

bytecode

bytecode is a Python module to generate and modify bytecode.

	bytecode project homepage at GitHub [https://github.com/MatthieuDartiailh/bytecode] (code, bugs)

	bytecode documentation [https://bytecode.readthedocs.io/] (this documentation)

	Download latest bytecode release at the Python Cheeseshop (PyPI) [https://pypi.python.org/pypi/bytecode]

Table Of Contents

	Bytecode Usage
	Installation

	Hello World
	Abstract bytecode

	Concrete bytecode

	Setting the compiler flags

	Simple loop

	Conditional jump

	Control Flow Graph (CFG)
	Example

	Analyze the control flow graph
	Iterate on basic blocks

	Browse the graph

	Bytecode API
	Constants
	__version__

	UNSET

	Functions
	format_bytecode()

	dump_bytecode()

	Instruction classes
	Instr

	ConcreteInstr

	Compare

	Binary operation

	Intrinsic operations

	CellVar and FreeVar

	Label

	SetLineno

	InstrLocation

	TryBegin

	TryEnd

	Bytecode classes
	BaseBytecode

	Bytecode

	ConcreteBytecode

	BasicBlock

	ControlFlowGraph

	Line Numbers

	Compiler Flags
	CompilerFlags

	infer_flags()

	Comparison with byteplay and codetransformer
	History of the bytecode API design

	byteplay and codetransformer
	Free and cell variables

	Line numbers

	Jump targets

	Control flow graph

	Functions or methods

	ChangeLog
	2023-10-13: Version 0.15.1

	2023-09-01: Version 0.15.0

	2023-05-24: Version 0.14.2

	2023-04-04: Version 0.14.1

	2022-11-30: Version 0.14.0

	2021-10-04: Version 0.13.0

	2021-02-02: Version 0.12.0

	2020-03-02: Version 0.11.0

	2020-02-02: Version 0.10.0

	2019-12-01: Version 0.9.0

	2019-02-18: Version 0.8.0

	2018-04-15: Version 0.7.0

	2018-03-24: Version 0.6

	2017-01-05: Version 0.5

	2016-04-12: Version 0.4

	2016-03-02: Version 0.3

	2016-02-29: Version 0.2

	2016-02-26: Version 0.1

	2016-02-23: Release 0.0

	TODO list

See also

	codetransformer [https://pypi.python.org/pypi/codetransformer]

	byteplay [https://github.com/serprex/byteplay]

	byteasm [https://github.com/zachariahreed/byteasm]: an “assembler” for Python 3
bytecodes.

	BytecodeAssembler [https://pypi.python.org/pypi/BytecodeAssembler]

	PEP 511 – API for code transformers [https://www.python.org/dev/peps/pep-0511/]

Bytecode Usage

Installation

Install bytecode:

python3 -m pip install bytecode

bytecode requires Python 3.8 or newer.

Hello World

Abstract bytecode

Example using abstract bytecode to execute print('Hello World!'):

from bytecode import Instr, Bytecode

bytecode = Bytecode([Instr("LOAD_GLOBAL", (True, 'print')),
 Instr("LOAD_CONST", 'Hello World!'),
 Instr("CALL", 1),
 Instr("POP_TOP"),
 Instr("LOAD_CONST", None),
 Instr("RETURN_VALUE")])
code = bytecode.to_code()
exec(code)

Output:

Hello World!

Concrete bytecode

Example using concrete bytecode to execute print('Hello World!'):

from bytecode import ConcreteInstr, ConcreteBytecode

bytecode = ConcreteBytecode()
bytecode.names = ['print']
bytecode.consts = ['Hello World!', None]
bytecode.extend([ConcreteInstr("LOAD_GLOBAL", 1),
 ConcreteInstr("LOAD_CONST", 0),
 ConcreteInstr("CALL", 1),
 ConcreteInstr("POP_TOP"),
 ConcreteInstr("LOAD_CONST", 1),
 ConcreteInstr("RETURN_VALUE")])
code = bytecode.to_code()
exec(code)

Output:

Hello World!

Setting the compiler flags

Bytecode, ConcreteBytecode and ControlFlowGraph instances all have a flags
attribute which is an instance of the CompilerFlag enum. The value can be
manipulated like any binary flags.

Setting the OPTIMIZED flag:

from bytecode import Bytecode, CompilerFlags

bytecode = Bytecode()
bytecode.flags |= CompilerFlags.OPTIMIZED

Clearing the OPTIMIZED flag:

from bytecode import Bytecode, CompilerFlags

bytecode = Bytecode()
bytecode.flags ^= CompilerFlags.OPTIMIZED

The flags can be updated based on the instructions stored in the code object
using the method update_flags.

Simple loop

Bytecode of for x in (1, 2, 3): print(x):

Python >= 3.8
from bytecode import Label, Instr, Bytecode

loop_start = Label()
loop_done = Label()
loop_exit = Label()
code = Bytecode(
 [
 # Python 3.8 removed SETUP_LOOP
 Instr("LOAD_CONST", (1, 2, 3)),
 Instr("GET_ITER"),
 loop_start,
 Instr("FOR_ITER", loop_exit),
 Instr("STORE_NAME", "x"),
 Instr("LOAD_GLOBAL", (True, "print")),
 Instr("LOAD_NAME", "x"),
 Instr("CALL", 1),
 Instr("POP_TOP"),
 Instr("JUMP_BACKWARD", loop_start),
 # Python 3.8 removed the need to manually manage blocks in loops
 # This is now handled internally by the interpreter
 loop_exit,
 Instr("END_FOR"),
 Instr("LOAD_CONST", None),
 Instr("RETURN_VALUE"),
]
)

The conversion to Python code object resolve jump targets:
abstract labels are replaced with concrete offsets
code = code.to_code()
exec(code)

Output:

1
2
3

Conditional jump

Bytecode of the Python code print('yes' if test else 'no'):

from bytecode import Label, Instr, Bytecode

label_else = Label()
label_print = Label()
bytecode = Bytecode([Instr('LOAD_GLOBAL', (True, 'print')),
 Instr('LOAD_NAME', 'test'),
 Instr('POP_JUMP_IF_FALSE', label_else),
 Instr('LOAD_CONST', 'yes'),
 Instr('JUMP_FORWARD', label_print),
 label_else,
 Instr('LOAD_CONST', 'no'),
 label_print,
 Instr('CALL', 1),
 Instr('LOAD_CONST', None),
 Instr('RETURN_VALUE')])
code = bytecode.to_code()

test = 0
exec(code)

test = 1
exec(code)

Output:

no
yes

Note

Instructions are only indented for readability.

Control Flow Graph (CFG)

To analyze or optimize existing code, bytecode provides a
ControlFlowGraph class which is a control flow graph (CFG) [https://en.wikipedia.org/wiki/Control_flow_graph].

The control flow graph is used to perform the stack depth analysis when
converting to code. Because it is better at identifying dead code than CPython
it can lead to reduced stack size.

Example

Dump the control flow graph of the conditional jump example:

from bytecode import Label, Instr, Bytecode, ControlFlowGraph, dump_bytecode

label_else = Label()
label_print = Label()
bytecode = Bytecode([Instr('LOAD_GLOBAL', (True, 'print')),
 Instr('LOAD_NAME', 'test'),
 Instr('POP_JUMP_IF_FALSE', label_else),
 Instr('LOAD_CONST', 'yes'),
 Instr('JUMP_FORWARD', label_print),
 label_else,
 Instr('LOAD_CONST', 'no'),
 label_print,
 Instr('CALL', 1),
 Instr('LOAD_CONST', None),
 Instr('RETURN_VALUE')])

blocks = ControlFlowGraph.from_bytecode(bytecode)
dump_bytecode(blocks)

Output:

block1:
 LOAD_GLOBAL (True, 'print')
 LOAD_NAME 'test'
 POP_JUMP_IF_FALSE <block3>
 -> block2

block2:
 LOAD_CONST 'yes'
 JUMP_FORWARD <block4>

block3:
 LOAD_CONST 'no'
 -> block4

block4:
 CALL 1
 LOAD_CONST None
 RETURN_VALUE

We get 4 blocks:

	block #1 is the start block and ends with POP_JUMP_IF_FALSE conditional
jump and is followed by the block #2

	block #2 ends with JUMP_FORWARD unconditional jump

	block #3 does not contain jump and is followed by the block #4

	block #4 is the final block

The start block is always the first block.

