
c-simulations Documentation
Release 0.3.3

Gregory McWhirter

April 18, 2015

Contents

1 Replicator Games 3
1.1 Constants . 3
1.2 Types . 3
1.3 Functions . 5

2 Replicator Populations 7
2.1 Types . 7
2.2 Functions . 7

3 Replicator Simulations 9
3.1 Types . 9
3.2 Functions . 9

4 Urn-Learning Games 11
4.1 Types . 11
4.2 Functions . 11

5 Urn-Learning Urns 13
5.1 Types . 13
5.2 Functions . 13

6 Urn-Learning Simulations 15
6.1 Types . 15
6.2 Functions . 15

7 Indices and tables 17

i

ii

c-simulations Documentation, Release 0.3.3

This is a framework for running two types of game theory simulations in C. It can run n-population replicator dynamics
simulations or Herrnstein-Roth-Erev urn learning simulations.

It builds both static and shared versions of two libraries that should be linked to the program that actually runs the
simulations.

Contents:

Contents 1

c-simulations Documentation, Release 0.3.3

2 Contents

CHAPTER 1

Replicator Games

The replicator_game.c and replicator_game.h files handle the functionality of defining the game being played for
replicator dynamics simulations.

1.1 Constants

CACHE_NONE
This constant indicates that nothing should be cached. It is a cache_mask.

CACHE_PROFILES
This constant indicates that only the strategy profiles should be cached. It is a cache_mask.

CACHE_PAYOFFS
This constant indicates that only the payoffs should be cached. It is a cache_mask.

CACHE_ALL
This constant indicates that both the profiles and payoffs should be cached. It is equivalent to
CACHE_PROFILES | CACHE_PAYOFFS. It is a cache_mask.

1.2 Types

cache_mask
This type is an unsigned int. It is specially named to indicate that one of CACHE_NONE,
CACHE_PROFILES, CACHE_PAYOFFS, or CACHE_ALL should be used.

double *(*payoff_function)(int players, int *strategy_profile)
This type defines the signature for a payoff function that takes a strategy profile and returns an array
of payoff values.

strategyprofiles_t
This is an alias for the StrategyProfiles struct.

game_t
This is an alias for the Game struct.

payoffcache_t
This is an alias for the PayoffCache struct.

struct StrategyProfiles
This struct holds the information for strategy profiles (tuples of interaction possibility)

3

c-simulations Documentation, Release 0.3.3

int StrategyProfiles.count
This is the number of profiles the struct holds.

int StrategyProfiles.size
This is the size of each profile.

int* StrategyProfiles.types
This is an array of types (the number of types for player i is in the ith entry). The size member
indicates the size of this array.

int StrategyProfiles.has_cached_info
This is a flag to indicate whether the struct has cached information stored. It is used for the
StrategyProfiles_destroy() function.

int** StrategyProfiles.profiles
This is an array of the possible strategy profiles. It has size stored in count and each element
has size from the size member.

int*** StrategyProfiles.player_strategy_profiles
This is an array of the possible strategy profiles sorted by players participating in them. It has the
size defined by the size member. The first dimension corresponds to the player. The second
dimension corresponds to the number of strategies for that player (size count/types[i]). The
third dimension is a list of the profiles in which that strategy participates, represented by indices
referring to the StrategyProfiles.profiles list.

struct Game

This struct holds data about the game being played under the dynamics.

int Game.populations
This is how many populations the game has.

int Game.players
This is how many players there are in the game.

int* Game.types
This is a list, for each player, how many strategies that player has.

payoff_function Game.payoffs
This is the function that returns a payoff vector for a certain strategy profile in the game.

struct PayoffCache
This is a struct that holds a cache of pre-calculated payoff vectors.

int PayoffCache.count
This is how many items are in the cache.

int PayoffCache.has_cached_info
This is a flag to indicate that the cache has information in it that should be freed.

int PayoffCache.free_profiles
This is a flag to indicate that the profiles are cached and should be freed.

payoff_function PayoffCache.payoffs
This is the payoff function that generates the payoffs.

strategyprofiles_t* PayoffCache.profiles
This is the pointer to the cache of strategy profiles.

double** PayoffCache.payoff_cache
This is the cache of payoff vectors. Each payoff vector is an array of doubles, and the collection
is an array of those arrays.

