

 [image: docs/image/logo.png]
Thank you for visiting BUMO Documentation Center. We hope that the documentation we provide can be helpful to you. BUMO Documentation Center is being updated as the BUMO projects move forward. If you have any questions, please contact us.

Welcome to Bumo’s documentation!

Index

Overview

Welcome to the BUMO Documentation Center, where we provide you with comprehensive documents, including API guides, development guides, user guides and more, all of which are to help you get started with BUMO quickly. Meanwhile, we are fully prepared to help you when you come across technical issues.

Environment

You have to be on Node >= 8.x and Yarn >= 1.5.

Installation

	Downloading the zip package.

	Unzipping the package.

	Going to the website directory, and downloading the dependency libs, the commands as follow:

cd website
npm install

 id: api_http title: BUMO HTTP sidebar_label: HTTP

id: api_http
title: BUMO HTTP
sidebar_label: HTTP

Overview

BUMO, you need to understand the basic information such as the data format in the http interfaces, http web server, port configuration, transaction process, and transaction operations.

json

The data in the http interfaces is in json format.

http

BuChain provides http API interfaces. You can find the "webserver" object in the bumo.json file located at the installation directory /config/bumo.json , which specifies the http service port.

"webserver": {
 "listen_addresses": "0.0.0.0:36002"
}

Port Configuration

	Network
	WebServer

	mainnet
	16002

	testnet
	26002

	internalnet
	36002

Transaction Process

The transaction process includes five steps:

	Assemble the transaction object Transaction according to your requiremment. Different transactions have different data structures. See Transactions for details.

	The transaction object is serialized into a byte stream transaction_blob. See getTransactionBlob for details.

	Sign the transaction_blob with the private key skey to get sign_data, and the public key of skey is pkey. See Keypair Guide for details.

	Submit the transaction. See submitTransaction for details.

	According to the query of the transaction by hash to determine whether the transaction is successful. See getTransactionHistory for details.

Note: Refer to Example for the complete transaction process.

Have a Try

If your blockchain has just been deployed, there is only a genesis account in the blockchain system. You can check the genesis account through the http interface (Example for localhost and 36002):

HTTP GET localhost:36002/getGenesisAccount
or
curl get localhost:36002/getGenesisAccount

The content returned is as follows.

{
 "error_code" : 0,
 "result" : {
 "address" : "buQs9npaCq9mNFZG18qu88ZcmXYqd6bqpTU3",
 "assets" : null,
 "balance" : 100000000000000000,
 "metadatas" : null,
 "priv" : {
 "master_weight" : 1,
 "thresholds" : {
 "tx_threshold" : 1
 }
 }
 }
}

The value of address in the returned result is the genesis account.

You can query any account through the getAccount interface.

HTTP GET localhost:36002/getAccount?address=buQs9npaCq9mNFZG18qu88ZcmXYqd6bqpTU3
or
curl get localhost:36002/getAccount?address=buQs9npaCq9mNFZG18qu88ZcmXYqd6bqpTU3

Transactions

	In json format

{
 "source_address":"buQs9npaCq9mNFZG18qu88ZcmXYqd6bqpTU3",//The source account, also called the originator of the transaction
 "nonce":2, //The nonce value of the source account
 "fee_limit" : 1000000, //The transaction fee that you intend to pay
 "gas_price": 1000,//The gas price (not less than the minimum configured)
 "ceil_ledger_seq": 100, //Optional, block height limit, if greater than 0, the transaction is only valid below (including the height) the block height
 "metadata":"0123456789abcdef", //Optional, a user-defined note for transactions, in hexadecimal format
 "operations":[
 {
 //Fill in according to specific operations
 },
 {
 //Fill in according to specific operations
 }

]
}

	Keywords in json

Keyword	Type	Description
source_address	string	The source account of the transaction, which is the account of the transaction initiator. When the transaction is successful, the nonce field of the source account will be automatically incremented by 1. The nonce in the account number is the number of transactions executed by this account
nonce	int64	Its value must be equal to the current nonce+1 of the source account of the transaction, which is designed to prevent replay attacks. If you want to know how to query the nonce of an account, you can refer to [getTransactionHistory](#gettransactionhistory). If the account queried does not display the nonce value, the current nonce of the account is 0.
fee_limit	int64	The maximum fee that can be accepted for this transaction. The transaction will first charge a fee based on this fee. If the transaction is executed successfully, the actual cost will be charged, otherwise the fee for this field will be charged. The unit is MO, 1 BU = 10^8 MO
gas_price	int64	It is used to calculate the handling fee for each operation and also involved in the calculation of the transaction byte fee. The unit is MO, 1 BU = 10^8 MO
ceil_ledger_seq	int64	Optional, the block height restriction for this transaction, which is also an advanced feature
operations	array	The operation list. The payload of this transaction, which is what the transaction wants to do. See [Operations](#operations) for more details
metadata	string	Optional, a user-defined field that can be left blank or filled in a note

Operations

The corresponding operations in the json structure of the transaction can contain one or more operations.

	In json format

{
 "type": 1,//The operation type
 "source_address": "buQs9npaCq9mNFZG18qu88ZcmXYqd6bqpTU3",//Optional, the source account of the operations
 "metadata": "0123456789abcdef",//Optional, a user-defined note for transactions, in hexadecimal format
 "create_account": {
 //The parameters of the account to be created
 },
 "issue_asset": {
 //The parameters of the asset to be issued
 },
 "pay_asset": {
 //The parameters of the asset to be transferred
 },
 "set_metadata": {
 //Set the relevant parameters of the account metadata
 },
 "pay_coin": {
 //The parameters of the native token(BU) to be transferred
 },
 "set_privilege": {
 ///The parameters of setting the account privileges
 },
 "log": {
 //The parameters of the log
 }
}

	Keywords in json

Keyword	Type	Description
type	int	Operation code, different operation codes perform different operations, see [Operation Codes](#operation-codes) for details
source_address	string	Optional, the source account of the operation, that is, the operator of the operation. When not filled in, the default is the same as the source account of the transaction
metadata	string	Optional, a user-defined field that can be left blank or filled in a note
create_account	json	The [Creating Accounts](#creating-accounts) operation
issue_asset	json	The [Issuing Assets](#issuing-assets) operation
pay_asset	json	The [Transferring Assets](#transferring-assets) operation
set_metadata	json	The [Setting Metadata](#setting-metadata) operation
pay_coin	json	The [Transferring BU Assets](#transferring-bu-assets) operation
log	json	The [Recording Logs](#recording-logs) operation
set_privilege	json	The [Setting Privileges](#setting-privileges) operation

Operation Codes

	Operation Code
	Operation
	Description

	1
	create_account
	Creating Accounts

	2
	issue_asset
	Issuing Assets

	3
	pay_asset
	Transferring Assets

	4
	set_metadata
	Setting Metadata

	7
	pay_coin
	Transferring BU Assets

	8
	log
	Recording Logs

	9
	set_privilege
	Setting Privileges

Creating Accounts

The source account creates a new account on the blockchain. Creating Accounts are divided into Creating Normal Accounts and Creating Contract Accounts.

