
Business API Ecosystem
Documentation

Release latest

January 31, 2017

Documentation

1 Index 3
1.1 Installation and Administration Guide . 3
1.2 User and Programmer Guide . 27
1.3 Plugins Guide . 100

i

ii

Business API Ecosystem Documentation, Release latest

This project is part of FIWARE and has been made in collaboration with the TM Forum.

The Business API Ecosystem is a joint component made up of the FIWARE Business Framework and a set of APIs
(and its reference implementations) provided by the TMForum. This component allows the monetization of different
kind of assets (both digital and physical) during the whole service life cycle, from offering creation to its charging,
accounting and revenue settlement and sharing. The Business API Ecosystem exposes its complete functionality
through TMForum standard APIs; concretely, it includes the catalog management, ordering management, inventory
management, usage management, billing, customer, and party APIs.

The Business API Ecosystem is not a single software repository, but it is composed of different projects which work
coordinatelly to provide the complete functionality.

Concretely, the Business API Ecosystem is made of the following components:

• Reference implementations of TM Forum APIs: Reference implementation of the catalog management, ordering
management, inventory management, usage management, billing, customer, and party APIs.

• Business Ecosystem Charging Backend: Is the component in charge of processing the different pricing models,
the accounting information, and the revenue sharing reports. With this information, the Business Ecosystem
Charging Backend is able to calculate amounts to be charged, charge customers, and pay sellers.

• Business Ecosystem RSS: Is in charge of distributing the revenues originated by the usage of a given service
among the involved stakeholders. In particular, it focuses on distributing part of the revenue generated by a
service between the Business API Ecosystem instance provider and the Service Provider(s) responsible for the
service. With the term “service” we refer to both final applications and backend application services (typically
exposed through an API). Note that, in the case of composite services, more than one service provider may have
to receive a share of the revenues.

• Business Ecosystem Logic Proxy: Acts as the endpoint for accessing the Business API Ecosystem. On the one
hand, it orchestrates the APIs validating user requests, including authentication, authorization, and the content
of the request from a business logic point of view. On the other hand, it serves a web portal that can be used to
interact with the system.

Documentation 1

https://www.fiware.org
https://www.tmforum.org

Business API Ecosystem Documentation, Release latest

2 Documentation

CHAPTER 1

Index

Installation and Administration Guide The guide for maintainers that explains how to install it.

User and Programmer Guide The guide for users and programmers that explains how to use it.

Plugins Guide The guide for admins that cover the available plugins

1.1 Installation and Administration Guide

1.1.1 Introduction

This installation and administration guide covers the Business API Ecosystem version 5.4.1, corresponding to FI-
WARE release 5. Any feedback on this document is highly welcomed, including bugs, typos or things you think
should be included but aren’t. Please send them to the “Contact Person” email that appears in the Catalogue page for
this GEi. Or create an issue at GitHub Issues

The current version of the software has been tested under Ubuntu 14.04, Ubuntu 15.10, Ubuntu 16.04, Debian 7,
Debian 8, and CentOS 7. THESE ARE THEREFORE CONSIDERED AS THE SUPPORTED OPERATING SYS-
TEMS.

1.1.2 Installation

Requirements

As described in the GEri overview, the Business API Ecosystem is not a single software, but a set of projects that work
together for proving business capabilities. In this regard, this section contains the basic dependencies of the different
components that made up the Business API Ecosystem.

Note: These dependencies are not mean to be installed manually in this step, as they will be installed throughout the
documentation

TM Forum APIs and RSS requirements

• Java 8

• Glassfish 4.1

3

https://catalogue.fiware.org/enablers/business-api-ecosystem-biz-ecosystem-ri
https://catalogue.fiware.org/enablers/business-api-ecosystem-biz-ecosystem-ri
https://github.com/FIWARE-TMForum/Business-API-Ecosystem/issues/new

Business API Ecosystem Documentation, Release latest

• MySQL 5.5

Charging Backend requirements

• Python 2.7

• MongoDB

• wkhtmltopdf

Logic Proxy requirements

• NodeJS 4.5.0+ (Including NPM)

Installing basic dependencies

Basic dependencies such as Java 8, Glassfish, MySQL, Python, etc. Can be installed using the package management
tools provided by your operating system. However, in order to easy the installation process some scripts have been
provided.

Note: The installation script may override some of the packages already installed in the system. so if you have
software with common dependencies you may want to manually resolve them.

Installing basic dependencies using the script

In order to automate the installation of the basic dependencies, the script setup_env.sh has been provided. This script,
located in the root directory, installs all the needed packages for Ubuntu, Debian, and CentOS systems.

Additionally, this script creates a directory /opt/biz-ecosystem where Glassfish 4.1 and Node 6.9.1 are downloaded,
creates a /etc/default/rss directory used later for properties files, and sets up the PATH environment in your .bashrc
file.

Note: The installation script changes the owner of all its created directories to your current user

To execute the script, run the following command from the root directory of the project

$./setup_env.sh

Note: Do not execute the script using sudo, for those tasks which require root privileges the script will prompt you to
provide your sudo password

During the execution of the script you will be prompted some times in order to accept Oracle Java 8 terms and
conditions and to provide MySQL root password.

4 Chapter 1. Index

Business API Ecosystem Documentation, Release latest

Installing basic dependencies manually

Following, you can find how to install the basic dependencies without using the script. Be aware that some commands
require to be executed as root.

APIs dependencies Java 8 Debian/Ubuntu

To install Java 8 in a Debian or Ubuntu system, it is needed to include the webupd8team repository. In an Ubuntu
system this can be done directly with the following command:

$ sudo add-apt-repository ppa:webupd8team/java

In the case you have a Debian system the following commands have to be executed

$ sudo echo "deb http://ppa.launchpad.net/webupd8team/java/ubuntu trusty main" | tee /etc/apt/sources.list.d/webupd8team-java.list
$ sudo echo "deb-src http://ppa.launchpad.net/webupd8team/java/ubuntu trusty main" | tee -a /etc/apt/sources.list.d/webupd8team-java.list
$ sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv-keys EEA14886

Then Java 8 can be installed using the following commands:

$ sudo apt-get update
$ sudo apt-get install -y oracle-java8-installer
$ sudo apt-get install -y oracle-java8-set-default

Java 8 CentOS 7

For a CentOS 7 system, the installation of Java 8 requires downloading the package from the official site

$ wget --no-cookies --no-check-certificate --header "Cookie: gpw_e24=http%3A%2F%2Fwww.oracle.com%2F; oraclelicense=accept-securebackup-cookie" "http://download.oracle.com/otn-pub/java/jdk/8u102-b14/jdk-8u102-linux-x64.tar.gz"
$ tar xzf jdk-8u102-linux-x64.tar.gz

Then Java can be installed using alternatives

$ sudo alternatives --install /usr/bin/java java /opt/biz-ecosystem/jdk1.8.0_102/bin/java 2
$ sudo alternatives --config java

$ sudo alternatives --install /usr/bin/jar jar /opt/biz-ecosystem/jdk1.8.0_102/bin/jar 2

1.1. Installation and Administration Guide 5

Business API Ecosystem Documentation, Release latest

$ sudo alternatives --install /usr/bin/javac javac /opt/biz-ecosystem/jdk1.8.0_102/bin/javac 2
$ sudo alternatives --set jar /opt/biz-ecosystem/jdk1.8.0_102/bin/jar
$ sudo alternatives --set javac /opt/biz-ecosystem/jdk1.8.0_102/bin/javac

MySQL and Maven Debian/Ubuntu Once Java has been installed, the next step is installing MySQL and Maven

$ sudo apt-get install -y mysql-server mysql-client
$ sudo apt-get install -y maven

MySQL and Maven CentOS 7

For installing MySQL in CentOS, it is required to include the related repository before installing it

$ wget http://repo.mysql.com/mysql-community-release-el7-5.noarch.rpm
$ sudo rpm -ivh mysql-community-release-el7-5.noarch.rpm
$ sudo yum update

$ sudo yum install -y mysql-community-server

Then, for installing Maven

$ sudo wget http://repos.fedorapeople.org/repos/dchen/apache-maven/epel-apache-maven.repo -O /etc/yum.repos.d/epel-apache-maven.repo
$ sudo sed -i s/\$releasever/6/g /etc/yum.repos.d/epel-apache-maven.repo
$ sudo yum install -y apache-maven

Glassfish The next step is downloading and extracting Glassfish

$ wget http://download.java.net/glassfish/4.1/release/glassfish-4.1.zip
$ unzip glassfish-4.1.zip

Finally, it is required to download the MySQL connector for Glassfish and include it within the Glassfish lib directory

$ wget http://dev.mysql.com/get/Downloads/Connector-J/mysql-connector-java-5.1.39.tar.gz

$ gunzip mysql-connector-java-5.1.39.tar.gz
$ tar -xvf mysql-connector-java-5.1.39.tar

$ cp mysql-connector-java-5.1.39/mysql-connector-java-5.1.39-bin.jar glassfish4/glassfish/lib

Charging Backend dependencies Python 2.7 Debian/Ubuntu

To install Python 2.7 and Pip in a Debian/Ubuntu distribution, execute the following command

$ sudo apt-get install -y python python-pip

Python 2.7 CentOS

Python 2.7 is included by default in CentOS 7. To install Pip it is required to include EPEL repository. All this stuff
can be done executing the following commands

$ sudo rpm -iUvh http://dl.fedoraproject.org/pub/epel/7/x86_64/e/epel-release-7-5.noarch.rpm
$ sudo yum -y update
$ sudo yum install -y python-pip

MongoDB Debian/Ubuntu

To install MongoDB in a Debian/Ubuntu distribution, execute the following command

$ sudo apt-get install -y mongodb

6 Chapter 1. Index

Business API Ecosystem Documentation, Release latest

MongoDB CentOS 7

To install MongoDB in CentOS it is needed to include its repository first. MongoDB can be installed executing the
following commands

$ sudo echo "[mongodb]
name=MongoDB Repository
baseurl=http://downloads-distro.mongodb.org/repo/redhat/os/x86_64/
gpgcheck=0
enabled=1" > /etc/yum.repos.d/mongodb.repo

$ sudo yum install -y mongodb-org

Wkhtmltopdf Debian/Ubuntu

In Debian and Ubuntu Wkhtmltopdf is included in a package, so it can be directly installed with the following com-
mand

$ sudo apt-get install -y wkhtmltopdf

Wkhtmltopdf CentOS 7

In CentOS the Wkhtmltopdf RPM package has to be downloaded for installing it

$ wget http://download.gna.org/wkhtmltopdf/0.12/0.12.1/wkhtmltox-0.12.1_linux-centos7-amd64.rpm
$ sudo rpm -ivh wkhtmltox-0.12.1_linux-centos7-amd64.rpm

Logic Proxy Dependencies For installing Node and NPM it is needed to download the binaries from the official site
and uncompress them

$ wget https://nodejs.org/dist/v6.9.1/node-v6.9.1-linux-x64.tar.xz
$ tar -xvf node-v6.9.1-linux-x64.tar.xz

Installing the Business API Ecosystem

As stated previously, the Business API Ecosystem is composed of different systems that need to be installed separately.
In order to easy this process, it has been created an script install.py which can be used to automate the installation.

Installing the Business API Ecosystem using the script

The script install.py is located at the root of the Business API Ecosystem project. This script provides functionality to
automate the installation of the software. Concretely, it downloads all the APIs and components, compiles and deploys
the APIs, and installs python and node libraries.

