

Welcome to c2cgeoform’s documentation!

Contents:

	Prerequisites

	User guide
	Creating a c2cgeoform project

	Defining the model for a form

	Create the views for your model

	Configure the grid

	Understanding the schemas

	Configure the widgets

	Using custom templates

	Writing tests

	Internationalization

	Developer guide
	Clone the project

	Run the checks

	Run the tests

	Serve the c2cgeoform_demo project

	Deploy the c2cgeoform_demo on demo server

Indices and tables

	Index

	Module Index

	Search Page

Prerequisites

The following system packages must be installed on your system:

	python3-dev

	python-virtualenv

	libpq-dev (header files for PostgreSQL)

	gettext

On Windows, you should install make using Cygwin (and put the bin
folder into the path). For Python, please use Python >= 3.x.

You will also need NodeJS which can be installed by NVM : https://github.com/creationix/nvm#install-script

User guide

Contents:

	Creating a c2cgeoform project

	Defining the model for a form

	Create the views for your model

	Configure the grid

	Understanding the schemas

	Configure the widgets

	Using custom templates

	Writing tests

	Internationalization

Creating a c2cgeoform project

This page describes how to create a c2cgeoform project. A
c2cgeoform project is basically a Pyramid project with
c2cgeoform enabled in the project.

Install c2cgeoform

git clone git@github.com:camptocamp/c2cgeoform.git
cd c2cgeoform
make build

On Windows, you should use the https way to clone the repository:

git clone https://github.com:camptocamp/c2cgeoform.git

Create a Pyramid project using c2cgeoform scaffold

Note that if PYTHONPATH does not exists as an environment variable,
template files (*_tmpl) are not rendered in new project folder.

export PYTHONPATH=$PYTHONPATH
.build/venv/bin/pcreate -s c2cgeoform ../c2cgeoform_project

Initialize a git repository

Make your new project folder a git repository.

cd ../c2cgeoform_project
git init
git add .
git commit -m 'Initial commit'

Install the project and its dependencies

make build

Set up database

First of all you need to have a PostGIS database for the project.
Create the database:

sudo -u postgres psql -c "CREATE USER \"www-data\" WITH PASSWORD 'www-data';"

sudo -u postgres createdb c2cgeoform_project
sudo -u postgres psql -d c2cgeoform_project -c 'CREATE EXTENSION postgis;'
sudo -u postgres psql -c 'GRANT ALL ON DATABASE c2cgeoform_project TO "www-data";'

When you do have a Postgres role and a PostGIS database edit the
development.ini and production.ini files and set
sqlachemy.url appropriately. For example:

sqlalchemy.url = postgresql://www-data:www-data@localhost:5432/c2cgeoform_project

Now create the tables:

make initdb

Note that this will launch the python script
c2cgeoform_project/scripts/initializedb.py. You will have to
customize this thereafter.

Run the development server

You are now ready to run the application:

make serve

Visit the following URLs to verify that the application works correctly:
http://localhost:6543/excavations/new and
http://localhost:6543/excavations.

Defining the model for a form

The underlying schema for a c2cgeoform form is defined as a SQLAlchemy
model. A simple definition is shown below:

from sqlalchemy import (Column, Integer, Text)
import deform
from uuid import uuid4

from c2cgeoform.models import Base

class Comment(Base):
 __tablename__ = 'comments'
 __colanderalchemy_config__ = {
 'title': 'A very simple form'
 }

 id = Column(Integer, primary_key=True, info={
 'colanderalchemy': {
 'widget': deform.widget.HiddenWidget()
 }})

 hash = Column(Text, unique=True, default=lambda: str(uuid4(), info={
 'colanderalchemy': {
 'widget': HiddenWidget()
 }})

 name = Column(Text, nullable=False, info={
 'colanderalchemy': {
 'title': 'Name'
 }})

 comment = Column(Text, nullable=True, info={
 'colanderalchemy': {
 'title': 'Comment',
 'widget': deform.widget.TextAreaWidget(rows=3),
 }})

This SQLAlchemy model is enriched with properties for ColanderAlchemy [http://colanderalchemy.readthedocs.org/en/latest/], for
example to set a title for a field, use a specific Deform widget [http://deform2demo.repoze.org/] or use a
Colander validator [http://colander.readthedocs.org/en/latest/api.html#validators].