Analyze the control flow graph

The bytecode module provides two ways to iterate on blocks:

	iterate on the basic block as a sequential list

	browse the graph by following jumps and links to next blocks

Iterate on basic blocks

Iterating on basic blocks is a simple as this loop:

for block in blocks:
 ...

Example of a display_blocks() function:

from bytecode import UNSET, Label, Instr, Bytecode, BasicBlock, ControlFlowGraph

def display_blocks(blocks):
 for block in blocks:
 print("Block #%s" % (1 + blocks.get_block_index(block)))
 for instr in block:
 if isinstance(instr.arg, BasicBlock):
 arg = "<block #%s>" % (1 + blocks.get_block_index(instr.arg))
 elif instr.arg is not UNSET:
 arg = repr(instr.arg)
 else:
 arg = ''
 print(" %s %s" % (instr.name, arg))

 if block.next_block is not None:
 print(" => <block #%s>"
 % (1 + blocks.get_block_index(block.next_block)))

 print()

label_else = Label()
label_print = Label()
bytecode = Bytecode([Instr('LOAD_GLOBAL', (True, 'print')),
 Instr('LOAD_NAME', 'test'),
 Instr('POP_JUMP_IF_FALSE', label_else),
 Instr('LOAD_CONST', 'yes'),
 Instr('JUMP_FORWARD', label_print),
 label_else,
 Instr('LOAD_CONST', 'no'),
 label_print,
 Instr('CALL', 1),
 Instr('LOAD_CONST', None),
 Instr('RETURN_VALUE')])

blocks = ControlFlowGraph.from_bytecode(bytecode)
display_blocks(blocks)

Output:

Block #1
 LOAD_GLOBAL (True, 'print')
 LOAD_NAME 'test'
 POP_JUMP_IF_FALSE <block #3>
 => <block #2>

Block #2
 LOAD_CONST 'yes'
 JUMP_FORWARD <block #4>

Block #3
 LOAD_CONST 'no'
 => <block #4>

Block #4
 CALL 1
 LOAD_CONST None
 RETURN_VALUE

Note

SetLineno is not handled in the example to keep it simple.

Browse the graph

Recursive function is a simple solution to browse the control flow graph.

Example to a recursive display_block() function:

from bytecode import UNSET, Label, Instr, Bytecode, BasicBlock, ControlFlowGraph

def display_block(blocks, block, seen=None):
 # avoid loop: remember which blocks were already seen
 if seen is None:
 seen = set()
 if id(block) in seen:
 return
 seen.add(id(block))

 # display instructions of the block
 print("Block #%s" % (1 + blocks.get_block_index(block)))
 for instr in block:
 if isinstance(instr.arg, BasicBlock):
 arg = "<block #%s>" % (1 + blocks.get_block_index(instr.arg))
 elif instr.arg is not UNSET:
 arg = repr(instr.arg)
 else:
 arg = ''
 print(" %s %s" % (instr.name, arg))

 # is the block followed directly by another block?
 if block.next_block is not None:
 print(" => <block #%s>"
 % (1 + blocks.get_block_index(block.next_block)))

 print()

 # display the next block
 if block.next_block is not None:
 display_block(blocks, block.next_block, seen)

 # display the block linked by jump (if any)
 target_block = block.get_jump()
 if target_block is not None:
 display_block(blocks, target_block, seen)

label_else = Label()
label_print = Label()
bytecode = Bytecode([Instr('LOAD_GLOBAL', (True, 'print')),
 Instr('LOAD_NAME', 'test'),
 Instr('POP_JUMP_IF_FALSE', label_else),
 Instr('LOAD_CONST', 'yes'),
 Instr('JUMP_FORWARD', label_print),
 label_else,
 Instr('LOAD_CONST', 'no'),
 label_print,
 Instr('CALL', 1),
 Instr('LOAD_CONST', None),
 Instr('RETURN_VALUE')])

blocks = ControlFlowGraph.from_bytecode(bytecode)
display_block(blocks, blocks[0])

Output:

Block #1
 LOAD_GLOBAL (True, 'print')
 LOAD_NAME 'test'
 POP_JUMP_IF_FALSE <block #3>
 => <block #2>

Block #2
 LOAD_CONST 'yes'
 JUMP_FORWARD <block #4>

Block #4
 CALL 1
 LOAD_CONST None
 RETURN_VALUE

Block #3
 LOAD_CONST 'no'
 => <block #4>

Block numbers are no displayed in the sequential order: block #4 is displayed
before block #3.

Note

Dead code (unreachable blocks) is not displayed by display_block.

Bytecode API

	Constants: __version__, UNSET

	Abstract bytecode: Label, Instr, Bytecode

	Line number: SetLineno

	Arguments: CellVar, Compare, FreeVar

	Concrete bytecode: ConcreteInstr, ConcreteBytecode

	Control Flow Graph (CFG): BasicBlock, ControlFlowGraph

	Base class: BaseBytecode

Constants

	
__version__

	Module version string (ex: '0.1').

	
UNSET

	Singleton used to mark the lack of value. It is different than None.

Functions

	
format_bytecode(bytecode, *, lineno: bool = False) → str:

	Format a bytecode to a str representation. ConcreteBytecode,
Bytecode and ControlFlowGraph are accepted for bytecode.

If lineno is true, show also line numbers and instruction index/offset.

This function is written for debug purpose.

	
dump_bytecode(bytecode, *, lineno=False)

	Dump a bytecode to the standard output. ConcreteBytecode,
Bytecode and ControlFlowGraph are accepted for bytecode.

If lineno is true, show also line numbers and instruction index/offset.

This function is written for debug purpose.

Instruction classes

Instr

	
class Instr(name: str, arg=UNSET, *, lineno: Union[int, None, UNSET] = UNSET, location: Optional[InstrLocation] = None)

	Abstract instruction.

The type of the arg parameter (and the arg attribute) depends on
the operation:

	If the operation has a jump argument (has_jump(), ex:
JUMP_ABSOLUTE): arg must be a Label (if the instruction is
used in Bytecode) or a BasicBlock (used in
ControlFlowGraph).

	If the operation has a cell or free argument (ex: LOAD_DEREF): arg
must be a CellVar or FreeVar instance.

	If the operation has a local variable (ex: LOAD_FAST): arg must be a
variable name, type str.

	If the operation has a constant argument (LOAD_CONST): arg must not
be a Label or BasicBlock instance.

	If the operation has a compare argument (COMPARE_OP):
arg must be a Compare enum.

	If the operation has no argument (ex: DUP_TOP), arg must not be set.

	Otherwise (the operation has an argument, ex: CALL_FUNCTION), arg
must be an integer (int) in the range 0..2,147,483,647.

To replace the operation name and the argument, the set() method must
be used instead of modifying the name attribute and then the
arg attribute. Otherwise, an exception is raised if the previous
operation requires an argument and the new operation has no argument (or the
opposite).

Attributes:

	
arg

	Argument value.

It can be UNSET if the instruction has no argument.

	
lineno

	Line number (int >= 1), or None.

	
name

	Operation name (str). Setting the name updates the opcode
attribute.

	
opcode

	Operation code (int). Setting the operation code updates the
name attribute.

