

• whenever CA connects the channel immediately before the channel’s connection handler is
called

• whenever CA disconnects the channel immediately after the channel’s disconnect callback is
called

• once immediately after installation if the channel is connected

• whenever the access rights state of a connected channel changes

When a channel is created no access rights handler is installed.

Parameters

• callback (callable) – function called when access rights change. If None is
given, remove the access rights event callback.

• user_args – user provided arguments that are passed to callback when it is in-
voked.

>>> chan = CaChannel('catest')
>>> chan.searchw()
>>> def accessCB(epicsArgs, _):
... print('read:', epicsArgs['read_access'], 'write:', epicsArgs[
→˓'write_access'])
>>> chan.replace_access_rights_event(accessCB)
read: True write: True
>>> chan.replace_access_rights_event() # clear the callback

New in version 3.0.

classmethod CaChannel.add_exception_event(callback=None, user_args=None)
Install or replace the currently installed CA context global exception handler callback.

When an error occurs in the server asynchronous to the clients thread then information about this
type of error is passed from the server to the client in an exception message. When the client receives
this exception message an exception handler callback is called. The default exception handler prints
a diagnostic message on the client’s standard out and terminates execution if the error condition is
severe.

Note that certain fields returned in the callback args are not applicable in the context of some error
messages. For instance, a failed get will supply the address in the client task where the returned
value was requested to be written. For other failed operations the value of the addr field should not
be used.

Parameters

• callback (callable) – function called.

• user_args – user provided arguments that are passed to callback when it is in-
voked.

The possible fields available are as defined in the C “struct exception_handler_args” and are: chid,
type, count, state, op, ctx, file, lineNo

>>> chan = CaChannel('catest')
>>> chan.searchw()
>>> def exceptionCB(epicsArgs, _):
... print('op:', epicsArgs['op'], 'file:', epicsArgs['file'], 'line:
→˓', epicsArgs['lineNo'])
>>> chan.add_exception_event(exceptionCB) # add callback # doctest: +SKIP
>>> chan.add_exception_event() # clear the callback # doctest: +SKIP

2.3. Channel Access API 23

CaChannel Documentation, Release 3.2.0

New in version 3.1.

classmethod CaChannel.replace_printf_handler(callback=None,
user_args=None)

Install or replace the callback used for formatted CA diagnostic message output. The default is to
send to stderr.

Parameters

• callback (callable) – function called.

• user_args – user provided arguments that are passed to callback when it is in-
voked.

>>> chan = CaChannel('catest')
>>> chan.searchw()
>>> def printfCB(message, _):
... print('CA message:', message)
>>> chan.replace_printf_handler(printfCB) # add callback # doctest:
→˓+SKIP
>>> chan.replace_printf_handler() # clear the callback # doctest: +SKIP

New in version 3.1.

2.3.3 epicsPV

This module defines the epicsPV class, which adds additional features to Geoff Savage’s CaChannel class.

Author: Mark Rivers Created: Sept. 16, 2002. Modifications:

• Mar. 25, 2014 Xiaoqiang Wang

– Fix the call sequence inside getCallback

• Mar. 7, 2017 Xiaoqiang Wang

– Reformat the docstring and code indent.

Class epicsPV

class epicsPV.epicsPV(pvName=None, wait=True)
This class subclasses CaChannel class to add the following features:

• If a PV name is given then the class constructor will do a CaChannel.CaChannel.searchw() by
default.

• setMonitor() sets a generic callback routine for value change events. Subsequent getw(),
getValue() or array_get() calls will return the value from the most recent callback, and hence
do not result in any network activity or latency. This can greatly improve performance.

• checkMonitor() returns a flag to indicate if a callback has occured since the last call to
checkMonitor(), getw(), getValue() or array_get(). It can be used to increase efficiency
in polling applications.

• getControl() reads the “control” and other information from an EPICS PV without having to use
callbacks. In addition to the PV value, this will return the graphic, control and alarm limits, etc.

• putWait() calls CaChannel.CaChannel.array_put_callback() and waits for the callback
to occur before it returns. This allows programs to wait for record being processed synchronously and
without user-written callbacks.

24 Chapter 2. Contents

CaChannel Documentation, Release 3.2.0

Constructor

epicsPV.__init__(pvName=None, wait=True)
Create an EPICS channel if pvName is specified, and optionally wait for connection.