In general, every SQLAlchemy model can be used as schema for a form. The
only requirements are:

	The model class must contain exactly one primary key column. Tables
with composite primary keys are not supported.

A more complex example for a model can be found here [https://github.com/camptocamp/c2cgeoform/blob/master/c2cgeoform/scaffolds/c2cgeoform/%2Bpackage%2B/models/c2cgeoform_demo.py_tmpl]. For more
information on how to define the model, please refer to the
SQLAlchemy [http://www.sqlalchemy.org/], ColanderAlchemy [http://colanderalchemy.readthedocs.org/en/latest/], Colander [http://colander.readthedocs.org/en/latest/] and
Deform [http://deform.readthedocs.org/en/latest/] documentations.

Create the views for your model

There is already a views class created in your project by the scaffold,
see file views/excavation.py. Let’s have a look on that file content.

To ease creation of views classes, c2cgeoform comes with an abstract
class that contains base methods to display grids, render forms and save
data. This is why ExcavationViews extends AbstractViews for a specific
SQLAlchemy model and colander schema:

@view_defaults(match_param='table=excavations')
class ExcavationViews(AbstractViews):

 _model = Excavation
 _base_schema = base_schema

Also note the @view_defaults which says that all the views declared in this
class will only apply when the route parameter named table will be equal to
"excavation". The routes given by c2cgeoform have the following form:

	c2cgeoform_index: {table}

	c2cgeoform_grid: {table}/grid.json

	c2cgeoform_item: {table}/{{id}}

	c2cgeoform_item_duplicate: {table}/{{id}}/duplicate

Those routes are registered in the pyramid config by the routes module (see
the routes.py file situated at the root of the generated project).

register_models(config, [
 ('excavations', Excavation)

To select records through urls, we also need a unique field, this is given by:

_id_field = 'hash'

And to show the table records grid we need a definition per column:

_list_fields = [
 _list_field('reference_number'),
 _list_field('request_date'),
 ...
]

Finally we need a method for each view, for a typical use case, we could have 6
views:

	index: Return HTML page with the grid.

	grid: Return records as JSON for the grid.

	edit: Show create or edit form for the specified record.

	duplicate: Show duplication form for the specified record.

	delete: Delete the specified record.

	save: Save new record or modifications to existing record.

In a typical use case, those views will only call the super class method with
the same name.

Configure the grid

Grid columns can be configured using the _list_fields property of the views
class, which is an ordered list of ListField objects, one for each column.

The ListField constructor take some parameters:

	model: the SQLAlchemy mapper (required if attr is an attribute name).

	attr: the model attribute name to use or an SQLAlchemy InstrumentedAttribute.

	key: an identifier for the column, default to attribute.key.

	label: text for the column header, default to colanderalchemy title for the field.

	renderer: callable that takes an entity of the SQLAlchemy mapper and
returns a string value.

	sort_column: An IntrumentedAttribute to use in sort_by.

	filter_column: An IntrumentedAttribute to filter with.

	visible: a boolean for the initial visible state of this column.

Every time the table index page asks for data from the grid view, the
AbstractView will create a default query using AbstractViews._base_query method.

If you use columns coming from relationships, this might result in sending one
request to the database for each relationship and each record.
In such cases, you should override the _base_query method to use eager
loading for those relationships, for example:

def _base_query(self):
 return self._request.dbsession.query(Excavation).distinct(). \
 join('situations'). \
 options(subqueryload('situations'))

Note that you also need to join the relationships you use for sorting and filtering.