This script depends on Python3 to work. If you have used the setup_env.sh script, Python 3 is already installed.
Otherwise, you can install Python 3 using the following commands:

Debian/Ubuntu

$ sudo apt-get install -y python3
$ sudo apt-get install -y python3-pip

CentOS 7

$ sudo yum -y install scl-utils
$ sudo rpm -Uvh https://www.softwarecollections.org/en/scls/rhscl/python33/epel-7-x86_64/download/rhscl-python33-epel-7-x86_64.noarch.rpm
$ sudo yum -y install python33

1.1. Installation and Administration Guide 7

Business API Ecosystem Documentation, Release latest

Additionally, install.py specs the binaries of Glassfish and Node to be included in the PATH, and need to be accessible
by the user using the script. This can be done with the following commands (Note that the commands are supposing
both or them are installed at /opt/biz-ecosystem)

$ export PATH=$PATH:/opt/biz-ecosystem/glassfish4/glassfish/bin
$ export PATH=$PATH:/opt/biz-ecosystem/node-6.9.1-linux-x64/bin

$ sudo chown -R <your_user>:<your_user> /opt/biz-ecosystem

If you have used setup_env.sh*, the Glassfish installation directory already belongs to your user. In addition, the export
PATH command has been included in your bashrc, so to have Node and Glassfish in the PATH execute the following
command:

$ source ~/.bashrc

Moreover, install.py requires Glassfish, MySQL and MongoDB to be up and running.

Debian/Ubuntu

$ asadmin start-domain
$ sudo service mysql restart
$ sudo service mongodb restart

CentOS 7

$ asadmin start-domain
$ sudo systemctl start mysqld
$ sudo systemctl start mongod

Finally, during the deployment of the RSS API, the script saves the properties file in the default RSS properties
directory. If you have used setup_env.sh this directory already exists. Otherwise, you have to manually create the
directory /etc/default/rss, being required to have root privileges to create it. Moreover, this directory must be accessible
by the user executing the script. To do that

$ sudo mkdir /etc/default/rss
$ sudo chown <your_user>:<your_user> /etc/default/rss

The script install.py creates the different databases as well as the connection pools and resources. In this regard, after
the execution of the script all the APIs will be already configured. You can specify the database settings by modi-
fying the script and updating DBUSER, DBPWD, DBHOST, and DBPORT, which by default contains the following
configuration.

DBUSER = "root"
DBPWD = "toor"
DBHOST = "localhost"
DBPORT = 3306

To make a complete installation of the Business API Ecosystem, execute the following command

$./install.py all

In addition to the all option, install.py also provides several options that allows to execute parts of the installation
process, so you can have more control over it. Concretely, the script provides the following options:

• clone: Downloads from GitHub the different components of the Business API Ecosystem

• maven: Compiles the downloaded APIs using Maven

• tables: Creates the required databases in MySQL

• persistence: Builds persistence.xml files of the different APIs

8 Chapter 1. Index

Business API Ecosystem Documentation, Release latest

• pools: Creates database pools in Glassfish

• resources: Creates database resources in Glassfish

• redeploy: Deploys APIs and RSS war files in Glassfish

• proxy: Installs proxy Node libs

• charging: Installs charging Python libs

Installing the Business API Ecosystem Manually

Installing TM Forum APIs The different reference implementations of the TM Forum APIs used in the Business
API Ecosystem are available in GitHub:

• Catalog Management API

• Product Ordering Management API

• Product Inventory Management API

• Party Management API

• Customer Management API

• Billing Management API

• Usage Management API

The installation for all of them is similar. The first step is cloning the repository and moving to the correct release

$ git clone https://github.com/FIWARE-TMForum/DSPRODUCTCATALOG2.git
$ cd DSPRODUCTCATALOG2
$ git checkout v5.4.1

Once the software has been downloaded, it is needed to create the connection to the database. To do that, the first step
is editing the src/main/resources/META-INF/persistence.xml to have something similar to the following:

<?xml version="1.0" encoding="UTF-8"?>
<persistence version="2.1" xmlns="http://xmlns.jcp.org/xml/ns/persistence" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/persistence http://xmlns.jcp.org/xml/ns/persistence/persistence_2_1.xsd">

<persistence-unit name="DSProductCatalogPU" transaction-type="JTA">
<jta-data-source>jdbc/pcatv2</jta-data-source>
<exclude-unlisted-classes>false</exclude-unlisted-classes>
<properties>

<property name="javax.persistence.schema-generation.database.action" value="drop-and-create"/>
</properties>

</persistence-unit>
</persistence>

Note that you should provide in the tag jta-data-source the name you want for your database connection resource,
taking into account that it must be unique for each API.

The next step is creating the database for you API.

$ mysql-u <user> -p<passwd> "CREATE DATABASE IF NOT EXISTS <database>"

Note: You have to provide your own credentials and the selected database name to the previous command.

Once that the database has been created, the next step is creating the connection pool in Glassfish. To do that, you can
use the following command:

1.1. Installation and Administration Guide 9

https://github.com/FIWARE-TMForum/DSPRODUCTCATALOG2
https://github.com/FIWARE-TMForum/DSPRODUCTORDERING
https://github.com/FIWARE-TMForum/DSPRODUCTINVENTORY
https://github.com/FIWARE-TMForum/DSPARTYMANAGEMENT
https://github.com/FIWARE-TMForum/DSCUSTOMER
https://github.com/FIWARE-TMForum/DSBILLINGMANAGEMENT
https://github.com/FIWARE-TMForum/DSUSAGEMANAGEMENT

Business API Ecosystem Documentation, Release latest

$ asadmin create-jdbc-connection-pool --restype java.sql.Driver --driverclassname com.mysql.jdbc.Driver --property user=<user>:password=<passwd>:URL=jdbc:mysql://<host>:<port>/<database> <poolname>

Note: You have to provide you own database credentials, the database host, the database port, the database name of
the one created previously, and a name for your pool

The last step for creating the database connection is creating the connection resource. To do that, execute the following
command:

$ asadmin create-jdbc-resource --connectionpoolid <poolname> <jndiname>

Note: You have to provide the name of the pool you have previously created and a name for your resource, which has
to be the same as the included in the jta-data-source tag of the persistence.xml file of the API.

When the database connection has been created, the next step is compiling the API sources with Maven

$ mvn install

Finally, the last step is deploying the generated war file in Glassfish

$ asadmin deploy --contextroot <root> --name <root> target/<WAR.war>

Note: You have to provide the wanted context root for the API, a name for it, and the path to the war file

Installing the RSS The RSS sources can be found in GitHub

The first step for installing the RSS component is downloading it and moving to the correct release

$ git clone https://github.com/FIWARE-TMForum/business-ecosystem-rss.git
$ cd business-ecosystem-rss
$ git checkout v5.4.1

Then, the next step is coping, database.properties and oauth.properties files to its default location at /etc/default/rss

$ sudo mkdir /etc/default/rss
$ sudo chown <your_user>:<your_user> /etc/default/rss
$ cp properties/database.properties /etc/default/rss/database.properties
$ cp properties/oauth.properties /etc/default/rss/ouath.properties

Note: You have to include your user when changing rss directory owner

Once the properties files have been copied, they should be edited in order to provide the correct configuration params:

database.properties

database.url=jdbc:mysql://localhost:3306/RSS
database.username=root
database.password=root
database.driverClassName=com.mysql.jdbc.Driver

oauth.properties

10 Chapter 1. Index

https://github.com/FIWARE-TMForum/business-ecosystem-rss

Business API Ecosystem Documentation, Release latest

config.grantedRole=Provider
config.sellerRole=Seller
config.aggregatorRole=aggregator

Note: The different params included in the configuration file are explained in detail in the Configuration section

Once the properties files have been edited, the next step is compiling the sources with Maven

$ mvn install

Finally, the last step is deploying the generated war file in Glassfish

$ asadmin deploy --contextroot DSRevenueSharing --name DSRevenueSharing fiware-rss/target/DSRevenueSharing.war

Installing the Charging Backend The Charging Backend sources can be found in GitHub

The first step for installing the charging backend component is downloading it and moving to the correct release

$ git clone https://github.com/FIWARE-TMForum/business-ecosystem-charging-backend.git
$ cd business-ecosystem-charging-backend
$ git checkout v5.4.1

Once the code has been downloaded, it is recommended to create a virtualenv for installing python dependencies (This
is not mandatory).

$ virtualenv virtenv
$ source virtenv/bin/activate

To install python libs, execute the python-dep-install.sh script

$./python-dep-install.sh

Note: If you have not created and activated a virtualenv you will need to execute the script using sudo

Installing the Logic Proxy The Logic Proxy sources can be found in‘GitHub <https://github.com/FIWARE-
TMForum/business-ecosystem-logic-proxy>‘__

The first step for installing the logic proxy component is downloading it and moving to the correct release

$ git clone https://github.com/FIWARE-TMForum/business-ecosystem-logic-proxy.git
$ cd business-ecosystem-logic-proxy
$ git checkout v5.4.1

Once the code has been downloaded, Node dependencies can be installed with npm as follows

$ npm install

1.1.3 Configuration

At this step, the different components of the Business API Ecosystem are installed. In the case of the TMForum
APIs and the RSS, this installation process has already required to configure their database connection before their
deployment, so they are already configured. Nevertheless, this section contains an explanation of the function of the
different settings of the RSS properties files.

1.1. Installation and Administration Guide 11

https://github.com/FIWARE-TMForum/business-ecosystem-charging-backend
https://github.com/FIWARE-TMForum/business-ecosystem-logic-proxy
https://github.com/FIWARE-TMForum/business-ecosystem-logic-proxy

Business API Ecosystem Documentation, Release latest

Configuring the RSS

The RSS has its settings included in two files located at /etc/default/rss. The file database.properties contains by
default the following fields:

database.url=jdbc:mysql://localhost:3306/RSS
database.username=root
database.password=root
database.driverClassName=com.mysql.jdbc.Driver

This file contains the configuration required in order to connect to the database.

• database.url: URL used to connect to the database, this URL includes the host and port of the database as well
as the concrete database to be used

• database.username: User to be used to connect to the database

• database.password: Password of the database user

• database.driverClassName: Driver class of the database. By default MySQL

The file oauth.properties contains by default the following fields (It is recommended not to modify them)

config.grantedRole=Provider
config.sellerRole=Seller
config.aggregatorRole=aggregator

This file contains the name of the roles (registered in the idm) that are going to be used by the RSS.

• config.grantedRole: Role in the IDM of the users with admin privileges

• config.sellerRole: Role in the IDM of the users with seller privileges

• config.aggregatorRole: Role of the users who are admins of an store instance. In the context of the Business
API Ecosystem there is only a single store instance, so you can safely ignore this flag

Configuring the Charging Backend

The Charging Backend creates some objects and connections in the different APIs while working, so the first step is
configuring the different URLs of the Business API Ecosystem components by modifying the file services_settings.py,
which by default contains the following content:

CATALOG = 'http://localhost:8080/DSProductCatalog'
INVENTORY = 'http://localhost:8080/DSProductInventory'
ORDERING = 'http://localhost:8080/DSProductOrdering'
BILLING = 'http://localhost:8080/DSBillingManagement'
RSS = 'http://localhost:8080/DSRevenueSharing'
USAGE = 'http://localhost:8080/DSUsageManagement'
AUTHORIZE_SERVICE = 'http://localhost:8004/authorizeService/apiKeys'

This settings points to the different APIs accessed by the charging backend. In particular:

• CATALOG: URL of the catalog API including its path

• INVENTORY: URL of the inventory API including its path

• ORDERING: URL of the ordering API including its path

• BILLING: URL of the billing API including its path

• RSS: URL of the RSS including its path

• USAGE: URL of the Usage API including its path

12 Chapter 1. Index

Business API Ecosystem Documentation, Release latest

• AUTHORIZE_SERVICE: Complete URL of the usage authorization service. This service is provided by the
logic proxy, and is used to generate API Keys to be used by accounting systems when providing usage informa-
tion.