Parameters

• pvName (str) – An optional name of an EPICS Process Variable.

• wait (bool) – If wait is True and pvName is not None then this constructor will
do a CaChannel.CaChannel.searchw() on the PV. If wait is False and pv-
Name ist not None then this constructor will do a CaChannel.CaChannel.
search() on the PV, and the user must subsequently do a CaChannel.
CaChannel.pend_io() on this or another epicsPV or CaChannel object.

Read

epicsPV.array_get(req_type=None, count=None, **keywords)
If setMonitor() has not been called then this function simply calls CaChannel.
CaChannel.array_get(). If setMonitor() has been called then it calls CaChannel.
CaChannel.pend_event() with a very short timeout, and then returns the PV value from the
last callback.

epicsPV.getValue()
If setMonitor() has not been called then this function simply calls CaChannel.
CaChannel.getValue(). If setMonitor has been called then it calls CaChannel.
CaChannel.pend_event() with a very short timeout, and then returns the PV value from
the last callback.

epicsPV.getw(req_type=None, count=None, **keywords)
If setMonitor() has not been called then this function simply calls CaChannel.
CaChannel.getw(). If setMonitor() has been called then it calls CaChannel.
CaChannel.pend_event() with a very short timeout, and then returns the PV value from
the last callback.

epicsPV.getControl(req_type=None, count=None, wait=1, poll=0.01)
Provides a method to read the “control” and other information from an EPICS PV without having to
use callbacks.

It calls CaChannel.CaChannel.CaChannel.array_get_callback() with a database
request type of ca.dbf_type_to_DBR_CTRL(req_type). In addition to the PV value, this will return
the graphic, control and alarm limits, etc.

Parameters

• req_type (int) – request type. Default to field type.

• count (int) – number of elements. Default to native element count.

• wait (bool) – If this keyword is 1 (the default) then this routine waits for the
callback before returning. If this keyword is 0 then it is the user’s responsibility to
wait or check for the callback by calling checkMonitor().

• poll (float) – The timeout for CaChannel.CaChannel.pend_event()
calls, waiting for the callback to occur. Shorter times reduce the latency at the price
of CPU cycles.

2.3. Channel Access API 25

CaChannel Documentation, Release 3.2.0

>>> pv = epicsPV('13IDC:m1')
>>> pv.getControl()
>>> for field in dir(pv.callBack):
... print field, ':', getattr(pv.callBack, field)

chid : _bfffec34_chid_p
count : 1
monitorState : 0
newMonitor : 1
putComplete : 0
pv_loalarmlim : 0.0
pv_loctrllim : -22.0
pv_lodislim : -22.0
pv_lowarnlim : 0.0
pv_precision : 4
pv_riscpad0 : 256
pv_severity : 0
pv_status : 0
pv_units : mm
pv_upalarmlim : 0.0
pv_upctrllim : 28.0
pv_updislim : 28.0
pv_upwarnlim : 0.0
pv_value : -15.0
status : 1
type : 34

Write

epicsPV.putWait(value, req_type=None, count=None, poll=0.01)
Calls CaChannel.CaChannel.array_put_callback() and waits for the callback to oc-
cur before it returns. This allows programs to wait for record being processed without having to
handle asynchronous callbacks.

Parameters

• value – data to be written. For multiple values use a list or tuple

• req_type – database request type (ca.DBR_XXXX). Defaults to be the native
data type.

• count (int) – number of data values to write. Defaults to be the native count.

• poll (float) – The timeout for CaChannel.CaChannel.pend_event()
calls, waiting for the callback to occur. Shorter times reduce the latency at the price
of CPU cycles.

Monitor

epicsPV.setMonitor()
Sets a generic callback routine for value change events.

Subsequent getw(), getValue() or array_get() calls will return the value from the most
recent callback, do not result in any network latency. This can greatly improve efficiency.

epicsPV.clearMonitor()
Cancels the effect of a previous call to setMonitor().

26 Chapter 2. Contents

CaChannel Documentation, Release 3.2.0

Subsequent getw(), getValue() or array_get() calls will no longer return the value from
the most recent callback, but will actually result in channel access calls.

epicsPV.checkMonitor()
Returns 1 to indicate if a value callback has occured since the last call to checkMonitor(),
getw(), getValue() or array_get(), indicating that a new value is available. Returns 0 if
no such callback has occurred. It can be used to increase efficiency in polling applications.

