
Businessdate Documentation
Release 0.6 [4 - Beta]

sonntagsgesicht, based on a fork of Deutsche Postbank [pbrisk]

Saturday, 15 January 2022

CONTENTS

1 Introduction 1
1.1 Python library businessdate . 1
1.2 Example Usage . 2
1.3 Install . 3
1.4 Development Version . 3
1.5 ToDo . 3
1.6 Contributions . 3
1.7 License . 3

2 Tutorial 5
2.1 Creating Objects . 5

2.1.1 BusinessDate . 5
2.1.2 BusinessPeriod . 6
2.1.3 BusinessRange . 9
2.1.4 BusinessSchedule . 11
2.1.5 BusinessHolidays . 11

2.2 Calculating Dates and Periods . 12
2.2.1 Adding . 12

2.2.1.1 Date + Period . 12
2.2.1.2 Period + Period . 13

2.2.2 Subtracting . 13
2.2.2.1 Date - Date . 13
2.2.2.2 Date - Period . 14
2.2.2.3 Period + Period . 14

2.2.3 Multiplying . 15
2.2.3.1 Period * int . 15

2.2.4 Comparing . 15
2.2.4.1 Dates . 15
2.2.4.2 Periods . 15

2.2.5 Adjusting . 17
2.2.5.1 Dates . 17

2.2.6 Measuring . 18
2.2.6.1 Periods . 18

2.3 BusinessDate Details . 19
2.3.1 More Creation Patterns . 19
2.3.2 BusinessDate Inheritance . 21

3 Project Documentation 23
3.1 Business Object Classes . 23

3.1.1 BusinessDate . 23
3.1.1.1 BusinessDate Base Classes . 26

3.1.2 BusinessPeriod . 27
3.1.3 BusinessSchedule . 27
3.1.4 BusinessHolidays . 28

i

3.2 Convention Functions . 29
3.2.1 Day Count . 29
3.2.2 Business Day Adjustment . 29

4 Releases 31
4.1 Release 0.6 . 31
4.2 Release 0.5 . 31
4.3 Release 0.4 . 32
4.4 Release 0.3 . 32
4.5 Release 0.2 . 32
4.6 Release 0.1 . 32

5 Indices and tables 33

Python Module Index 35

Index 37

ii

CHAPTER

ONE

INTRODUCTION

1.1 Python library businessdate

A fast, efficient Python library for generating business dates for simple and fast date operations.

>>> from businessdate import BusinessDate

>>> BusinessDate(2017,12,31) + '2 weeks'
BusinessDate(20180114)

>>> BusinessDate(20171231) + '2w' # same but shorter
BusinessDate(20180114)

>>> BusinessDate(20180114).to_date()
datetime.date(2018, 1, 14)

Typical banking business features are provided like holiday adjustments to move dates away from weekend days
or holidays. As well as functionality to get year fractions depending on day count conventions as the lengths of
interest payment periods.

Beside dates business periods can be created for time intervals like 10Y, 3 Months or 2b. Those periods can easily
be added to or subtracted from business dates.

Moreover range style schedule generator are provided to systematic build a list of dates. Such are used to set up a
payment schedule of loan and financial derivatives.

1

https://codeship.com//projects/356697
http://businessdate.readthedocs.io
https://github.com/sonntagsgesicht/businessdate/raw/master/LICENSE
https://github.com/sonntagsgesicht/businessdate/releases
https://pypi.org/project/businessdate/
https://pypi.org/project/businessdate/
https://pypi.org/project/businessdate/
https://pypi.org/project/businessdate/

Businessdate Documentation, Release 0.6 [4 - Beta]

1.2 Example Usage

>>> from datetime import date
>>> from businessdate import BusinessDate, BusinessPeriod

>>> BusinessDate(year=2014, month=1, day=11)
BusinessDate(20140111)

>>> BusinessDate(date(2014,1,11))
BusinessDate(20140111)

>>> BusinessDate(20140111)
BusinessDate(20140111)

>>> BusinessDate('20140111')
BusinessDate(20140111)

>>> BusinessDate('2015-12-31')
BusinessDate(20151231)

>>> BusinessDate('31.12.2015')
BusinessDate(20151231)

>>> BusinessDate('12/31/2015')
BusinessDate(20151231)

>>> BusinessDate(42369)
BusinessDate(20151231)

>>> BusinessDate(20140101) + BusinessPeriod('1Y3M')
BusinessDate(20150401)

>>> BusinessDate(20140101) + '1Y3M'
BusinessDate(20150401)

>>> BusinessDate(20170101) - '1Y1D'
BusinessDate(20151231)

>>> BusinessDate() == BusinessDate(date.today())
True

>>> BusinessDate('1Y3M20140101')
BusinessDate(20150401)

For more examples see the documentation.

2 Chapter 1. Introduction

http://businessdate.readthedocs.io

Businessdate Documentation, Release 0.6 [4 - Beta]

1.3 Install

The latest stable version can always be installed or updated via pip:

$ pip install businessdate

1.4 Development Version

The latest development version can be installed directly from GitHub:

$ pip install --upgrade git+https://github.com/sonntagsgesicht/businessdate.git

or downloaded from https://github.com/sonntagsgesicht/businessdate.

1.5 ToDo

1. decide which base class or inheritance for BusisnessDate is better:

a) BaseDateFloat (float inheritance)

b) BaseDateDatetimeDate (datetime.date inheritance)

2. store businessdays adjustment convention and holidays as private property of BusinessDate. The information
should not get lost under BusinessPeriod operation. Decide which date determines convention and holidays of a
BusinessRange.

1.6 Contributions

Issues and Pull Requests are always welcome.

1.7 License

Code and documentation are available according to the Apache Software License (see LICENSE).

1.3. Install 3

https://github.com/sonntagsgesicht/businessdate
https://github.com/pbrisk/businessdate/issues
https://github.com/sonntagsgesicht/businessdate/pulls
https://github.com/sonntagsgesicht/businessdate/raw/master/LICENSE

Businessdate Documentation, Release 0.6 [4 - Beta]

4 Chapter 1. Introduction

CHAPTER

TWO

TUTORIAL

To start with businessdate import it. Note that, since we work with dates, datetime.date might be useful, too.
But not required. Nevertheless datetime.date is used inside businessdate.businessdate.BusinessDate
from time to time.

>>> from datetime import date, timedelta
>>> from businessdate import BusinessDate, BusinessPeriod, BusinessRange,␣
→˓BusinessSchedule

2.1 Creating Objects

2.1.1 BusinessDate

Once the library is loaded, creating business dates as simple as this.

>>> BusinessDate(year=2014, month=1, day=11)
BusinessDate(20140111)

>>> BusinessDate(date(2014,1,11))
BusinessDate(20140111)

>>> BusinessDate(20140111)
BusinessDate(20140111)

>>> BusinessDate('20140111')
BusinessDate(20140111)

>>> BusinessDate('2015-12-31')
BusinessDate(20151231)

>>> BusinessDate('31.12.2015')
BusinessDate(20151231)

>>> BusinessDate('12/31/2015')
BusinessDate(20151231)

>>> BusinessDate(42369) # number of days since January, 1st 1900
BusinessDate(20151231)

Even iterators like list or tuple work well.

>>> BusinessDate((20140216, 23011230, 19991111, 20200202))
(BusinessDate(20140216), BusinessDate(23011230), BusinessDate(19991111),␣
→˓BusinessDate(20200202))

5

Businessdate Documentation, Release 0.6 [4 - Beta]

Much easier to generate container with periodical items is using businessdate.businessrange.
BusinessRange.