Once the services have been configured, the next step is configuring the database. In this case, the charging backend
uses MongoDB, and its connection can be configured modifying the DATABASES setting of the settings.py file.

DATABASES = {
'default': {

'ENGINE': 'django_mongodb_engine',
'NAME': 'wstore_db',
'USER': '',
'PASSWORD': '',
'HOST': '',
'PORT': '',
'TEST_NAME': 'test_database',

}
}

This setting contains the following fields:

• ENGINE: Database engine, must be fixed to django_mongodb_engine

• NAME: Name of the database to be used

• USER: User of the database. If empty the software creates a non authenticated connection

• PASSWORD: Database user password. If empty the software creates a non authenticated connection

• HOST: Host of the database. If empty it uses the default localhost host

• PORT: Port of the database. If empty it uses the default 27017 port

• TEST_NAME: Name of the database to be used when running the tests

Once the database connection has been configured, the next step is configuring the name of the IdM roles to be used
by updating settings.py

ADMIN_ROLE = 'provider'
PROVIDER_ROLE = 'seller'
CUSTOMER_ROLE = 'customer'

This settings contain the following values:

• ADMIN_ROLE: IDM role of the system admin

• PROVIDER_ROLE: IDM role of the users with seller privileges

• CUSTOMER_ROLE: IDM role of the users with customer privileges

The Charging Backend component is able to send email notifications to the users when they are charged or receive a
payment. In this way, it is possible to provide email configuration in the settings.py file by modifying the following
fields:

WSTOREMAILUSER = 'email_user'
WSTOREMAIL = 'wstore_email'
WSTOREMAILPASS = 'wstore_email_passwd'
SMTPSERVER = 'wstore_smtp_server'
SMTPPORT = 587

This settings contain the following values: * WSTOREMAILUSER: Username used for authenticating in the email
server * WSTOREMAIL: Email to be used as the sender of the notifications * WSTOREMAILPASS: Password of the
user for authenticating in the email server * SMTPSERVER: Email server host * SMTPPORT: Email server port

1.1. Installation and Administration Guide 13

Business API Ecosystem Documentation, Release latest

Note: The email configuration in optional. However, the field WSTOREMAIL must be provided since it is used
internally for RSS configuration

Additionally, the Charging Backend is the component that charges customers and pays providers. For this purpose it
uses PayPal. For configuring paypal, the first step is setting PAYMENT_METHOD to paypal in the settings.py file

PAYMENT_METHOD = 'paypal'

Then, it is required to provide PayPal application credentials by updating the file
src/wstore/charging_engine/payment_client/paypal_client.py

PAYPAL_CLIENT_ID = ''
PAYPAL_CLIENT_SECRET = ''
MODE = 'sandbox' # sandbox or live

This settings contain the following values:

• PAYPAL_CLIENT_ID: Id of the application provided by PayPal

• PAYPAL_CLIENT_SECRET: Secret of the application provided by PayPal

• MODE: Mode of the connection. It can be sandbox if using the PayPal sandbox for testing the system. Or live
if using the real PayPal APIs

Moreover, the Charging Backend is the component that activates the purchased services. In this regard, the Charging
Backend has the possibility of signing its acquisition notifications with a certificate, so the external system being
offered can validate that is the Charging Backend the one making the request. To use this functionality it is needed to
configure the certificate and the private Key to be used by providing its path in the following settings of the settings.py
file

NOTIF_CERT_FILE = None
NOTIF_CERT_KEY_FILE = None

Finally, the last step is creating the context of the Charging Backend by creating two sites. First, create the external site
by executing the following command. Note that you have to provide the real URL where the proxy will be running.

$./manage.py createsite external http://<proxy_path>:<proxy_port>/

Then, you have to create the local site by providing the real URL where the Charging Backend will be running as
follows

$./manage.py createsite local http://localhost:<charging_port>/

The Charging Backend uses a Cron task to check the status of recurring and usage subscriptions, and for paying sellers.
The periodicity of this tasks can be configured using the CRONJOBS setting of settings.py using the standard Cron
format

CRONJOBS = [
('0 5 * * *', 'django.core.management.call_command', ['pending_charges_daemon']),
('0 6 * * *', 'django.core.management.call_command', ['resend_cdrs'])

]

Once the Cron task has been configured, it is necessary to include it in the Cron tasks using the command:

$./manage.py crontab add

It is also possible to show current jobs or remove jobs using the commands:

14 Chapter 1. Index

Business API Ecosystem Documentation, Release latest

$./manage.py crontab show

$./manage.py crontab remove

Configure Apache for running the Charging Backend

The Charging Backend is a Django App that can be deployed in different ways. In this case, this installation guide
covers two different mechanisms: using the Django runserver command (as seen in Running the Charging Backend
section) or deploying it using an Apache server. This section explains how to configure Apache and the Charging
Backend to do the later.

The first step is installing Apache and mod-wsgi. In Ubuntu/Debian:

$ sudo apt-get install apache2 libapache2-mod-wsgi

Or in CentOS:

$ sudo yum install httpd mod_wsgi

The next step is populating the file src/wsgi.py provided with the Charging Backend

import os
import sys

path = 'charging_path/src'
if path not in sys.path:

sys.path.insert(0, path)

os.environ['DJANGO_SETTINGS_MODULE'] = 'settings'

import django.core.handlers.wsgi
application = django.core.handlers.wsgi.WSGIHandler()

If you are using a virtualenv, then you will need to include its activation in your wsgi.py file, so it should look similar
to the following:

import os
import sys
import site

site.addsitedir('virtualenv_path/local/lib/python2.7/site-packages')
path = 'charging_path/src'
if path not in sys.path:

sys.path.insert(0, path)

os.environ['DJANGO_SETTINGS_MODULE'] = 'settings'

Activate your virtual env
activate_env=os.path.expanduser('virtualenv_path/bin/activate_this.py')
execfile(activate_env, dict(__file__=activate_env))

import django.core.handlers.wsgi
application = django.core.handlers.wsgi.WSGIHandler()

Note: Pay special attention to charging_path and virtualenv_path which have to point to the Charging Backend and
the virtualenv paths respectively.

1.1. Installation and Administration Guide 15

Business API Ecosystem Documentation, Release latest

Once WSGI has been configured in the Charging Backend, the next step is creating a vitualhost in Apache. To do that,
you can create a new site configuration file in the Apache related directory (located in /etc/apache2/sites-available/ in
an Ubuntu/Debian system or in /etc/httpd/conf.d in a CentOS system) and populate it with the following content:

<VirtualHost *:8006>
WSGIDaemonProcess char_process
WSGIScriptAlias / charging_path/src/wsgi.py
WSGIProcessGroup char_process
WSGIPassAuthorization On

WSGIApplicationGroup %{GLOBAL}
</VirtualHost>

Note: Pay special attention to charging_path which have to point to the Charging Backend path.

Depending on the version of Apache you are using, you may need to explicitly allow the access to the directory where
the Charging Backend is deployed in the configuration of the virtualhost. To do that, add the following lines to your
virtualhost:

Apache version < 2.4

<Directory charging_path/src>
Order deny,allow
Allow from all

</Directory>

Apache version 2.4+

<Directory charging_path/src>
Require all granted

</Directory>

Once you have included the new virtualhost configuration, the next step is configuring Apache to listen in the selected
port (8006 in the example). To do that, edit /etc/apache2/ports.conf in Ubuntu/Debian or /etc/httpd/conf/httpd.conf in
CentOS and include the following line:

Listen 8006

Then, in Ubuntu/Debian systems, enable the site by linking the configuration file to the sites-enabled directory:

ln -s ../sites-available/001-charging.conf ./sites-enabled/001-charging.conf

Once you have the site enabled, restart Apache. In Ubuntu/Debian

$ sudo service apache2 restart

Or in CentOS

$ sudo apachectl restart

Note: Ensure that the directory where the Changing Backend is installed can be accessed by the Apache user (www-
data in Ubuntu/Debian, and apache in CentOS)

Configuring the Logic Proxy

The first step for configuring the proxy is creating the configuration file by coping config.js.template to config.js

16 Chapter 1. Index

Business API Ecosystem Documentation, Release latest

$ cp config.js.template config.js

The first setting to be configured is the port where the proxy is going to run, this setting is located in config.js

config.port = 80;

If you want to run the proxy in HTTPS you can update config.https setting

config.https = {
enabled: false,
certFile: 'cert/cert.crt',
keyFile: 'cert/key.key',
caFile: 'cert/ca.crt',
port: 443

};

In this case you have to set enabled to true, and provide the paths to the certificate (certFile), to the private key
(keyFile), and to the CA certificate (caFile).

Then, it is possible to modify some of the URLs of the system. Concretely, it is possible to provide a prefix for the
API, a prefix for the portal, and modifying the login and logout URLS

config.proxyPrefix = '';
config.portalPrefix = '';
config.logInPath = '/login';
config.logOutPath = '/logOut';

Additionally, the proxy is the component that acts as the front end of the Business API Ecosystem, both providing a
web portal, and providing the endpoint for accessing to the different APIs. In this regard, the Proxy has to have the
OAUth2 configuration of the FIWARE IDM.

To provide OAUth2 configuration, an application has to be created in an instance of the FIWARE IdM (e.g
https://account.lab.fiware.org), providing the following information:

• URL: http|https://<proxy_host>:<proxy_port>

• Callback URL: http|https://<PROXY_HOST>:<PROXY_PORT>/auth/fiware/callback

• Create a role Seller

Once the application has been created in the IdM, it is possible to provide OAuth2 configuration by modifying the
following settings

config.oauth2 = {
'server': 'https://account.lab.fiware.org',
'clientID': '<client_id>',
'clientSecret': '<client_secret>',
'callbackURL': 'http://<proxy_host>:<proxy_port>/auth/fiware/callback',
'roles': {

'admin': 'provider',
'customer': 'customer',
'seller': 'seller'

}
};

In this settings, it is needed to include the IDM instance being used (server), the client id given by the IdM (clientID),
the client secret given by the IdM (clientSecret), and the callback URL configured in the IdM (callbackURL)

Moreover, the Proxy uses MongoDB for maintaining some info, such as the current shopping cart of a user. you can
configure the connection to MongoDB by updating the following setting:

1.1. Installation and Administration Guide 17

Business API Ecosystem Documentation, Release latest

config.mongoDb = {
server: 'localhost',
port: 27017,
user: '',
password: '',
db: 'belp'

};

In this setting you can configure the host (server), the port (port), the database user (user), the database user password
(password), and the database name (db).

As already stated, the Proxy is the component that acts as the endpoint for accessing the different APIs. In this way,
the proxy needs to know the URLs of them in order to redirect the different requests. This endpoints can be configured
using the following settings

config.endpoints = {
'catalog': {

'path': 'DSProductCatalog',
'host': 'localhost'
'port': '8080',
'appSsl': false

},
'ordering': {

'path': 'DSProductOrdering',
'host': 'localhost'
'port': '8080',
'appSsl': false

},

...