Understanding the schemas

ColanderAlchemy [http://colanderalchemy.readthedocs.org/en/latest/] allows creating Colander [http://colander.readthedocs.org/en/latest/] schemas directly from
SQLAlchemy [http://www.sqlalchemy.org/] model classes.

Additionally, c2cgeoform provides its own classes with extended features.
A basic use case schema creation will look like:

from model import MyClass
schema = GeoFormSchemaNode(MyClass)

See the following API to understand what is going on behind the scene.

	
class c2cgeoform.schema.GeoFormSchemaNode(*args, **kw)

	An SQLAlchemySchemaNode with deferred request and dbsession properties.
This will allow defining schemas that requires the request and dbsession at
module-scope.

Example usage:

schema = GeoFormSchemaNode(MyModel)

def create_form(request, dbsession):
 return Form(
 schema = schema.bind(
 request=request,
 dbsession=request.dbsession),
 ...
)

	
add_unique_validator(column, column_id)

	Adds an unique validator on this schema instance.

	column

	SQLAlchemy ColumnProperty that should be unique.

	column_id

	SQLAlchemy MapperProperty that is used to recognize the entity,
basically the primary key ColumnProperty.

	
class c2cgeoform.schema.GeoFormManyToManySchemaNode(class_, includes=None, *args, **kw)

	A GeoFormSchemaNode that properly handles many to many relationships.

	includes:

	Default to primary key name(s) only.

	
objectify(dict_, context=None)

	Method override that returns the existing ORM class instance instead of
creating a new one.

	
c2cgeoform.schema.manytomany_validator(node, cstruct)

	Validator function that checks if cstruct values exist in the related table.

Note that entities are retrieved using only one query and placed in
SQLAlchemy identity map before looping on cstruct.

	
class c2cgeoform.ext.colander_ext.BinaryData

	A Colander type meant to be used with LargeBinary columns.

Example usage

class Model():
 id = Column(Integer, primary_key=True)
 data = Colum(LargeBinary, info={
 'colanderalchemy': {
 'typ': colander_ext.BinaryData()
 }})

It is usually not used directly in application models, but through
the c2cgeoform.models.FileData mixin, which is meant to be used
with a deform_ext.FileUploadWidget.

The serialize method just returns colander.null. This is because
the FileUploadWidget’s template does not use and need the binary
data.

The deserialize method gets a Python file object and returns a
bytes string that is appropriate for the database.

	
deserialize(node, cstruct)

	In Colander speak: Converts a serialized value (a cstruct) into a
Python data structure (a appstruct).
Or: Converts a Python file stream to plain binary data.

	
serialize(node, appstruct)

	In Colander speak: Converts a Python data structure (an appstruct) into
a serialization (a cstruct).

	
class c2cgeoform.ext.colander_ext.Geometry(geometry_type='GEOMETRY', srid=-1, map_srid=-1)

	A Colander type meant to be used with GeoAlchemy 2 geometry columns.

Example usage

geom = Column(
 geoalchemy2.Geometry('POLYGON', 4326, management=True), info={
 'colanderalchemy': {
 'typ': colander_ext.Geometry(
 'POLYGON', srid=4326, map_srid=3857),
 'widget': deform_ext.MapWidget()
 }})

Attributes/Arguments

	geometry_type

	The geometry type should match the column geometry type.

	srid

	The SRID of the geometry should also match the column definition.

	map_srid

	The projection used for the OpenLayers map. The geometries will be
reprojected to this projection.

	
deserialize(node, cstruct)

	In Colander speak: Converts a serialized value (a cstruct) into a
Python data structure (a appstruct).
Or: Converts a GeoJSON string into a WKBElement.

	
serialize(node, appstruct)

	In Colander speak: Converts a Python data structure (an appstruct) into
a serialization (a cstruct).
Or: Converts a WKBElement into a GeoJSON string.