By default an empty businessdate.businessdate.BusinessDate is initiated with the system date as given
by +datetime.date.today()*. To change this behavior: just set the classattribute businessdate.businessdate.
BusinessDate.BASE_DATE to anything that can be understood as a business date, i.e. anything that meets
businessdate.businessdate.BusinessDate.is_businessdate().

>>> BusinessDate.BASE_DATE = '20110314'
>>> BusinessDate()
BusinessDate(20110314)

>>> BusinessDate.BASE_DATE = None
>>> BusinessDate().to_date() == date.today()
True

Attention: Setting businessdate.businessdate.BusinessDate.BASE_DATE to +date-
time.date.today()* is different to setting to None since +datetime.date.today()* changes at midnight!

2.1.2 BusinessPeriod

There are two different categories of periods which can’t be mixed.

One classical, given by a number of years, month, and days.

The second is business days or also known as working days, which are neither weekend days nor holidays. Holidays
as seen as a container (e.g. list or tuple) of ` datetime.date which are understood as holidays.

Explicit keyword arguments of can be used to init an instance.

>>> BusinessPeriod()
BusinessPeriod('0D')

>>> BusinessPeriod(businessdays=10)
BusinessPeriod('10B')

>>> BusinessPeriod(years=2, months=6, days=1)
BusinessPeriod('2Y6M1D')

>>> BusinessPeriod(months=18)
BusinessPeriod('1Y6M')

>>> BusinessPeriod(years=1, months=6)
BusinessPeriod('1Y6M')

As seen month greater than 12 will be reduced to less or equal to 12 month with according years.

>>> BusinessPeriod(months=18)
BusinessPeriod('1Y6M')

>>> BusinessPeriod(years=2, months=6, days=1)
BusinessPeriod('2Y6M1D')

But this cannot be performed for days.

>>> BusinessPeriod(months=1, days=45)
BusinessPeriod('1M45D')

(continues on next page)

6 Chapter 2. Tutorial

Businessdate Documentation, Release 0.6 [4 - Beta]

(continued from previous page)

>>> BusinessPeriod(months=2, days=14)
BusinessPeriod('2M14D')

>>> BusinessPeriod(months=2, days=15)
BusinessPeriod('2M15D')

Caution: As mentioned, classical period input arguments years, month and days must not be combined with
businessdays.

>>> BusinessPeriod(businessdays=1, days=1)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/Users/jph/Dropbox/Apps/GitHub/sonntagsgesicht/businessdate/businessdate/

→˓businessperiod.py", line 103, in __init__
raise ValueError("Either (years,months,days) or businessdays must be zero for

→˓%s" % self.__class__.__name__)
ValueError: Either (years,months,days) or businessdays must be zero for␣
→˓BusinessPeriod

Moreover, the difference of two instances of datetime.date*+ or resp. a **datetime.timedelta instance can be
used to init, too.

>>> june_the_first, december_the_thirty_first = date(2010,6,1), date(2010,12,31)
>>> december_the_thirty_first-june_the_first
datetime.timedelta(days=213)

>>> BusinessPeriod(december_the_thirty_first-june_the_first)
BusinessPeriod('213D')

>>> timedelta(213)
datetime.timedelta(days=213)

>>> BusinessPeriod(timedelta(213))
BusinessPeriod('213D')

Similar to businessdate.businessdate.BusinessDate convenient string input work as well. Such a string
represents again either periods of business days or classical periods.

>>> BusinessPeriod('0b')
BusinessPeriod('0D')

>>> BusinessPeriod('10D')
BusinessPeriod('10D')

>>> BusinessPeriod('1y3m4d')
BusinessPeriod('1Y3M4D')

>>> BusinessPeriod('18M')
BusinessPeriod('1Y6M')

>>> BusinessPeriod('1Q')
BusinessPeriod('3M')

>>> BusinessPeriod('2w')
(continues on next page)

2.1. Creating Objects 7

Businessdate Documentation, Release 0.6 [4 - Beta]

(continued from previous page)

BusinessPeriod('14D')

>>> BusinessPeriod('10B')
BusinessPeriod('10B')

Inputs like 1Q and 2W work, too. Here Q stands for quarters, i.e. 3 months, and W for weeks, i.e. 7 days.

As a convention in financial markets these three additional shortcuts ON for over night, TN tomorrow next and
DD double days exist.

>>> BusinessPeriod('ON')
BusinessPeriod('1B')

>>> BusinessPeriod('TN')
BusinessPeriod('2B')

>>> BusinessPeriod('DD')
BusinessPeriod('3B')

The businessdate.businessperiod.BusinessPeriod constructor understands even negative inputs. Please
note the behavior of the preceding sign!

>>> BusinessPeriod('-0b')
BusinessPeriod('0D')

>>> BusinessPeriod('-10D')
BusinessPeriod('-10D')

>>> BusinessPeriod('-1y3m4d')
BusinessPeriod('-1Y3M4D')

>>> BusinessPeriod('-18M')
BusinessPeriod('-1Y6M')

>>> BusinessPeriod('-1Q')
BusinessPeriod('-3M')

>>> BusinessPeriod('-2w')
BusinessPeriod('-14D')

>>> BusinessPeriod('-10B')
BusinessPeriod('-10B')

>>> BusinessPeriod(years=-2, months=-6, days=-1)
BusinessPeriod('-2Y6M1D')

Caution: Beware of the fact that all non zero attributes must meet the same sign.
>>> BusinessPeriod(months=1, days=-1)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/Users/jph/Dropbox/Apps/GitHub/sonntagsgesicht/businessdate/businessdate/

→˓businessperiod.py", line 106, in __init__
"(years, months, days)=%s must have equal sign for %s" % (str(ymd), self.__

→˓class__.__name__))
ValueError: (years, months, days)=(0, 1, -1) must have equal sign for␣
→˓BusinessPeriod

8 Chapter 2. Tutorial

Businessdate Documentation, Release 0.6 [4 - Beta]

>>>

2.1.3 BusinessRange

Since BusinessRange just builds a periodical list of items like a range statement, it meets a similar signature and
defaults.

>>> BusinessDate()
BusinessDate(20151225)

>>> start = BusinessDate(20151231)
>>> end = BusinessDate(20181231)
>>> rolling = BusinessDate(20151121)

>>> BusinessRange(start)
[BusinessDate(20151225), BusinessDate(20151226), BusinessDate(20151227),␣
→˓BusinessDate(20151228), BusinessDate(20151229), BusinessDate(20151230)]

>>> BusinessRange(start) == BusinessRange(BusinessDate(), start, '1d', start)
True

>>> len(BusinessRange(start))
6

>>> len(BusinessRange(start)) == start.diff_in_days(end)
False

>>> BusinessDate() in BusinessRange(start)
True

>>> start not in BusinessRange(start)
True

To understand the rolling, think of periodical date pattern (like a wave) expanding from rolling date to future an
past. Start and end date set boundaries such that all dates between them are in the business range.

If the start date meets those date, it is included. But the end date will never be included.

>>> start in BusinessRange(start, end, '1y', end)
True

>>> end in BusinessRange(start, end, '1y', end)
False

>>> BusinessRange(start, end, '1y', end)
[BusinessDate(20151231), BusinessDate(20161231), BusinessDate(20171231)]

If the start date does not meet any date in the range, it is not included.

>>> start in BusinessRange(start, end, '1y', rolling)
False

>>> end in BusinessRange(start, end, '1y', rolling)
False

(continues on next page)

2.1. Creating Objects 9

Businessdate Documentation, Release 0.6 [4 - Beta]

(continued from previous page)

>>> BusinessRange(start, end, '1y', rolling)
[BusinessDate(20161121), BusinessDate(20171121), BusinessDate(20181121)]

Rolling on the same start and end but different rolling may lead to different ranges.