The setting config.endpoints contains the specific configuration of each of the APIs, including its path, its host, its
port, and whether the API is using SSL or not.

Note: The default configuration included in the config file is the one used by the installation script, so if you have
used the script for installing the Business API Ecosystem you do not need to modify these fields

Finally, there are two fields that allow to configure the behaviour of the system while running. On the one hand,
config.revenueModel allows to configure the default percentage that the Business API Ecosystem is going to retrieve
in all the transactions. On the other hand, config.usageChartURL allows to configure the URL of the chart to be used
to display product usage to customers in the web portal.

1.1.4 Final steps

The Business API Ecosystem, allows to upload some product attachments and assets to be sold. These assets are
uploaded by the Charging Backend that saves them in the file system, jointly with the generated PDF invoices.

In this regard, the directories src/medi*a, *src/media/bills, and src/media/assets must exist within the Charging Back-
end directory, and must be writable by the user executing the Charging Backend.

$ mkdir src/media
$ mkdir src/media/bills
$ mkdir src/media/assets
$ chown -R <your_user>:<your_user> src/media

18 Chapter 1. Index

Business API Ecosystem Documentation, Release latest

Additionally, the Business API Ecosystem uses indexes for efficiency and pagination. In this regards, the directory
indexes must exist within the Logic Proxy directory, and must be writable by the user executing it.

$ mkdir indexes
$ chown -R <your_user>:<your_user> indexes

You can populate at any time the indexes directory using the fill_indexes.js script provided with the Logic Proxy.

$ node fill_indexes.js

1.1.5 Running the Business API Ecosystem

Running the APIs and the RSS

Both the TM Forum APIs and the RSS are deployed in Glassfish; in this regard, the only step for running them is
starting Glassfish

$ asadmin start-domain

Running the Charging Backend

The Charging Backend creates some objects and connections on startup; in this way, the Glassfish APIs must be up an
running before starting it.

Using Django runserver

The Charging Backend can be started using the runserver command provided with Django as follows

$./manage.py runserver 127.0.0.1:<charging_port>

Or in background

$ nohup ./manage.py runserver 127.0.0.1:<charging_port> &

Note: If you have created a virtualenv when installing the backend or used the installation script, you will need to
activate the virtualenv before starting the Charging Backend

Using Apache

If you have deployed the charging backend in Apache, you can stat it with the following command in a Debian/Ubuntu
system

$ sudo service apache2 start

Or in a CentOS system

$ sudo apachectl start

Running the Logic Proxy

The Logic Proxy can be started using Node as follows

$ node server.js

1.1. Installation and Administration Guide 19

Business API Ecosystem Documentation, Release latest

Or if you want to start it in background:

$ nohup node server.js &

1.1.6 Installing Asset Plugins

The Business API Ecosystem is intended to support the monetization of different kind of digital assets. The different
kind of assets that may be wanted to be monetized will be heterogeneous and potentially very different between them.

Additionally, for each type of asset different validations and activation mechanisms will be required. For example, if
the asset is a CKAN dataset, it will be required to validate that the provider is the owner of the dataset. Moreover,
when a customer acquires the dataset, it will be required to notify CKAN that a new user has access to it.

The huge differences between the different types of assets that can be monetized in the Business API Ecosystem makes
impossible to include its validations and characteristics as part of the core software. For this reason, it has been created
a plugin based solution, where all the characteristics of an asset type are implemented in a plugin that can be loaded
in the Business API Ecosystem.

To include an asset plugin execute the following command in the Charging Backend:

$./manage.py loadplugin ckandataset.zip

It is possible to list the existing plugins with the following command:

$./manage.py listplugins

To remove an asset plugin, execute the following command providing the plugin id given by the listplugins command

$./manage.py removeplugin ckan-dataset

Note: For specific details on how to create a plugin and its internal structure, have a look at the Business API
Ecosystem Programmer Guide

At the time of writing, the following plugins are available:

• WireCloud Component: Allows the monetization of WireCloud components, including Widgets, operators, and
mashups

• Accountable Service : Allows the monetization of services protected by the Accounting Proxy, including Orion
Context Broker queries

• CKAN Dataset : Allows the monetization of CKAN datasets

1.1.7 Sanity check Procedures

The Sanity Check Procedures are the steps that a System Administrator will take to verify that an installation is ready
to be tested. This is therefore a preliminary set of tests to ensure that obvious or basic malfunctioning is fixed before
proceeding to unit tests, integration tests and user validation.

End to End Testing

Please note that the following information is required before starting with the process: * The host and port where the
Proxy is running * A valid IdM user with the Seller role

To Check if the Business API Ecosystem is running, follow the next steps:

20 Chapter 1. Index

https://github.com/FIWARE-TMForum/wstore-wirecloud-plugin
https://github.com/FIWARE-TMForum/wstore-orion-plugin
https://github.com/FIWARE-TMForum/Accounting-Proxy
https://github.com/FIWARE-TMForum/wstore-ckan-plugin

Business API Ecosystem Documentation, Release latest

1. Open a browser and enter to the Business API Ecosystem

2. Click on the Sign In Button

3. Provide your credentials in the IdM page

4. Go to the Revenue Sharing section

5. Ensure that the default RS Model has been created

1.1. Installation and Administration Guide 21

Business API Ecosystem Documentation, Release latest

6. Go to My Stock section

7. Click on New for creating a new catalog

8. Provide a name and a description and click on Next. Then click on Create

22 Chapter 1. Index

Business API Ecosystem Documentation, Release latest

1.1. Installation and Administration Guide 23

Business API Ecosystem Documentation, Release latest

9. Click on Launched, and then click on Update

10. Go to Home, and ensure the new catalog appears

24 Chapter 1. Index

Business API Ecosystem Documentation, Release latest

List of Running Processes

We need to check that Java for the Glassfish server (APIs and RSS), python (Charging Backend) and Node (Proxy)
are running, as well as MongoDB and MySQL databases. If we execute the following command:

ps -ewF | grep 'java\|mongodb\|mysql\|python\|node' | grep -v grep

It should show something similar to the following:

mongodb 1014 1 0 3458593 49996 0 sep08 ? 00:22:30 /usr/bin/mongod --config /etc/mongodb.conf
mysql 1055 1 0 598728 64884 2 sep08 ? 00:02:21 /usr/sbin/mysqld
francis+ 15932 27745 0 65187 39668 0 14:53 pts/24 00:00:08 python ./manage.py runserver 0.0.0.0:8006
francis+ 15939 15932 1 83472 38968 0 14:53 pts/24 00:00:21 /home/user/business-ecosystem-charging-backend/src/virtenv/bin/python ./manage.py runserver 0.0.0.0:8006
francis+ 16036 15949 0 330473 163556 0 14:54 pts/25 00:00:08 node server.js
root 1572 1 0 1142607 1314076 3 sep08 ? 00:37:40 /usr/lib/jvm/java-8-oracle/bin/java -cp /opt/biz-ecosystem/glassfish ...

Network interfaces Up & Open

To check the ports in use and listening, execute the command:

1.1. Installation and Administration Guide 25

Business API Ecosystem Documentation, Release latest

$ sudo netstat -nltp

The expected results must be something similar to the following:

Active Internet connections (only servers)
Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name
tcp 0 0 127.0.0.1:8006 0.0.0.0:* LISTEN 15939/python
tcp 0 0 127.0.0.1:27017 0.0.0.0:* LISTEN 1014/mongod
tcp 0 0 127.0.0.1:28017 0.0.0.0:* LISTEN 1014/mongod
tcp 0 0 127.0.0.1:3306 0.0.0.0:* LISTEN 1055/mysqld
tcp6 0 0 :::80 :::* LISTEN 16036/node
tcp6 0 0 :::8686 :::* LISTEN 1572/java
tcp6 0 0 :::4848 :::* LISTEN 1572/java
tcp6 0 0 :::8080 :::* LISTEN 1572/java
tcp6 0 0 :::8181 :::* LISTEN 1572/java

Databases

The last step in the sanity check, once we have identified the processes and ports, is to check that MySQL and Mon-
goDB databases are up and accepting queries. We can check that MySQL is working, with the following command:

$ mysql -u <user> -p<password>

You should see something similar to:

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 174
Server version: 5.5.47-0ubuntu0.14.04.1 (Ubuntu)

Copyright (c) 2000, 2015, Oracle and/or its affiliates. All rights reserved.

Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective
owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

mysql>

For MongoDB, execute the following command:

$ mongo <database> -u <user> -p <password>

You should see something similar to:

MongoDB shell version: 2.4.9
connecting to: <database>
>

1.1.8 Diagnosis Procedures

The Diagnosis Procedures are the first steps that a System Administrator will take to locate the source of an error in a
GE. Once the nature of the error is identified with these tests, the system admin will very often have to resort to more
concrete and specific testing to pinpoint the exact point of error and a possible solution. Such specific testing is out of
the scope of this section.

26 Chapter 1. Index

Business API Ecosystem Documentation, Release latest

Resource Availability

Memory use depends on the number of concurrent users as well as the free memory available and the hard disk. The
Business API Ecosystem requires a minimum of 1024 MB of available RAM memory, but 2048 MB of free memory
are recomended. Moreover, the Business API Ecosystem requires at least 15 GB of hard disk space.

Remote Service Access

N/A

Resource Consumption

Resource consumption strongly depends on the load, especially on the number of concurrent users logged in.

• Glassfish main memory consumption should be between 500 MB and 2048 MB

• MongoDB main memory consumption should be between 30 MB and 500 MB

• Pyhton main memory consumption should be between 30 MB and 200 MB

• Node main memory consumption should be between 30 MB and 200 MB

• MySQL main memory consumption should be between 30 MB and 500 MB

I/O Flows

The only expected I/O flow is of type HTTP, on port defined in the Logic Proxy configuration file

1.2 User and Programmer Guide

1.2.1 Introduction

This user and programmer guide covers the Business API Ecosystem version 5.4.1, corresponding to FIWARE release
5. Any feedback on this document is highly welcomed, including bugs, typos or things you think should be included
but aren’t. Please send them to the “Contact Person” email that appears in the Catalogue page for this GEi. Or create
an issue at GitHub Issues

1.2.2 User Guide

This user guide contains a description of the different tasks that can be performed in the Business API Ecosystem
using its web interface. This section is organized so the actions related to a concrete user role are grouped together.

Profile Configuration

All the users of the system can configure their profile, so they can configure their personal information as well as their
billing addresses and contact mediums.

To configure the user profile, the first step is opening the user Settings located in the user menu.

1.2. User and Programmer Guide 27

https://catalogue.fiware.org/enablers/business-api-ecosystem-biz-ecosystem-ri
https://github.com/FIWARE-TMForum/Business-API-Ecosystem/issues/new

Business API Ecosystem Documentation, Release latest

In the displayed view, it can be seen that some information related to the account is already included (Username,
Email, Access token). This information is the one provided by the IdM after the login process.

To create the profile, fill in the required information and click on Update

Note: Only the First name and Last name fields are mandatory

Once you have created your profile, you can include contact mediums by going to the Contact mediums section.

28 Chapter 1. Index

Business API Ecosystem Documentation, Release latest

In the Contact Medium section, there are two different tabs. On the one hand, the Shipping addresses tab, where you
can register the shipping addresses you will be able to use when creating orders and purchasing products.