4 Chapter 1. Replicator Games

c-simulations Documentation, Release 0.3.3

1.3 Functions

1.3.1 StrategyProfiles

strategyprofiles_t * StrategyProfiles_create(int players, int *types, cache_mask cache)
This creates a strategyprofiles_t struct for the requisite number of players.

The types parameter is a list of number of strategies that each player has.

The cache parameter is how much of the profiles and payoffs to cache.

int * StrategyProfiles_getProfile(strategyprofiles_t *sprofs, int num)
This returns the strategy profile corresponding to the num‘th entry in the
:c:data:‘sprofs array.

int * StrategyProfiles_getPlayerProfile(strategyprofiles_t *sprofs, int player,
int strategy, int num)

This returns the num‘th strategy profile that player :c:data:‘player‘s
strategy strategy is involved in.

int StrategyProfiles_getPlayerProfileNumber(strategyprofiles_t *sprofs,
int player, int strategy, int num)

This returns the index in the profile list of sprofs that the num‘th strategy profile of
player :c:data:‘player‘s strategy strategy is involved in.

void StrategyProfiles_destroy(strategyprofiles_t *sprofs)
This frees all data associated with sprofs.

1.3.2 Game

game_t * Game_create(int players, int populations, int *types, payoff_function payoffs)
This creates a game_t struct based on the requested data.

The number of populations must either be 1 or equal to the number of players.

The parameter types is a list of the number of strategies for each player.

The parameter payoffs is the payoff function for the game.

void Game_destroy(game_t *game)
This frees all data associated with game.

strategyprofiles_t * Game_StrategyProfiles_create(game_t *game, cache_mask cache)
This creates a strategyprofiles_t struct from the data already present in a game_t struct.

1.3.3 PayoffCache

payoffcache_t * PayoffCache_create(game_t *game, strategyprofiles_t *profiles,
cache_mask do_cache)

This creates a payoffcache_t struct based on the provided information.

double * PayoffCache_getPayoffs(payoffcache_t *cache, int profile_index)
This returns the payoffs for the cached profile index profile_index.

void PayoffCache_destroy(payoffcache_t *cache)
This frees all data associated with cache.

1.3. Functions 5

c-simulations Documentation, Release 0.3.3

6 Chapter 1. Replicator Games

CHAPTER 2

Replicator Populations

2.1 Types

population_t
This is a shortcut for a Population struct.

popcollection_t
This is a shortcut for a PopCollection struct.

struct Population
This struct holds the data relevant to a single replicator population

int Population.size
This member determines how many entries are in the Population.proportions array.

double* Population.proportions
This member holds the population proportions.

struct PopCollection
This struct holds a collection of population_t structs.

int PopCollection.size
This determines how many populations are collected.

int* PopCollection.pop_sizes
This is an array of the sizes of each of the populations collected.

popcollection_t** PopCollection.populations
This is an array of the populations.

2.2 Functions

2.2.1 Population

population_t * Population_create(int size)

void Population_destroy(population_t *pop)

int Population_equal(population_t *pop1, population_t *pop2, double effective_zero)

void Population_copy(population_t *target, population_t *source)

void Population_randomize(population_t *pop)

7

c-simulations Documentation, Release 0.3.3

void Population_serialize(population_t *pop, FILE * target_file)

population_t * Population_deserialize(FILE * source_file)

2.2.2 PopCollection

popcollection_t * PopCollection_create(int num_pops, int *sizes)

popcollection_t * PopCollection_clone(popcollection_t *original)

void PopCollection_destroy(popcollection_t *coll)

int PopCollection_equal(popcollection_t *coll1, popcollection_t *coll2, double effec-
tive_zero)

void PopCollection_copy(popcollection_t *target, popcollection_t *source)

void PopCollection_randomize(popcollection_t *coll)

void PopCollection_serialize(popcollection_t *coll, FILE * target_file)

popcollection_t * PopCollection_deserialize(FILE * source_file)

8 Chapter 2. Replicator Populations

CHAPTER 3

Replicator Simulations

3.1 Types

void (*cb_func)(game_t *game, int generation, popcollection_t *generation_pop, FILE *out-
file)