Configure the widgets

All Deform widgets can be used with c2cgeoform. See the Deform examples [http://deform2demo.repoze.org/]
and widgets API reference [http://deform2demo.repoze.org/] for detailed description about available options.

Additionally, c2cgeoform provides some extra widgets:

Using custom templates

c2cgeoform distinguishes two types of templates: views templates
and widget templates.
- Views templates are used directly by Pyramid and provide the site structure.
- Widgets templates are used by Deform to render the forms.

Default views templates

The default c2cgeoform views templates are located in the templates
folder and use jinja2 [http://jinja.pocoo.org/] syntax.

c2cgeoform comes with partial templates that are included in views templates
of your project.

Overriding widgets templates globally

Deform widget templates are located in the templates/widgets folder and
use the chameleon [https://chameleon.readthedocs.org/en/latest/] syntax.

At rendering time, Deform will search folders for the templates in order they
appear in Form renderer search_path property. c2cgeoform configure it to:

default_search_paths = (
 resource_filename('c2cgeoform', 'templates/widgets'),
 resource_filename('deform', 'templates'))

But you can add you own widgets folder, in your package __init__.py file
before including c2cgeoform using:

import c2cgeoform
search_paths = (
 (resource_filename(__name__, 'templates/widgets'),) +
 c2cgeoform.default_search_paths
)
c2cgeoform.default_search_paths = search_paths

To overwrite globally the Deform templates [https://github.com/Pylons/deform/tree/master/deform/templates] or the templates coming from
c2cgeoform (like the map widget), you just need to copy the template to your application
templates/widgets folder.

Use a custom template for a form or a specific widget in a form

Both the form main template and widget templates can be changed locally for a
given model by giving a template property to the Widget.

base_schema = GeoFormSchemaNode(
 Comment,
 widget=FormWidget(template='comment'))

Note that it is possible to create a layout for the form fields without completely
overriding the form template by giving a fields_template to the form schema.

base_schema = GeoFormSchemaNode(
 Comment,
 widget=FormWidget(fields_template='comment_fields'))

Here is the default one: https://github.com/camptocamp/c2cgeoform/blob/master/c2cgeoform/templates/widgets/mapping_fields.pt

Writing tests

Internationalization

Developer guide

This page describes how to set up the development environment for working on
c2cgeoform. It is for developers working on c2cgeoform itself, not for
developers working on c2cgeoform-based applications.

Note that c2cgeoform is a framework with a
Pyramid scaffold [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/scaffolding.html]
used to create c2cgeoform-based applications. This scaffold produce a fully
functional c2cgeoform-base project: the c2cgeoform_demo project.

When running code checks and tests, these jobs are first run on the c2cgeoform
framework itself. Then the c2cgeoform_demo project is generated in .build
folder. Finally, the checks and tests are launched in this project.

Note that you should never alter the c2cgeoform_demo project itself but the
c2cgeoform scaffold and regenerate the c2cgeoform_demo project.

Clone the project

git clone git@github.com:camptocamp/c2cgeoform.git
cd c2cgeoform

Run the checks

make check

Run the tests

Create the tests database:

sudo -u postgres psql -c "CREATE USER \"www-data\" WITH PASSWORD 'www-data';"

export DATABASE=c2cgeoform_demo_tests
sudo -u postgres psql -d postgres -c "CREATE DATABASE $DATABASE OWNER \"www-data\";"
sudo -u postgres psql -d $DATABASE -c "CREATE EXTENSION postgis;"

Run the framework and demo tests:

make test

Serve the c2cgeoform_demo project

You need to create a PostGIS database. For example:

export DATABASE=c2cgeoform_demo
sudo -u postgres psql -d postgres -c "CREATE DATABASE $DATABASE OWNER \"www-data\";"
sudo -u postgres psql -d $DATABASE -c "CREATE EXTENSION postgis;"
make initdb

Run the development server:

make serve

You can now open the demo project in your favorite browser:
http://localhost:6543/

And there you go, you’re ready to develop, make changes in c2cgeoform, run
checks and tests in c2cgeoform. And finally see the results in c2cgeoform demo
application.