To create a shipping address, fill in the fields and click on Create

1.2. User and Programmer Guide 29

Business API Ecosystem Documentation, Release latest

Once created, you can edit the address by clicking on the Edit button of the specific address, and changing the wanted
fields.

30 Chapter 1. Index

Business API Ecosystem Documentation, Release latest

On the other hand, if you have the Seller role you can create Business Addresses, which can be used by your customers
in order to allow them to contact you.

In the Business Addresses tab you can create, different kind of contact mediums, including emails, phones, and ad-
dresses. To create a contact medium, fill in the fields and click on Create

1.2. User and Programmer Guide 31

Business API Ecosystem Documentation, Release latest

32 Chapter 1. Index

Business API Ecosystem Documentation, Release latest

You can Edit or Remove the contact medium by clicking on the corresponding button

1.2. User and Programmer Guide 33

Business API Ecosystem Documentation, Release latest

Admin

If the user of the Business API Ecosystem is an admin, he will be able to access the Administration section of the web
portal. This section is located in the user menu.

Manage Categories

Admin users are authorized to create the system categories that can be used by Sellers to categorize their catalogs,
products, and offerings.

To create categories, go to the Administration section, and click on New

Then, provide a name and an optional description for the category. Once the information has been included, click on
Next, and then on Create

34 Chapter 1. Index

Business API Ecosystem Documentation, Release latest

Categories in the Business API Ecosystem can be nested, so you can choose a parent category if you want while
creating.

1.2. User and Programmer Guide 35

Business API Ecosystem Documentation, Release latest

Existing categories can be updated. To edit a category click on the category name.

Then edit the corresponding fields and click on Update.

36 Chapter 1. Index

Business API Ecosystem Documentation, Release latest

Seller

If the user of the Business API Ecosystem has the Seller role, he will be able to monetize his products by creating,
catalogs, product specifications and product offerings. All these objects are managed accessing My Stock section.

Manage Catalogs

The Catalogs section is the one that is open by default when the seller accesses My Stock section. This section contains
the catalogs the seller has created.

Additionally, it is possible to filter the shown catalogs by status and the role you are playing by clicking on Filters,
choosing the required ones, and clicking on Close

1.2. User and Programmer Guide 37

Business API Ecosystem Documentation, Release latest

To create a new catalog click on the New button.

Then, provide a name and an optional description for the catalog. Once you have filled the fields, click on Next, and
then on Create

38 Chapter 1. Index

Business API Ecosystem Documentation, Release latest

Sellers can also update their catalogs. To do that, click on the name of the catalog to open the update view.

Then, update the fields you want to modify and click on Update. In this view, it is possible to change the Status of the
catalog. To start monetizing the catalog, and make it appear in the Home you have to change its status to Launched

1.2. User and Programmer Guide 39

Business API Ecosystem Documentation, Release latest

Manage Product Specifications

Product Specifications represent the product being offered, both digital and physical. To list your product specifications
go to My Stock section and click on Product Specifications

The different product specifications can be filtered by status or by if they are bundles or not. To filter products, click
on Filters, choose the appropriate ones, and click on Close

40 Chapter 1. Index

Business API Ecosystem Documentation, Release latest

Additionally, it is possible to switch between the grid view and the tabular view using the provided buttons.

1.2. User and Programmer Guide 41

Business API Ecosystem Documentation, Release latest

To create a new product specification click on New

In the displayed view, provide the general information of the product spec. including its name, version, and an optional
description. In addition, you have to include the product brand (Your brand), and an ID number which identifies the
product in your environment. Then, click on Next.

42 Chapter 1. Index

Business API Ecosystem Documentation, Release latest

In the next step, you can choose whether your product specification is a bundle or not. Product bundles are logical
containers that allow you to sell multiple products as if it were a single one. Once you have selected the right option
click on Next

If you have decided to create a bundle, you will be required to choose 2 or more product specs to be included in the
bundle.

1.2. User and Programmer Guide 43

Business API Ecosystem Documentation, Release latest

In the next step you can choose if your product is a digital product. If this is the case, you will be required to provide
the asset.

Note: If you are creating a product bundle, you will not be allowed to provide a digital asset since the offered ones
will be the included in the bundled products

For providing the asset, you have to choose between the available asset types, choose how to provide the asset between
the available options, provide the asset, and include its media type.

44 Chapter 1. Index

Business API Ecosystem Documentation, Release latest

The next step in the creation of a product is including its characteristics. For including a new characteristic click on
New Characteristic

In the form, include the name, the type (string or number) and an optional description. Then create the values of the
characteristic by filling the Create a value input and clicking on +.

1.2. User and Programmer Guide 45

Business API Ecosystem Documentation, Release latest

Once you have included all the characteristic info, save it clicking on Create

Once you have included all the required characteristics click on Next

46 Chapter 1. Index

Business API Ecosystem Documentation, Release latest

In the next step you can include a picture for your product spec. You have two options, providing an URL pointing to
the picture or directly uploading it. Once provided click Next

1.2. User and Programmer Guide 47

Business API Ecosystem Documentation, Release latest

Then, you can specify relationships of the product you are creating with other of your product specs.

In the last step, you can specify the terms and conditions that apply to your product and that must be accepted by those
customers who want to acquire it. To do that, include a title and a text for your terms and click on Next. Note that the
terms and conditions are not mandatory.

48 Chapter 1. Index

Business API Ecosystem Documentation, Release latest

Once done click on Next and then on Create

1.2. User and Programmer Guide 49

Business API Ecosystem Documentation, Release latest

Sellers can update their products. To do that click on the product specification to be updated.

50 Chapter 1. Index

Business API Ecosystem Documentation, Release latest

Update the required values and click on Update. Note that for start selling an offering that includes the product
specification you will be required to change its status to Launched

Manage Product Offerings

Product Offerings are the entities that contain the pricing models and revenue sharing info used to monetize a product
specification. To list your product offerings, go to My Stock section and click on Offerings

The existing product offerings can be filtered by status or by if they are a bundle or not. To filter offerings click on
Filters choose the appropriate ones and click on Close

1.2. User and Programmer Guide 51

Business API Ecosystem Documentation, Release latest

Additionally, it is possible to switch between the grid view and the tabular view by clicking on the specific button.

52 Chapter 1. Index

Business API Ecosystem Documentation, Release latest

To create a new offering click on New

In the displayed form, include the basic info of the offering. Including, its name, version, an optional description, and
an optional set of places where the offering is available. Once the information has been provided click on Next

1.2. User and Programmer Guide 53

Business API Ecosystem Documentation, Release latest

In the next step, you can choose whether your offering is a bundle or not. In this case, offering bundles are logical
containers that allow you to provide new pricing models when a set of offerings are acquired together. Once selected
click on Next

If you want to create a bundle you will be required to include at least two bundled offerings.

54 Chapter 1. Index

Business API Ecosystem Documentation, Release latest

In the next step you have to select the product specification that is going to be monetized in the current offering. Once
selected click on Next.

Note: If you are creating an offering bundle, you will not be allowed to include a product specification

Then, you have to select the catalog where you want to publish you offering and click on Next

1.2. User and Programmer Guide 55

Business API Ecosystem Documentation, Release latest

In the next step, you can optionally choose categories for you offering. Once done, click on Next

The next step is the more important for the offering. In the displayed form you can create different price plans for you
offering, which will be selectable by customers when acquiring the offering. If you do not include any price plan the
offering in considered free.

To include a new price plan the first step is clicking on New Price Plan

56 Chapter 1. Index

Business API Ecosystem Documentation, Release latest

For creating the price plan, you have to provide a name, and an optional description. Then, you have to choose the
type of price plan between the provided options.

The available types are: one time for payments that are made once when purchasing the offering, recurring for charges
that are made periodically (e.g a monthly payment), and usage for charges that are calculated applying the pricing
model to the actual usage made of the acquired service.

If you choose one time, you have to provide the price and the currency.

If you choose recurring, you have to provide the price, the currency, and the period between charges.

1.2. User and Programmer Guide 57

Business API Ecosystem Documentation, Release latest

If you choose usage, you have to provide the unit to be accounted, the currency, and the price per unit

You can update or remove plans by clicking on the corresponding action button.

58 Chapter 1. Index

Business API Ecosystem Documentation, Release latest

Once you have created you pricing model click on Next

In the last step of the process, you have to choose the revenue sharing model to be applied to you offering between the
available ones. Once done, click on Next and then on Create.

1.2. User and Programmer Guide 59

Business API Ecosystem Documentation, Release latest

Sellers can also edit their offerings. To do that click on the offering to be updated.

60 Chapter 1. Index

Business API Ecosystem Documentation, Release latest

In the displayed form, change the fields you want to edit and click on Update. Note that for start selling you offering
you have to update its status to Launched

1.2. User and Programmer Guide 61

Business API Ecosystem Documentation, Release latest

Manage Revenue Sharing Models

Revenue Sharing Models specify how the revenues generated by an offering or set of offerings must be distributed
between the owner of the Business API Ecosystem instance, the provider of the offering, and the related stakeholders
involved.

To manage RS models go to the Revenue Sharing section.

In this view, you can see the revenue sharing models you have available. By default it will appear the default RS model
which establishes the revenue distribution between you and the Business API Ecosystem instance owner.

You can create a new RS model clicking on New

62 Chapter 1. Index

Business API Ecosystem Documentation, Release latest

In the first step of the process you have to provide a product class, which identifies the RS model, and the percentage
you want to receive. The platform percentage is fixed and cannot be modified. Once provided click on Next

In the next step, you can optionally add more stakeholders to the RS model. To do that click on New Stakeholder

Then, select the Stakeholder between the available users, and provide its percentage. Finally, save it clicking on Create

1.2. User and Programmer Guide 63

Business API Ecosystem Documentation, Release latest

Note: The total percentage (provider + platform + stakeholders) must be equal to 100

Finally, click on Next and then on Create

64 Chapter 1. Index

Business API Ecosystem Documentation, Release latest

Sellers can also update their RS model. To do that click on the RS model to be updated.

Then, update the required fields (including the stakeholders if you want), and click on Save Changes

1.2. User and Programmer Guide 65

Business API Ecosystem Documentation, Release latest

Manage Transactions

Sellers can manage the transactions related to their products in order to know how much money their products are
generating, and to launch the revenue sharing process. To manage your seller transactions go to Revenue Sharing and
click on Transactions

In the displayed view, you can see the transactions pending to be paid to you and your stakeholders. It is also possible
to display the transactions in tabular way

66 Chapter 1. Index

Business API Ecosystem Documentation, Release latest

These transactions are aggregated and paid by the Business API Ecosystem periodically once a month. Nevertheless, if
you need to be paid, you can force the revenue sharing calculus and payment of your pending transactions by manually
generating a revenue sharing report.

To create a new report click on New Report

In the displayed modal, choose the product classes to be calculated and click on Create

1.2. User and Programmer Guide 67

Business API Ecosystem Documentation, Release latest

This process will aggregate all the transactions with the selected product classes, calculate the amount to be paid to
each stakeholder using the related revenue sharing model, generate a revenue sharing report, and pay the seller and the
stakeholders using their PayPal account.

