

 Navigation

 	
 index

 	
 next |

 	c-simulations 0.3.3 documentation

Documentation for the c-simulations Framework

This is a framework for running two types of game theory simulations
in C. It can run n-population replicator dynamics simulations or
Herrnstein-Roth-Erev urn learning simulations.

It builds both static and shared versions of two libraries that should
be linked to the program that actually runs the simulations.

Contents:

	Replicator Games
	Constants

	Types

	Functions

	Replicator Populations
	Types

	Functions

	Replicator Simulations
	Types

	Functions

	Urn-Learning Games
	Types

	Functions

	Urn-Learning Urns
	Types

	Functions

	Urn-Learning Simulations
	Types

	Functions

Examples:

Universal Deception simulations [https://github.com/gsmcwhirter/universal-deception] (Replicator)

Self-Deception simulations [https://github.com/gsmcwhirter/self-deception] (Urn-Learning)

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2014, Gregory McWhirter.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	c-simulations 0.3.3 documentation

Replicator Games

The replicator_game.c and replicator_game.h files handle
the functionality of defining the game being played for
replicator dynamics simulations.

Constants

	
CACHE_NONE

	This constant indicates that nothing should be cached. It is a cache_mask.

	
CACHE_PROFILES

	This constant indicates that only the strategy profiles should be cached. It is a cache_mask.

	
CACHE_PAYOFFS

	This constant indicates that only the payoffs should be cached. It is a cache_mask.

	
CACHE_ALL

	This constant indicates that both the profiles and payoffs should be cached.
It is equivalent to CACHE_PROFILES | CACHE_PAYOFFS. It is a cache_mask.

Types

	
cache_mask

	This type is an unsigned int. It is specially named to indicate that one of CACHE_NONE, CACHE_PROFILES, CACHE_PAYOFFS, or CACHE_ALL should be used.

	
double *(*payoff_function)(intplayers, int*strategy_profile)

	This type defines the signature for a payoff function that takes a strategy profile and returns an array of payoff values.

	
strategyprofiles_t

	This is an alias for the StrategyProfiles struct.

	
game_t

	This is an alias for the Game struct.

	
payoffcache_t

	This is an alias for the PayoffCache struct.

	
struct StrategyProfiles

	This struct holds the information for strategy profiles (tuples of interaction possibility)

	
int StrategyProfiles.count

	This is the number of profiles the struct holds.

	
int StrategyProfiles.size

	This is the size of each profile.

	
int* StrategyProfiles.types

	This is an array of types (the number of types for player i is in the ith entry). The size member indicates the size of this array.

	
int StrategyProfiles.has_cached_info

	This is a flag to indicate whether the struct has cached information stored. It is used for the StrategyProfiles_destroy() function.

	
int** StrategyProfiles.profiles

	This is an array of the possible strategy profiles. It has size stored in count and each element has size from the size member.

	
int*** StrategyProfiles.player_strategy_profiles

	This is an array of the possible strategy profiles sorted by players participating in them. It has the size defined by the size member. The first dimension corresponds to the player. The second dimension corresponds to the number of strategies for that player (size count/types[i]). The third dimension is a list of the profiles in which that strategy participates, represented by indices referring to the StrategyProfiles.profiles list.

	
struct Game

	
This struct holds data about the game being played under the dynamics.

	
int Game.populations

	This is how many populations the game has.

	
int Game.players

	This is how many players there are in the game.

	
int* Game.types

	This is a list, for each player, how many strategies that player has.

	
payoff_function Game.payoffs

	This is the function that returns a payoff vector for a certain strategy profile in the game.

	
struct PayoffCache

	This is a struct that holds a cache of pre-calculated payoff vectors.

	
int PayoffCache.count

	This is how many items are in the cache.

	
int PayoffCache.has_cached_info

	This is a flag to indicate that the cache has information in it that should be freed.

	
int PayoffCache.free_profiles

	This is a flag to indicate that the profiles are cached and should be freed.

	
payoff_function PayoffCache.payoffs

	This is the payoff function that generates the payoffs.

	
strategyprofiles_t* PayoffCache.profiles

	This is the pointer to the cache of strategy profiles.

	
double** PayoffCache.payoff_cache

	This is the cache of payoff vectors. Each payoff vector is an array of doubles, and the collection is an array of those arrays.