Creating Normal Accounts

Note: Both master_weight and tx_threshold must be 1 in the current operation.

	In json format

{
 "dest_address": "buQcSAePGfDiaW9t9xsWFVRA3ZwGVcRpR9CZ",//The target account address to be created
 "init_balance": 100000,//The initial balance of the target account
 "priv": {
 "master_weight": 1,//The weight owned by the target account
 "thresholds": {
 "tx_threshold": 1//The threshold required to initiate a transaction
 }
 }
}

	Keywords in json

Keyword	Type	Description
dest_address	string	The address of the target account. When creating a normal account, it cannot be empty
init_balance	int64	The initial BU value of the target account, in MO, 1 BU = 10^8 MO
master_weight	int64	The master weight of the target account, which ranges [0, MAX(UINT32)]
tx_threshold	int64	The threshold for initiating a transaction below which the transaction cannot be initiated, which ranges ​​[0, MAX(INT64)]

	Complete transaction structure

{
 "source_address":"buQs9npaCq9mNFZG18qu88ZcmXYqd6bqpTU3",//The source account, also called the originator of the transaction
 "nonce":2, //The nonce value of the source account
 "fee_limit" : 1000000, //The transaction fee that you intend to pay
 "gas_price": 1000,//The gas price (not less than the minimum configured)
 "ceil_ledger_seq": 100, //Optional, block height limit, if greater than 0, the transaction is only valid below (including the height) the block height
 "metadata":"0123456789abcdef", //Optional, a user-defined note for transactions, in hexadecimal format
 "operations":[
 {
 "type": 1,//The create_account operation type
 "source_address": "buQs9npaCq9mNFZG18qu88ZcmXYqd6bqpTU3",//Optional, the source account of the operations
 "metadata": "0123456789abcdef",//Optional, a user-defined note for transactions, in hexadecimal format
 "create_account": {
 "dest_address": "buQcSAePGfDiaW9t9xsWFVRA3ZwGVcRpR9CZ",//The target account address to be created
 "init_balance": 100000,//The initial balance of the target account
 "priv": {
 "master_weight": 1,//The weight owned by the target account
 "thresholds": {
 "tx_threshold": 1//The threshold required to initiate a transaction
 }
 }
 }
 }
]
}

	Query

The account information is queried through the getAccount interface.

Creating Contract Accounts

Note: In the current operation, master_weight must be 0 and tx_threshold must be 1.

	In json format

{
 "contract": { //Contract
 "payload": "
 'use strict';
 function init(bar)
 {
 return;
 }

 function main(input)
 {
 return;
 }

 function query()
 {
 return;
 }
 "//Contract code
 },
 "init_balance": 100000,//The initial asset of the contract account
 "init_input" : "{\"method\":\"toWen\",\"params\":{\"feeType\":0}}",//Optional, the entry of the init function
 "priv": {
 "master_weight": 0,//The weight of the contract account to be created
 "thresholds": {
 "tx_threshold": 1 //The weight required to initiate a transaction
 }
 }
}

	Keywords in json

Keyword	Type	Description
payload	string	The contract code
init_balance	int64	The initial BU value of the target account, in MO, 1 BU = 10^8 MO
init_input	string	Optional, the input parameter of the init function in the contract code
master_weight	int64	The master weight of the target account
tx_threshold	int64	The threshold for initiating a transaction below which it is not possible to initiate a transaction.

	Complete transaction structure

{
 "source_address":"buQs9npaCq9mNFZG18qu88ZcmXYqd6bqpTU3",//The source account, also called the originator of the transaction
 "nonce":2, //The nonce value of the source account
 "fee_limit" : 1000000, //The transaction fee that you intend to pay
 "gas_price": 1000,//The gas price (not less than the minimum configured)
 "ceil_ledger_seq": 100, //Optional, block height limit, if greater than 0, the transaction is only valid below (including the height) the block height
 "metadata":"0123456789abcdef", //Optional, a user-defined note for transactions, in hexadecimal format
 "operations":[
 {
 "type": 1,//The create_account operation type
 "source_address": "buQs9npaCq9mNFZG18qu88ZcmXYqd6bqpTU3",//Optional, the source account of the operations
 "metadata": "0123456789abcdef",//Optional, a user-defined note for transactions, in hexadecimal format
 "create_account": {
 "contract": { //Contract
 "payload": "
 'use strict';
 function init(bar)
 {
 return;
 }

 function main(input)
 {
 return;
 }

 function query()
 {
 return;
 }
 "//Contract code
 },
 "init_balance": 100000,//The initial asset of the contract account
 "init_input" : "{\"method\":\"toWen\",\"params\":{\"feeType\":0}}",//Optional, the entry of the init function
 "priv": {
 "master_weight": 0,//The weight of the contract account to be created
 "thresholds": {
 "tx_threshold": 1 //The weight required to initiate a transaction
 }
 }
 }
 }
]
}

	Query

	The account information is queried through the getAccount interface.

	Query with the getTransactionHistory interface, and the result is as follows:

[
 {
 "contract_address": "buQm5RazrT9QYjbTPDwMkbVqjkVqa7WinbjM", //The contract account
 "operation_index": 0 //The operation index value in the transaction array, 0 means the first transaction
 }
]

Issuing Assets

	Function

The source account of this operation issues a digital asset, and this asset appears in the asset balance of the source account after successful execution.