>>> start = BusinessDate(20150129)
>>> end = BusinessDate(20150602)
>>> rolling_on_start = BusinessRange(start, end, '1m1d', start)
>>> rolling_on_end = BusinessRange(start, end, '1m1d', end)

>>> rolling_on_start == rolling_on_end
False

>>> rolling_on_start
[BusinessDate(20150129), BusinessDate(20150301), BusinessDate(20150331),␣
→˓BusinessDate(20150502)]

>>> rolling_on_end
[BusinessDate(20150129), BusinessDate(20150227), BusinessDate(20150331),␣
→˓BusinessDate(20150501)]

Luckily, straight periods, e.g.

• annually,

• semi-annually,

• quarterly,

• monthly,

• weekly or

• daily,

don’t mix-up in such a way.

>>> start = BusinessDate(20200202)
>>> end = start + BusinessPeriod('1y') * 10
>>> BusinessRange(start, end, '1y', start) == BusinessRange(start, end, '1y
→˓', end)
True

>>> end = start + BusinessPeriod('6m') * 10
>>> BusinessRange(start, end, '6m', start) == BusinessRange(start, end, '6m
→˓', end)
True

>>> end = start + BusinessPeriod('1q') * 10
>>> BusinessRange(start, end, '1q', start) == BusinessRange(start, end, '1q
→˓', end)
True

>>> end = start + BusinessPeriod('1m') * 10
>>> BusinessRange(start, end, '1m', start) == BusinessRange(start, end, '1m
→˓', end)
True

>>> end = start + BusinessPeriod('1w') * 10
>>> BusinessRange(start, end, '1w', start) == BusinessRange(start, end, '1w
→˓', end) (continues on next page)

10 Chapter 2. Tutorial

Businessdate Documentation, Release 0.6 [4 - Beta]

(continued from previous page)

True

>>> end = start + BusinessPeriod('1d') * 10
>>> BusinessRange(start, end, '1d', start) == BusinessRange(start, end, '1d
→˓', end)
True

2.1.4 BusinessSchedule

A businessdate.businessschedule.BusinessSchedule, as inhereted from businessdate.
businessrange.BusinessRange, provides nearly the same features as businessdate.businessrange.
BusinessRange. But businessdate.businessschedule.BusinessSchedule lists contain always start date
and end date!

Since the first as well as the last period can be very short (short stubs), they can be trimmed to give a first and/or
last period as long stubs.

>>> start = BusinessDate(20151231)
>>> end = BusinessDate(20181231)
>>> rolling = BusinessDate(20151121)

>>> BusinessRange(start, end, '1y', rolling)
[BusinessDate(20161121), BusinessDate(20171121), BusinessDate(20181121)]

>>> BusinessSchedule(start, end, '1y', rolling)
[BusinessDate(20151231), BusinessDate(20161121), BusinessDate(20171121),␣
→˓BusinessDate(20181121), BusinessDate(20181231)]

>>> BusinessSchedule(start, end, '1y', rolling).first_stub_long()
[BusinessDate(20151231), BusinessDate(20171121), BusinessDate(20181121),␣
→˓BusinessDate(20181231)]

>>> BusinessSchedule(start, end, '1y', rolling).last_stub_long()
[BusinessDate(20151231), BusinessDate(20161121), BusinessDate(20171121),␣
→˓BusinessDate(20181231)]

>>> BusinessSchedule(start, end, '1y', rolling).first_stub_long().last_stub_long()
[BusinessDate(20151231), BusinessDate(20171121), BusinessDate(20181231)]

2.1.5 BusinessHolidays

Since we deal with businessdate.businessdate.BusinessDate the container class businessdate.
businessholidays.BusinessHolidays is useful as it converts nearly anything input into datetime.date.

Provide list of datetime.date or anything having attributes year, month and days, e.g. iterable that yields of
businessdate.businessdate.BusinessDate.

For example you can use projects like python-holidays or workcalendar which offer holidays in many different
countries, regions and calendars.

Build-in are businessdate.businessholidays.TargetHolidays which are bank holidays in euro banking
system TARGET.

They serve as default value if no holidays are given. They can be changed on demand via the class attribute
DEFAULT_HOLIDAYS in businessdate.businessdate.BusinessDate.

2.1. Creating Objects 11

https://pypi.org/project/holidays/
https://peopledoc.github.io/workalendar/
https://en.wikipedia.org/wiki/TARGET2#Holidays

Businessdate Documentation, Release 0.6 [4 - Beta]

>>> BusinessDate(20100101) in BusinessDate.DEFAULT_HOLIDAYS
True

>>> BusinessDate.DEFAULT_HOLIDAYS = list()
>>> BusinessDate(20100101) in BusinessDate.DEFAULT_HOLIDAYS
False

2.2 Calculating Dates and Periods

Attention: Even adding and subtracting Dates and Periods suggest to be a kind of algebraic operation like
adding and subtracting numbers. But they are not, at least not in a similar way!

Algebraic operations of numbers are known to be

• compatible, e.g. 3 + 3 = 2 * 3 = 2 + 2 + 2

• associative, e.g. (1 + 2) + 3 = 1 + (2 + 3)

• distributive, e.g. (1 + 1) * 2 = 2 + 2

• commutative, e.g. 1 + 2 = 2 + 1

Due to different many days in different months as well as leap years periods do not act that way on dates.

Note: For example, add 2 month to March, 31th should give May, 31th. But adding 2 times 1 month will give
May, 30th, since

March, 31th + 1 month = April, 30th

April, 30th + 1 month = May, 30th

Even more pitfalls exist when izt comes to calculate dates and calendars. Fortunately periods acting on them self
behave much more like numbers.

All this is build into businessdate.businessperiod.BusinessPeriod and businessdate.
businessdate.BusinessDate.

2.2.1 Adding

2.2.1.1 Date + Period

Adding two dates does not any sense. So we can only add a period to a date to give a new date

>>> BusinessDate(20150612) + BusinessPeriod('6M19D')
BusinessDate(20151231)

12 Chapter 2. Tutorial

Businessdate Documentation, Release 0.6 [4 - Beta]

2.2.1.2 Period + Period

And two periods to give a new period - as long as the do not mix business days and classical periods.

>>> BusinessPeriod('6M10D') + BusinessPeriod('9D')
BusinessPeriod('6M19D')

>>> BusinessPeriod('9D') + BusinessPeriod('6M10D')
BusinessPeriod('6M19D')

>>> BusinessPeriod('5B') + BusinessPeriod('10B')
BusinessPeriod('15B')

2.2.2 Subtracting

2.2.2.1 Date - Date

Surprisingly, the difference of two dates makes sense, as the distance in numeber of years than months and finaly
days from the early to the later date.

>>> BusinessDate(20151231) - BusinessDate(20150612)
BusinessPeriod('6M19D')

Those are just the inverse operations

>>> period = BusinessDate(20151231) - BusinessDate(20150612)
>>> BusinessDate(20151231) == BusinessDate(20150612) + period
True

But note that these operations are not commutative, i.e. swapping the order can give something completely different
as the the direction of the point of view is changed.

>>> dec31 = BusinessDate(20151231)
>>> jun12 = BusinessDate(20150612)

>>> dec31 - jun12 # it takes 6 months and 19 days from jun12 to dec31
BusinessPeriod('6M19D')

>>> jun12 - dec31 # jun12 is 6 months and 18 days before dec31
BusinessPeriod('-6M18D')

>>> jan29 = BusinessDate(20150129)
>>> mar01 = BusinessDate(20150301)

>>> mar01 - jan29 # from jan29 yoe waits 1 month and 1 day until mar01
BusinessPeriod('1M1D')

>>> jan29 - mar01 # but mar01 was 1 month and 3 days before
BusinessPeriod('-1M3D')

This becomes clear if you check this with your calendar.