Changed in version 0.3: The op attribute was renamed to opcode.

	
location

	Detailed location (InstrLocation)

Methods:

	
require_arg() → bool

	Does the instruction require an argument?

	
copy()

	Create a copy of the instruction.

	
is_final() → bool

	Is the operation a final operation?

Final operations:

	RETURN_VALUE

	RAISE_VARARGS

	BREAK_LOOP

	CONTINUE_LOOP

	unconditional jumps: is_uncond_jump()

	
has_jump() → bool

	Does the operation have a jump argument?

More general than is_cond_jump() and is_uncond_jump(), it
includes other operations. Examples:

	FOR_ITER

	SETUP_EXCEPT

	CONTINUE_LOOP

	
is_cond_jump() → bool

	Is the operation a conditional jump?

Conditional jumps:

	JUMP_IF_FALSE_OR_POP

	JUMP_IF_TRUE_OR_POP

	JUMP_FORWARD_IF_FALSE_OR_POP

	JUMP_BACKWARD_IF_FALSE_OR_POP

	JUMP_FORWARD_IF_TRUE_OR_POP

	JUMP_BACKWARD_IF_TRUE_OR_POP

	POP_JUMP_IF_FALSE

	POP_JUMP_IF_TRUE

	
is_uncond_jump() → bool

	Is the operation an unconditional jump?

Unconditional jumps:

	JUMP_FORWARD

	JUMP_ABSOLUTE

	JUMP_BACKWARD

	JUMP_BACKWARD_NO_INTERRUPT

	
is_abs_jump() → bool

	Is the operation an absolute jump?

	
is_forward_rel_jump() → bool

	Is the operation a forward relative jump?

	
is_backward_rel_jump() → bool

	Is the operation a backward relative jump?

	
set(name: str, arg=UNSET)

	Modify the instruction in-place: replace name and arg
attributes, and update the opcode attribute.

Changed in version 0.3: The lineno parameter has been removed.

	
stack_effect(jump: bool = None) → int

	
Operation effect on the stack size as computed by
dis.stack_effect().

The jump argument takes one of three values. None (the default)
requests the largest stack effect. This works fine with most
instructions. True returns the stack effect for taken branches. False
returns the stack effect for non-taken branches.

Changed in version 0.8: stack_effect was changed from a property to a method in order to
add the keyword argument jump.

	
pre_and_post_stack_effect(jump: bool | None = None) → Tuple[int, int]

	Effect of the instruction on the stack before and after its execution.

The impact on the stack before the instruction reflects how many values
from the stacks are used/popped. The impact on the stack after the
instruction execution reflects how many values are pushed back on the
stack. Those are deduced from dis.stack_effect() and manual
analysis.

The jump argument has the same meaning as in
Instr.stack_effect().

New in version 0.12.

ConcreteInstr

	
class ConcreteInstr(name: str, arg=UNSET, *, lineno: int=None)

	Concrete instruction Inherit from Instr.

If the operation requires an argument, arg must be an integer (int) in
the range 0..2,147,483,647. Otherwise, arg must not by set.

Concrete instructions should only be used in ConcreteBytecode.

Attributes:

	
arg

	Argument value: an integer (int) in the range 0..2,147,483,647, or UNSET. Setting the argument value can
change the instruction size (size).

	
size

	Read-only size of the instruction in bytes (int): between 1 byte
(no argument) and 6 bytes (extended argument).

Static method:

	
static disassemble(code: bytes, offset: int) → ConcreteInstr

	Create a concrete instruction from a bytecode string.

Methods:

	
get_jump_target(instr_offset: int) → int or None

	Get the absolute target offset of a jump. Return None if the
instruction is not a jump.

The instr_offset parameter is the offset of the instruction. It is
required by relative jumps.

Note

Starting with Python 3.10, this quantity is expressed in term of
instruction offset rather than byte offset, and is hence twice smaller
than in 3.9 for identical code.

	
assemble() → bytes

	Assemble the instruction to a bytecode string.

	
use_cache_opcodes() → int

	Number of cache opcodes that should follow the instruction.

Compare

	
class Compare

	Enum for the argument of the COMPARE_OP instruction.

Equality test:

	Compare.EQ (2): x == y

	Compare.NE (3): x != y

	Compare.IS (8): x is y removed in Python 3.9+

	Compare.IS_NOT (9): x is not y removed in Python 3.9+

Inequality test:

	Compare.LT (0): x < y

	Compare.LE (1): x <= y

	Compare.GT (4): x > y

	Compare.GE (5): x >= y

Other tests:

	Compare.IN (6): x in y removed in Python 3.9+

	Compare.NOT_IN (7): x not in y removed in Python 3.9+

	Compare.EXC_MATCH (10): used to compare exceptions
in except: blocks. Removed in Python 3.9+

Binary operation

	
class BinaryOp

	Enum for the argument of the BINARY_OP instruction (3.11+).

Arithmetic operations

BinaryOp.ADD (0): x + y
BinaryOp.SUBTRACT (10): x - y
BinaryOp.MULTIPLY (5): x * y
BinaryOp.TRUE_DIVIDE (11): x / y
BinaryOp.FLOOR_DIVIDE (2): x // y
BinaryOp.REMAINDER (6): x % y
BinaryOp.MATRIX_MULTIPLY (4): x @ y
BinaryOp.POWER (8): x ** y

Logical and binary operations

BinaryOp.LSHIFT (3): x << y
BinaryOp.RSHIFT (9): x >> y
BinaryOp.AND (1): x & y
BinaryOp.OR (7): x | y
BinaryOp.XOR (12): x ^ y

Inplace operations:

BinaryOp.INPLACE_ADD (13): x += y
BinaryOp.INPLACE_SUBTRACT (23): x -= y
BinaryOp.INPLACE_MULTIPLY (18): x *= y
BinaryOp.INPLACE_TRUE_DIVIDE (24): x /= y
BinaryOp.INPLACE_FLOOR_DIVIDE (15): x //= y
BinaryOp.INPLACE_REMAINDER (19): x %= y
BinaryOp.INPLACE_MATRIX_MULTIPLY (17): x @= y
BinaryOp.INPLACE_POWER (21): x **= y
BinaryOp.INPLACE_LSHIFT (16): x <<= y
BinaryOp.INPLACE_RSHIFT (22): x >>= y
BinaryOp.INPLACE_AND (14): x &= y
BinaryOp.INPLACE_OR (20): x |= y
BinaryOp.INPLACE_XOR (25): x ^= y

Intrinsic operations

	
class Intrinsic1Op

	Enum for the argument of the CALL_INTRINSIC_1 instruction (3.12+).

INTRINSIC_1_INVALID
INTRINSIC_PRINT
INTRINSIC_IMPORT_STAR
INTRINSIC_STOPITERATION_ERROR
INTRINSIC_ASYNC_GEN_WRAP
INTRINSIC_UNARY_POSITIVE
INTRINSIC_LIST_TO_TUPLE
INTRINSIC_TYPEVAR
INTRINSIC_PARAMSPEC
INTRINSIC_TYPEVARTUPLE
INTRINSIC_SUBSCRIPT_GENERIC
INTRINSIC_TYPEALIAS

	
class Intrinsic2Op

	Enum for the argument of the CALL_INTRINSIC_2 instruction (3.12+).

INTRINSIC_2_INVALID
INTRINSIC_PREP_RERAISE_STAR
INTRINSIC_TYPEVAR_WITH_BOUND
INTRINSIC_TYPEVAR_WITH_CONSTRAINTS
INTRINSIC_SET_FUNCTION_TYPE_PARAMS

CellVar and FreeVar

The following classes are used to represent the argument of opcode listed in
opcode.hasfree which includes:

	MAKE_CELL

	LOAD_CLOSURE

	LOAD_DEREF

	STORE_DEREF

	DELETE_DEREF

	LOAD_CLASSDEREF

	LOAD_FROM_DICT_OR_DEREF

	
class CellVar

	Argument of an opcode referring to a variable held in a cell.