	In json format

{
 "code": "HYL", //The code of the asset to be issued
 "amount": 1000 //The amount of the asset to be issued
}

	Keywords in json

Keyword	Type	Description
code	string	The code of the asset to be issued, which ranges [1, 64]
amount	int64	The amount of the asset to be issued, which ranges ​​(0, MAX(int64))

	Complete transaction structure

	{
 "source_address":"buQs9npaCq9mNFZG18qu88ZcmXYqd6bqpTU3",//The source account, also called the originator of the transaction
 "nonce":2, //The nonce value of the source account
 "fee_limit" : 1000000, //The transaction fee that you intend to pay
 "gas_price": 1000,//The gas price (not less than the minimum configured)
 "ceil_ledger_seq": 100, //Optional, block height limit, if greater than 0, the transaction is only valid below (including the height) the block height
 "metadata":"0123456789abcdef", //Optional, a user-defined note for transactions, in hexadecimal format
 "operations":[
 {
 "type": 2,//The issue_asset operation type
 "source_address": "buQs9npaCq9mNFZG18qu88ZcmXYqd6bqpTU3",//Optional, the source account of the operations
 "metadata": "0123456789abcdef",//Optional, a user-defined note for transactions, in hexadecimal format
 "issue_asset": {
 "code": "HYL", //The code of the asset to be issued
 "amount": 1000 //The amount of the asset to be issued
 }
 }
]
}

Transferring Assets

Note: If the target account is a contract account, the current operation triggers the contract execution of the target account.

	Function

The source account of this operation transfers an asset to the target account.

	In json format

{
 "dest_address": "buQcSAePGfDiaW9t9xsWFVRA3ZwGVcRpR9CZ",//The target account to receive the asset
 "asset": {
 "key": {
 "issuer": "buQs9npaCq9mNFZG18qu88ZcmXYqd6bqpTU3",//The account to issue the asset
 "code": "HYL" // The code of the asset to be transferred
 },
 "amount": 100 //The amount of the asset to be transferred
 },
 "input": "{\"bar\":\"foo\"}"　// Optional, the input parameters of the main code of the contract code in the target account
}

	Keywords in json

Keyword	Type	Description
dest_address	string	The address of the target account
issuer	string	The address of the issuer
code	string	The asset code which ranges [1, 64]
amount	int64	The amount of the asset which ranges (0,MAX(int64))
input	string	Optionally, if the target account is a contract account, the input will be passed to the argument of the `main` function of the contract code. This setting is invalid if the target account is a normal account

	Complete transaction structure

	{
 "source_address":"buQs9npaCq9mNFZG18qu88ZcmXYqd6bqpTU3",//The source account, also called the originator of the transaction
 "nonce":2, //The nonce value of the source account
 "fee_limit" : 1000000,//The transaction fee that you intend to pay
 "gas_price": 1000,//The gas price (not less than the minimum configured)
 "ceil_ledger_seq": 100,//Optional, block height limit, if greater than 0, the transaction is only valid below (including the height) the block height
 "metadata":"0123456789abcdef",//Optional, a user-defined note for transactions, in hexadecimal format
 "operations":[
 {
 "type": 3,//The pay_asset operation type
 "source_address": "buQs9npaCq9mNFZG18qu88ZcmXYqd6bqpTU3",//Optional, the source account of the operations
 "metadata": "0123456789abcdef",//Optional, a user-defined note for transactions, in hexadecimal format
 "pay_asset": {
 "dest_address": "buQcSAePGfDiaW9t9xsWFVRA3ZwGVcRpR9CZ",//The target account to receive the asset
 "asset": {
 "key": {
 "issuer": "buQs9npaCq9mNFZG18qu88ZcmXYqd6bqpTU3",//The account to issue the asset
 "code": "HYL" // The code of the asset to be transferred
 },
 "amount": 100 //The amount of the asset to be transferred
 },
 "input": "{\"bar\":\"foo\"}" // Optional, the input parameters of the main code of the contract code in the target account
 }
 }
]
}

Setting Metadata

	Function

The source account of this operation modifies or adds metadata to the metadata table.

	In json format

{
 "key": "abc",//Metadata Keyword
 "value": "hello abc!",//Metadata content
 "version": 0 //Optional, the metadata version
}

	Keywords in json

Keyword	Type	Description
key	string	The keyword of metadata, which ranges (0, 1024].
value	string	The content of metadata, which ranges [0, 256K].
version	int64	Optional, metadata version number. The default value is *0*. 0: when the value is zero, it means no limit version; >0: when the value is greater than zero, it means the current value version must be this value; <0: when the value is less than zero, it means the value is illegal

	Complete transaction structure

	{
 "source_address":"buQs9npaCq9mNFZG18qu88ZcmXYqd6bqpTU3",//The source account, also called the originator of the transaction
 "nonce":2, //The nonce value of the source account
 "fee_limit" : 1000000, //The transaction fee that you intend to pay
 "gas_price": 1000,//The gas price (not less than the minimum configured)
 "ceil_ledger_seq": 100, //Optional, block height limit, if greater than 0, the transaction is only valid below (including the height) the block height
 "metadata":"0123456789abcdef", //Optional, a user-defined note for transactions, in hexadecimal format
 "operations":[
 {
 "type": 4,//The set_metadata operation type
 "source_address": "buQs9npaCq9mNFZG18qu88ZcmXYqd6bqpTU3",//Optional, the source account of the operations
 "metadata": "0123456789abcdef",//Optional, a user-defined note for transactions, in hexadecimal format
 "set_metadata": {
 "key": "abc",//Metadata Keyword
 "value": "hello abc!",//Metadata content
 "version": 0 //Optional, the metadata version
 }
 }
]
}

Setting Privileges

	Function

Set the weights that the signer has and set the thresholds required for each operation. For details, see Assignment of Control Rights.

	In json format

{
 "master_weight": "10",//Optional, the current account's weight
 "signers": //Optional, a list of signers that need to operate
 [
 {
 "address": "buQqfssWJjyKfFHZYx8WcSgLVUdXPT3VNwJG",//The signer's address
 "weight": 8　//Optional, the signer's weight
 }
],
 "tx_threshold": "2",//Optional, the threshold required to initiate the transaction
 "type_thresholds": //Optional, the thresholds required for different operations
 [
 {
 "type": 1,//The type of account creation
 "threshold": 8 //Optional, the threshold required for this operation
 },
 {
 "type": 2,//The type of asset issuance
 "threshold": 9 //Optional, the threshold required for this operation
 }
]
}