2.3.4 epicsMotor

This module provides support for the EPICS motor record.

Author: Mark Rivers

Created: Sept. 16, 2002

Modifications:

• Mar. 7, 2017 Xiaoqiang Wang

– Reformat the docstring and code indent.

– Use class property to expose certain fields.

Exception epicsMotorException

exception epicsMotor.epicsMotorException
This exception is raised when epicsMotor.check_limits() method detects a soft limit or hard
limit violation. The epicsMotor.move() and epicsMotor.wait() methods call epicsMotor.
check_limits() before they return, unless they are called with the ignore_limits=True keyword
set.

Class epicsMotor

class epicsMotor.epicsMotor(name)
This module provides a class library for the EPICS motor record. It uses the epicsPV.epicsPV class, which
is in turn a subclass of CaChannel.CaChannel

Certain motor record fields are exposed as class properties. They can be both read and written unless otherwise
noted.

Property Description Field
slew_speed Slew speed or velocity .VELO
base_speed Base or starting speed .VBAS
acceleration Acceleration time (sec) .ACCL
description Description of motor .DESC
resolution Resolution (units/step) .MRES
high_limit High soft limit (user) .HLM
low_limit Low soft limit (user) .LLM
dial_high_limit High soft limit (dial) .DHLM
dial_low_limit Low soft limit (dial) .DLLM
backlash Backlash distance .BDST
offset Offset from dial to user .OFF
done_moving 1=Done, 0=Moving, read-only .DMOV

2.3. Channel Access API 27

CaChannel Documentation, Release 3.2.0

>>> m = epicsMotor('13BMD:m38')
>>> m.move(10) # Move to position 10 in user coordinates
>>> m.wait() # Wait for motor to stop moving
>>> m.move(50, dial=True) # Move to position 50 in dial coordinates
>>> m.wait() # Wait for motor to stop moving
>>> m.move(1, step=True, relative=True) # Move 1 step relative to current position
>>> m.wait(start=True, stop=True) # Wait for motor to start, then to stop
>>> m.stop() # Stop moving immediately
>>> high = m.high_limit # Get the high soft limit in user coordinates
>>> m.dial_high_limit = 100 # Set the high limit to 100 in dial coodinates
>>> speed = m.slew_speed # Get the slew speed
>>> m.acceleration = 0.1 # Set the acceleration to 0.1 seconds
>>> val = m.get_position() # Get the desired motor position in user
→˓coordinates
>>> dval = m.get_position(dial=True)# Get the desired motor position in dial
→˓coordinates
>>> rbv = m.get_position(readback=True) # Get the actual position in user
→˓coordinates
>>> rrbv = m.get_position(readback=True, step=True) # Get the actual motor
→˓position in steps
>>> m.set_position(100) # Set the current position to 100 in user coordinates
>>> m.set_position(10000, step=True) # Set the current position to 10000 steps

Constructor

epicsMotor.__init__(name)
Creates a new epicsMotor instance.

Parameters name (str) – The name of the EPICS motor record without any trailing
period or field name.

>>> m = epicsMotor('13BMD:m38')

Move

epicsMotor.move(value, relative=False, dial=False, step=False, ignore_limits=False)
Moves a motor to an absolute position or relative to the current position in user, dial or step coordi-
nates.

Parameters

• value (float) – The absolute position or relative amount of the move

• relative (bool) – If True, move relative to current position. The default is an
absolute move.

• dial (bool) – If True, _value_ is in dial coordinates. The default is user coordi-
nates.

• step (bool) – If True, _value_ is in steps. The default is user coordinates.

• ignore_limits (bool) – If True, suppress raising exceptions if the move results
in a soft or hard limit violation.

Raises epicsMotorException – If software limit or hard limit violation detected,
unless ignore_limits=True is set.

28 Chapter 2. Contents

CaChannel Documentation, Release 3.2.0

Note: The “step” and “dial” keywords are mutually exclusive. The “relative” keyword can be used
in user, dial or step coordinates.

>>> m=epicsMotor('13BMD:m38')
>>> m.move(10) # Move to position 10 in user coordinates
>>> m.move(50, dial=True) # Move to position 50 in dial coordinates
>>> m.move(2, step=True, relative=True) # Move 2 steps

epicsMotor.stop()
Immediately stops a motor from moving by writing 1 to the .STOP field.