Cell variables cannot always be inferred only from the instructions
(__class__ used by super() is implicit) and as a consequence cellvars are
explicitly listed on all bytecode objects.

Attributes:

	
name

	Name of the cell variable (str).

	
class FreeVar

	Argument of opcode referring to a free variable.

Free variables cannot always be inferred only from the instructions
(__class__ used by super() is implicit) and as a consequence freevars are
explicitly listed on all bytecode objects.

Attributes:

	
name

	Name of the free variable (str).

Label

	
class Label

	Pseudo-instruction used as targets of jump instructions.

Label targets are “resolved” by Bytecode.to_concrete_bytecode.

Labels must only be used in Bytecode.

SetLineno

	
class SetLineno(lineno: int)

	Pseudo-instruction to set the line number of following instructions.

lineno must be greater or equal than 1.

	
lineno

	Line number (int), read-only attribute.

InstrLocation

	
class InstrLocation(lineno: int | None, end_lineno: int | None, col_offset: int | None, end_col_offset: int | None)

	Detailed location for an instruction.

	
lineno

	Line number on which the instruction starts.

	
end_lineno

	Line number on which the instruction ends.

	
col_offset

	Column offset within the start line at which the instruction starts.

	
end_col_offset

	Column offset within the end line at which the instruction starts.

	
classmethod from_positions(cls, position: dis.Positions) → InstrLocation

	Build an InstrLocation from a dis.Position object.

TryBegin

	
class TryBegin(target: Label | BasicBlock, push_lasti: bool, stack_depth: int | UNSET = UNSET)

	Pseudo instruction marking the beginning of an exception table entry.

TryBegin can never be nested.

Used in Python 3.11+ in Bytecode and BasicBlock.

	
target

	Target Label or BasicBlock to which to jump to if an exception
occurs on an instruction sitting between this TryBegin and the
matching TryEnd.

	
push_lasti

	Is the instruction offset at which an exception occurred pushed on the stack
before the exception itself when handling an exception.

	
stack_depth

	Stack depth that will be restored by the interpreter by popping from the stack
when handling an exception, before pushing the exception possibly preceded by
the instruction offset depending on TryBegin.push_lasti.

	
copy() → TryBegin

	Create a copy of the TryBegin.

TryEnd

	
class TryEnd(entry: TryBegin)

	Pseudo instruction marking the end of an exception table entry.

Note

In a BasicBlock, one may find a TryEnd instance after a final
instruction. This results from the exception enclosing the final instruction.
Since TryEnd is only a pseudo-instruction this does not violate
the guarantee made by a BasicBlock which only applies to instructions.

Note

A jump may cause to exit an exception table entry. If the jump is unconditional
the instruction is final and the above applies. For conditional jumps, within
a ControlFlowGraph, we insert a TryEnd at the beginning of
the target block to explicitly signal that we left the exception table entry
region. As a consequence, multiple TryExit corresponding to a single
TryBegin can exist. TryEnd corresponding to exiting an
exception table entry through a conditional jump always appear before the
first instruction of the target block. However, care needs to be taken since
that block may be reached through a different path in which no TryBegin
was encountered. In such cases, the TryEnd should be ignored.

Bytecode classes

BaseBytecode

	
class BaseBytecode

	Base class of bytecode classes.

Attributes:

	
argcount

	Argument count (int), default: 0.

	
cellvars

	Names of the cell variables (list of str), default: empty list.

	
docstring

	Documentation string aka “docstring” (str), None, or
UNSET. Default: UNSET.

If set, it is used by ConcreteBytecode.to_code() as the first
constant of the created Python code object.

	
filename

	Code filename (str), default: '<string>'.

	
first_lineno

	First line number (int), default: 1.

	
flags

	Flags (int).

	
freevars

	List of free variable names (list of str), default: empty list.

	
posonlyargcount

	Positional-only argument count (int), default: 0.

New in Python 3.8

	
kwonlyargcount

	Keyword-only argument count (int), default: 0.

	
name

	Code name (str), default: '<module>'.

	
qualname

	Qualified code name (str).

New in Python 3.11

Changed in version 0.3: Attribute kw_only_argcount renamed to kwonlyargcount.

Bytecode

	
class Bytecode

	Abstract bytecode: list of abstract instructions (Instr).
Inherit from BaseBytecode and list.

A bytecode must only contain objects of the 4 following types:

	Label

	SetLineno

	Instr

	TryBegin

	TryEnd

Changed in version 0.14.0: It is not possible anymore to use concrete instructions (ConcreteInstr)
in Bytecode.

Attributes:

	
argnames

	List of the argument names (list of str), default: empty list.

Static methods:

	
static from_code(code) → Bytecode

	Create an abstract bytecode from a Python code object.

Methods:

	
legalize()

	Check the validity of all the instruction and remove the SetLineno
instances after updating the instructions.

	
to_concrete_bytecode(compute_jumps_passes: int = None, compute_exception_stack_depths: bool = True) → ConcreteBytecode

	Convert to concrete bytecode with concrete instructions.

Resolve jump targets: replace abstract labels (Label) with
concrete instruction offsets (relative or absolute, depending on the
jump operation). It will also add EXTENDED_ARG prefixes to jump
instructions to ensure that the target instructions can be reached.

If compute_jumps_passes is not None, it sets the upper limit for the
number of passes that can be made to generate EXTENDED_ARG prefixes for
jump instructions. If None then an internal default is used. The number
of passes is, in theory, limited only by the number of input
instructions, however a much smaller default is used because the
algorithm converges quickly on most code. For example, running CPython
3.6.5 unittests on OS X 11.13 results in 264996 compiled methods, only
one of which requires 5 passes, and none requiring more.

If compute_exception_stack_depths is True, the stack depth for each
exception table entry will be computed (which requires to convert the
the bytecode to a ControlFlowGraph)

	
to_code(compute_jumps_passes: int = None, stacksize: int = None, *, check_pre_and_post: bool = True, compute_exception_stack_depths: bool = True) → types.CodeType

	Convert to a Python code object.

It is based on to_concrete_bytecode() and so resolve jump targets.

compute_jumps_passes: see to_concrete_bytecode()

stacksize: see ConcreteBytecode.to_code()

check_pre_and_post: see ConcreteBytecode.to_code()

compute_exception_stack_depths: see to_concrete_bytecode()

	
compute_stacksize(*, check_pre_and_post: bool = True) → int

	
Compute the stacksize needed to execute the code. Will raise an
exception if the bytecode is invalid.

This computation requires to build the control flow graph associated with
the code.

check_pre_and_post Allows caller to disable checking for stack underflow

	
update_flags(is_async: bool = None) → None

	Update the object flags by calling :py:func:infer_flags on itself.

ConcreteBytecode

	
class ExceptionTableEntry

	Entry for a given line in the exception table.

All offsets are expressed in instructions not in bytes.

Attributes:

	
start_offset

	Offset (int) in instruction between the beginning of the bytecode and
the beginning of this entry.

	
stop_offset

	Offset (int) in instruction between the beginning of the bytecode and
the end of this entry. This offset is inclusive meaning that the instruction
it points to is included in the try/except handling.

	
target

	Offset (int) in instruction to the first instruction of the exception
handling block.

	
stack_depth

	Minimal stack depth (int) in the block delineated by start and stop
offset of the exception table entry. Used to restore the stack (by
popping items) when entering the exception handling block.

	
push_lasti

	bool indicating if the offset, at which an exception was raised, should
be pushed on the stack before the exception itself (which is pushed as a single value).

	
class ConcreteBytecode

	List of concrete instructions (ConcreteInstr).
Inherit from BaseBytecode.