3.2 Functions

void replicator_dynamics_setup()

popcollection_t * replicator_dynamics(game_t *game, popcollection_t *start_pops,
double alpha, double effective_zero,
int max_generations, cache_mask caching,
cb_func on_generation, FILE *outfile)

double earned_payoff(int player, int strategy, popcollection_t *pops, strategyprofiles_t *pro-
files, payoffcache_t *payoff_cache)

double average_earned_payoff(int player, popcollection_t *pops, strategyprofiles_t *pro-
files, payoffcache_t *payoff_cache)

void update_population_proportions(double alpha, int player, population_t *pop, pop-
collection_t *curr_pops, strategyprofiles_t *pro-
files, payoffcache_t *payoff_cache, int *threads)

9

c-simulations Documentation, Release 0.3.3

10 Chapter 3. Replicator Simulations

CHAPTER 4

Urn-Learning Games

4.1 Types

unsigned int * (*urn_interaction)(unsigned int players, urncollection_t **player_urns,
rk_state *random_state)

urngame_t

struct UrnGame

unsigned int Urngame.num_players

unsigned int** Urngame.types

urncollection_t** Urngame.player_urns

urn_interaction Urngame.interaction_function

4.2 Functions

urngame_t * UrnGame_create(unsigned int players, unsigned int *num_urns, unsigned
int **types, double ***initial_counts, urn_interaction func)

void UrnGame_destroy(urngame_t *urngame)

unsigned int * default_urnlearning_interaction(unsigned int players, urn-
collection_t **player_urns,
rk_state *rand_state_ptr)

void UrnGame_copy(urngame_t *source, urngame_t *target)

urngame_t * UrnGame_clone(urngame_t *urngame)

11

c-simulations Documentation, Release 0.3.3

12 Chapter 4. Urn-Learning Games

CHAPTER 5

Urn-Learning Urns

5.1 Types

urn_t

urncollection_t

struct Urn

unsigned int Urn.types

double* Urn.counts

double* Urn.proportions

struct UrnCollection

unsigned int UrnCollection.num_urns

urn_t** UrnCollection.urns

5.2 Functions

5.2.1 Urn

urn_t * Urn_create(unsigned int types, double *initial_counts)

void Urn_destroy(urn_t * urn)

void Urn_update(urn_t *urn, double *count_updates)

unsigned int Urn_select(urn_t *urn, double random_draw)

unsigned int Urn_randomSelect(urn_t *urn, rk_state *rand_state_ptr)

void Urn_display(urn_t * urn, char *prefix, FILE *outfile)

urn_t * Urn_clone(urn_t *urn)

void Urn_copy(urn_t *source, urn_t *target)

13

c-simulations Documentation, Release 0.3.3

5.2.2 UrnCollection

urncollection_t * UrnCollection_create(unsigned int num_urns, unsigned int * types, dou-
ble **initial_counts)

void UrnCollection_destroy(urncollection_t *urnc)

urncollection_t * UrnCollection_clone(urncollection_t *urnc)

void UrnCollection_copy(urncollection_t *source, urncollection_t *target)

14 Chapter 5. Urn-Learning Urns

CHAPTER 6

Urn-Learning Simulations

6.1 Types

double ** (*payoff_function)(unsigned int players, unsigned int **types, unsigned int
* state_action_profile)

6.2 Functions

void urnlearning_dynamics(urngame_t *urngame, unsigned long max_iterations, pay-
off_function payoffs)

Examples:

Universal Deception simulations (Replicator)

Self-Deception simulations (Urn-Learning)

15

https://github.com/gsmcwhirter/universal-deception
https://github.com/gsmcwhirter/self-deception

c-simulations Documentation, Release 0.3.3

16 Chapter 6. Urn-Learning Simulations

CHAPTER 7

Indices and tables

• genindex

• modindex

• search

17

c-simulations Documentation, Release 0.3.3

18 Chapter 7. Indices and tables

Index

A
average_earned_payoff (C function), 9

C
CACHE_ALL (C macro), 3
cache_mask (C type), 3
CACHE_NONE (C macro), 3
CACHE_PAYOFFS (C macro), 3
CACHE_PROFILES (C macro), 3
cb_func (C type), 9

D
default_urnlearning_interaction (C function), 11

E
earned_payoff (C function), 9

G
Game (C type), 4
Game.Game.payoffs (C member), 4
Game.Game.players (C member), 4
Game.Game.populations (C member), 4
Game.Game.types (C member), 4
Game_create (C function), 5
Game_destroy (C function), 5
Game_StrategyProfiles_create (C function), 5
game_t (C type), 3

