

 Navigation

 	
 index

 	
 next |

 	c2s 0.1.0dev documentation

c2s documentation

A package for reconstructing spikes from calcium traces.

Contents:

	Installation

	Tutorial
	Data formatting

	Preprocessing

	Predicting spikes

	Training a model

	Evaluation

	Leave-one-out cross-validation

 Copyright 2014, Lucas Theis.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	c2s 0.1.0dev documentation

Installation

Besides Python, NumPy [http://www.scipy.org], and Scipy [http://www.scipy.org],
the c2s package depends on the Conditional Modeling Toolkit [https://github.com/lucastheis/cmt].
Note that as it currently stands, this toolkit works best under Linux and is hard to get to work under
Windows. After installing the toolkit, the c2s package can be installed by running the following on the
command line:

$ pip install cython
$ pip install git+https://github.com/lucastheis/c2s.git

The first line (installing Cython [http://cython.org]) is optional but will enable more options for the evaluation of spike trains.
After installation, the following command should be available and output some help:

$ c2s -h

 Copyright 2014, Lucas Theis.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	c2s 0.1.0dev documentation

Tutorial

To predict spikes from calcium traces we are going to run commands like the following:

$ c2s predict data.mat predictions.mat

This tutorial describes how to format and preprocess your data, and how to improve and
evaluate predictions.

Data formatting

Inputs and outputs can be stored in either MATLAB or Python [https://docs.python.org/2/library/pickle.html] format.

Using MATLAB

When using MATLAB files, data needs to be stored in a cell array named data. Each entry of the cell array
should be a struct containing at least the fields calcium and fps. Accessing the 12th
entry of the cell array might present you with something like the following output:

>> data{12}
ans =
 calcium: [1x71985 double]
 spikes: [1x71985 uint16]
 fps: 99.9998
 cell_num: 8

Here, calcium is a 1xT vector containing the
calcium or fluorescence trace, while fps is a double referring to the corresponding sampling rate
in bins per second. Optionally, each entry may contain the fields spikes, spike_times, and
cell_num. The field spikes should correspond to a binned spike train at the same sampling
rate as the calcium trace. However, the preferred method is to specify the spikes times in
milliseconds via spike_times, since spikes are typically recorded at much higher sampling rates.
In this case the output might look like:

>> data{12}
ans =
 calcium: [1x71985 double]
 spike_times: [1x1202 double]
 fps: 99.9998
 cell_num: 8

The spikes can be used for training a statistical model to predict spikes. The cell_num field
is used to group recordings together and will affect the leave-one-out cross-validation.
This is useful, for example, if data from one cell was split into two or more sessions. If each entry
corresponds to a different cell, this field can be ignored.

Using Python

In Python, data should be stored in lists of dictionaries and saved as pickled objects [https://docs.python.org/2/library/pickle.html].
Each dictionary element should contain at least the entries calcium and fps. Accessing the 12th
entry of the list might present you with something like the following output:

>>> print data[12]
{'calcium': array([[0.391, 0.490, ..., 0.221, 0.307]]),
 'fps': 99.9998,
 'cell_num': 8,
 'spikes': array([[0, 0, 0, ..., 0, 0, 0]], dtype=uint16)}

Here, calcium is a 1xT NumPy array containing the calcium or fluorescence trace, while fps
is a float value referring to the corresponding sampling rate in bins per second. Optionally,
each dictionary may contain the entries spikes, spike_times, and cell_num. The entry
spikes should correspond to a binned spike traini at the same sampling rate as the calcium
trace. However, the preferred method is to specify the spikes times in milliseconds via
spike_times, since spikes are typically recorded at much higher sampling rates.
In this case the output might look like:

>>> print data[12]
{'calcium': array([[0.391, 0.490, ..., 0.221, 0.307]]),
 'fps': 99.9998,
 'cell_num': 8,
 'spike_times': array([[5951.34, 6007.95, ..., 719155.46, 719307.52]])}

The spikes can be used for training a statistical model to predict spikes. The cell_num entry
is used to group recordings together and will affect the leave-one-out cross-validation.
This is useful, for example, if data from one cell was split into two or more sessions. If each entry
corresponds to a different cell, this field can be ignored. To save the data, use pickle,

>>> from pickle import dump
>>> with open('data.pck') as handle:
>>> dump(data, handle, protocol=2)

Preprocessing

After the data has been brought into the right format, we should preprocess it.

$ c2s preprocess data.pck data.preprocessed.pck

If your data is stored in MATLAB files, use

$ c2s preprocess data.mat data.preprocessed.mat

The desired format is automatically inferred from the file ending. The preprocessing
tries to remove linear trends from the calcium trace and up- or downsamples the data so that all
traces have the same sampling rate. By default, this sampling rate is 100 fps but can be changed
with

$ c2s preprocess --fps 100 data.mat data.preprocessed.mat

to something else if desired. Additionally, the preprocessing computes spikes from
spike_times and vice versa if only one of the two is given.

Note

The default model used for making predictions assumes that the data has been preprocessed with
the default parameters. In general, data should undergo the same preprocessing before
training and prediction.