A concrete bytecode must only contain objects of the 2 following types:

	SetLineno

	ConcreteInstr

Label, TryBegin, TryEnd and Instr must
not be used in concrete bytecode.

Attributes:

	
consts

	List of constants (list), default: empty list.

	
names

	List of names (list of str), default: empty list.

	
varnames

	List of variable names (list of str), default: empty list.

	
exception_table

	List of ExceptionTableEntry describing portion of the bytecode
in which exceptions are caught and where there are handled.
Used only in Python 3.11+

Static methods:

	
static from_code(code, *, extended_arg=false) → ConcreteBytecode

	Create a concrete bytecode from a Python code object.

If extended_arg is true, create EXTENDED_ARG instructions.
Otherwise, concrete instruction use extended argument (size of 6
bytes rather than 3 bytes).

Methods:

	
legalize()

	Check the validity of all the instruction and remove the SetLineno
instances after updating the instructions.

	
to_code(stacksize: int = None, *, check_pre_and_post: bool = True, compute_exception_stack_depths: bool = True) → types.CodeType

	Convert to a Python code object.

stacksize Allows caller to explicitly specify a stacksize. If not
specified a ControlFlowGraph is created internally in order to call
ControlFlowGraph.compute_stacksize(). It’s cheaper to pass a value if
the value is known.

check_pre_and_post Allows caller to disable checking for stack underflow

If compute_exception_stack_depths is True, the stack depth for each
exception table entry will be computed (which requires to convert the
the bytecode to a ControlFlowGraph)

	
to_bytecode() → Bytecode

	Convert to abstract bytecode with abstract instructions.

	
compute_stacksize(*, check_pre_and_post: bool = True) → int

	Compute the stacksize needed to execute the code. Will raise an
exception if the bytecode is invalid.

This computation requires to build the control flow graph associated with
the code.

check_pre_and_post Allows caller to disable checking for stack underflow

	
update_flags(is_async: bool = None)

	Update the object flags by calling :py:func:infer_flags on itself.

BasicBlock

	
class BasicBlock

	Basic block [https://en.wikipedia.org/wiki/Basic_block]. Inherit from
list.

A basic block is a straight-line code sequence of abstract instructions
(Instr) with no branches in except to the entry and no branches out
except at the exit.

A block must only contain objects of the 4 following types:

	SetLineno

	Instr

	TryBegin

	TryEnd

Changed in version 0.14.0: It is not possible anymore to use concrete instructions (ConcreteInstr)
in BasicBlock.

Only the last instruction can have a jump argument, and the jump argument
must be a basic block (BasicBlock).

Labels (Label) must not be used in blocks.

Attributes:

	
next_block

	Next basic block (BasicBlock), or None.

Methods:

	
legalize(first_lineno: int) → None

	Check the validity of all the instruction and remove the SetLineno
instances after updating the instructions. first_lineno specifies
the line number to use for instruction without a set line number encountered
before the first SetLineno instance.

	
get_jump() --> BasicBlock | None

	Get the target block (BasicBlock) of the jump if the basic block
ends with an instruction with a jump argument. Otherwise, return
None.

	
get_trailing_end(index: int) → TryEnd | None

	Get the first TryEnd found after the position index in the block if any.

ControlFlowGraph

	
class ControlFlowGraph

	Control flow graph (CFG) [https://en.wikipedia.org/wiki/Control_flow_graph]: list of basic blocks
(BasicBlock). A basic block is a straight-line code sequence of
abstract instructions (Instr) with no branches in except to the
entry and no branches out except at the exit. Inherit from
BaseBytecode.

Labels (Label) must not be used in blocks.

This class is not designed to emit code, but to analyze and modify existing
code. Use Bytecode to emit code.

Attributes:

	
argnames

	List of the argument names (list of str), default: empty list.

Methods:

	
static from_bytecode(bytecode: Bytecode) → ControlFlowGraph

	
Convert a Bytecode object to a ControlFlowGraph object:
convert labels to blocks.

Splits blocks after final instructions (Instr.is_final()) and after
conditional jumps (Instr.is_cond_jump()).

	
legalize(first_lineno: int)

	Legalize all the blocks of the CFG.

	
add_block(instructions=None) → BasicBlock

	Add a new basic block. Return the newly created basic block.

	
get_block_index(block: BasicBlock) → int

	Get the index of a block in the bytecode.

Raise a ValueError if the block is not part of the bytecode.

New in version 0.3.

	
split_block(block: BasicBlock, index: int) → BasicBlock

	Split a block into two blocks at the specific instruction. Return
the newly created block, or block if index equals 0.

	
get_dead_blocks() → List[BasicBlock]

	Retrieve all the blocks of the CFG that are unreachable.

	
to_bytecode() → Bytecode

	Convert to a bytecode object using labels.

	
compute_stacksize(*, check_pre_and_post: bool = True, compute_exception_stack_depths: bool = True) → int

	Compute the stack size required by a bytecode object. Will raise an
exception if the bytecode is invalid.

check_pre_and_post Allows caller to disable checking for stack underflow

compute_exception_stack_depths Allows caller to disable the computation of
the stack depth required by exception table entries.

NOTE:

The computation will only consider block that can be reached from the entry block.
In particular, stack size for TryBegin/TryEnd in dead blocks is not updated.

In some cases, stack usage may be slightly overestimated compared to CPython.
This occurs when CPython duplicated the code for a finally clause but computed
stack size before the duplication in which case one could infer a smaller stack
usage for a TryBegin/TryEnd pair than can be done with the final bytecode
form.

	
update_flags(is_async: bool = None)

	Update the object flags by calling :py:func:infer_flags on itself.

	
to_code(stacksize: int = None, *, check_pre_and_post: bool = True, compute_exception_stack_depths: bool = True)

	Convert to a Python code object. Refer to descriptions of
Bytecode.to_code() and ConcreteBytecode.to_code().

check_pre_and_post Allows caller to disable checking for stack underflow

compute_exception_stack_depths Allows caller to disable the computation of
the stack depth required by exception table entries.

Line Numbers

The line number can set directly on an instruction using the lineno
parameter of the constructor. Otherwise, the line number if inherited from the
previous instruction, starting at first_lineno of the bytecode.

SetLineno pseudo-instruction can be used to set the line number of
following instructions.

Starting with Python 3.11, instructions now have a starting lineno, and end lineno
along with a starting column offset and an end column offset. InstrLocation
is used to store these new detailed information.

Compiler Flags

	
class CompilerFlags

	
	
OPTIMIZED

	Set if a code object only uses fast locals

	
NEWLOCALS

	Set if the code execution should be done with a new local scope

	
VARARGS

	Set if a code object expects variable number of positional arguments

	
VARKEYWORDS

	Set if a code object expects variable number of keyword arguments

	
NESTED

	Set if a code object correspond to function defined in another function

	
GENERATOR

	Set if a code object is a generator (contains yield instructions)

	
NOFREE

	Set if a code object does not use free variables

	
COROUTINE

	Set if a code object is a coroutine. New in Python 3.5

	
ITERABLE_COROUTINE

	Set if a code object is an iterable coroutine. New in Python 3.5

	
ASYNC_GENERATOR

	Set if a code object is an asynchronous generator. New in Python 3.6

	
FUTURE_GENERATOR_STOP

	Set if a code object is defined in a context in which generator_stop
has been imported from __future__

	
infer_flags(bytecode, async: bool = None) → CompilerFlags

	Infer the correct values for the compiler flags for a given bytecode based
on the instructions. The flags that can be inferred are :

	OPTIMIZED

	GENERATOR

	NOFREE

	COROUTINE

	ASYNC_GENERATOR

Force the code to be marked as asynchronous if True, prevent it from
being marked as asynchronous if False and simply infer the best
solution based on the opcode and the existing flag if None.