	Keywords in json

Keyword	Type	Description
master_weight	string	Optional, by default "", it indicates the master weight of the account. "" : do not set this value; "0": set the master weight to 0; ("0", "MAX(UINT32)"]: set the weight value to this value; Other: illegal
signers	array	Optional, a list of signers that need to operate. By default is an empty object. Empty objects are not set
address	string	The signer's address that needs to operate, which should be in accordance with the address verification rules
weight	int64	Optional, by default is 0. 0: delete the signer; (0, MAX (UINT32)]: set the weight to this value, others: illegal
tx_threshold	string	Optional, by default "", it means the minimum privilege for the account. "", do not set this value; "0": set `tx_threshold` weight to 0; ("0", "MAX(INT64)"]: set the weight value to this value; others: illegal.
type_thresholds	array	Optional, a list of thresholds ​​required for different operations; by default is an empty object. Empty objects are not set
type	int	To indicate a certain operation type (0, 100]
threshold	int64	Optional, by default is 0. 0: delete the type operation; (0, MAX(INT64)]: set the weight value to this value; Other: illegal

	Complete transaction structure

	{
 "source_address":"buQs9npaCq9mNFZG18qu88ZcmXYqd6bqpTU3",//The source account, also called the originator of the transaction
 "nonce":2, //The nonce value of the source account
 "fee_limit" : 1000000, //The transaction fee that you intend to pay
 "gas_price": 1000,//The gas price (not less than the minimum configured)
 "ceil_ledger_seq": 100, //Optional, block height limit, if greater than 0, the transaction is only valid below (including the height) the block height
 "metadata":"0123456789abcdef", //Optional, a user-defined note for transactions, in hexadecimal format
 "operations":[
 {
 "type": 9,//The set_privilege operation type
 "source_address": "buQs9npaCq9mNFZG18qu88ZcmXYqd6bqpTU3",//Optional, the source account of the operations
 "metadata": "0123456789abcdef",//Optional, a user-defined note for transactions, in hexadecimal format
 "set_privilege": {
 "master_weight": "10",//Optional, the current account's weight
 "signers"://Optional, a list of signers that need to operate
 [
 {
 "address": "buQqfssWJjyKfFHZYx8WcSgLVUdXPT3VNwJG",//The signer's address
 "weight": 8 //Optional, the signer's weight
 }
],
 "tx_threshold": "2",//Optional, the threshold required to initiate the transaction
 "type_thresholds"://Optional, the thresholds required for different operations
 [
 {
 "type": 1,//The type of account creation
 "threshold": 8 //Optional, the threshold required for this operation
 },
 {
 "type": 2,//The type of asset issuance
 "threshold": 9 //Optional, the threshold required for this operation
 }
]
 }
 }
]
}

Transferring BU Assets

Note: If the target account is a contract account, the current operation triggers the contract execution of the target account.

	Function

Two functions:

	The source account of this operation transfers a BU asset to the target account.

	The source account of this operation creates a new account on the blockchain.

	In json format

{
 "dest_address": "buQgmhhxLwhdUvcWijzxumUHaNqZtJpWvNsf",//The target account to receive BU assets
 "amount": 100,//The amount of BU assets to be transferred
 "input": "{\"bar\":\"foo\"}" // Optional, the input parameters of the main code of the contract code in the target account
}

	Keywords in json

Keyword	Type	Description
dest_address	string	The target account
amount	array	Optional, a list of signers that need to operate. By default is an empty object. Empty objects are not set.
input	string	Optionally, if the target account is a contract account, and the input will be passed to the argument of the `main` function of the contract code. This setting is invalid if the target account is a normal account.

	Complete transaction structure

	{
 "source_address":"buQs9npaCq9mNFZG18qu88ZcmXYqd6bqpTU3",//The source account, also called the originator of the transaction
 "nonce":2, //The nonce value of the source account
 "fee_limit" : 1000000, //The transaction fee that you intend to pay
 "gas_price": 1000,//The gas price (not less than the minimum configured)
 "ceil_ledger_seq": 100, //Optional, block height limit, if greater than 0, the transaction is only valid below (including the height) the block height
 "metadata":"0123456789abcdef", //Optional, a user-defined note for transactions, in hexadecimal format
 "operations":[
 {
 "type": 7,//The pay_coin operation type
 "source_address": "buQs9npaCq9mNFZG18qu88ZcmXYqd6bqpTU3",//Optional, the source account of the operations
 "metadata": "0123456789abcdef",//Optional, a user-defined note for transactions, in hexadecimal format
 "pay_coin": {
 "dest_address": "buQgmhhxLwhdUvcWijzxumUHaNqZtJpWvNsf",//The target account to receive BU assets
 "amount": 100,//The amount of BU assets to be transferred
 "input": "{\"bar\":\"foo\"}" // Optional, the input parameters of the main code of the contract code in the target account
 }
 }
]
}

Recording Logs

	Function

The source account of this operation writes the log to the blockchain.

	In json format

{
 "topic": "hello",// The topic of the log
 "datas"://The content of the log
 [
 "hello, log 1",
 "hello, log 2"
]
}

	Keywords in json

Keyword	Type	Description
topic	string	The log topic and the parameter length is (0,128]
datas	array	The log content. The length of each element is (0,1024]

	Complete transaction structure

	{
 "source_address":"buQs9npaCq9mNFZG18qu88ZcmXYqd6bqpTU3",//The source account, also called the originator of the transaction
 "nonce":2, //The nonce value of the source account
 "fee_limit" : 1000000, //The transaction fee that you intend to pay
 "gas_price": 1000,//The gas price (not less than the minimum configured)
 "ceil_ledger_seq": 100, //Optional, block height limit, if greater than 0, the transaction is only valid below (including the height) the block height
 "metadata":"0123456789abcdef", //Optional, a user-defined note for transactions, in hexadecimal format
 "operations":[
 {
 "type": 8,//The log operation type
 "source_address": "buQs9npaCq9mNFZG18qu88ZcmXYqd6bqpTU3",//Optional, the source account of the operations
 "metadata": "0123456789abcdef",//Optional, a user-defined note for transactions, in hexadecimal format
 "log": {
 "topic": "hello",// The topic of the log
 "datas"://The content of the log
 [
 "hello, log 1",
 "hello, log 2"
]
 }
 }
]
}

Assignment of Control Rights

When you create an account, you can specify the control assignment for this account. You can set this by setting the value of priv. Here is a simple example.