Predicting spikes

Predicting spikes is as easy as

$ c2s predict data.preprocessed.pck predictions.pck

As for the preprocessing, inputs and outputs can again be MATLAB files. If the data has not been
preprocessed yet, use

$ c2s predict --preprocess 1 data.pck predictions.pck

The predictions are saved in the same format as the data files, except that the entries
spikes, spike_times and calcium are removed to save space. By default, the prediction
uses a model which has been trained on several datasets recorded by different labs under different
conditions. These datasets combined contained roughly 110,000 spikes. But it is possible to train
a model specifically for our data. Once trained, the model can be used for prediction as follows:

$ c2s predict -m model.xpck data.preprocessed.pck predictions.pck

Training a model

To train a model to fit your needs, use the command:

$ c2s train data.preprocessed.pck model.xpck

Multiple datasets can be combined as well:

$ c2s train data1.pck data2.pck model.xpck

To print a list of available parameters to influence the training, please see:

$ c2s train -h

Evaluation

Different metrics have been used to evaluate how well firing rate predictions agree with observed
spike trains. c2s offers estimates of the mutual information [http://en.wikipedia.org/wiki/Mutual_information],
correlation [http://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient], and
area uner the ROC curve [http://en.wikipedia.org/wiki/Receiver_operating_characteristic#Area_under_the_curve] (AUC).
These can be calculated with calls like the following:

$ c2s evaluate -m corr data.preprocessed.mat predictions.mat
$ c2s evaluate -m info data.preprocessed.mat predictions.pck
$ c2s evaluate -m auc data.preprocessed.pck predictions.pck

Note

For the evaluation of AUC to work, Cython [http://cython.org] has to have been installed before installing c2s.

The mutual information interprets the prediction as Poisson firing rates and is the most stringent of
the three. For predictions \(\lambda_t\) and observed spike counts \(k_t\), it is given by

\[I = \frac{1}{T} \sum_t k_t \log_2 \frac{\lambda_t}{\bar k} + \bar k - \bar \lambda,\]

where \(\bar k\) is the average over all \(k_t\) and \(\bar \lambda\) is the average
over all \(\lambda_t\).
While correlation is invariant under affine transformations, i.e., multiplying the
predictions by a factor or adding a constant to them does not change the performance,
mutual information depends on the absolute predictions. On the other end of the spectrum, AUC is
invariant under arbitrary strictly monotone functions, i.e., even tranforming the predictions in a
nonlinear way will not change the performance. However, many methods developed for spike
reconstruction from calcium images have not been developed with mutual information in mind. This is
why by default all predictions are nonlinearly transformed by an optimal piecewise linear
monotonically increasing function. I.e., the information is calculated using
\(\lambda_t' = f(\lambda_t)\) rather than \(\lambda_t\). This optimization can be disabled
as follows:

$ c2s evaluate -z 0 -m info data.preprocessed.pck predictions.pck

Since the evaluation is generally sensitive to the sampling at which the performance measure is
calculated, the performance is calculated at various sampling rates. For example,

$ c2s evaluate -s 1 5 10 -m corr data.preprocessed.pck predictions.pck

will downsample the signals by the factors 1, 5, and 10 before performing an evaluation.
I.e., if the given spike trains and predictions are sampled at 100 Hz, the evaluation will be
performed at 100 Hz, 20 Hz, and 10 Hz.

If no predictions but only a dataset is given to the evaluation, the calcium traces are used as
predictions instead. Correlations, for example, are then computed between the calcium trace and
the spike train. This can be used as a baseline measure.

$ c2s evaluate data.preprocessed.pck

Finally, the results can be saved into MATLAB or pickled Python files via:

$ c2s evaluate -o correlation.mat -m corr data.preprocessed.pck predictions.pck
$ c2s evaluate -o correlation.xpck -m corr data.preprocessed.pck predictions.pck

Note

Using the same data for training a model and evaluating the model performance will lead to
overly optimistic performance estimates. To avoid bias, use independent datasets for
training and evaluation or use leave-one-out cross-validation for generating predictions.

Leave-one-out cross-validation

Training and evaluating a model on the same dataset leads to biased performance results. On the other
hand, naively splitting a dataset in two might leave us with too little data to properly train our
model or evaluate it. Leave-one-out cross-validation maximizes the amount of
available training data by using all but one cell for training and only the remaining cell for prediction and evaluation.
By repeating this process – using a different cell for evaluation each time – we can nevertheless
use the entire dataset in the evaluation.
A call to

$ c2s leave-one-out preprocessed.mat predictions.mat

will generate predictions by training a model on \(N - 1\) cells to predict the
remaining cell. Since this means running the training process \(N\) times for \(N\) cells,
this can take a while.

Note

If recordings from a single cell are split across multiple sessions, you should use
cell_num to group sessions together.

 Copyright 2014, Lucas Theis.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	c2s 0.1.0dev documentation

Index

 Copyright 2014, Lucas Theis.
 Created using Sphinx 1.3.5.

 _static/file.png

_static/plus.png

_static/comment.png

search.html

 Navigation

 		
 index

 		c2s 0.1.0dev documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Lucas Theis.
 Created using Sphinx 1.3.5.

_static/down.png

_static/up.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/up-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/minus.png