>>> m=epicsMotor('13BMD:m38')
>>> m.move(10) # Move to position 10 in user coordinates
>>> m.stop() # Stop motor

epicsMotor.wait(start=False, stop=False, poll=0.01, ignore_limits=False)
Waits for the motor to start moving and/or stop moving.

Parameters

• start (bool) – If True, wait for the motor to start moving.

• stop (bool) – If True, wait for the motor to stop moving.

• poll (float) – The time to wait between reading the .DMOV field of the record
to see if the motor is moving. The default is 0.01 seconds.

• ignore_limits (bool) – If True, suppress raising an exception if a soft or hard
limit is detected.

Raises epicsMotorException – If software limit or hard limit violation detected,
unless ignore_limits=True is set.

Note: If neither the “start” nor “stop” keywords are set then “stop” is set to 1, so the routine waits
for the motor to stop moving. If only “start” is set to 1 then the routine only waits for the motor to
start moving. If both “start” and “stop” are set to 1 then the routine first waits for the motor to start
moving, and then to stop moving.

>>> m = epicsMotor('13BMD:m38')
>>> m.move(50) # Move to position 50
>>> m.wait(start=True, stop=True) # Wait for the motor to start moving
→˓and then to stop moving

Readback

epicsMotor.get_position(dial=False, readback=False, step=False)
Returns the target or readback motor position in user, dial or step coordinates.

Parameters

• readback (bool) – If True, return the readback position in the desired coordinate
system. The default is to return the target position of the motor.

• dial (bool) – If True, return the position in dial coordinates. The default is user
coordinates.

2.3. Channel Access API 29

CaChannel Documentation, Release 3.2.0

• step (bool) – If True, return the position in steps. The default is user coordinates.

Note: The “step” and “dial” keywords are mutually exclusive. The “readback” keyword can be
used in user, dial or step coordinates.

>>> m = epicsMotor('13BMD:m38')
>>> m.move(10) # Move to position 10 in user
→˓coordinates
>>> pos_dial = m.get_position(dial=True) # Read the target position in
→˓dial coordinates
>>> pos_step = m.get_position(readback=True, step=True) # Read the
→˓actual position in steps

epicsMotor.check_limits()
Check wether there is a soft limit, low hard limit or high hard limit violation.

Raises epicsMotorException – If software limit or hard limit violation detected.

Config

epicsMotor.set_position(position, dial=False, step=False)
Sets the motor position in user, dial or step coordinates.

Parameters

• position (float) – The new motor position

• dial (bool) – If True, set the position in dial coordinates. The default is user
coordinates.

• step (bool) – If True, set the position in steps. The default is user coordinates.

Note: The “step” and “dial” keywords are mutually exclusive.

>>> m = epicsMotor('13BMD:m38')
>>> m.set_position(10, dial=True) # Set the motor position to 10 in
→˓dial coordinates
>>> m.set_position(1000, step=True) # Set the motor position to 1000
→˓steps

2.3.5 CaChannel.util

This module provides functions similiar to those command line tools found in EPICS base, e.g. caget(), caput(),
camonitor(), cainfo().

In those functions, CaChannel.CaChannel objects are created implicitly and cached in _channel_ dictionary.

>>> import time
>>> caput('catest', 1.23, wait=True)
>>> caget('catest')
1.23
>>> caput('cabo', 'Busy')
>>> caget('cabo')

(continues on next page)

30 Chapter 2. Contents

CaChannel Documentation, Release 3.2.0

(continued from previous page)

1
>>> caget('cabo', as_string=True)
'Busy'
>>> caput('cawavec', 'this can be a long string')
>>> caget('cawavec', as_string=True)
'this '
>>> caput('cawave', range(4))
>>> caget('cawave', count=4)
[0.0, 1.0, 2.0, 3.0]

CaChannel.util.caget(name, as_string=False, count=None)
Return PV’s current value.

For enum or char type PV, the string form is returned if as_string is True. If the PV is of multi-element array,
count can be used to limit the number of elements.

Parameters

• name (str) – pv name

• as_string (bool) – retrieve enum and char type as string

• count (int) – number of element to request

Returns pv value

CaChannel.util.caput(name, value, wait=False, timeout=None)

Parameters

• name (str) – pv name

• value – value to write

• wait (bool) – wait for completion

• timeout (float) – seconds to wait

CaChannel.util.camonitor(name, as_string=False, count=None, callback=None)
set a callback to be invoked when pv value or alarm status change.