Deploy the c2cgeoform_demo on demo server

Prepare the demo project:

open a ssh connection with the GMF 2.3 server
ssh -A geomapfish-demo.camptocamp.com

clone the c2cgeoform repository
cd /var/www/vhosts/geomapfish-demo/private
git clone git@github.com:camptocamp/c2cgeoform.git

generate the c2cgeoform_demo project with mod_wsgi related files
APACHE_ENTRY_POINT=c2cgeoform make modwsgi

Create the database as to serve the development version, see:
Serve the c2cgeoform_demo project

Include the demo project in Apache virtual host configuration:

echo "IncludeOptional $PWD/.build/c2cgeoform_demo/.build/apache.conf" > /var/www/vhosts/geomapfish-demo/conf/c2cgeoform_demo.conf
sudo apache2ctl configtest

If everything goes fine, restart apache:

sudo apache2ctl graceful

You can now open the demo project in your favorite browser:
https://geomapfish-demo.camptocamp.com/c2cgeoform/

 Python Module Index

 c

 		 	

 		
 c	

 	[image: -]
 	
 c2cgeoform	

 	
 	
 c2cgeoform.ext.colander_ext	

 	
 	
 c2cgeoform.schema	

Index

 A
 | B
 | C
 | D
 | G
 | M
 | O
 | S

A

 	
 	add_unique_validator() (c2cgeoform.schema.GeoFormSchemaNode method)

B

 	
 	BinaryData (class in c2cgeoform.ext.colander_ext)

C

 	
 	c2cgeoform.ext.colander_ext (module)

 	
 	c2cgeoform.schema (module)

D

 	
 	deserialize() (c2cgeoform.ext.colander_ext.BinaryData method)

 	(c2cgeoform.ext.colander_ext.Geometry method)

G

 	
 	GeoFormManyToManySchemaNode (class in c2cgeoform.schema)

 	
 	GeoFormSchemaNode (class in c2cgeoform.schema)

 	Geometry (class in c2cgeoform.ext.colander_ext)

M

 	
 	manytomany_validator() (in module c2cgeoform.schema)

O

 	
 	objectify() (c2cgeoform.schema.GeoFormManyToManySchemaNode method)

S

 	
 	serialize() (c2cgeoform.ext.colander_ext.BinaryData method)

 	(c2cgeoform.ext.colander_ext.Geometry method)

Deployment

With Apache/mod_wsgi

Install Apache and mod_wsgi:

sudo apt update
sudo apt-get install apache2 libapache2-mod-wsgi-py3

Generate the WSGI entry point and apache configuration file:

make modwsgi

In your apache configuration, add:

Include /.../c2cgeoform_project/.build/apache.conf

 _static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Welcome to c2cgeoform’s documentation!

 		
 Prerequisites

 		
 User guide

 		
 Creating a c2cgeoform project

 		
 Install c2cgeoform

 		
 Create a Pyramid project using c2cgeoform scaffold

 		
 Initialize a git repository

 		
 Install the project and its dependencies

 		
 Set up database

 		
 Run the development server

 		
 Defining the model for a form

 		
 Create the views for your model

 		
 Configure the grid

 		
 Understanding the schemas

 		
 Configure the widgets

 		
 Using custom templates

 		
 Default views templates

 		
 Overriding widgets templates globally

 		
 Use a custom template for a form or a specific widget in a form

 		
 Writing tests

 		
 Internationalization

 		
 Developer guide

 		
 Clone the project

 		
 Run the checks

 		
 Run the tests

 		
 Serve the c2cgeoform_demo project

 		
 Deploy the c2cgeoform_demo on demo server