Comparison with byteplay and codetransformer

History of the bytecode API design

The design of the bytecode module started with a single use case: reimplement
the CPython peephole optimizer (implemented in C) in pure Python. The design of
the API required many iterations to get the current API.

bytecode now has a clear separation between concrete instructions using integer
arguments and abstract instructions which use Python objects for arguments.
Jump targets are labels or basic blocks. And the control flow graph abstraction
is now an API well separated from the regular abstract bytecode which is a
simple list of instructions.

byteplay and codetransformer

The byteplay [https://github.com/serprex/byteplay] and codetransformer [https://pypi.python.org/pypi/codetransformer] are clear inspiration for the
design of the bytecode API. Sadly, byteplay and codetransformer API have design
issues (at least for my specific use cases).

Free and cell variables

Converting a code object to bytecode and then back to code must not modify the
code object. It is an important requirement.

The LOAD_DEREF instruction supports free variables and cell variables. byteplay
and codetransformer use a simple string for the variable name. When the
bytecode is converted to a code object, they check if the variable is a free
variable, or fallback to a cell variable.

The CPython code base contains a corner case: code having a free variable and a
cell variable with the same name. The heuristic produces invalid code which
can lead to a crash.

bytecode uses FreeVar and CellVar classes to tag the type of
the variable. Trying to use a simple string raise a TypeError in the
Instr constructor.

Note

It’s possible to fix this issue in byteplay and codetransformer, maybe even
with keeping support for simple string for free/cell variables for backward
compatibility.

Line numbers

codetransformer uses internally a dictionary mapping offsets to line numbers.
It is updated when the .steal() method is used.

byteplay uses a pseudo-instruction SetLineno to set the current line number
of the following instructions. It requires to handle these pseudo-instructions
when you modify the bytecode, especially when instructions are moved.

In FAT Python, some optimizations move instructions but their line numbers must
be kept. That’s also why Python 3.6 was modified to support negative line
number delta in code.co_lntotab.

bytecode has a different design: line numbers are stored directly inside
instructions (Instr.lineno attribute). Moving an instruction keeps
the line number information by design.

bytecode also supports the pseudo-instruction SetLineno. It was added
to simplify functions emitting bytecode. It’s not used when an existing code
object is converted to bytecode.

Jump targets

In codetransformer, a jump target is an instruction. Jump targets are computed
when the bytecode is converted to a code object.

byteplay and bytecode use labels. Jump targets are computed when the abstract
bytecode is converted to a code object.

Note

A loop is need in the conversion from bytecode to code: if the jump target
is larger than 2**16, the size of the jump instruction changes (from 3 to 6
bytes). So other jump targets must be recomputed.

bytecode handles this corner case. byteplay and codetransformer don’t, but
it should be easy to fix them.

Control flow graph

The peephole optimizer has strong requirements on the control flow: an
optimization must not modify two instructions which are part of two different
basic blocks. Otherwise, the optimizer produces invalid code.

bytecode provides a control flow graph API for this use case.

byteplay and codetransformer don’t.

Functions or methods

This point is a matter of taste.

In bytecode, instructions are objects with methods like
is_final(), has_cond_jump(), etc.

The byteplay project uses functions taking an instruction as parameter.

ChangeLog

2023-10-13: Version 0.15.1

Bugfixes:

	Disallow creating an instruction targeting a pseudo/instrumented opcode PR #133

	Fixes encoding of 0 as a varint PR #132

	Correct spelling of “INTRINSIC” in several places; this affected
some ops in Python 3.12. PR #131

2023-09-01: Version 0.15.0

New features:

	Add support for Python 3.12 PR #122

Support for Python 3.12, comes with a number of changes reflecting changes in
CPython bytecode itself:

	handle the ability of LOAD_ATTR to replace LOAD_METHOD
As a consequence the argument is now a tuple[bool, str]

	similarly LOAD_SUPER_ATTR which uses the 2 lowest bits as flag takes
a tuple[bool, bool, str] as argument

	POP_JUMP_IF_* instructions are undirected in Python 3.12

	YIELD_VALUE now takes an argument

	Support for CALL_INTRINSIC_1/2 led to the addition of 2 new enums to
represent the argument

2023-05-24: Version 0.14.2

Bugfixes:

	allow to convert a CFG, for which stack sizes have not been computed, to Bytecode
even in the presence of mergeable TryBegin/TryEnd PR #120

	remove spurious TryEnd leftover when going from CFG to Bytecode PR #120

2023-04-04: Version 0.14.1

Bugfixes:

	allow to disassemble code containing EXTENDED_ARG targeting a NOP PR #117

2022-11-30: Version 0.14.0

New features:

	Removed the peephole optimizer PR #107

Basically changes in Python 3.11 made it hard to port and the maintenance cost
exceeded the perceived use. It could be re-added if there is a demand for it.

	Add support for Python 3.11 PR #107

Support for Python 3.11, comes with a number of changes reflecting changes in
CPython bytecode itself:

	support for the exception table in ConcreteBytecode

	support for pseudo-instruction TryBegin and TryEnd describing the
exception table in Bytecode and ControlflowGraph

	new keyword arguments in conversion method related to computations required
for the exception table

	handling of CACHE opcode at the ConcreteBytecode level

	handling of the ability of LOAD_GLOBAL to push NULL (the argument is
now a tuple[bool, str])

	support for end_lineno and column offsets in instructions

	support for co_qualname (as qualname on bytecode objects)

and a number of internal changes related to changes in the internal bytecode
representation.

	Add type annotations and make types stricter PR # 105
In particular, ConcreteInstr does not inherit from Instr anymore and one
cannot use ConcreteInstr in Bytecode object. This is saner than before.

Bugfixes:

	Removed EXC_MATCH from the Compare enumeration starting with Python
3.9. The new JUMP_IF_NOT_EXC_MATCH opcode should be used instead.

	Removed IN, NOT_IN, IS, NOT_IS from the Compare
enumeration starting with Python 3.9. The new CONTAINS_OP and IS_OP
opcodes should be used instead.

	Add proper pre and post stack effects to all opcodes (up to Python 3.11)
PR #106 #107

Maintenance:

	Make the install process PEP517 compliant PR #97

	Drop support for Python 3.6 and 3.7 PR #100

2021-10-04: Version 0.13.0

New features:

	Add support for Python 3.10 new encoding of line number. This support is
minimal in the sense that we still systematically assign a line number
while the new format allow bytecode with absolutely no line number. PR #72

Bugfixes:

	Fix handling of RERAISE (introduced in 3.9) when creating a ControlFlowGraph,
previously it was not considered final. PR #72

	Fix line table assembly in Python 3.10. PR #85

2021-02-02: Version 0.12.0

New features:

	All calculations of stacksize now check for stack underflow to avoid segfault at
runtime PR #69

Bugfixes:

	Fix recursion limitations when compiling bytecode with numerous basic
blocks. PR #57

	Fix handling of line offsets. Issue #67, PR #71

API changes:

	Forbid an Instr to hold an EXTENDED_ARG op_code PR #65

	Forbid the use of ConcreteInstr in Bytecode and
ControlFlowGraph PR #65
This is motivated by the extra complexity that handling possible EXTENDED_ARG
instruction in those representation would bring (stack computation, etc)

	Always remove EXTENDED_ARG when converting ConcreteBytecode to
Bytecode PR #65
This is equivalent to say that the ConcreteBytecode converted to
Bytecode was generated by ConcreteBytecode.from_code()
with extended_args=False

	Instr now has a new method Instr.pre_and_post_stack_effect()
for checking the prerequisite stack size of an operation PR #69

	_compute_stack_size() now uses Instr.pre_and_post_stack_effect()
to compute the stack size to reject code that will lead to runtime segfault
caused by stack underflow PR #69

2020-03-02: Version 0.11.0

New features:

	The infer_flags() can now be used to forcibly mark a function as
asynchronous or not.