Parameters

• name (str) – pv name

• as_string (bool) – retrieve enum and char type as string

• count (int) – number of element to request

• callback – callback function. If None is specified, the default callback is to print to the
console. If callback is not a valid callable, any previous callback is removed.

>>> camonitor('cacalc')
>>> time.sleep(2) # doctest: +ELLIPSIS
cacalc ...
>>> def monitor_callback(epics_args, _):
... for k in sorted(epics_args):
... print(k, epics_args[k])
>>> camonitor('cacalc', callback=monitor_callback)
>>> time.sleep(2) # doctest: +ELLIPSIS
chid ...
count 1
pv_nseconds ...

(continues on next page)

2.3. Channel Access API 31

CaChannel Documentation, Release 3.2.0

(continued from previous page)

pv_seconds ...
pv_severity AlarmSeverity.No
pv_status AlarmCondition.No
pv_value ...
status ECA.NORMAL
type DBR.TIME_DOUBLE
chid ...
>>> camonitor('cacalc', callback=())
>>> time.sleep(2)

CaChannel.util.cainfo(name)
print pv information

Parameters name – pv name

>>> caput('cabo', 1)
>>> cainfo('cabo') # doctest: +ELLIPSIS
cabo

State: Connected
Host: ...
Data type: DBF_ENUM
Element count: 1
Access: RW
Status: STATE
Severity: MINOR
Enumerates: ('Done', 'Busy')

2.4 Recipes

2.4.1 Connect Multiple Channels And Get Values

If there are multiple channels to connect, using searchw() might not be efficient, because it connects each channel
sequentially. A better approach is to create the channels and flush the search request at once.

from CaChannel import ca, CaChannel
chans = {pvname: CaChannel(pvname) for pvname in ['pv1', 'pv2', 'pv3', ...]}
for chan in chans.values():

chan.search()
call pend_io on either of the channels and the it will flush the requests and wait
→˓for completion
if connection does not complete in 10 seconds, CaChannelException is raised with
→˓status ca.ECA_TIMEOUT
chans['pv1'].pend_io(10)
if the previous pend_io succeed without exception, we can issue the read request
for chan in chans.values():

chan.array_get()
again call pend_io to wait the read requests to succeed or timeout
chans['pv1'].pend_io(10)
if the previous pend_io succeed without exception, the values can be retrieved with
→˓getValue
for chan in chans.values():

print(chan.getValue()

32 Chapter 2. Contents

CaChannel Documentation, Release 3.2.0

2.4.2 Connect Multiple Channels And Monitor Changes

Similiar to the above recipe, but instead of reading the values once, here is to monitor the value changes.

from CaChannel import ca, CaChannel

value change callback
def monitor_callback(epics_arg, user_arg):

chan = user_arg[0]
value = epics_arg['pv_value']
print(chan.name(), value)

in the connection callback we will subscribe for value changes
def connection_callback(epics_arg, user_arg):

chan = user_arg[0]
if epics_arg[1] == ca.CA_OP_CONN_UP:

chan.add_masked_array_event(None, None, None, monitor_callback, chan)
chan.flush_io()

create channels and connect asynchronously
chans = {pvname: CaChannel(pvname) for pvname in ['pv1', 'pv2', 'pv3', ...]}
for chan in chans.values():

chan.search_and_connect(None, connection_callback, chan)
flush the channel connection requests
chans['pv1'].flush_io()

because the callbacks happen in auxiliary threads, the main thread
is free to do other important stuff, like sleep 10 seconds ;)
time.sleep(10)

2.4.3 Get String of Enum

from CaChannel import ca, CaChannel
chan = CaChannel('myEnumPV')
chan.searhw()
print(chan.getw(ca.DBR_STRING))

2.4.4 Get Control Information

from CaChannel import ca, CaChannel
chan = CaChannel('myPV')
chan.searhw()
print(chan.getw(ca.dbf_type_to_DBR_CTRL(chan.field_type())))

2.4.5 Get Wavefrom as Numpy Array

• At function level

from CaChannel import ca, CaChannel
chan = CaChanne('myWaveformPV')
print(chan.getw(use_numpy=True))

• At module level

2.4. Recipes 33

CaChannel Documentation, Release 3.2.0

import CaChannel
CaChannel.USE_NUMPY = True
chan = CaChannel.CaChanne('myWaveformPV')
print(chan.getw())

2.5 ChangeLog

2.5.1 3.2.0 (22-11-2022)

• Fix build on Linux/macOS when only shared epics libraries exist. Although epics base always builds the static
libraries along with shared libraries on Linux/macOS, some epics base packges (conda/pypi) choose to exclude
static libraries to reduce package size.