Functions

StrategyProfiles

	
strategyprofiles_t * StrategyProfiles_create(intplayers, int*types, cache_maskcache)

	This creates a strategyprofiles_t struct for the requisite number of players.

The types parameter is a list of number of strategies that each player has.

The cache parameter is how much of the profiles and payoffs to cache.

	
int * StrategyProfiles_getProfile(strategyprofiles_t*sprofs, intnum)

	This returns the strategy profile corresponding to the num`th entry in the :c:data:`sprofs array.

	
int * StrategyProfiles_getPlayerProfile(strategyprofiles_t*sprofs, intplayer, intstrategy, intnum)

	This returns the num`th strategy profile that player :c:data:`player‘s strategy strategy is involved in.

	
int StrategyProfiles_getPlayerProfileNumber(strategyprofiles_t*sprofs, intplayer, intstrategy, intnum)

	This returns the index in the profile list of sprofs that the num`th strategy profile of player :c:data:`player‘s strategy strategy is involved in.

	
void StrategyProfiles_destroy(strategyprofiles_t*sprofs)

	This frees all data associated with sprofs.

Game

	
game_t * Game_create(intplayers, intpopulations, int*types, payoff_functionpayoffs)

	This creates a game_t struct based on the requested data.

The number of populations must either be 1 or equal to the number of players.

The parameter types is a list of the number of strategies for each player.

The parameter payoffs is the payoff function for the game.

	
void Game_destroy(game_t*game)

	This frees all data associated with game.

	
strategyprofiles_t * Game_StrategyProfiles_create(game_t*game, cache_maskcache)

	This creates a strategyprofiles_t struct from the data already present in a game_t struct.

PayoffCache

	
payoffcache_t * PayoffCache_create(game_t*game, strategyprofiles_t*profiles, cache_maskdo_cache)

	This creates a payoffcache_t struct based on the provided information.

	
double * PayoffCache_getPayoffs(payoffcache_t*cache, intprofile_index)

	This returns the payoffs for the cached profile index profile_index.

	
void PayoffCache_destroy(payoffcache_t*cache)

	This frees all data associated with cache.

 Copyright 2014, Gregory McWhirter.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	c-simulations 0.3.3 documentation

Replicator Populations

Types

	
population_t

	This is a shortcut for a Population struct.

	
popcollection_t

	This is a shortcut for a PopCollection struct.

	
struct Population

	This struct holds the data relevant to a single replicator population

	
int Population.size

	This member determines how many entries are in the Population.proportions array.

	
double* Population.proportions

	This member holds the population proportions.

	
struct PopCollection

	This struct holds a collection of population_t structs.

	
int PopCollection.size

	This determines how many populations are collected.

	
int* PopCollection.pop_sizes

	This is an array of the sizes of each of the populations collected.

	
popcollection_t** PopCollection.populations

	This is an array of the populations.

Functions

Population

	
population_t * Population_create(intsize)

	

	
void Population_destroy(population_t*pop)

	

	
int Population_equal(population_t*pop1, population_t*pop2, doubleeffective_zero)

	

	
void Population_copy(population_t*target, population_t*source)

	

	
void Population_randomize(population_t*pop)

	

	
void Population_serialize(population_t*pop, FILE *target_file)

	

	
population_t * Population_deserialize(FILE *source_file)

	

PopCollection

	
popcollection_t * PopCollection_create(intnum_pops, int*sizes)

	

	
popcollection_t * PopCollection_clone(popcollection_t*original)

	

	
void PopCollection_destroy(popcollection_t*coll)

	

	
int PopCollection_equal(popcollection_t*coll1, popcollection_t*coll2, doubleeffective_zero)

	

	
void PopCollection_copy(popcollection_t*target, popcollection_t*source)

	

	
void PopCollection_randomize(popcollection_t*coll)

	

	
void PopCollection_serialize(popcollection_t*coll, FILE *target_file)

	

	
popcollection_t * PopCollection_deserialize(FILE *source_file)

	

 Copyright 2014, Gregory McWhirter.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	c-simulations 0.3.3 documentation

Replicator Simulations

Types

	
void (*cb_func)(game_t*game, intgeneration, popcollection_t*generation_pop, FILE*outfile)

	

Functions

	
void replicator_dynamics_setup()