2.2. Calculating Dates and Periods 13

Businessdate Documentation, Release 0.6 [4 - Beta]

But still we get

>>> BusinessDate(20150612) - BusinessDate(20151231)
BusinessPeriod('-6M18D')

>>> BusinessDate(20150612) == BusinessDate(20151231) - BusinessPeriod('6M18D
→˓')
True

2.2.2.2 Date - Period

And again, we can subtract a period from a date to give a new date.

>>> BusinessDate(20151231) - BusinessPeriod('6M18D') ==␣
→˓BusinessDate(20150612)
True

>>> BusinessDate(20151231) - BusinessPeriod('10b')
BusinessDate(20151216)

2.2.2.3 Period + Period

And straight forward, two periods substracted from each other to give a new period. Again, as long as the do not
mix business days and classical periods.

>>> BusinessPeriod('6M19D') - BusinessPeriod('6M10D')
BusinessPeriod('9D')

>>> BusinessPeriod('-6M10D') - BusinessPeriod('-6M19D')
BusinessPeriod('9D')

>>> BusinessPeriod('10b') - BusinessPeriod('15b')
BusinessPeriod('-5B')

14 Chapter 2. Tutorial

Businessdate Documentation, Release 0.6 [4 - Beta]

2.2.3 Multiplying

2.2.3.1 Period * int

Since an instance of a BusinessPeriod stored the number of years, month, days or businessdays as int one
multiply this by integer, too.

Note that the number of month can be reduced if it’s exceeds the number of 12. But we can not do anything like
this with days.

>>> BusinessPeriod('1y2m3d') * 2
BusinessPeriod('2Y4M6D')

>>> BusinessPeriod('1y8m200d') * 2
BusinessPeriod('3Y4M400D')

>>> y, m, d = 1, 2, 3
>>> BusinessPeriod(years=y, months=m, days=d) * 2 ==␣
→˓BusinessPeriod(years=y*2, months=m*2, days=d*2)
True

>>> BusinessPeriod('1y2m3d') * 2 == 2 * BusinessPeriod('1y2m3d')
True

2.2.4 Comparing

2.2.4.1 Dates

Calendars assume time to be evolving in strictly one direction, from past to future. Hence days can be well ordered
and so be compared. Same for BusinessDate.

>>> BusinessDate(20151231) < BusinessDate(20160101)
True

>>> BusinessDate(20151231) == BusinessDate(20160101)
False

>>> BusinessDate(20151231) > BusinessDate(20160101)
False

2.2.4.2 Periods

Two Tuples of three numbers (a,b,c) and (d,e,f) have only a natural order if all three numbers meet the same relation,
e.g.

(a,b,c) < (d,e,f) if a < d and b < e and c < f

(a,b,c) == (d,e,f) if a == d and b == e and c == f

In case of a two classical period as a (years, months, days) the problem can be reduced by comparing only two
numbers (years*12 + months, days).

But leveraging the order of dates, a period p can be seen as greater than a period q if for any possible date d adding
both periods give always the same resulting order in dates.

I.e. we get

p < q if d + p < d + q for all dates d

Hence, we are left with only few situations, which might give for different dates d and d’

2.2. Calculating Dates and Periods 15

Businessdate Documentation, Release 0.6 [4 - Beta]

d + p < d + q but d’ + p >= d’ + q

Since days vary in different month, periods close to each other are difficult to compare, e.g. is 1M1D greater or
equal 31D?

>>> p = BusinessPeriod('1M1D')
>>> q = BusinessPeriod('31D')

>>> BusinessDate(20150131) + p < BusinessDate(20150131) + q
True

>>> BusinessDate(20150731) + p < BusinessDate(20150731) + q
False

So, let (a,b,c) and (d,e,f) be two periods with

m = (a - b) * 12 + b - e and d = c - f

as the distance of both measured in months and days.

The sequence of the number of days in a period of given months with minimal days as well as max can be derived.
The first 13 months listed.

months num days
1 28 . . . 31
2 59 . . . 62
3 89 . . . 92
4 120 . . . 123
5 150 . . . 153
6 181 . . . 184
7 212 . . . 215
8 242 . . . 245
9 273 . . . 276
10 303 . . . 306
11 334 . . . 337
12 365 . . . 366
13 393 . . . 397

For those pairs of month and days any comparison of < or > is not well defined. Hence,

>>> BusinessPeriod('13m') < BusinessPeriod('392d')
False

>>> BusinessPeriod('13m') < BusinessPeriod('393d') # not well defined ->␣
→˓None

>>> BusinessPeriod('13m') < BusinessPeriod('397d') # not well defined ->␣
→˓None

>>> BusinessPeriod('13m') < BusinessPeriod('398d')
True

But

>>> BusinessPeriod('13m') <= BusinessPeriod('392d')
False

>>> BusinessPeriod('13m') <= BusinessPeriod('393d') # not well defined ->␣
→˓None

(continues on next page)

16 Chapter 2. Tutorial

Businessdate Documentation, Release 0.6 [4 - Beta]

(continued from previous page)

>>> BusinessPeriod('13m') <= BusinessPeriod('397d')
True

>>> BusinessPeriod('13m') <= BusinessPeriod('398d')
True

So comparison of arbitrary instances or BusinessPeriod only works for ==.

>>> BusinessPeriod('ON') == BusinessPeriod('1B')
True

>>> BusinessPeriod('7D') == BusinessPeriod('1W')
True

>>> BusinessPeriod('30D') == BusinessPeriod('1M')
False

>>> BusinessPeriod('1D') == BusinessPeriod('1B')
False

2.2.5 Adjusting

2.2.5.1 Dates

When adding a period to a date results on a weekend day may make no sense in terms of business date. This
happens frequently when a interst payment plan is rolled out. In such a case all dates which fall either on weekend
days or on holidays have to be moved (adjusted) to a business day.

In financial markets different conventions of business day adjustments are kown. Most of them are part of the ISDA
Definitions which are not open to public. But see date rolling for more details.

>>> weekend_day = BusinessDate(20141129)
>>> weekend_day.weekday() # Monday is 0 and Sunday is 6
5

>>> weekend_day.adjust('follow') # move to next business day
BusinessDate(20141201)

>>> weekend_day.adjust('previous') # move to previous business day
BusinessDate(20141128)

>>> weekend_day.adjust('mod_follow') # move to next business day in same month else␣
→˓pervious
BusinessDate(20141128)

>>> BusinessDate(20141122).adjust('mod_follow') # move to next business day in same␣
→˓month else pervious
BusinessDate(20141124)

>>> weekend_day.adjust('mod_previous') # move to previous business day in same month␣
→˓else follow
BusinessDate(20141128)

>>> weekend_day.adjust('start_of_month') # move to first business day in month
(continues on next page)

2.2. Calculating Dates and Periods 17

https://www.isda.org/book/2006-isda-definitions/
https://www.isda.org/book/2006-isda-definitions/
https://en.wikipedia.org/wiki/Date_rolling

Businessdate Documentation, Release 0.6 [4 - Beta]

(continued from previous page)

BusinessDate(20141103)

>>> weekend_day.adjust('end_of_month') # move to last business day in month
BusinessDate(20141128)

In order to provide specific holidays a list of datetime.date objects can be given as an extra argument. It can
convenient to use a businessdate.businessholidays.BusinessHolidays instance instead but any type that
implements __contain__ will work.

>>> weekend_day.adjust('follow', holidays=[BusinessDate(20141201)]) # move to next␣
→˓business day
BusinessDate(20141202)

If no holidays are given the DEFAULT_HOLIDAYS of businessdate.businessdate.BusinessDate are
used. By default those are the TARGET holidays.