• Change ca.create_context() optional argument to keyword argument. The new method signature is
compatible with caffi. This change is backwards compatible.

• Support Python limited API 3.11. It is not enabled by default.

2.5.2 3.1.4 (20-05-2022)

• Fix ca.put() and ca.get() to accept numpy scalar number as count argument via number protocol.

• Remove deprecated function calls of PyEval_ThreadsInitialized and PyEval_InitThreads for Python 3.9+.

2.5.3 3.1.3 (01-10-2020)

• Fix various places where conversion exceptions are not handled.

• Improve Python 3 compatibility according to PEP 384.

2.5.4 3.1.2 (29-01-2019)

• Fix epicsPV defaults to wait for connection completion.

2.5.5 3.1.1 (07-12-2018)

• Fix compilation error on Python 3.7.

• Fix compilation error on epics base > 3.14.

• Change to use buffer object instead of numpy/c api to create numpy array.

2.5.6 3.1.0 (15-10-2018)

• Added class methods CaChannel.CaChannel.add_exception_event() and CaChannel.
CaChannel.replace_printf_handler(). They are just thin wrapper over the low level functions
ca.add_exception_event() and ca.replace_printf_handler() respectively.

34 Chapter 2. Contents

https://pypi.python.org/pypi/caffi

CaChannel Documentation, Release 3.2.0

2.5.7 3.0.4 (15-12-2017)

• Change to link EPICS dynamic libraries if environment variable EPICS_SHARED is defined.

2.5.8 3.0.3 (08-12-2017)

• Fix ca.put() with non-ascii input string.

• Change that it returns a bytes object from non-utf8 C string. It fails with an obscure exception message before.

• Change TravisCI to use conda-forge/linux-anvil docker image, but give the defaults channel higher priority.

2.5.9 3.0.2 (23-10-2017)

• Fix conda build on Linux by pinning conda-build to version 2.

2.5.10 3.0.1 (23-10-2017)

• Allow count=0 in ca.get() if callback is provided.

• Dereference user supplied callbacks - get/put callbacks after being called. - event callback in CaChannel.
CaChannel.clear_event().

2.5.11 3.0.0 (06-04-2017)

• Rewrite low level ca module with the same API as in package caffi.

• Added method CaChannel.CaChannel.replace_access_rights_event()

• Added method CaChannel.CaChannel.change_connection_event()

• Added ca.ECA, ca.DBF, ca.DBR, ca.ChannelState to represent their C macros ca.ECA_XXX, ca.
DBF_XXX, ca.DBR_XXX, ca.cs_xxx. For Python < 3.4, this requires module enum34.

• Changed method CaChannel.CaChannel.getw() to return string if req_type is DBR_STRING for a char
waveform.

• Configure continous integration/deployment on Travis/AppVeyor.

• Drop Python 2.4 and 2.5 support.

2.5.12 2.4.2

• Fix chid crash on 64bit windows

• Add epics libs for python 3.5 on windows

2.5.13 2.4.1

• All modules are compatible with Python 2.4+ including Python 3.

• conda build recipe bundle caRepeater program in the package

2.5. ChangeLog 35

https://pypi.python.org/pypi/caffi
https://pypi.python.org/pypi/enum34

CaChannel Documentation, Release 3.2.0

2.5.14 2.4.0

• Add often used 3rd party module, ca_util, epicsPV and epicsMotor

• Add Anaconda build recipe

• Remove dependency of readline from Com library

2.5.15 2.3.0

• Support Python 3

36 Chapter 2. Contents

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

37

CaChannel Documentation, Release 3.2.0

38 Chapter 3. Indices and tables

Python Module Index

c
ca, 8
CaChannel, 9
CaChannel.util, 30

e
epicsMotor, 27
epicsPV, 24

39

CaChannel Documentation, Release 3.2.0

40 Python Module Index

Index

Symbols
__init__() (epicsMotor.epicsMotor method), 28
__init__() (epicsPV.epicsPV method), 25