	

	
popcollection_t * replicator_dynamics(game_t*game, popcollection_t*start_pops, doublealpha, doubleeffective_zero, intmax_generations, cache_maskcaching, cb_funcon_generation, FILE*outfile)

	

	
double earned_payoff(intplayer, intstrategy, popcollection_t*pops, strategyprofiles_t*profiles, payoffcache_t*payoff_cache)

	

	
double average_earned_payoff(intplayer, popcollection_t*pops, strategyprofiles_t*profiles, payoffcache_t*payoff_cache)

	

	
void update_population_proportions(doublealpha, intplayer, population_t*pop, popcollection_t*curr_pops, strategyprofiles_t*profiles, payoffcache_t*payoff_cache, int*threads)

	

 Copyright 2014, Gregory McWhirter.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	c-simulations 0.3.3 documentation

Urn-Learning Games

Types

	
unsigned int * (*urn_interaction)(unsigned intplayers, urncollection_t**player_urns, rk_state*random_state)

	

	
urngame_t

	

	
struct UrnGame

	
	
unsigned int Urngame.num_players

	

	
unsigned int** Urngame.types

	

	
urncollection_t** Urngame.player_urns

	

	
urn_interaction Urngame.interaction_function

	

Functions

	
urngame_t * UrnGame_create(unsigned intplayers, unsigned int*num_urns, unsigned int**types, double***initial_counts, urn_interactionfunc)

	

	
void UrnGame_destroy(urngame_t*urngame)

	

	
unsigned int * default_urnlearning_interaction(unsigned intplayers, urncollection_t**player_urns, rk_state*rand_state_ptr)

	

	
void UrnGame_copy(urngame_t*source, urngame_t*target)

	

	
urngame_t * UrnGame_clone(urngame_t*urngame)

	

 Copyright 2014, Gregory McWhirter.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	c-simulations 0.3.3 documentation

Urn-Learning Urns

Types

	
urn_t

	

	
urncollection_t

	

	
struct Urn

	
	
unsigned int Urn.types

	

	
double* Urn.counts

	

	
double* Urn.proportions

	

	
struct UrnCollection

	
	
unsigned int UrnCollection.num_urns

	

	
urn_t** UrnCollection.urns

	

Functions

Urn

	
urn_t * Urn_create(unsigned inttypes, double*initial_counts)

	

	
void Urn_destroy(urn_t *urn)

	

	
void Urn_update(urn_t*urn, double*count_updates)

	

	
unsigned int Urn_select(urn_t*urn, doublerandom_draw)

	

	
unsigned int Urn_randomSelect(urn_t*urn, rk_state*rand_state_ptr)

	

	
void Urn_display(urn_t *urn, char*prefix, FILE*outfile)

	

	
urn_t * Urn_clone(urn_t*urn)

	

	
void Urn_copy(urn_t*source, urn_t*target)

	

UrnCollection

	
urncollection_t * UrnCollection_create(unsigned intnum_urns, unsigned int *types, double**initial_counts)

	

	
void UrnCollection_destroy(urncollection_t*urnc)

	

	
urncollection_t * UrnCollection_clone(urncollection_t*urnc)

	

	
void UrnCollection_copy(urncollection_t*source, urncollection_t*target)

	

 Copyright 2014, Gregory McWhirter.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 previous |

 	c-simulations 0.3.3 documentation

Urn-Learning Simulations

Types

	
double ** (*payoff_function)(unsigned intplayers, unsigned int**types, unsigned int *state_action_profile)

	

Functions

	
void urnlearning_dynamics(urngame_t*urngame, unsigned longmax_iterations, payoff_functionpayoffs)

	

 Copyright 2014, Gregory McWhirter.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	c-simulations 0.3.3 documentation

Index

 A
 | C
 | D
 | E
 | G
 | P
 | R
 | S
 | U

A

 	

 	average_earned_payoff (C function)

C

 	

 	CACHE_ALL (C macro)

 	cache_mask (C type)

 	CACHE_NONE (C macro)

 	

 	CACHE_PAYOFFS (C macro)

 	CACHE_PROFILES (C macro)

 	cb_func (C type)

D

 	

 	default_urnlearning_interaction (C function)

E

 	

 	earned_payoff (C function)

G

 	

 	Game (C type)

 	Game.Game.payoffs (C member)

 	Game.Game.players (C member)

 	Game.Game.populations (C member)

 	Game.Game.types (C member)

 	