To view all possible convention key words see businessdate.businessdate.BusinessDate.adjust() doc-
umentation.

Beside businessdate.businessdate.BusinessDate there is also businessdate.businessrange.
BusinessRange.adjust() (same for businessdate.businessschedule.BusinessSchedule) which
adjust all items in the businessdate.businessrange.BusinessRange.

>>> start = BusinessDate(20151231)
>>> BusinessRange(start)
[BusinessDate(20151225), BusinessDate(20151226), BusinessDate(20151227),␣
→˓BusinessDate(20151228), BusinessDate(20151229), BusinessDate(20151230)]

>>> BusinessRange(start).adjust('mod_follow')
[BusinessDate(20151228), BusinessDate(20151228), BusinessDate(20151228),␣
→˓BusinessDate(20151228), BusinessDate(20151229), BusinessDate(20151230)]

2.2.6 Measuring

2.2.6.1 Periods

Interest rates are agree and settled as annual rate. In contrast to this annual definition, interest payments are often
semi-annually, quarterly or monthly or even daily.

In order to calculate an less than annal interest payment from an annual interest rate the year fraction of each
particular period is used as

interest payment = annual interest rate * year fraction * notional

The year fraction depends on the days between the start date and end date of a period. In order to simplify
calculation in the past there various financial markets convention to count days between dates, see detail on day
count conventions.

The most common day count conventions, i.e. year fraction, are available by businessdate.
businessdate.BusinessDate.get_day_count() and businessdate.businessdate.BusinessDate.
get_year_fraction() (different name but same fuctionality).

To view all possible convention see businessdate.businessdate.BusinessDate.get_day_count() docu-
mentation.

>>> start_date = BusinessDate(20190829)
>>> end_date = start_date + '3M'

>>> start_date.get_day_count(end_date, 'act_act')
(continues on next page)

18 Chapter 2. Tutorial

https://en.wikipedia.org/wiki/Overnight_rate
https://en.wikipedia.org/wiki/Day_count_convention
https://en.wikipedia.org/wiki/Day_count_convention

Businessdate Documentation, Release 0.6 [4 - Beta]

(continued from previous page)

0.25205479452054796

>>> start_date.get_day_count(end_date, 'act_36525')
0.2518822724161533

>>> start_date.get_day_count(end_date, 'act_365')
0.25205479452054796

>>> start_date.get_day_count(end_date, 'act_360')
0.25555555555555554

>>> start_date.get_day_count(end_date, '30_360')
0.25

>>> start_date.get_day_count(end_date, '30E_360')
0.25

>>> start_date.get_day_count(end_date, '30E_360_I')
0.25

2.3 BusinessDate Details

2.3.1 More Creation Patterns

More complex creation pattern work, too. They combine the creation of a date plus a period with business day
adjustemnt conventions at start and/or end of the period.

Create an instance directly from a period or period string.

>>> BusinessDate()
BusinessDate(20161009)

>>> BusinessDate() + '1m'
BusinessDate(20161109)

>>> BusinessDate(BusinessPeriod(months=1))
BusinessDate(20161109)

>>> BusinessDate('1m')
BusinessDate(20161109)

>>> BusinessDate('15b')
BusinessDate(20161028)

>>> BusinessDate() + '15b'
BusinessDate(20161028)

This works with additional date, too.

>>> BusinessDate('1m20161213')
BusinessDate(20170113)

>>> BusinessDate('20161213') + '1m'
BusinessDate(20170113)

2.3. BusinessDate Details 19

Businessdate Documentation, Release 0.6 [4 - Beta]

Adding the adjustment convention ‘end_of_month’ with a business date gives the following.

>>> BusinessDate('0bEOM')
BusinessDate(20161031)

>>> BusinessDate('EOM')
BusinessDate(20161031)

>>> BusinessDate().adjust('EOM')
BusinessDate(20161031)

>>> BusinessDate('15bEOM')
BusinessDate(20161121)

>>> BusinessDate().adjust('EOM') + '15b'
BusinessDate(20161121)

Adding the adjustment convention ‘mod_follow’ with a business date lead to this.

>>> BusinessDate('0bModFlw')
BusinessDate(20161010)

>>> BusinessDate('ModFlw')
BusinessDate(20161010)

>>> BusinessDate().adjust('ModFlw')
BusinessDate(20161010)

>>> BusinessDate('15bModFlw')
BusinessDate(20161031)

>>> BusinessDate().adjust('ModFlw') + '15b'
BusinessDate(20161031)

But a adjustment convention with a classical period and without a business date is ignored since the adjustment
statement is ambiguous:

Should the start date (spot) or end date be adjusted?

>>> BusinessDate('1mEOM')
BusinessDate(20161109)

>>> BusinessDate('1mModFlw')
BusinessDate(20161109)

Adding zero business days clarifies it!

>>> BusinessDate('0b1mModFlw')
BusinessDate(20161110)

>>> BusinessDate('0b1mModFlw') == BusinessDate().adjust('ModFlw') + '1m'
True

>>> BusinessDate('1m0bModFlw')
BusinessDate(20161109)

>>> BusinessDate('1m0bModFlw') == (BusinessDate() + '1m').adjust('ModFlw')
True

Clearly business days may be non zero, too.

20 Chapter 2. Tutorial

Businessdate Documentation, Release 0.6 [4 - Beta]

>>> BusinessDate('15b1mModFlw')
BusinessDate(20161130)

>>> BusinessDate('15b1mModFlw') == BusinessDate('ModFlw') + '15b' + '1m'
True

>>> BusinessDate('1m5bModFlw')
BusinessDate(20161116)

>>> BusinessDate('1m5bModFlw') == BusinessDate('1m').adjust('ModFlw') + '5b'
True

Putting all together we get.

>>> BusinessDate('15b1m5bModFlw20161213')
BusinessDate(20170213)

>>> bd = BusinessDate(20161213)
>>> bd = bd.adjust('ModFlw')
>>> bd = bd + '15b'
>>> bd = bd + '1m'
>>> bd = bd.adjust('ModFlw')
>>> bd = bd + '5b'
>>> bd
BusinessDate(20170213)

>>> BusinessDate('15b1m5bModFlw20161213') == (BusinessDate(20161213).adjust('ModFlw')␣
→˓+ '15b' + '1m').adjust('ModFlw') + '5b'
True

2.3.2 BusinessDate Inheritance

Finally some lines on base classes businessdate.basedate.BaseDateFloat backed by float . . .

>>> from datetime import date
>>> from businessdate.basedate import BaseDateFloat

>>> BaseDateFloat(40123.)
40123.0

>>> BaseDateFloat.from_ymd(2009, 11, 6)
40123.0

>>> BaseDateFloat.from_date(date(2009, 11, 6))
40123.0

>>> BaseDateFloat.from_float(40123.)
40123.0

>>> d = BaseDateFloat(40123.)
>>> d.year, d.month, d.day
(2009, 11, 6)

>>> d.to_ymd()
(2009, 11, 6)

(continues on next page)

2.3. BusinessDate Details 21

Businessdate Documentation, Release 0.6 [4 - Beta]

(continued from previous page)

>>> d.to_date()
datetime.date(2009, 11, 6)

>>> d.to_float()
40123.0

. . . and businessdate.basedate.BaseDateDatetimeDate backed by datetime.date.