{
 "master_weight": "70",//The weight for the private key of this address is 70
 "signers": [//The weights assigned
 {
 "address": "buQc39cgJDBaFGiiAsRtYKuaiSFdbVGheWWk",
 "weight": 55 //The weight of the above address is 55
 },
 {
 "address": "buQts6DfT5KavtV94JgZy75H9piwmb7KoUWg",
 "weight": 100 //The weight of the above address is 100
 }
],
 "tx_threshold": "8",//The weight required to initiate the transaction is 8
 "type_thresholds": [
 {
 "type": 1,//The weight required to create an account is 11
 "threshold": 11
 },
 {//The weight required to issue an asset is 21
 "type": 2,
 "threshold": 21
 },
 {//The weight required to transfer assets is 31
 "type": 3,
 "threshold": 31
 },
 {//The weight required to set metadata is 41
 "type": 4,
 "threshold": 41
 },
 {//The weight required to change controllers is 51
 "type": 5,
 "threshold": 51
 },
 {//The weight required to change operations is 61
 "type": 6,
 "threshold": 61
 }
]
}

HTTP Interfaces

Generating Public and Private Key pairs - Test

HTTP GET /createKeyPair

	CURL command

curl get locahost:36002/createKeyPair

	Function

Note: This interface is only for testing purposes. Do not use this interface in a production environment (SDK or command line used in production environment), because after calling this interface, if the node server is evil, the account’s private key will be leaked. This interface only generates a public-private key pair and does not write to the entire network blockchain.

	Return value

{
 "error_code" : 0,
 "result" : {
 "address" : "buQqRgkmtckz3U4kX91F2NmZzJ9rkadjYaa2", //The account address
 "private_key" : "privbtnSGRQ46FF3MaqiGiDNytz2soFw4iNHKahTqszR6mRrmq7qhVYh", //The private key of the account
 "private_key_aes" : "7594a97bc5e6432704cc5f58ff60727ee9bda10a6117915d025553afec7f81527cb857b882b7c775391fe1fe3f7f3ec198ea69ada138b19cbe169a1a3fa2dec8", //The data after the private key of the account is encrypted with AES
 "public_key" : "b00101da11713eaad86ad8ededfc28e86b8cd619ca2d593a21d8b82da34320a7e63b09c279bc", //The public key of the account
 "public_key_raw" : "01da11713eaad86ad8ededfc28e86b8cd619ca2d593a21d8b82da34320a7e63b", //The data of the public key excluding the prefix and suffix
 "sign_type" : "ed25519" //The type of the account encryption
 }
}

getAccount

HTTP GET /getAccount?address=buQs9npaCq9mNFZG18qu88ZcmXYqd6bqpTU3&key=hello&code=xxx&issuer=xxx

	CURL command

curl get localhost:36002/getAccount?address=buQs9npaCq9mNFZG18qu88ZcmXYqd6bqpTU3

	Function

Return information about the specified account and all its assets and metadata.

	Parameters

	Parameter
	Description

	address
	The account address, required

	key
	The value of the key specified in the metadata of the account. If not filled, the returned result contains all the metadata

	code, issuer
	The asset code, and asset issuer. These two variables are either filled in at the same time or not filled at the same time. If you do not fill in, the returned results contain all the assets. If filled in, only the code and issuer are displayed in the returned results.

	Return value

The content returned is as follows:

{
"error_code" : 0,//Error code, 0 means success
"result" : {
 "address" : "buQs9npaCq9mNFZG18qu88ZcmXYqd6bqpTU3", //The address of the account
 "balance" : 300000000000,//BU balance, in MO
 "nonce" : 1, //The number of transactions that the account has currently executed. If nonce is 0, this field is not displayed.
 "assets" : [//The asset list
 {
 "amount" : 1400,//The amount of the asset
 "key"　://Keyword of this asset
 {
 "code" : "CNY",//The asset code
 "issuer" : "buQs9npaCq9mNFZG18qu88ZcmXYqd6bqpTU3"　//The account address of the asset issuer
 }
 }, {
 "amount" : 1000,
 "key" :
 {
 "code" : "USD",
 "issuer" : "buQs9npaCq9mNFZG18qu88ZcmXYqd6bqpTU3"
 }
 }
],
 "assets_hash" : "9696b03e4c3169380882e0217a986717adfc5877b495068152e6aa25370ecf4a",//The hash value generated by the asset list
 "contract" : null,//Contract. **Empty** means that the current contract is not a contract
 "metadatas" : [//Metadata list
 {
 "key" : "123",//Keyword of metadata
 "value" : "123_value",//Metadata content
 "version" : 1 // Metadata version
 }, {
 "key" : "456",
 "value" : "456_value",
 "version" : 1
 }, {
 "key" : "abcd",
 "value" : "abcd_value",
 "version" : 1
 }
],
 "metadatas_hash" : "82c8407cc7cd77897be3100c47ed9d43ec4097ee1c00e2c13447187e5b1ac66c",//The hash value generated by the metadata list
 "priv" : {//The privilege of the account
 "master_weight" : 1,//The weight for the account
 "thresholds" : {
 "tx_threshold" : 1//The weight required to initiate a transaction
 }
 }
}
}

If the account does not exist, the content returned is as follows:

{
"error_code" : 4,//Error code, 4 means the account does not exist
"result" : null
}

getAccountBase

HTTP GET /getAccountBase?address=buQs9npaCq9mNFZG18qu88ZcmXYqd6bqpTU3

	CURL command

curl get localhost:36002/getAccountBase?address=buQs9npaCq9mNFZG18qu88ZcmXYqd6bqpTU3

	Function

Return basic information about the specified account, excluding assets and metadata.

	Parameter

Parameter	Description
address	The account address, required

	Return value

The content returned is as follows:

{
"error_code" : 0,//Error code, 0 indicates success
"result" : {
 "address" : "buQs9npaCq9mNFZG18qu88ZcmXYqd6bqpTU3", //The address of the account
 "assets_hash" : "9696b03e4c3169380882e0217a986717adfc5877b495068152e6aa25370ecf4a",//The hash value generated by the asset list
 "balance" : 899671600,//BU balance in MO
 "contract" : null,//Contract. **Empty** indicates the current account is not a contract account
 "nonce" : 1, //The number of transactions that the account has currently executed. If nonce is 0, this field is not displayed.
 "priv" : {//Account privileges
 "master_weight" : 1,//The weight of the account
 "thresholds" : {
 "tx_threshold" : 1 //The weight required to initiate a transaction
 }
 },
 "metadatas_hash" : "82c8407cc7cd77897be3100c47ed9d43ec4097ee1c00e2c13447187e5b1ac66c"　// The hash value generated by the metadata list
}
}

If the account does not exist, the content returned is as follows:

{
"error_code" : 4,//Error code, 4 indicates the account does not exist
"result" : null
}

getAccountAssets

HTTP GET /getAccountAssets?address=buQs9npaCq9mNFZG18qu88ZcmXYqd6bqpTU3

	CURL command

curl get localhost:36002/getAccountAssets?address=buQs9npaCq9mNFZG18qu88ZcmXYqd6bqpTU3

	Function

Return the asset information of the specified account.