Bugfixes:

	Fix a design flaw in the flag inference mechanism that could very easily
lead to invalid flags configuration PR #56

2020-02-02: Version 0.10.0

New features:

	Slices and copy of Bytecode, ConcreteBytecode and
BasicBlock are now of the same type as the original container. PR #52

	Bytecode, ConcreteBytecode, BasicBlock and
ControlFlowGraph have a new legalize() method validating
their content and removing SetLineno. PR #52

	Modify the implementation of const_key to avoid manual
synchronizations with _PyCode_ConstantKey in CPython codebase and
allow the use of arbitrary Python objects as constants of nested code
objects. #54

API changes:

	Add Compare enum to public API. PR #53

2019-12-01: Version 0.9.0

New features:

	Add support for released version of Python 3.8 and update documentation.

2019-02-18: Version 0.8.0

New features:

	Add support for Python 3.7 PR #29

	Add preliminary support for Python 3.8-dev PR #41

	Allow to use any Python object as constants to enable aggressive
optimizations PR #34

API changes:

	stack_effect is now a method of Instr and not as property anymore. PR #29

Bugfixes:

	Avoid throwing OverflowError when applying stack_effect on valid Instr
objects. PR #43, PR #44

2018-04-15: Version 0.7.0

New features:

	Add compute_jumps_passes optional argument to Bytecode.to_code() and
to Bytecode.to_concrete_bytecode() to control the number of passes
performed to compute jump targets. In theory the required number is only
bounded by the size of the code, but usually the algorithm converges quickly
(< 10 iterations).

Bugfixes:

	proper handling of EXTENDED_ARG without arguments PR #28:

EXTENDED_ARG are once again removed but their presence is recorded to avoid
having issues with offsets in jumps. Similarly when round tripping code
through ConcreteBytecode the EXTENDED_ARG without args are
preserved while if going through Bytecode they are removed.

2018-03-24: Version 0.6

	Add stack depth computation based on control flow graph analysis

	Add higher level flags handling using IntFlags enum and inference function

	Add an instructions argument to ConcreteBytecode, and validate its value

	Do not delete EXTENDED_ARG instructions that have no arg

2017-01-05: Version 0.5

	Add the new bytecode format of Python 3.6.

	Remove the BaseInstr class which became useless. It was replaced
with the Instr class.

	Documentation: Add a comparison with byteplay and codetransformer.

	Remove the BaseIntr class: Instr becomes the new base class.

	Fix PEP 8 issues and check PEP 8 on Travis CI.

2016-04-12: Version 0.4

Peephole optimizer:

	Reenable optimization on JUMP_IF_TRUE_OR_POP jumping to
POP_JUMP_IF_FALSE <target>.

2016-03-02: Version 0.3

New features:

	Add ControlFlowGraph.get_block_index() method

API changes:

	Rename Block class to BasicBlock

	Rename BytecodeBlocks class to ControlFlowGraph

	Rename BaseInstr.op to BaseInstr.opcode

	Rename BaseBytecode.kw_only_argcount attribute to
BaseBytecode.kwonlyargcount, name closer to the Python code object
attribute (co_kwonlyargcount)

	Instr constructor and its set() method now
validates the argument type

	Add Compare enum, used for COMPARE_OP argument of Instr

	Remove lineno parameter from the BaseInstr.set() method

	Add CellVar and FreeVar classes: instructions having
a cell or free variable now require a CellVar or FreeVar
instance rather than a simple string (str). This change is required
to handle correctly code with duplicated variable names in cell and free
variables.

	ControlFlowGraph: remove undocumented to_concrete_bytecode()
and to_code() methods

Bugfixes:

	Fix support of SetLineno

Peephole optimizer:

	Better code for LOAD_CONST x n + BUILD_LIST + UNPACK_SEQUENCE: rewrite
LOAD_CONST in the reverse order instead of using ROT_TWO and ROT_THREE.
This optimization supports more than 3 items.

	Remove JUMP_ABSOLUTE pointing to the following code. It can occur
after dead code was removed.

	Remove NOP instructions

	Bugfix: catch IndexError when trying to get the next instruction.

2016-02-29: Version 0.2

	Again, the API is deeply reworked.

	The project has now a documentation:
bytecode documentation [https://bytecode.readthedocs.io/]

	Fix bug #1: support jumps larger than 2^16.

	Add a new bytecode.peephole_opt module: a peephole
optimizer, code based on peephole optimizer of CPython 3.6 which is
implemented in C

	Add dump_bytecode() function to ease debug.

	Instr:

	Add Instr.is_final() method

	Add Instr.copy() and ConcreteInstr.copy() methods

	Instr now uses variable name instead of integer for cell and
free variables.

	Rename Instr.is_jump to Instr.has_jump()

	ConcreteInstr is now mutable

	Redesign the BytecodeBlocks class:

	Block have no more label attribute: jump targets are now
directly blocks

	Rename BytecodeBlocks.add_label() method to
BytecodeBlocks.split_block()

	Labels are not more allowed in blocks

	BytecodeBlocks.from_bytecode() now splits blocks after final
instructions (Instr.is_final()) and after conditional jumps
(Instr.is_cond_jump()). It helps the peephole optimizer to
respect the control flow and to remove dead code.

	Rework API to convert bytecode classes:

	BytecodeBlocks: Remove to_concrete_bytecode() and to_code()
methods. Now you first have to convert blocks to bytecode using
to_bytecode().

	Remove Bytecode.to_bytecode_blocks() method, replaced with
BytecodeBlocks.from_bytecode()

	Remove ConcreteBytecode.to_concrete_bytecode() and
Bytecode.to_bytecode() methods which did nothing (return self)

	Fix ConcreteBytecode for code with no constant (empty list of
constants)

	Fix argnames in ConcreteBytecode.to_bytecode(): use CO_VARARGS and
CO_VARKEYWORDS flags to count the number of arguments

	Fix const_key() to compare correctly constants equal but of different types
and special cases like -0.0 and +0.0

2016-02-26: Version 0.1

	Rewrite completely the API!

2016-02-23: Release 0.0

	First public release

TODO list

	Remove Bytecode.cellvars and Bytecode.freevars?

	Remove Bytecode.first_lineno? Compute it on conversions.

	Add instruction constants/enums? Example:

from bytecode import instructions as i

bytecode = Bytecode([i.LOAD_NAME('print'),
 i.LOAD_CONST('Hello World!'),
 i.CALL_FUNCTION(1),
 i.POP_TOP(),
 i.LOAD_CONST(None),
 i.RETURN_VALUE()])

Should we support instructions without parenthesis for instruction with no
parameter? Example with POP_TOP and RETURN_VALUE:

from bytecode import instructions as i

bytecode = Bytecode([i.LOAD_NAME('print'),
 i.LOAD_CONST('Hello World!'),
 i.CALL_FUNCTION(1),
 i.POP_TOP,
 i.LOAD_CONST(None),
 i.RETURN_VALUE])

	Nicer API for function arguments in bytecode object? Bytecode has argcount,
kwonlyargcount and argnames. 4 types of parameters: indexed, *args,
**kwargs and *, kwonly=3. See inspect.signature()

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V

_

 	
 	__version__ (built-in variable)

A

 	
 	add_block() (ControlFlowGraph method)

 	arg (ConcreteInstr attribute)

 	(Instr attribute)

 	argcount (BaseBytecode attribute)

 	
 	argnames (Bytecode attribute)

 	(ControlFlowGraph attribute)

 	assemble() (ConcreteInstr method)