>>> from datetime import date
>>> from businessdate.basedate import BaseDateDatetimeDate

>>> BaseDateDatetimeDate(2009, 11, 6)
BaseDateDatetimeDate(2009, 11, 6)

>>> BaseDateDatetimeDate.from_ymd(2009, 11, 6)
BaseDateDatetimeDate(2009, 11, 6)

>>> BaseDateDatetimeDate.from_date(date(2009, 11, 6))
BaseDateDatetimeDate(2009, 11, 6)

>>> BaseDateDatetimeDate.from_float(40123.)
BaseDateDatetimeDate(2009, 11, 6)

>>> BaseDateDatetimeDate(2009, 11, 6)
BaseDateDatetimeDate(2009, 11, 6)

>>> d.year, d.month, d.day
(2009, 11, 6)

>>> d.to_ymd()
(2009, 11, 6)

>>> d.to_date()
datetime.date(2009, 11, 6)

>>> d.to_float()
40123.0

22 Chapter 2. Tutorial

CHAPTER

THREE

PROJECT DOCUMENTATION

BusinessDate date class to perform calculations coming from finan-
cial businesses

BusinessPeriod class to store and calculate date periods as combina-
tions of days, weeks, years etc.

BusinessRange class to build list of business days
BusinessSchedule class to build date schedules incl start and end date
BusinessHolidays holiday calendar class

3.1 Business Object Classes

3.1.1 BusinessDate

class businessdate.businessdate.BusinessDate(year=None, month=0, day=0, convention=None,
holidays=None, day_count=None)

Bases: businessdate.basedate.BaseDateDatetimeDate

date class to perform calculations coming from financial businesses

Parameters

• year – number of year or some other input value t o create BusinessDate in-
stance. When applying other input, this can be either int, float, datetime.date
or string which will be parsed and transformed into equivalent tuple of int items
(year,month,day) (See tutorial for details).

• month (int) – number of month in year 1 . . . 12 (default: 0, required to be 0 when other
input of year is used)

• days (int) – number of day in month 1 . . . 31 (default: 0, required to be 0 when other
input of year is used)

For all input arguments exits read only properties.

ADJUST = 'No'

BASE_DATE = None

DATE_FORMAT = '%Y%m%d'

DAY_COUNT = 'act_36525'

DEFAULT_CONVENTION(holidays=())
does no adjustment.

DEFAULT_HOLIDAYS = []

DEFAULT_DAY_COUNT(end)
implements Act/365.25 Day Count Convention

23

Businessdate Documentation, Release 0.6 [4 - Beta]

classmethod is_businessdate(d)
checks whether the provided input can be a date

is_leap_year()
returns True for leap year and False otherwise

days_in_year()
returns number of days in the given calendar year

days_in_month()
returns number of days for the month

end_of_month()
returns the day of the end of the month as BusinessDate object

end_of_quarter()
returns the day of the end of the quarter as BusinessDate object

is_business_day(holidays=None)
returns True if date falls neither on weekend nor is in holidays (if given as container object)

add_period(period_obj, holidays=None)
adds a BusinessPeriod object or anythings that create one and returns BusinessDate object.

It is simply adding the number of years, months and days or if businessdays given the number of busi-
ness days, i.e. days neither weekend nor in holidays (see also BusinessDate.is_business_day())

diff_in_days(end_date)
calculates the distance to a BusinessDate in days

diff_in_ymd(end_date)

get_day_count(end=None, day_count=None)
counts the days as a year fraction to given date following the specified convention.

For more details on the conventions see module businessdate.daycount.

In order to get the year fraction according a day count convention provide one of the following conven-
tion key words:

• 30_360 implements 30/360 Day Count Convention.

• 30360 implements 30/360 Day Count Convention.

• thirty360 implements 30/360 Day Count Convention.

• 30e_360 implements the 30E/360 Day Count Convention.

• 30e360 implements the 30E/360 Day Count Convention.

• thirtye360 implements the 30E/360 Day Count Convention.

• 30e_360_i implements the 30E/360 I. Day Count Convention.

• 30e360i implements the 30E/360 I. Day Count Convention.

• thirtye360i implements the 30E/360 I. Day Count Convention.

• act_360 implements Act/360 day count convention.

• act360 implements Act/360 day count convention.

• act_365 implements Act/365 day count convention.

• act365 implements Act/365 day count convention.

• act_36525 implements Act/365.25 Day Count Convention

• act_365.25 implements Act/365.25 Day Count Convention

• act36525 implements Act/365.25 Day Count Convention

• act_act implements Act/Act day count convention.

24 Chapter 3. Project Documentation

Businessdate Documentation, Release 0.6 [4 - Beta]

• actact implements Act/Act day count convention.

get_year_fraction(end=None, day_count=None)
wrapper for BusinessDate.get_day_count() method for different naming preferences

adjust(convention=None, holidays=None)
returns an adjusted BusinessDate if it was not a business day following the specified convention.

For details on business days see BusinessDate.is_business_day().

For more details on the conventions see module businessdate.conventions

In order to adjust according a business day convention provide one of the following convention key
words:

• no does no adjustment.

• previous adjusts to Business Day Convention “Preceding”.

• prev adjusts to Business Day Convention “Preceding”.

• prv adjusts to Business Day Convention “Preceding”.

• mod_previous adjusts to Business Day Convention “Modified Preceding”.

• modprevious adjusts to Business Day Convention “Modified Preceding”.

• modprev adjusts to Business Day Convention “Modified Preceding”.

• modprv adjusts to Business Day Convention “Modified Preceding”.

• follow adjusts to Business Day Convention “Following”.

• flw adjusts to Business Day Convention “Following”.

• modified adjusts to Business Day Convention “Modified [Following]”.

• mod_follow adjusts to Business Day Convention “Modified [Following]”.

• modfollow adjusts to Business Day Convention “Modified [Following]”.

• modflw adjusts to Business Day Convention “Modified [Following]”.

• start_of_month adjusts to Business Day Convention “Start of month”, i.e. first business day.

• startofmonth adjusts to Business Day Convention “Start of month”, i.e. first business day.

• som adjusts to Business Day Convention “Start of month”, i.e. first business day.

• end_of_month adjusts to Business Day Convention “End of month”, i.e. last business day.

• endofmonth adjusts to Business Day Convention “End of month”, i.e. last business day.

• eom adjusts to Business Day Convention “End of month”, i.e. last business day.

• imm adjusts to Business Day Convention of “International Monetary Market”.

• cds_imm adjusts to Business Day Convention “Single Name CDS”.

• cdsimm adjusts to Business Day Convention “Single Name CDS”.

• cds adjusts to Business Day Convention “Single Name CDS”.

3.1. Business Object Classes 25

Businessdate Documentation, Release 0.6 [4 - Beta]

3.1.1.1 BusinessDate Base Classes

businessdate.businessdate.BusinessDate inherits from one of two possible base classes. One itself inher-
ited by a native float class. The other inherited from datetime.date class.

Both classes are implemented to offer future releases the flexibility to switch from one super class to another if
such offers better performance.

Currently businessdate.businessdate.BusinessDate inherits from businessdate.basedate.
BaseDateDatetimeDate which offers more elaborated functionality.