	Parameters

Parameter	Description
address	The account address, required
code, issuer	The issuer represents the asset issuance account address, and code represents the asset code. Only the correct code&issuer can be filled in at the same time to display the specified asset correctly or all assets will be displayed by default

	Return value

The content returned is as follows:

{
"error_code" : 0,//Error code, 0 indicates the account does not exist
"result": [//If the result is not null, it indicates the asset is existed
 {
 "amount" : 1400,//The amount of assets owned
 "key" ://Asset identification, including asset code and issuer
 {
 "code" : "EES",//Asset code
 "issuer" : "buQs9npaCq9mNFZG18qu88ZcmXYqd6bqpTU3" //The account address of the issuer
 }
 },
 {
 "amount" : 1000,
 "key" :
 {
 "code" : "OES",
 "issuer" : "buQs9npaCq9mNFZG18qu88ZcmXYqd6bqpTU3"
 }
 }
]
}

If the account does not have an asset, the content returned is as follows:

{
"error_code" : 0,//Error code, 0 indicates the account does not existed
"result" : null　//Result is null, indicating that the asset does not exist
}

getAccountMetaData

HTTP GET /getAccountMetaData?address=buQs9npaCq9mNFZG18qu88ZcmXYqd6bqpTU3

	CURL command

curl get localhost:36002/getAccountMetaData?address=buQs9npaCq9mNFZG18qu88ZcmXYqd6bqpTU3

	Function

Return the metadata information of the specified account.

	Parameters

Parameter	Description
address	The account address, required
key	Optional. Specify the key value in the metadata

	Return value

The content returned is as follows:

{
"error_code" : 0,//Error code, 0 indicates the account does not exist
"result": {//Result is not null, indicating that metadata exists
 "123": {
 "key" : "123",
 "value" : "123_value",
 "version" : 1
 },
 "456": {
 "key" : "456",
 "value" : "456_value",
 "version" : 1
 },
 "abcd": {
 "key" : "abcd",
 "value" : "abcd_value",
 "version" : 1
 }
}
}

If the account does not have metadata, return the content:

{
"error_code" : 0,//Error code, 0 indicates the account does not exist
"result" : null //Result is null, indicating that the metadata does not exist
}

getTransactionHistory

HTTP GET /getTransactionHistory?ledger_seq=6

	CURL command

curl get localhost:36002/getTransactionHistory?ledger_seq=6

	Function

Return the completed transaction history.

	Parameters

Parameter	Description
hash	Query with the hash, the unique identifier of the transaction
ledger_seq	Query all transactions in the specified block

Note: The constraint generated by the above two parameters is a logical AND. If you specify two parameters at the same time, the system will query the specified transaction in the specified block.

	Return value

The content returned is as follows:

Note: There are two transactions below, and the 2nd transaction is a transaction to create a contract account. Please note the contents of the error_desc field.

{
 "error_code": 0,//Error code, o indicates the transaction is exited
 "result": {
 "total_count": 2,//The number of transactions queried
 "transactions": [{//The transaction list
 "actual_fee": 313000,//The actual fee for the transaction
 "close_time": 1524031260097214,//When the transaction is completed
 "error_code": 0,// The error code of the transaction, 0 means the transaction is executed successfully, and non-zero means the transaction execution failed
 "error_desc": "",//Description for the error in the transaction
 "hash": "89a9d6e5d2c0e2b5c4fe58045ab2236d12e9449ef232342a48a2e2628e12014d",//The hash value of the transaction
 "ledger_seq": 6,//The block height of the transaction
 "signatures": [{//The signature list
 "public_key": "b00180c2007082d1e2519a0f2d08fd65ba607fe3b8be646192a2f18a5fa0bee8f7a810d011ed",//Public key
 "sign_data": "27866d70a58fc527b1ff1b4a693b8034b0078fc7ac7591fb05679abe5ca660db5c372922bfa8f26e76511e2c33386306ded7593874a6aec5baeeaddbd2012f06"//Data signed
 }],
 "transaction": {//Transaction content
 "fee_limit": 10000000000,//The maximum fee provided for this transaction, in MO
 "gas_price": 1000,//The price of gas, in MO
 "nonce": 1,//The sequence number of the transaction in the account
 "operations": [{//The operation list
 "create_account": {//The operation to create an account
 "dest_address": "buQBAfoMfXZVPpg9DaabMmM2EwUnfoVsTSVV",//The address of the target account
 "init_balance": 10000000,//The initial BUs of the target account, in MO
 "priv": {//The privilege of the target account
 "master_weight": 1,//The weight of the target account
 "thresholds": {
 "tx_threshold": 1 //The weight required to initiate a transaction for the target account
 }
 }
 },
 "type": 1 //The type of the operation, 1 means the operation is to create an account
 },
 {
 "create_account": {
 "dest_address": "buQj8UyKbN3myVSerLDVXVXH47vWXfqtxKLm",
 "init_balance": 10000000,
 "priv": {
 "master_weight": 1,
 "thresholds": {
 "tx_threshold": 1
 }
 }
 },
 "type": 1
 }],
 "source_address": "buQs9npaCq9mNFZG18qu88ZcmXYqd6bqpTU3" //The account address to initiate the transaction
 },
 "tx_size": 313 //The transaction byte
 },
 {
 "actual_fee": 1000402000,//The actual fee for the transaction
 "close_time": 1524031260097214,//When the transaction is completed
 "error_code": 0,// The error code of the transaction, 0 means the transaction is executed successfully, and non-zero means the transaction execution failed
 "error_desc": "[{\"contract_address\":\"buQfFcsf1NUGY1o25sp8mQuaP6W8jahwZPmX\",\"operation_index\":0}]", //The result of contract creation, including contract address and operation index values
 "hash": "4cbf50e03645f1075d7e5c450ced93e26e3153cf7b88ea8003b2fda39e618e64",//The hash value of the transaction
 "ledger_seq": 6,//The block height of the transaction
 "signatures": [{//The signature list
 "public_key": "b00180c2007082d1e2519a0f2d08fd65ba607fe3b8be646192a2f18a5fa0bee8f7a810d011ed",//Public key
 "sign_data": "87fdcad0d706479e1a3f75fac2238763cd15fd93f81f1b8889fb798cefbe1752c192bbd3b5da6ebdb31ae47d8b62bb1166dcceca8d96020708f3ac5434838604" //Data signed
 }],
 "transaction": {//Transaction content
 "fee_limit": 20004420000,//The maximum fee for this transaction
 "gas_price": 1000,//The price of gas
 "nonce": 30,//The sequence number of the transaction in the account
 "operations": [{//The operation list
 "create_account": {//The operation to create an account
 "contract": {//Contract
 "payload": "'use strict';\n\t\t\t\t\tfunction init(bar)\n\t\t\t\t\t{\n\t\t\t\t\t return;\n\t\t\t\t\t}\n\t\t\t\t\t\n\t\t\t\t\tfunction main(input)\n\t\t\t\t\t{\n\t\t\t\t\t return;\n\t\t\t\t\t}\n\t\t function query()\n\t\t\t\t\t{\n\t\t\t\t\t return;\n\t\t\t\t\t}\n\t\t \n\t\t "　//Contract code
 },
 "init_balance": 10000000,//The initial BUs of the contract account, in MO
 "priv": {//The privilege of the contract account
 "thresholds": {
 "tx_threshold": 1 //The weight required to initiate a contract account transaction
 }
 }
 },
 "type": 1 // The operation type, 1 indicates the operation to create an account
 }],
 "source_address": "buQs9npaCq9mNFZG18qu88ZcmXYqd6bqpTU3" //The account address to initiate the transaction
 },
 "tx_size": 402 //The transaction byte
 }]
 }
}