A
add_exception_event() (CaChannel.CaChannel

class method), 23
add_masked_array_event() (CaChan-

nel.CaChannel method), 19
array_get() (CaChannel.CaChannel method), 12
array_get() (epicsPV.epicsPV method), 25
array_get_callback() (CaChannel.CaChannel

method), 13
array_put() (CaChannel.CaChannel method), 16
array_put_callback() (CaChannel.CaChannel

method), 17

C
ca (module), 8
ca.DBF_CHAR (in module ca), 8
ca.DBF_DOUBLE (in module ca), 8
ca.DBF_ENUM (in module ca), 8
ca.DBF_FLOAT (in module ca), 8
ca.DBF_INT (in module ca), 8
ca.DBF_LONG (in module ca), 8
ca.DBF_SHORT (in module ca), 8
ca.DBF_STRING (in module ca), 8
ca.DBR_CHAR (in module ca), 8
ca.DBR_DOUBLE (in module ca), 8
ca.DBR_ENUM (in module ca), 8
ca.DBR_FLOAT (in module ca), 8
ca.DBR_INT (in module ca), 8
ca.DBR_LONG (in module ca), 8
ca.DBR_SHORT (in module ca), 8
ca.DBR_STRING (in module ca), 8
CaChannel (class in CaChannel), 9
CaChannel (module), 9
CaChannel.util (module), 30
CaChannelException, 9

caget() (in module CaChannel.util), 31
cainfo() (in module CaChannel.util), 32
camonitor() (in module CaChannel.util), 31
caput() (in module CaChannel.util), 31
change_connection_event() (CaChan-

nel.CaChannel method), 11
check_limits() (epicsMotor.epicsMotor method),

30
checkMonitor() (epicsPV.epicsPV method), 27
clear_channel() (CaChannel.CaChannel method),

11
clear_event() (CaChannel.CaChannel method), 20
clearMonitor() (epicsPV.epicsPV method), 26

E
element_count() (CaChannel.CaChannel method),

21
epicsMotor (class in epicsMotor), 27
epicsMotor (module), 27
epicsMotorException, 27
epicsPV (class in epicsPV), 24
epicsPV (module), 24

F
field_type() (CaChannel.CaChannel method), 21
flush_io() (CaChannel.CaChannel method), 21

G
get_position() (epicsMotor.epicsMotor method),

29
getControl() (epicsPV.epicsPV method), 25
getTimeout() (CaChannel.CaChannel method), 22
getValue() (CaChannel.CaChannel method), 12
getValue() (epicsPV.epicsPV method), 25
getw() (CaChannel.CaChannel method), 15
getw() (epicsPV.epicsPV method), 25

H
host_name() (CaChannel.CaChannel method), 22

41

CaChannel Documentation, Release 3.2.0

M
move() (epicsMotor.epicsMotor method), 28

N
name() (CaChannel.CaChannel method), 21

P
pend_event() (CaChannel.CaChannel method), 20
pend_io() (CaChannel.CaChannel method), 20
poll() (CaChannel.CaChannel method), 20
putw() (CaChannel.CaChannel method), 18
putWait() (epicsPV.epicsPV method), 26

R
read_access() (CaChannel.CaChannel method), 22
replace_access_rights_event() (CaChan-

nel.CaChannel method), 22
replace_printf_handler() (CaChan-

nel.CaChannel class method), 24

S
search() (CaChannel.CaChannel method), 10
search_and_connect() (CaChannel.CaChannel

method), 10
searchw() (CaChannel.CaChannel method), 11
set_position() (epicsMotor.epicsMotor method),

30
setMonitor() (epicsPV.epicsPV method), 26
setTimeout() (CaChannel.CaChannel method), 22
state() (CaChannel.CaChannel method), 21
stop() (epicsMotor.epicsMotor method), 29

U
USE_NUMPY (in module CaChannel), 9

W
wait() (epicsMotor.epicsMotor method), 29
write_access() (CaChannel.CaChannel method),

22

42 Index

	Overview
	Contents
	Installation
	Short Tutorials
	Channel Access API
	Recipes
	ChangeLog

	Indices and tables
	Python Module Index
	Index