Warning: Future releases of businessdate may be backed by different base classes.

class businessdate.basedate.BaseDateFloat(x=0)
Bases: float

native float backed base class for a performing date calculations counting days since Jan, 1st 1900

property day

property month

property year

weekday()

classmethod from_ymd(year, month, day)
creates instance from a tuple of int items (year, month, day)

classmethod from_date(d)
creates instance from a datetime.date object d

classmethod from_float(x)
creates from a float x counting the days since Jan, 1st 1900

to_ymd()
returns the tuple of int items (year, month, day)

to_date()
returns datetime.date(year, month, day)

to_float()
returns float counting the days since Jan, 1st 1900

class businessdate.basedate.BaseDateDatetimeDate
Bases: datetime.date

datetime.date backed base class for a performing date calculations

classmethod from_ymd(year, month, day)
creates instance from a tuple of int items (year, month, day)

classmethod from_date(d)
creates instance from a datetime.date object d

classmethod from_float(x)
creates from a float x counting the days since Jan, 1st 1900

to_ymd()
returns the tuple of int items (year, month, day)

to_date()
returns datetime.date(year, month, day)

to_float()
returns float counting the days since Jan, 1st 1900

to_serializable(*args, **kwargs)

26 Chapter 3. Project Documentation

Businessdate Documentation, Release 0.6 [4 - Beta]

3.1.2 BusinessPeriod

class businessdate.businessperiod.BusinessPeriod(period='', years=0, quarters=0, months=0,
weeks=0, days=0, businessdays=0)

Bases: object

class to store and calculate date periods as combinations of days, weeks, years etc.

Parameters

• period (str) – encoding a business period. Such is given by a sequence of digits as int
followed by a char - indicating the number of years Y, quarters Q (which is equivalent
to 3 month), month M, weeks W (which is equivalent to 7 days), days D, business days
B. E.g. 1Y2W3D what gives a period of 1 year plus 2 weeks and 3 days (see tutorial for
details).

• years (int) – number of years in the period (equivalent to 12 months)

• quarters (int) – number of quarters in the period (equivalent to 3 months)

• months (int) – number of month in the period

• weeks (int) – number of weeks in the period (equivalent to 7 days)

• days (int) – number of days in the period

• businessdays (int) – number of business days, i.e. days which are neither weekend
nor holidays, in the period. Only either businessdays or the others can be given. Both
at the same time is not allowed.

property years

property months

property days

property businessdays

classmethod is_businessperiod(period)
returns true if the argument can be understood as BusinessPeriod

max_days()

min_days()

3.1.3 BusinessSchedule

class businessdate.businessschedule.BusinessSchedule(start, end, step, roll=None)
Bases: businessdate.businessrange.BusinessRange

class to build date schedules incl start and end date

Parameters

• start (BusinessDate) – start date of schedule

• end (BusinessDate) – end date of schedule

• step (BusinessPeriod) – period distance of two dates

• roll (BusinessDate) – origin of schedule

convenient class to build date schedules a schedule includes always start and end date and rolls on roll, i.e.
builds a sequence by adding and/or substracting step to/from roll. start and end slice the relevant dates.

first_stub_long()
adjusts the schedule to have a long stub at the beginning, i.e. first period is longer a regular step.

last_stub_long()
adjusts the schedule to have a long stub at the end, i.e. last period is longer a regular step.

3.1. Business Object Classes 27

Businessdate Documentation, Release 0.6 [4 - Beta]

class businessdate.businessrange.BusinessRange(start, stop=None, step=None, rolling=None)
Bases: list

class to build list of business days

Parameters

• start (BusinessDate) – date to begin schedule, if stop not given, start will be used as
stop and default in rolling to BusinessDate()

• stop (BusinessDate) – date to stop before, if not given, start will be used for stop
instead

• step (BusinessPeriod) – period to step schedule, if not given 1 day is default

• rolling (BusinessDate) – date to roll on (forward and backward) between start and
stop, if not given default will be start

Ansatz First, rolling and step defines a infinite grid of dates. Second, this grid is sliced by start (included ,
if meeting the grid) and end (excluded).

All dates will have same convention, holidays and day_count property as rolling.

adjust(convention=None, holidays=None)
returns adjusted BusinessRange following given convention

For details of adjusting BusinessDate see BusinessDate.adjust().

For possible conventions invoke BusinessDate().adjust()

For more details on the conventions see module conventions)

3.1.4 BusinessHolidays

class businessdate.businessholidays.TargetHolidays(iterable=())
Bases: businessdate.businessholidays.BusinessHolidays

holiday calendar class of ecb target2 holidays

Target holidays are

• Jan, 1st

• Good Friday

• Easter Monday

• May, 1st

• December, 25th (Christmas Day)

• December, 25th (Boxing Day)

class businessdate.businessholidays.BusinessHolidays(iterable=())
Bases: list

holiday calendar class

A BusinessHolidays instance imitated a list of datetime.date which can be used to check if a
BusinessDate is included as holiday.

For convenience input need not to be of type datetime.date. Duck typing is enough, i.e. having properties
year, month and day.

28 Chapter 3. Project Documentation

Businessdate Documentation, Release 0.6 [4 - Beta]

3.2 Convention Functions

3.2.1 Day Count

businessdate.daycount.diff_in_days(start, end)
calculates days between start and end date

businessdate.daycount.get_30_360(start, end)
implements 30/360 Day Count Convention.

businessdate.daycount.get_30e_360(start, end)
implements the 30E/360 Day Count Convention.

businessdate.daycount.get_30e_360i(start, end)
implements the 30E/360 I. Day Count Convention.

businessdate.daycount.get_act_360(start, end)
implements Act/360 day count convention.

businessdate.daycount.get_act_365(start, end)
implements Act/365 day count convention.

businessdate.daycount.get_act_36525(start, end)
implements Act/365.25 Day Count Convention

businessdate.daycount.get_act_act(start, end)
implements Act/Act day count convention.

3.2.2 Business Day Adjustment

businessdate.conventions.is_business_day(business_date, holidays=[])
method to check if a date falls neither on weekend nor is in holidays.

businessdate.conventions.adjust_no(business_date, holidays=())
does no adjustment.

businessdate.conventions.adjust_previous(business_date, holidays=())
adjusts to Business Day Convention “Preceding”.

businessdate.conventions.adjust_follow(business_date, holidays=())
adjusts to Business Day Convention “Following”.

businessdate.conventions.adjust_mod_follow(business_date, holidays=())
adjusts to Business Day Convention “Modified [Following]”.

businessdate.conventions.adjust_mod_previous(business_date, holidays=())
adjusts to Business Day Convention “Modified Preceding”.

businessdate.conventions.adjust_start_of_month(business_date, holidays=())
adjusts to Business Day Convention “Start of month”, i.e. first business day.

businessdate.conventions.adjust_end_of_month(business_date, holidays=())
adjusts to Business Day Convention “End of month”, i.e. last business day.

businessdate.conventions.adjust_imm(business_date, holidays=())
adjusts to Business Day Convention of “International Monetary Market”.

businessdate.conventions.adjust_cds_imm(business_date, holidays=())
adjusts to Business Day Convention “Single Name CDS”.

3.2. Convention Functions 29

Businessdate Documentation, Release 0.6 [4 - Beta]

30 Chapter 3. Project Documentation

CHAPTER

FOUR

RELEASES

These changes are listed in decreasing version number order.