You can see the generated reports clicking on RS Reports

Note: Sellers would need to have a PayPal account associated to the email of their FIWARE IdM account in order to
be paid for their products

68 Chapter 1. Index

Business API Ecosystem Documentation, Release latest

Manage Received Orders

Sellers can manage the orders they have received in order to see the chosen characteristics, read customer notes, or
process the order in case it has been acquired a physical product.

To view your received orders go to My inventory section, click on Product orders, and open the Received section.

You can view the details of a received order clicking on the order date

1.2. User and Programmer Guide 69

Business API Ecosystem Documentation, Release latest

In the displayed view you can review the details of the order and the details of your products acquired by the customer,
including the chosen characteristics.

Additionally, you can view the customer notes clicking on the Notes tab

You can also give a reply to customer notes including it in the text area and clicking on the send button

70 Chapter 1. Index

Business API Ecosystem Documentation, Release latest

If the acquired product is not digital, the order needs to be processed manually by the seller, in the sense that the seller
will have to send the acquired product to the customer. To deal with this situation, the order details view allows sellers
to manually change the status of the order.

To reject a received order you have to click in the Reject button located in the search or in the details view of the order.

1.2. User and Programmer Guide 71

Business API Ecosystem Documentation, Release latest

In case you accept the order and send the product to the customer, you have to put it as inProgress clicking on the Sent
button

72 Chapter 1. Index

Business API Ecosystem Documentation, Release latest

Finally, when the product arrives at its destination, you have to put it as Completed clicking on the Delivered button

1.2. User and Programmer Guide 73

Business API Ecosystem Documentation, Release latest

Customer

All of the users of the system have by default the Customer role. Customers are able to create orders for acquiring
offerings.

List Available Offerings

All the available (Launched) offerings appear in the Home page of the Business API Ecosystem, so they can be seen
by customers.

74 Chapter 1. Index

Business API Ecosystem Documentation, Release latest

Additionally, customers can select an specific catalog of offerings by clicking on it.

Moreover, customers can filter the shown offerings by category using the categories dropdown and choosing the wanted
one.

1.2. User and Programmer Guide 75

Business API Ecosystem Documentation, Release latest

Finally, customers can also filter bundle or single offerings using the Filters modal.

76 Chapter 1. Index

Business API Ecosystem Documentation, Release latest

Customers can open the details of an offering by clicking on it

In the displayed view, it is shown the general info about the offering and its included product, the characteristics of the
product, the price plans of the offering, and the existing relationships.

1.2. User and Programmer Guide 77

Business API Ecosystem Documentation, Release latest

78 Chapter 1. Index

Business API Ecosystem Documentation, Release latest

Create Order

Customers can create orders for acquiring offerings. The different offerings to be included in an order are managed
using the Shopping Cart.

To include an offering in the shopping cart there are two possibilities. You can click on the Add to Cart button located
in the offering panel when searching, or you can click on the Add to Cart button located in the offering details view.

1.2. User and Programmer Guide 79

Business API Ecosystem Documentation, Release latest

If the offering has configurable characteristics or multiple price plans, a modal will be displayed where you can select
your preferred options

80 Chapter 1. Index

Business API Ecosystem Documentation, Release latest

1.2. User and Programmer Guide 81

Business API Ecosystem Documentation, Release latest

Once you have selected your preferences for the offering click on Add to Cart

82 Chapter 1. Index

Business API Ecosystem Documentation, Release latest

Once you have included all the offerings you want to acquire to the shopping cart, you can create the order clicking
on Shopping Cart, and then on Checkout

1.2. User and Programmer Guide 83

Business API Ecosystem Documentation, Release latest

In the displayed form, you can include an optional name, an optional description, or an optional note. Notes can
include any additional information you want to provide to the sellers of the acquired offerings.

Then, you have to choose a priority for your order, and select one of your shipping addresses.

Once you have provided all the required information you can start the order creation clicking on Checkout

In the next step, you will be redirected to PayPal so you can pay for the offerings according to their pricing models

84 Chapter 1. Index

Business API Ecosystem Documentation, Release latest

Finally, you will see a confirmation page

Manage Acquired Products

The products you have acquired are located in My Inventory, there you can list them, check their status, or download
different assets.

1.2. User and Programmer Guide 85

Business API Ecosystem Documentation, Release latest

In this view, it is possible to filter you products by its status. To do that click on Filters, select the related statuses, and
click on Close

86 Chapter 1. Index

Business API Ecosystem Documentation, Release latest

It is also possible to switch between the grid and tabular views using the related buttons

You can manage a specific acquired product clicking on it

In the displayed view, you can see the general info of the acquired product, and the characteristics and pricing you
have selected.

1.2. User and Programmer Guide 87

Business API Ecosystem Documentation, Release latest

88 Chapter 1. Index

Business API Ecosystem Documentation, Release latest

Additionally, you can see your charges related to the product accessing to the Charges tab

In this tab, you will find detailed information of the different charges and you will be able to download the related
invoice clicking on Download Invoice

1.2. User and Programmer Guide 89

Business API Ecosystem Documentation, Release latest

Moreover, this product view allows to download the related assets when the product is digital. To do that click on
Download

images/user/inv12.png

In case the chosen pricing model defines a recurring payment or a usage payment, you will be able to renew your
product clicking on Renew. After clicking, you will be redirected to PayPal to pay the related amount.

90 Chapter 1. Index

Business API Ecosystem Documentation, Release latest

Note: If you product has expired and you do not renew it, it will be suspended, which means you will not have access
to the acquired service until you pay

If the acquired product has a usage based price plan, you will be able to see your current consumption accessing the
Usage tab

Manage Requested Orders

Customers can manage some aspects of the orders they have created. To see your requested orders, go to My Inventory
and click on Product Orders

1.2. User and Programmer Guide 91

Business API Ecosystem Documentation, Release latest

In the displayed view, you can see the orders you have created, which can be filtered by its status. To do that, click on
Filters, select the wanted statuses, and click on Close

92 Chapter 1. Index

Business API Ecosystem Documentation, Release latest

For those orders that include offerings of non digital products, you will be able to cancel them if the seller has not yet
started the process. To do that, locate the order to be canceled and click on Cancel

Moreover, you can review the details of the order. To do that click on the date of the order.

1.2. User and Programmer Guide 93

Business API Ecosystem Documentation, Release latest

In the displayed view, you can see all the details of the order, as well as the included products. In addition, you can
leave a note for the seller in the Notes tab

To leave a note, write it in the provided text area and click on the send button

94 Chapter 1. Index

Business API Ecosystem Documentation, Release latest

1.2.3 Programmer Guide

The Business API Ecosystem allows to offer any kind of digital asset. In this regard, some kind of digital assets may
require to perform specific actions and validations that require to know the format of the asset. To deal with this issue
the Business API Ecosystem allows to register types of assets by creating plugins. This section explains how these
plugins are created.

Additionally, the Business API Ecosystem exposes an API that can be used by developers in order to integrate the
monetization features offered with their own solutions. The complete description of this API can be found in:

• Apiary

• GitHub Pages

Plugin Package

Business API Ecosystem plugins must be packaged in a zip. This file will contain all the sources of the plugin and a
configuration file called package.json in the root of the zip. This configuration file allows to specify some aspects of
the behaviour of the plugin and contains the following fields:

• name: Name given to the resource type. This is the field that will be shown to providers

• author: Author of the plugin.

• formats: List that specify the different allowed formats for providing an asset of the given type. This list can
contain the values “URL” and “FILE”.

• module: This field is used to specify the main class of the Plugin.

• version: Current version of the plugin.

• media_types: List of allowed media types that can be selected when providing an asset of the given type

1.2. User and Programmer Guide 95

http://docs.fiwaretmfbizecosystem.apiary.io
https://fiware-tmforum.github.io/Business-API-Ecosystem/

Business API Ecosystem Documentation, Release latest

Following you can find an example of a package.json file:

{
"name": "Test Resource",
"author": "fdelavega",
"formats": ["FILE"],
"module": "plugin.TestPlugin",
"version": "1.0",
"media_types": ["application/zip"]

}

The source code of the plugin must be written in Python and must contain a main class that must be a child class of
the Plugin class defined in the Charging Backend of the Business API Ecosystem. Following you can find an example
of a plugin main class.

from wstore.asset_manager.resource_plugins.plugin import Plugin

class TestPlugin(Plugin):
def on_pre_product_spec_validation(self, provider, asset_t, media_type, url):

pass

def on_post_product_spec_validation(self, provider, asset):
pass

def on_pre_product_spec_attachment(self, asset, asset_t, product_spec):
pass

def on_post_product_spec_attachment(self, asset, asset_t, product_spec):
pass

def on_pre_product_offering_validation(self, asset, product_offering):
pass

def on_post_product_offering_validation(self, asset, product_offering):
pass

def on_product_acquisition(self, asset, contract, order):
pass

def on_product_suspension(self, asset, contract, order):
pass

Implementing Event Handlers

It can be seen in the previous section that the main class of a plugin can implement some methods that are inherited
from the Charging Backend Plugin class. This methods can be used to implement handlers of the different events of
the life cycle of a product containing the asset. Concretely, the following events have been defined:

• on_pre_product_spec_validation: This method is executed when creating a new digital product containing an
asset of the given type, before validating the product spec contents and saving the asset info in the database.
This method can be used for validating the asset format or the seller permissions to sell the asset.

• on_post_product_spec_validation: This method is executed when creating a new digital product containing an
asset of the given type, after validating the product spec and saving the asset info in the database. This method
can be used if the plugin require to know some specific info of the asset model

• on_pre_product_spec_attachment: This method is executed when creating a new digital product containing
an asset of the given type, after saving the product spec in the catalog API database but before attaching the

96 Chapter 1. Index

Business API Ecosystem Documentation, Release latest

product spec id to the asset model. This method can be used if the plugin require to know the id in the catalog
of the product spec

• on_post_product_spec_attachment: This method is executed when creating a new digital product containing
an asset of the given type, after saving the product spec in the catalog API database and after attaching the
product spec id to the asset model. This method can be used if the plugin require to know the id in the catalog
of the product spec

• on_pre_product_offering_validation: This method is executed when creating a new product offering contain-
ing an asset of the given type, before validating its pricing model. This method can be used to make extra
validations on the pricing model, for example check if the unit of an usage model is supported by the given asset

• on_post_product_offering_validation: This method is executed when creating a new product offering con-
taining an asset of the given type, after validating its pricing model. This method can be used to make extra
validations on the pricing model, for example check if the unit of an usage model is supported by the given asset

• on_product_acquisition: This method is called when a product containing an asset of the given type has been
acquired. This method can be used to activate the service for the customer and give him access rights.