P
payoff_function (C type), 3, 15
PayoffCache (C type), 4
PayoffCache.PayoffCache.count (C member), 4
PayoffCache.PayoffCache.free_profiles (C member), 4
PayoffCache.PayoffCache.has_cached_info (C member),

4
PayoffCache.PayoffCache.payoff_cache (C member), 4
PayoffCache.PayoffCache.payoffs (C member), 4
PayoffCache.PayoffCache.profiles (C member), 4
PayoffCache_create (C function), 5
PayoffCache_destroy (C function), 5

PayoffCache_getPayoffs (C function), 5
payoffcache_t (C type), 3
PopCollection (C type), 7
PopCollection.PopCollection.pop_sizes (C member), 7
PopCollection.PopCollection.populations (C member), 7
PopCollection.PopCollection.size (C member), 7
PopCollection_clone (C function), 8
PopCollection_copy (C function), 8
PopCollection_create (C function), 8
PopCollection_deserialize (C function), 8
PopCollection_destroy (C function), 8
PopCollection_equal (C function), 8
PopCollection_randomize (C function), 8
PopCollection_serialize (C function), 8
popcollection_t (C type), 7
Population (C type), 7
Population.Population.proportions (C member), 7
Population.Population.size (C member), 7
Population_copy (C function), 7
Population_create (C function), 7
Population_deserialize (C function), 8
Population_destroy (C function), 7
Population_equal (C function), 7
Population_randomize (C function), 7
Population_serialize (C function), 7
population_t (C type), 7

R
replicator_dynamics (C function), 9
replicator_dynamics_setup (C function), 9

S
StrategyProfiles (C type), 3
StrategyProfiles.StrategyProfiles.count (C member), 3
StrategyProfiles.StrategyProfiles.has_cached_info (C

member), 4
StrategyProfiles.StrategyProfiles.player_strategy_profiles

(C member), 4
StrategyProfiles.StrategyProfiles.profiles (C member), 4
StrategyProfiles.StrategyProfiles.size (C member), 4

19

c-simulations Documentation, Release 0.3.3

StrategyProfiles.StrategyProfiles.types (C member), 4
StrategyProfiles_create (C function), 5
StrategyProfiles_destroy (C function), 5
StrategyProfiles_getPlayerProfile (C function), 5
StrategyProfiles_getPlayerProfileNumber (C function), 5
StrategyProfiles_getProfile (C function), 5
strategyprofiles_t (C type), 3

U
update_population_proportions (C function), 9
Urn (C type), 13
Urn.Urn.counts (C member), 13
Urn.Urn.proportions (C member), 13
Urn.Urn.types (C member), 13
Urn_clone (C function), 13
Urn_copy (C function), 13
Urn_create (C function), 13
Urn_destroy (C function), 13
Urn_display (C function), 13
urn_interaction (C type), 11
Urn_randomSelect (C function), 13
Urn_select (C function), 13
urn_t (C type), 13
Urn_update (C function), 13
UrnCollection (C type), 13
UrnCollection.UrnCollection.num_urns (C member), 13
UrnCollection.UrnCollection.urns (C member), 13
UrnCollection_clone (C function), 14
UrnCollection_copy (C function), 14
UrnCollection_create (C function), 14
UrnCollection_destroy (C function), 14
urncollection_t (C type), 13
UrnGame (C type), 11
UrnGame.Urngame.interaction_function (C member), 11
UrnGame.Urngame.num_players (C member), 11
UrnGame.Urngame.player_urns (C member), 11
UrnGame.Urngame.types (C member), 11
UrnGame_clone (C function), 11
UrnGame_copy (C function), 11
UrnGame_create (C function), 11
UrnGame_destroy (C function), 11
urngame_t (C type), 11
urnlearning_dynamics (C function), 15

20 Index

	Replicator Games
	Constants
	Types
	Functions

	Replicator Populations
	Types
	Functions

	Replicator Simulations
	Types
	Functions

	Urn-Learning Games
	Types
	Functions

	Urn-Learning Urns
	Types
	Functions

	Urn-Learning Simulations
	Types
	Functions

	Indices and tables