4.1 Release 0.6

Release date was Saturday, 15 January 2022

moved target_days into BusinessHolidays and removed businessdate.holidays

added convention, holidays and day_count as BusinessDate arguments as well as properties

moved to auxilium, development workflow manager

4.2 Release 0.5

Release date was August 1st, 2019

first beta release (but still work in progress)

migration to python 3.4, 3.5, 3.6 and 3.7

automated code review

100% test coverage

finished docs

removed many calculation functions (BusinessDate.add_years, etc), better use + or - instead

made some static methods to instance methods (BusinessDate.days_in_month, Business-
Date.end_of_month, BusinessDate.end_of_quarter)

swapped the order of arguments in BusinessDate.diff_in_ymd

new __cmp__ paradigm

adding max_days and min_day method to BusinessPeriod

31

https://pypi.org/auxilium

Businessdate Documentation, Release 0.6 [4 - Beta]

4.3 Release 0.4

Release date was December 31th, 2017

4.4 Release 0.3

Release date was July 7th, 2017

4.5 Release 0.2

Release date was April 2nd, 2017

4.6 Release 0.1

Release date was April 1st, 2017

32 Chapter 4. Releases

CHAPTER

FIVE

INDICES AND TABLES

• genindex

• modindex

• search

33

Businessdate Documentation, Release 0.6 [4 - Beta]

34 Chapter 5. Indices and tables

PYTHON MODULE INDEX

b
businessdate, 22
businessdate.basedate, 26
businessdate.businessdate, 23
businessdate.businessholidays, 28
businessdate.businessperiod, 27
businessdate.businessrange, 28
businessdate.businessschedule, 27
businessdate.conventions, 29
businessdate.daycount, 29

35

Businessdate Documentation, Release 0.6 [4 - Beta]

36 Python Module Index

INDEX

A
add_period() (business-

date.businessdate.BusinessDate method),
24

ADJUST (businessdate.businessdate.BusinessDate at-
tribute), 23

adjust() (businessdate.businessdate.BusinessDate
method), 25

adjust() (businessdate.businessrange.BusinessRange
method), 28

adjust_cds_imm() (in module business-
date.conventions), 29

adjust_end_of_month() (in module business-
date.conventions), 29

adjust_follow() (in module business-
date.conventions), 29

adjust_imm() (in module businessdate.conventions),
29

adjust_mod_follow() (in module business-
date.conventions), 29

adjust_mod_previous() (in module business-
date.conventions), 29

adjust_no() (in module businessdate.conventions),
29

adjust_previous() (in module business-
date.conventions), 29

adjust_start_of_month() (in module business-
date.conventions), 29

B
BASE_DATE (businessdate.businessdate.BusinessDate

attribute), 23
BaseDateDatetimeDate (class in business-

date.basedate), 26
BaseDateFloat (class in businessdate.basedate), 26
businessdate

module, 22
BusinessDate (class in businessdate.businessdate), 23
businessdate.basedate

module, 26
businessdate.businessdate

module, 23
businessdate.businessholidays

module, 28
businessdate.businessperiod

module, 27

businessdate.businessrange
module, 28

businessdate.businessschedule
module, 27

businessdate.conventions
module, 29

businessdate.daycount
module, 29

businessdays (business-
date.businessperiod.BusinessPeriod prop-
erty), 27

BusinessHolidays (class in business-
date.businessholidays), 28

BusinessPeriod (class in business-
date.businessperiod), 27

BusinessRange (class in businessdate.businessrange),
28

BusinessSchedule (class in business-
date.businessschedule), 27

D
DATE_FORMAT (business-

date.businessdate.BusinessDate attribute),
23

day (businessdate.basedate.BaseDateFloat property),
26

DAY_COUNT (businessdate.businessdate.BusinessDate
attribute), 23

days (businessdate.businessperiod.BusinessPeriod
property), 27

days_in_month() (business-
date.businessdate.BusinessDate method),
24

days_in_year() (business-
date.businessdate.BusinessDate method),
24

DEFAULT_CONVENTION() (business-
date.businessdate.BusinessDate method),
23

DEFAULT_DAY_COUNT() (business-
date.businessdate.BusinessDate method),
23

DEFAULT_HOLIDAYS (business-
date.businessdate.BusinessDate attribute),
23

diff_in_days() (business-

37

Businessdate Documentation, Release 0.6 [4 - Beta]

date.businessdate.BusinessDate method),
24

diff_in_days() (in module businessdate.daycount),
29

diff_in_ymd() (business-
date.businessdate.BusinessDate method),
24

E
end_of_month() (business-

date.businessdate.BusinessDate method),
24

end_of_quarter() (business-
date.businessdate.BusinessDate method),
24

F
first_stub_long() (business-

date.businessschedule.BusinessSchedule
method), 27

from_date() (business-
date.basedate.BaseDateDatetimeDate class
method), 26

from_date() (businessdate.basedate.BaseDateFloat
class method), 26

from_float() (business-
date.basedate.BaseDateDatetimeDate class
method), 26

from_float() (businessdate.basedate.BaseDateFloat
class method), 26

from_ymd() (business-
date.basedate.BaseDateDatetimeDate class
method), 26

from_ymd() (businessdate.basedate.BaseDateFloat
class method), 26

G
get_30_360() (in module businessdate.daycount), 29
get_30e_360() (in module businessdate.daycount),

29
get_30e_360i() (in module businessdate.daycount),

29
get_act_360() (in module businessdate.daycount),

29
get_act_365() (in module businessdate.daycount),

29
get_act_36525() (in module businessdate.daycount),

29
get_act_act() (in module businessdate.daycount),

29
get_day_count() (business-

date.businessdate.BusinessDate method),
24

get_year_fraction() (business-
date.businessdate.BusinessDate method),
25

I
is_business_day() (business-

date.businessdate.BusinessDate method),
24

is_business_day() (in module business-
date.conventions), 29

is_businessdate() (business-
date.businessdate.BusinessDate class
method), 23

is_businessperiod() (business-
date.businessperiod.BusinessPeriod class
method), 27

is_leap_year() (business-
date.businessdate.BusinessDate method),
24

L
last_stub_long() (business-

date.businessschedule.BusinessSchedule
method), 27

M
max_days() (business-

date.businessperiod.BusinessPeriod method),
27

min_days() (business-
date.businessperiod.BusinessPeriod method),
27

module
businessdate, 22
businessdate.basedate, 26
businessdate.businessdate, 23
businessdate.businessholidays, 28
businessdate.businessperiod, 27
businessdate.businessrange, 28
businessdate.businessschedule, 27
businessdate.conventions, 29
businessdate.daycount, 29

month (businessdate.basedate.BaseDateFloat prop-
erty), 26

months (businessdate.businessperiod.BusinessPeriod
property), 27

T
TargetHolidays (class in business-

date.businessholidays), 28
to_date() (business-

date.basedate.BaseDateDatetimeDate
method), 26

to_date() (businessdate.basedate.BaseDateFloat
method), 26

to_float() (business-
date.basedate.BaseDateDatetimeDate
method), 26

to_float() (businessdate.basedate.BaseDateFloat
method), 26

38 Index

Businessdate Documentation, Release 0.6 [4 - Beta]

to_serializable() (business-
date.basedate.BaseDateDatetimeDate
method), 26

to_ymd() (businessdate.basedate.BaseDateDatetimeDate
method), 26

to_ymd() (businessdate.basedate.BaseDateFloat
method), 26

W
weekday() (businessdate.basedate.BaseDateFloat

method), 26

Y
year (businessdate.basedate.BaseDateFloat property),

26
years (businessdate.businessperiod.BusinessPeriod

property), 27

Index 39

	Introduction
	Python library businessdate
	Example Usage
	Install
	Development Version
	ToDo
	Contributions
	License

	Tutorial
	Creating Objects
	BusinessDate
	BusinessPeriod
	BusinessRange
	BusinessSchedule
	BusinessHolidays

	Calculating Dates and Periods
	Adding
	Date + Period
	Period + Period

	Subtracting
	Date - Date
	Date - Period
	Period + Period

	Multiplying
	Period * int

	Comparing
	Dates
	Periods

	Adjusting
	Dates

	Measuring
	Periods

	BusinessDate Details
	More Creation Patterns
	BusinessDate Inheritance

	Project Documentation
	Business Object Classes
	BusinessDate
	BusinessDate Base Classes

	BusinessPeriod
	BusinessSchedule
	BusinessHolidays

	Convention Functions
	Day Count
	Business Day Adjustment

	Releases
	Release 0.6
	Release 0.5
	Release 0.4
	Release 0.3
	Release 0.2
	Release 0.1

	Indices and tables
	Python Module Index
	Index