 	Game_create (C function)

 	Game_destroy (C function)

 	Game_StrategyProfiles_create (C function)

 	game_t (C type)

P

 	

 	payoff_function (C type), [1]

 	PayoffCache (C type)

 	PayoffCache.PayoffCache.count (C member)

 	PayoffCache.PayoffCache.free_profiles (C member)

 	PayoffCache.PayoffCache.has_cached_info (C member)

 	PayoffCache.PayoffCache.payoff_cache (C member)

 	PayoffCache.PayoffCache.payoffs (C member)

 	PayoffCache.PayoffCache.profiles (C member)

 	PayoffCache_create (C function)

 	PayoffCache_destroy (C function)

 	PayoffCache_getPayoffs (C function)

 	payoffcache_t (C type)

 	PopCollection (C type)

 	PopCollection.PopCollection.pop_sizes (C member)

 	PopCollection.PopCollection.populations (C member)

 	PopCollection.PopCollection.size (C member)

 	PopCollection_clone (C function)

 	PopCollection_copy (C function)

 	

 	PopCollection_create (C function)

 	PopCollection_deserialize (C function)

 	PopCollection_destroy (C function)

 	PopCollection_equal (C function)

 	PopCollection_randomize (C function)

 	PopCollection_serialize (C function)

 	popcollection_t (C type)

 	Population (C type)

 	Population.Population.proportions (C member)

 	Population.Population.size (C member)

 	Population_copy (C function)

 	Population_create (C function)

 	Population_deserialize (C function)

 	Population_destroy (C function)

 	Population_equal (C function)

 	Population_randomize (C function)

 	Population_serialize (C function)

 	population_t (C type)

R

 	

 	replicator_dynamics (C function)

 	

 	replicator_dynamics_setup (C function)

S

 	

 	StrategyProfiles (C type)

 	StrategyProfiles.StrategyProfiles.count (C member)

 	StrategyProfiles.StrategyProfiles.has_cached_info (C member)

 	StrategyProfiles.StrategyProfiles.player_strategy_profiles (C member)

 	StrategyProfiles.StrategyProfiles.profiles (C member)

 	StrategyProfiles.StrategyProfiles.size (C member)

 	StrategyProfiles.StrategyProfiles.types (C member)

 	

 	StrategyProfiles_create (C function)

 	StrategyProfiles_destroy (C function)

 	StrategyProfiles_getPlayerProfile (C function)

 	StrategyProfiles_getPlayerProfileNumber (C function)

 	StrategyProfiles_getProfile (C function)

 	strategyprofiles_t (C type)

U

 	

 	update_population_proportions (C function)

 	Urn (C type)

 	Urn.Urn.counts (C member)

 	Urn.Urn.proportions (C member)

 	Urn.Urn.types (C member)

 	Urn_clone (C function)

 	Urn_copy (C function)

 	Urn_create (C function)

 	Urn_destroy (C function)

 	Urn_display (C function)

 	urn_interaction (C type)

 	Urn_randomSelect (C function)

 	Urn_select (C function)

 	urn_t (C type)

 	Urn_update (C function)

 	UrnCollection (C type)

 	UrnCollection.UrnCollection.num_urns (C member)

 	

 	UrnCollection.UrnCollection.urns (C member)

 	UrnCollection_clone (C function)

 	UrnCollection_copy (C function)

 	UrnCollection_create (C function)

 	UrnCollection_destroy (C function)

 	urncollection_t (C type)

 	UrnGame (C type)

 	UrnGame.Urngame.interaction_function (C member)

 	UrnGame.Urngame.num_players (C member)

 	UrnGame.Urngame.player_urns (C member)

 	UrnGame.Urngame.types (C member)

 	UrnGame_clone (C function)

 	UrnGame_copy (C function)

 	UrnGame_create (C function)

 	UrnGame_destroy (C function)

 	urngame_t (C type)

 	urnlearning_dynamics (C function)

 Copyright 2014, Gregory McWhirter.
 Created using Sphinx 1.2.2.

 _static/minus.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/ajax-loader.gif

_static/plus.png

_static/up.png

_static/down.png

_static/comment-close.png

search.html

 Navigation

 		
 index

 		c-simulations 0.3.3 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Gregory McWhirter.
 Created using Sphinx 1.2.2.

_static/up-pressed.png

_static/down-pressed.png