• on_product_suspension: This method is called when a product containing an asset of the given type has been
suspended for a customer (e.g he has not paid). Tjis method can be used to suspend the service for the customer
and remove his access rights

As can be seen in the Plugin example, the different handler methods receive some parameters with relevant information
and objects. In particular:

on_pre_product_spec_validation

• provider: User object containing the user who is creating the product specification (The User object is described
later)

• asset_t: String containing the asset type, it must be equal to the one defined in package.json

• media_type: String containing the media type of the asset included in the product being created

• url: String containing the url of the asset included in the product being created

on_post_product_spec_validation

• provider: User object containing the user who is creating the product specification (The User object is described
later)

• asset: Asset object with the recently created asset (The Asset object is described later)

on_pre_product_spec_attachment

• asset: Asset object where the created product specification id is going to be attached

• asset_t: String containing the asset type, it must be equal to the one defined in package.json

• product_spec: JSON with the raw product specification information that is going to be used for the attachment.
(The structure of this JSON object can be found in the Open Api documentation)

1.2. User and Programmer Guide 97

Business API Ecosystem Documentation, Release latest

on_post_product_spec_attachment

• asset: Asset object where the created product specification id has been attached

• asset_t: String containing the asset type, it must be equal to the one defined in package.json

• product_spec: JSON with the raw product specification information that has been used for the attachment. (The
structure of this JSON object can be found in the Open Api documentation)

on_pre_product_offering_validation

• asset: Asset object included in the offering being created

• product_offering: JSON with the raw product offering information that is going to be validated. (The structure
of this JSON object can be found in the Open Api documentation)

on_post_product_offering_validation

• asset: Asset object included in the offering being created

• product_offering: JSON with the raw product offering information that has been validated. (The structure of
this JSON object can be found in the Open Api documentation)

on_product_acquisition

• asset: Asset object that has been acquired

• contract: Contract object including the information of the acquired offering which contains the asset. (The
Contract object is described later)

• order: Order object including the information of the order where the asset was acquired. (The Order object is
described later)

on_product_acquisition

• asset: Asset object that has been suspended

• contract: Contract object including the information of the acquired offering which contains the asset

• order: Order object including the information of the order where the asset was acquired

Handler Objects

Following you can find the information regarding the different objects used in plugin handlers

• User: Django model object with the following fields

– username: Username of the user

– email: Email of the user

– complete_name: Complete name of the user

• Asset: Django model object with the following fields

– product_id: Id of the product specification which includes the asset

98 Chapter 1. Index

Business API Ecosystem Documentation, Release latest

– version: Version of the product specification which includes the asset

– provider: User object of the user that created the asset

– content_type: media type of the asset

– download_link: URL of the asset if it is a service in an external server

– resource_path: Path to the asset file if it is uploaded in the server

– resource_type: Type of the asset as defined in the package.json file of the related plug-in

– is_public: If true the asset can be downloaded by any user without the need of acquiring it

– meta_info: JSON with any related information. This field is useful to include specific info from the
plugin code

Additionally, it includes the following methods:

• get_url: Returns the URL where the asset can be accessed

• get_uri: Returns the url where the asset info can be accessed

• Contract: Django model with the following fields

– item_id: Id of the order item which generated the current contract

– offering: Offering object with the information of the offering acquired in the current contract (The
offering object is described later)

– product_id: Id of the inventory product created as a result if the acquisition of the specified offering

– pricing_model: JSON with the pricing model that is used in the current contract for charging the
customer who acquired the included offering

– last_charge: Datetime object with the date and time of the last charge to the customer

– charges: List of Charge objects contaning the info of the different times the customer has been
charged in the context of the current contract

– correlation_number: Next expected correlation number for usage documents. This field is only used
when the pricing model is usage

– last_usage: Datetime object with the date and time of the last usage document received. This field is
only used when the pricing model is usage

– revenue_class: Product class of the involved offering for revenue sharing

– terminated: Specified whether the contract has been terminated (the customer has no longer access
to the acquired asset)

• Offering: Django model with the following fields

– off_id: Id of the product offering

– name: Name of the offering

– version: Version of the offering

– description: Description of the offering

– asset: Asset offered in the offering

• Charge Django model with the following fields

– date: Datetime object with the date and time of the charge

– cost: Total amount charged

1.2. User and Programmer Guide 99

Business API Ecosystem Documentation, Release latest

– duty_free: Amount charged without taxes

– currency: Currency of the charge

– concept: Concept of the charge (initial, renovation, usage)

– invoice: Path to the PDF file containing the invoice of the charge

• Order: Django model with the following fields

– order_id: Id of the product order

– customer: User object of the customer of the order

– date: Datetime object with the date and time of the order creation

– tax_address: JSON with the billing address used by the customer in the order

– contracts: List of Conctract objects, one for earch offering acquired in the order

Additionally, it includes the following methods:

• get_item_contract: Returns a contract given an item_id

• get_product_contract: Returns a contract given a product_id

Managing Plugins

Once the plugin has been packaged in a zip file, the Charging Backend of the Business API Ecosystem offers some
management command that can be used to manage the plugins.

When a new plugin is registered, The Business API Ecosystem automatically generates an id for the plugin that is used
for managing it. To register a new plugin the following command is used:

python manage.py loadplugin TestPlugin.zip

It is also possible to list the existing plugins in order to retrieve the generated ids:

python manage.py listplugins

To remove a plugin it is needed to provide the plugin id. This can be done using the following command:

python manage.py removeplugin test-plugin

1.3 Plugins Guide

1.3.1 Introduction

This plugins guide covers the available plugins (defining digital asset types) for the Business API Ecosystem v5.4.1.
Any feedback on this document is highly welcomed, including bugs, typos or things you think should be included but
aren’t. Please send them to the “Contact Person” email that appears in the Catalogue page for this GEi. Or create an
issue at GitHub Issues

1.3.2 WireCloud Component

The WireCloud Component plugin is available in GitHub. This plugin defines an asset type intended to manage and
monetize the different WireCloud components (Widgets, Operators, and Mashups) in particular by enabling the cre-
ation of product specifications providing the WGT file of the specific component. (For more details on the WireCloud
platform see its documentation in ReadTheDocs)

100 Chapter 1. Index

https://catalogue.fiware.org/enablers/business-api-ecosystem-biz-ecosystem-ri
https://github.com/FIWARE-TMForum/Business-API-Ecosystem/issues/new
https://github.com/FIWARE-TMForum/wstore-wirecloud-plugin
https://wirecloud.readthedocs.io

Business API Ecosystem Documentation, Release latest

The WireCloud component plugin allows to provide the WGT file in the two ways supported by the Business API
Ecosystem, that is, uploading the WGT file when creating the product and providing a URL where the platform can
download the file.

In addition, the plugin only allows the media type Mashable application component. Nevertheless, the plugin code uses
the WGT metainfo to determine the type of the WireCloud component (Widget, Operator, or Mashup) and overrides
the media type with the proper one understood by the WireCloud platform (wirecloud/widget, wirecloud/operator or
wirecloud/mashup).

This plugin implements the following event handlers:

• on_post_product_spec_validation: In this handler the plugin validates the WGT file to ensure that it is a valid
WireCloud Component

• on_post_product_spec_attachment: In this handler the plugin determines the media type of the WGT file and
overrides the media type value in the specific product specification

1.3. Plugins Guide 101

Business API Ecosystem Documentation, Release latest

1.3.3 CKAN Dataset

The CKAN Dataset plugin ia available in GitHub. This plugin defines an asset type intended to manage and monetize
datasets offered in a CKAN instance. In particular, this plugin is able to validate the dataset, validate the rights of
the seller creating a product specification to sell the provided dataset, and manage the access to the dataset of those
customers who acquire it.

Is important to notice that by default CKAN does not provide a mechanism to publish protected datasets or an API
for managing the access rights to the published datasets. In this regard, the CKAN instance to be monetized has to be
extended with the following CKAN plugins:

• ckanext-oauth2: This extension allows to use an external OAuth2 Identity Manager for managing CKAN users.
In particular, this extension must be used, in this context, to authenticate users using the same FIWARE IdM in-
stance as the specific Business API Ecosystem instance, so both systems (CKAN and Business API Ecosystem)
share their users.

• ckanext-privatedatasets: This extension allows to create protected datasets in CKAN which can only be accessed
by a set of users selected by the dataset owner. Moreover, this extension exposes an API that can be used to add
or remove authorized users from a dataset.

In addition, if the ckanext-storepublisher plugin is installed in CKAN, the CKAN dataset plugin must be installed
in the Business API Ecosystem, since the aforementioned CKAN extension uses the CKAN Dataset asset type for
creating product specifications.

The CKAN Dataset plugin only allows to provide the asset with a URL that must match the dataset URL in CKAN.

This plugin implements the following event handlers:

• on_pre_product_spec_validation: In this handler the plugin validates that the provided URL is a valid CKAN
dataset and that the user creating the product specification is its owner.

• on_product_acquisition: In this handler the plugin uses the CKAN instance API in order to grant access to the
user who has acquired a dataset.

• on_product_suspension: In this handler the plugin uses the CKAN instance API in order to revoke access to a
dataset when a user has not paid or when the user cancels a subscription.

102 Chapter 1. Index

https://github.com/FIWARE-TMForum/wstore-ckan-plugin
https://github.com/conwetlab/ckanext-oauth2
https://github.com/conwetlab/ckanext-privatedatasets
https://github.com/FIWARE-TMForum/ckanext-storepublisher

Business API Ecosystem Documentation, Release latest

1.3.4 Accountable Service

The Accountable Service plugin is available in GitHub. This plugin defines a generic asset type which is used jointly
with the Accounting Proxy in order to offer services under a pay-per-use model. In particular, this plugin is able to
validate services URLs, validate sellers permissions, generate API keys for the Accounting Proxy, validate offering
pricing models, and manage customers access rights to the offered services.

Taking into account that this plugin is intended tyo work coordinately with an instance of the Accounting Proxy, all
the assets to be registered using the Accountable Service type must be registered in the proxy as described in the
Accounting Proxy section.

The Accountable Service plugin only allows to provide the assets with a URL that must match the service one.

This plugin implements the following event handlers:

• on_post_product_spec_validation: In this event handler the plugin validates that the provided URL belongs
to a valid service registered in an instance of the Accounting Proxy, and that the user creating the product
specification is its owner. In addition, this handler generates an API key for the Accounting Proxy to be used
when it feeds the Business API Ecosystem with accounting information.

• on_post_product_offering_validation: In this event handler the plugin validates the pricing model of a product
offering where the service is going to be sold. Specifically, it validates that all the price plans which can
be selected by a customer are usage models and that the units (calls, seconds, mb, etc) are supported by the
Accounting Proxy.

• on_product_acquisition: This event handler is used to grant access to a user who has acquired a service by
sending a notification to the proxy, including also the unit to be accounted (price plan selected).

• on_product_suspension: This event handler is used to in order to revoke access to a service when a user has
not paid or when the user cancels a subscription.

Accounting Proxy

The Accounting Proxy can be found in GitHub. This software is a NodeJs server intended to manage services offered
in the Business API Ecosystem. In particular, it is able to authenticate users, authorize or deny users to access to a
particular service depending on the acquisition, the URL, or the HTTP method used, and account the usage made of
the service so users can be charged on pay-per-use basis.

1.3. Plugins Guide 103

https://github.com/FIWARE-TMForum/wstore-orion-plugin
https://github.com/FIWARE-TMForum/Accounting-Proxy
https://github.com/FIWARE-TMForum/Accounting-Proxy

Business API Ecosystem Documentation, Release latest

Having this software deployed allows service owners to protect their services and offer them in the Business API
Ecosystem without the need of making any modification in the specific service.

Installation

This software is a pure NodeJS server, to install basic dependencies execute the following command:

$ npm install

Configuration All the Accounting Proxy configuration is saved in the config.js file in the root of the project.

In order to have the accounting proxy running it is needed to fill the following information:

• config.accounting_proxy: Basic information of the accounting deployment.

– https: set this variable to undefined to start the service over HTTP.

* enabled: set this option to true to start the service over HTTPS and activate the certificate
validation for some administration requests (see Proxy API).

* certFile: path to the server certificate in PEM format.

* keyFile: path to the private key of the server.

* caFile: path to the CA file.

– port: port where the accounting proxy server is listening.