 	ASYNC_GENERATOR (CompilerFlags attribute)

B

 	
 	BaseBytecode (built-in class)

 	BasicBlock (built-in class)

 	BinaryOp (built-in class)

 	
 built-in function

 	dump_bytecode()

 	format_bytecode()

 	infer_flags()

 	
 	Bytecode (built-in class)

C

 	
 	CellVar (built-in class)

 	cellvars (BaseBytecode attribute)

 	col_offset (InstrLocation attribute)

 	Compare (built-in class)

 	CompilerFlags (built-in class)

 	compute_stacksize() (Bytecode method)

 	(ConcreteBytecode method)

 	(ControlFlowGraph method)

 	
 	ConcreteBytecode (built-in class)

 	ConcreteInstr (built-in class)

 	consts (ConcreteBytecode attribute)

 	ControlFlowGraph (built-in class)

 	copy() (Instr method)

 	(TryBegin method)

 	COROUTINE (CompilerFlags attribute)

D

 	
 	disassemble() (ConcreteInstr static method)

 	docstring (BaseBytecode attribute)

 	
 	
 dump_bytecode()

 	built-in function

E

 	
 	end_col_offset (InstrLocation attribute)

 	end_lineno (InstrLocation attribute)

 	
 	exception_table (ConcreteBytecode attribute)

 	ExceptionTableEntry (built-in class)

F

 	
 	filename (BaseBytecode attribute)

 	first_lineno (BaseBytecode attribute)

 	flags (BaseBytecode attribute)

 	
 format_bytecode()

 	built-in function

 	FreeVar (built-in class)

 	
 	freevars (BaseBytecode attribute)

 	from_bytecode() (ControlFlowGraph static method)

 	from_code() (Bytecode static method)

 	(ConcreteBytecode static method)

 	from_positions() (InstrLocation class method)

 	FUTURE_GENERATOR_STOP (CompilerFlags attribute)

G

 	
 	GENERATOR (CompilerFlags attribute)

 	get_block_index() (ControlFlowGraph method)

 	
 	get_dead_blocks() (ControlFlowGraph method)

 	get_jump_target() (ConcreteInstr method)

 	get_trailing_end() (BasicBlock method)

H

 	
 	has_jump() (Instr method)

I

 	
 	
 infer_flags()

 	built-in function

 	Instr (built-in class)

 	InstrLocation (built-in class)

 	Intrinsic1Op (built-in class)

 	Intrinsic2Op (built-in class)

 	
 	is_abs_jump() (Instr method)

 	is_backward_rel_jump() (Instr method)

 	is_cond_jump() (Instr method)

 	is_final() (Instr method)

 	is_forward_rel_jump() (Instr method)

 	is_uncond_jump() (Instr method)

 	ITERABLE_COROUTINE (CompilerFlags attribute)

K

 	
 	kwonlyargcount (BaseBytecode attribute)

L

 	
 	Label (built-in class)

 	legalize() (BasicBlock method)

 	(Bytecode method)

 	(ConcreteBytecode method)

 	(ControlFlowGraph method)

 	
 	lineno (Instr attribute)

 	(InstrLocation attribute)

 	(SetLineno attribute)

 	location (Instr attribute)

N

 	
 	name (BaseBytecode attribute)

 	(CellVar attribute)

 	(FreeVar attribute)

 	(Instr attribute)

 	
 	names (ConcreteBytecode attribute)

 	NESTED (CompilerFlags attribute)

 	NEWLOCALS (CompilerFlags attribute)

 	next_block (BasicBlock attribute)

 	NOFREE (CompilerFlags attribute)

O

 	
 	opcode (Instr attribute)

 	
 	OPTIMIZED (CompilerFlags attribute)

P

 	
 	posonlyargcount (BaseBytecode attribute)

 	pre_and_post_stack_effect() (Instr method)

 	
 	push_lasti (ExceptionTableEntry attribute)

 	(TryBegin attribute)

Q

 	
 	qualname (BaseBytecode attribute)

R

 	
 	require_arg() (Instr method)

S

 	
 	set() (Instr method)

 	SetLineno (built-in class)

 	size (ConcreteInstr attribute)

 	split_block() (ControlFlowGraph method)

 	
 	stack_depth (ExceptionTableEntry attribute)

 	(TryBegin attribute)

 	stack_effect() (Instr method)

 	start_offset (ExceptionTableEntry attribute)

 	stop_offset (ExceptionTableEntry attribute)

T

 	
 	target (ExceptionTableEntry attribute)

 	(TryBegin attribute)

 	to_bytecode() (ConcreteBytecode method)

 	(ControlFlowGraph method)

 	to_code() (Bytecode method)

 	(ConcreteBytecode method)

 	(ControlFlowGraph method)

 	
 	to_concrete_bytecode() (Bytecode method)

 	TryBegin (built-in class)

 	TryEnd (built-in class)

U

 	
 	UNSET (built-in variable)

 	update_flags() (Bytecode method)

 	(ConcreteBytecode method)

 	(ControlFlowGraph method)

 	
 	use_cache_opcodes() (ConcreteInstr method)

V

 	
 	VARARGS (CompilerFlags attribute)

 	
 	VARKEYWORDS (CompilerFlags attribute)

 	varnames (ConcreteBytecode attribute)

 nav.xhtml

 Table of Contents

 		
 bytecode

 		
 Bytecode Usage

 		
 Installation

 		
 Hello World

 		
 Abstract bytecode

 		
 Concrete bytecode

 		
 Setting the compiler flags

 		
 Simple loop

 		
 Conditional jump

 		
 Control Flow Graph (CFG)

 		
 Example

 		
 Analyze the control flow graph

 		
 Iterate on basic blocks

 		
 Browse the graph

 		
 Bytecode API

 		
 Constants

 		
 __version__

 		
 UNSET

 		
 Functions

 		
 format_bytecode()

 		
 dump_bytecode()

 		
 Instruction classes

 		
 Instr

 		
 ConcreteInstr

 		
 Compare

 		
 Binary operation

 		
 Intrinsic operations

 		
 CellVar and FreeVar

 		
 Label

 		
 SetLineno

 		
 InstrLocation

 		
 TryBegin

 		
 TryEnd

 		
 Bytecode classes

 		
 BaseBytecode

 		
 Bytecode

 		
 ConcreteBytecode

 		
 BasicBlock

 		
 ControlFlowGraph

 		
 Line Numbers

 		
 Compiler Flags

 		
 CompilerFlags

 		
 infer_flags()

 		
 Comparison with byteplay and codetransformer

 		
 History of the bytecode API design

 		
 byteplay and codetransformer

 		
 Free and cell variables

 		
 Line numbers

 		
 Jump targets

 		
 Control flow graph

 		
 Functions or methods

 		
 ChangeLog

 		
 2023-10-13: Version 0.15.1

 		
 2023-09-01: Version 0.15.0

 		
 2023-05-24: Version 0.14.2

 		
 2023-04-04: Version 0.14.1

 		
 2022-11-30: Version 0.14.0

 		
 2021-10-04: Version 0.13.0

 		
 2021-02-02: Version 0.12.0

 		
 2020-03-02: Version 0.11.0

 		
 2020-02-02: Version 0.10.0

 		
 2019-12-01: Version 0.9.0

 		
 2019-02-18: Version 0.8.0

 		
 2018-04-15: Version 0.7.0

 		
 2018-03-24: Version 0.6

 		
 2017-01-05: Version 0.5

 		
 2016-04-12: Version 0.4

 		
 2016-03-02: Version 0.3

 		
 2016-02-29: Version 0.2

 		
 2016-02-26: Version 0.1

 		
 2016-02-23: Release 0.0

 		
 TODO list

_static/plus.png

_static/file.png

_static/minus.png