{
https: {

enabled: true,
certFile: 'ssl/server1.pem',
keyFile: 'ssl/server1.key',
caFile: 'ssl/fake_ca.pem'

},
port: 9000

}

• config.database: Database configuration used by the proxy.

– type: database type. Two possible options: ./db (sqlite database) or ./db_Redis (redis database).

– name: database name. If the database type select is redis, then this field selects the database number
(0 to 14; 15 is reserved for testing).

– redis_host: redis database host.

– redis_port: redis database port.

{
type: './db',
name: 'accountingDB.sqlite',
redis_host: 'localhost',
redis_port: 6379

}

• config.modules: An array of supported accounting modules for accounting in different ways. Possible options are:

– call: the accounting is incremented in one unit each time the user send a request.

– megabyte: counts the response amount of data (in megabytes).

104 Chapter 1. Index

Business API Ecosystem Documentation, Release latest

– millisecond: counts the request duration (in milliseconds).

{
accounting: ['call', 'megabyte', 'millisecond']

}

Other accounting modules can be implemented and included to the proxy (see Accounting modules).

• config.usageAPI: the information of the usage management API where the usage specifications and the accounting information will be sent.
*host: Business API Ecosystem host. * port: Business API Ecosystem port. * path: path of the usage
management API. * schedule: defines the daemon service schedule to notify the accounting information
to the Business API Ecosystem. The format is similar to the cron tab format: “MINUTE HOUR
DAY_OF_MONTH MONTH_OF_YEAR DAY_OF_WEEK YEAR (optional)”. By the default, the usage
notifications will be sent every day at 00:00.

{
host: 'localhost',
port: 8080,
path: '/DSUsageManagement/api/usageManagement/v2',
schedule: '00 00 * * *'

}

• config.api.administration_paths: configuration of the administration paths. Default accounting paths are:

{
api: {

administration_paths: {
keys: '/accounting_proxy/keys',
units: '/accounting_proxy/units',
newBuy: '/accounting_proxy/newBuy',
checkURL: '/accounting_proxy/urls',
deleteBuy: '/accounting_proxy/deleteBuy'

}
}

}

The Accounting Proxy can be used to proxy an Orion Context Broker, supporting the accounting of subscriptions. To
do that, the following configuration params are used:

• config.resources: configuration of the resources accounted by the proxy.

– contextBroker: set this option to true if the resource accounted is an Orion Context Broker. Otherwise
set this option to false (default value).

– notification_port: port where the accounting proxy is listening to subscription notifications from the
Orion Context Broker (port 9002 by default).

{
contextBroker: true,
notification_port: 9002

}

Administration

The Accounting Proxy is able to manage multiple services. In this regard, it has been provided a cli tool that can be
used by admins in order to register, delete, and manage its services. The available commands are:

• ./cli addService [-c | –context-broker] <publicPath> <url> <appId> <httpMethod> [otherHttpMethods...]:
This command is used to register a new service in the Accounting Proxy. It receives the following parameters

1.3. Plugins Guide 105

Business API Ecosystem Documentation, Release latest

– publicPath: Path where the service will be made available to external users. There are two valid
patterns for the public path: (1) Providing a path with a single component (/publicpath) will make
the Accounting Proxy accept requests to sub-paths of the specified one (i.e having a public path
/publicpath requests to /publicpath/more/path are accepted). This pattern is typically used when
you are offering the access to an API with multiple resources. (2) Providing a complete path
(/this/is/the/final/resource/path?color=Blue&shape=rectangular) will make the Accounting Proxy to ac-
cept only requests to the exact registered path including query strings. This pattern is typically used when
you are offering a single URL, like a Context Broker query.

– url: URL where your service is actually running and where requests to the proxy will be redirected.
Note that in this case all the URL is provided (including the host) since the accounting proxy allows the
management of services running in different servers.

– appId: ID of the service given by the FIWARE IdM. This id is used in order to ensure that the access
tokens provided by users are valid for the accessed service

– HTTP methods: List of HTTP methods that are allowed to access to the registered service

– Options:

* -c, –context-broker: the service is an Orion Context broker service (config.contextBroker must be
set to true in config.js).

Following you can find two examples in order to clarify the options available for registering a service:

$./cli addService /apacheapp http://localhost:5000/ 1111 GET PUT POST

In this case, there is a service running in the port 5000 which is made available though the /apacheapp path, allowing
only GET, PUT, and POST HTTP request. Supposing that the Accounting Proxy is running in the host account-
ing.proxy.com in the port 8000, the following requests will be accepted by it:

GET http://accounting.proxy.com:8000/apacheapp
GET http://accounting.proxy.com:8000/apacheapp/resource1/
POST http://accounting.proxy.com:8000/apacheapp/resource1/resource2

Note: The Accounting Proxy does not care about the API or the semantics of the monitored service, so it may accept
a request to a URL which does not exists in the service, resulting in a usual 404 error given by the later

Additionally, a complete path can be provided, as in the following example:

$./cli addService /broker/v1/contextEntities/Room2/attributes/temperature http://localhost:1026/v1/contextEntities/Room2/attributes/temperature 1111 GET

In this example, there is a Context Broker running in the port 1026 and a specific query is made available through the
Accounting proxy, so only the following request is accepted:

GET http://accounting.proxy.com:8000/broker/v1/contextEntities/Room2/attributes/temperature

Note: For making the proxy transparent to final users is a good practice to use the same path in the external path and
in the URL when providing a complete path. Nevertheless, this is not mandatory, so it is possible to create an alias for
a query (i.e /room2/temperature for the previous example)

• ./cli getService [-p <publicPath>]: This command is used to retrieve the URL, the application ID and the type
(Context Broker or not) of all registered services.

– Options:

* -p, –publicPath <path>: only displays the information of the specified service.

106 Chapter 1. Index

Business API Ecosystem Documentation, Release latest

• ./cli deleteService <publicPath>: This command is used to delete the service associated with the public path.

• ./cli addAdmin <userId>: This command is used to add a new administrator.

• ./cli deleteAdmin <userId>: This command is used to delete the specified admin.

• ./cli bindAdmin <userId> <publicPath>: This command is used to add the specified administrator to the service
specified by the public path.

• ./cli unbindAdmin <userId> <publicPath>: This command is used to delete the specified administrator for the
specified service by its public path.

• ./cli getAdmins <publicPath>: This command is used to display all the administrators for the specified service.

To display a brief description of the cli tool you can use : ./cli -h or ./cli –help. In addition, to get information for a
specific command you can use: ./cli help [cmd].

Authentication and Authorization

The Accounting Proxy relies on the FIWARE IdM for authenticating users. To do that, the proxy expects that all
the requests include a header Authorization: Bearer access_token or X-Auth-Token: access_token with a valid access
token given by the IdM.

Moreover, if the authentication process has succeed, the Accounting Proxy validates the permissions of the user to
access to specific service. To do that, it checks if the user has been registered as an admin of the service or if the user
has acquired the service.

Is important to notice, that the Business API Ecosystem allows sellers to offer a service in different offerings with
different pricing models. In this regard, having just the access token is not enough to determine the accounting unit
(pricing model) that has to be used to account the usage of the service. It may happen, that a valid user has acquired the
access to a service in two different offerings with two different models (i.e calls and seconds), so the proxy needs extra
info to determine the unit to account (in this example calls or seconds). To deal with that problem, the Accounting
Proxy generates an API Key which identifies the service, the user, and the accounting unit, so including it in a header
X-API-Key: api_key when making requests, enables it to know what unit to account.

Note: The X-API-Key header is not intended to provide an extra level of security, but just to remove the possible
incertitude around the request

Proxy API

The Accounting Proxy runs by default in the port 9000; nevertheless, this port can be configured as described in Con-
figuration section. In this regard, the different services configured though the administration cli tool can be accessed
directly in the root of the proxy using the public path defined for the service.

In addition, the Accounting Proxy has an administration API which can be accessed though the reserved path /ac-
counting_proxy. Following, you can find the different services exposed in the administration API:

POST .../newBuy This service is used by the Business API Ecosystem to notify a new buy. If the accounting proxy
has been started over HTTPS, these requests should be signed with the Business API Ecosystem key; otherwise, they
will be rejected.

{
"orderId": "...",
"productId": "...",
"customer": "...",

1.3. Plugins Guide 107

Business API Ecosystem Documentation, Release latest

"productSpecification": {
"url": "...",
"unit": "...",
"recordType": "..."

}
}

• orderId: order identifier.

• productId: product identifier.

• customer: customer id.

• url: base url of the service.

• unit: accounting unit (megabyte, call, etc).

• recordType: type of accounting.

POST .../deleteBuy This service is used by the Business API Ecosystem to notify a terminated buy. If the accounting
proxy has been started over HTTPS, these requests should be signed with the Business API Ecosystem key; otherwise,
they will be rejected.

{
"orderId": "...",
"productId": "...",
"customer": "...",
"productSpecification": {

"url": "..."
}

}

• orderId: order identifier.

• productId: product identifier.

• customer: customer id.

• url: base url of the service.

POST .../urls This service is used by the Business API Ecosystem to check if an URL is a valid registered service.
This requests require the “authorization” header with a valid access token from the IdM and the user must be an
administrator of the service. If the accounting proxy has been started over HTTPS, these requests should be signed
with the Business API Ecosystem key cert; otherwise, they will be rejected.

{
"url": "..."

}

GET .../keys Retrieve the user’s API_KEYs in a json. This request require the “authorization” header with a valid
access token from the IdM.

[
{
"apiKey": "...",
"productId": "...",
"orderId": "...",
"url": "..."

108 Chapter 1. Index

Business API Ecosystem Documentation, Release latest

},
{

"apiKey": "...",
"productId": "...",
"orderId": "...",
"url": "..."

}
]

GET .../units Retrieve the supported accounting units by the accounting proxy in a JSON. This requests require the
“authorization” header with a valid access token from the IdM.

{
"units": ["..."]

}

Accounting modules

By default, the Accounting Proxy includes three different modules for accounting. Nevertheless, it is possible to
extend the proxy with new modules by creating them in the acc_modules directory, those modules have to have the
following structure:

/** Accounting module for unit: XXXXXX */

var count = function (countInfo, callback) {
// Code to do the accounting goes here
//

return callback(error, amount);
}

var getSpecification = function () {
return specification;

}

The function count receives two parameters: * countInfo: object containing both, the request made by the user and the
response returned by the service

{
request: { // Request object used by the proxy to make the request to the service.

headers: {

},
body: {

},
...

},
response: { // Response object received from the service.

headers: {

},
body: {

},
elapsedTime: , // Response time

1.3. Plugins Guide 109

Business API Ecosystem Documentation, Release latest

...
}

}

• callback: function, which is used to retrieve the accounting value or the error message. The callback expects 2 parameters:

– error: string with a description of the error if there is one. Otherwise, null.

– amount: number with the amount to be added to the current accounting.

The function getSpecification should return a javascript object with the usage specification for the accounting unit
according to the TMF635 usage management API (TMF635 usage Management API).

Finally, add the name of the developed accounting module to the config.modules array in the config.js file (the account-
ing module name is the name of the file, e.g. megabyte and megabyte.js) and restart the Accounting Proxy.

110 Chapter 1. Index

https://www.tmforum.org/resources/standard/tmf635-usage-management-api-rest-specification-r14-5-0/

	Index
	Installation and Administration Guide
	User and Programmer Guide
	Plugins Guide