If no transaction is found, return the following content:

{
"error_code": 4,//Error code, 4 indicates no transaction
"result":
{
 "total_count": 0,//The number of transactions queried
 "transactions": []
}
}

getTransactionCache

HTTP GET /getTransactionCache?hash=ad545bfc26c440e324076fbbe1d8affbd8a2277858dc35927d425d0fe644e698&limit=100

	CURL command

curl get localhost:36002/getTransactionCache?hash=ad545bfc26c440e324076fbbe1d8affbd8a2277858dc35927d425d0fe644e698&limit=100

	Function

Return a transaction that is submitted successfully but not yet executed.

	Parameters

Parameter	Description
hash	Query with the hash, the unique identifier of the transaction
limit	Query N transactions being processed in the transaction queue

Note: The constraint generated by the above two parameters is a logical OR. If you specify two parameters at the same time, the system will hash the query.

	Return value

The content returned is as follows:

{
"error_code": 0,//Error code, 0 indicates the query is successful
"result": {
 "total_count": 1,//The total transactions
 "transactions": [//The transaction list
 {
 "hash": "a336c8f4b49c8b2c5a6c68543368ed3b450b6138a9f878892cf982ffb6fe234e",//The transaction hash
 "incoming_time": 1521013029435154,//When the transaction enters the cache queue
 "signatures": [//The signature list
 {
 "public_key": "b001882b9d1b5e7019f163d001c85194cface61e294483710f5e66ef40a4d387f5fcb0166f4f",//Public key
 "sign_data": "c5885144ffccb0b434b494271258e846c30a4551036e483822ee2b57400576e9e700e8960eb424764d033a2e73af6e6a2bfa5da390f71161732e13beee206107" //Data signed
 }
],
 "status": "processing",//The transaction status
 "transaction": {//Transaction content
 "fee_limit": 100000,//The maximum fee provided for this transaction, in MO
 "gas_price": 1000,//The price of gas, in MO
 "nonce": 2,//The sequence number of the transaction in the account
 "operations": [//The operation list
 {
 "create_account": {//The operation to create an account
 "dest_address": "buQWufKdVicxRAqmQs6m1Z9QuFZG2W7LMsi2",//The address of the target account
 "init_balance": 300000,//The initial BUs of the target account, in MO
 "priv": {//The privilege of the target account
 "master_weight": 1,//The weight of the target account
 "thresholds": {
 "tx_threshold": 2 //The weight required to initiate a transaction for the target account
 }
 }
 },
 "type": 1　// The operation type, 1 indicates the operation to create an account
 }
],
 "source_address": "buQBDf23WtBBC8GySAZHsoBMVGeENWzSRYqB"// The account address to initiate the transaction
 }
 }
]
}
}

If no transaction is found, return the following content:

{
"error_code": 4,//Error code, 4 indicates no transaction is queried
"result":
{
 "total_count": 0,//The number of transactions queried
 "transactions": []
}
}

getLedger

HTTP GET /getLedger?seq=xxxx&with_validator=true&with_consvalue=true&with_fee=true

	CURL命令

curl get localhost:36002/getLedger?seq=6&with_validator=true&with_consvalue=true&with_fee=true

	Function

Return information about block header.

	Parameters

Parameter	Description
seq	The serial number of the ledger. If not filled, return the current ledger
with_validator	By default is false and the list of verification nodes is not displayed
with_consvalue	The default is false, and no consensus value is displayed
with_fee	The default is false, and the cost configuration is not displayed
with_block_reward	The default is false, and no block rewards and verification node rewards are displayed

	Return value

Return the content as follows:

{
"error_code" : 0,//Error code, 0 indicates success
"result" : {
 "block_reward" : 800000000,//Block reward, in MO
 "consensus_value" : {//Consensus content
 "close_time" : 1524031260097214,//When the consensus is finished
 "ledger_seq" : 6,//The block height
 "previous_ledger_hash" : "ef329c7ed761e3065ab08f9e7672fd5f4e3ddd77b0be35598979aff8c21ada9b",//The hash of the previous block
 "previous_proof" : "0ac1010a2c080110022a26080310052220432dde2fd32a2a66da77647231821c87958f56c303bd08003633952d384eb0b61290010a4c623030316435363833363735303137666662633332366538666232303738653532316566383435373234363236353339356536383934633835323434656566643262666130386635393862661240deeb9b782410f0f86d897006cac8ad152e56e4f914e5d718706de84044ef98baef25512a337865772641d57090b5c77e9e2149dbd41910e8d6cd85c3387ea708",//The certificate of the previous block
 "previous_proof_plain" : {//The content of the previous block certificate
 "commits" : [
 {
 "pbft" : {
 "commit" : {
 "sequence" : 5,//The serial number of the block
 "value_digest" : "432dde2fd32a2a66da77647231821c87958f56c303bd08003633952d384eb0b6",//Summary
 "view_number" : 3 //The serial number of the view
 },
 "round_number" : 1,
 "type" : 2 //Type
 },
 "signature" : {//The signature of the node
 "public_key" : "b001d5683675017ffbc326e8fb2078e521ef8457246265395e6894c85244eefd2bfa08f598bf",//Public key
 "sign_data" : "deeb9b782410f0f86d897006cac8ad152e56e4f914e5d718706de84044ef98baef25512a337865772641d57090b5c77e9e2149dbd41910e8d6cd85c3387ea708"　//Data signed
 }
 }
]
 },
 "txset" : {//Transaction set
 "txs" : [//The transaction list
 {
 "signatures" : [//The signature list
 {
 "public_key" : "b00180c2007082d1e2519a0f2d08fd65ba607fe3b8be646192a2f18a5fa0bee8f7a810d011ed",//Public key
 "sign_data" : "27866d70a58fc527b1ff1b4a693b8034b0078fc7ac7591fb05679abe5ca660db5c372922bfa8f26e76511e2c33386306ded7593874a6aec5baeeaddbd2012f06" //Data signed
 }
],
 "transaction" : {//Transaction content
 "fee_limit" : 10000000000,//The maximum fee provided for this transaction, in MO
 "gas_price" : 1000,//The price of gas, in MO
 "nonce" : 1,//The sequence number of the transaction in the account
 "operations" : [//The operation list
 {
 "create_account" : {//The operation to create an account
 "dest_address" : "buQBAfoMfXZVPpg9DaabMmM2EwUnfoVsTSVV",//The target account
 "init_balance" : 10000000,//The initial BUs of the target account, in MO
 "priv" : {//The privilege of the target account
 "master_weight" : 1,//The weight owned by the target account
 "thresholds" : {
 "tx_threshold" : 1 //The weight required to initiate a transaction for the target account
 }
 }
 },
 "type" : 1 //The operation type, 1 indicates the operation is to create an account
 },
 {
 "create_account" : {
 "dest_address" : "buQj8UyKbN3myVSerLDVXVXH47vWXfqtxKLm",
 "init_balance" : 10000000,
 "priv" : {
 "master_weight" : 1,
 "thresholds" : {
 "tx_threshold" : 1
 }
 }
 },
 "type" : 1
 }
],
 "source_address" : "buQs9npaCq9mNFZG18qu88ZcmXYqd6bqpTU3"
 }
 },
 {
 "signatures" : [
 {
 "public_key" : "b00180c2007082d1e2519a0f2d08fd65ba607fe3b8be646192a2f18a5fa0bee8f7a810d011ed",
 "sign_data" : "fb7d9d87f4c9140b6e19a199091c6871e2380ad8e8a8fcada9b42a2911057111dc796d731f3f887e600aa89cc8692300f980723298a93b91db711155670d3e0d"
 }
],
 "transaction" : {
 "fee_limit" : 10000000000,
 "gas_price" : 1000,
 "nonce" : 2,
 "operations" : [
 {
 "create_account" : {
 "dest_address" : "buQntAvayDWkAhPh6CSrTWbiEniAL2ys5m2p",
 "init_balance" : 10000000,
 "priv" : {
 "master_weight" : 1,
 "thresholds" : {
 "tx_threshold" : 1
 }
 }
 },
 "type" : 1
 },
 {
 "create_account" : {
 "dest_address" : "buQX5X9y59zbmqyFgFPQPcyUPcPnvwsLatsq",
 "init_balance" : 10000000,
 "priv" : {
 "master_weight" : 1,
 "thresholds" : {
 "tx_threshold" : 1
 }
 }
 },
 "type" : 1
 }
],
 "source_address" : "buQs9npaCq9mNFZG18qu88ZcmXYqd6bqpTU3"
 }
 }
]
 }
 },
 "fees" : {//The fee standard of blocks
 "base_reserve" : 10000000,//The minimum BU in the account, in MO
 "gas_price" : 1000 //The price of gas, in MO
 },
 "header" : {//The block header
 "account_tree_hash" : "6aca37dfe83f213942b21d02618b989619cfd7c0e67a8a14b0f7599dd4010aad",//The hash value of the account tree
 "close_time" : 1524031260097214,//When the block is generated
 "consensus_value_hash" : "14a65d69f619395135da2ff98281d5707494801f12184a4318b9a76383e651a8",//The hash value of onsensus content
 "fees_hash" : "916daa78d264b3e2d9cff8aac84c943a834f49a62b7354d4fa228dab65515313",//The hash value of the fee standard
 "hash" : "2cf378b326ab0026625c8d036813aef89a0b383e75055b80cb7cc25a657a9c5d",//The hash value of the block
 "previous_hash" : "ef329c7ed761e3065ab08f9e7672fd5f4e3ddd77b0be35598979aff8c21ada9b",//The hash value of the previous block
 "seq" : 6,//The block height
 "tx_count" : 2,//The total transactions
 "validators_hash" : "d857aa40ecdb123415f893159321eb223e4dbc11863daef86f35565dd1633316",//The hash value of the validation node list
 "version" : 1000 //The block version
 },
 "validators" : [//The validation node list
 {
 "address" : "buQhmPKU1xTyC3n7zJ8zLQXtuDJmM2zTrJey" //The address of the validation node
],
 "validators_reward" : {//The reward of the validation node
 "buQhmPKU1xTyC3n7zJ8zLQXtuDJmM2zTrJey" : 800000000 //The reward of the validation node
 }
 }
 }

Return the following content if no ledger is queried:

{
"error_code" : 4,
"result" : null
}

getTransactionBlob

HTTP POST /getTransactionBlob

	CURL命令

curl localhost:26002/getTransactionBlob -X POST -d "{\"source_address\":\"buQs9npaCq9mNFZG18qu88ZcmXYqd6bqpTU3\",\"nonce\":1,\"fee_limit\":100000,\"gas_price\":1000,\"operations\":[{\"type\":1,\"create_account\":{\"dest_address\":\"buQts6DfT5KavtV94JgZy75H9piwmb7KoUWg\",\"metadatas\":[{\"key\":\"hello\",\"value\":\"这是创建账号的过程中设置的一个metadata\"}],\"priv\":{\"thresholds\":{\"tx_threshold\":1}},\"contract\":{\"payload\":\"function main(inputStr){\n /*这是合约入口函数*/ }\"}}}]}"

	Function

Return the transaction hash and the hexadecimal string after the transaction is serialized.

	The body is in json format

Here body transfer is the transaction data. For specific json format and parameters, see Transactions. Example：

{
 "source_address": "buQs9npaCq9mNFZG18qu88ZcmXYqd6bqpTU3",
 "nonce": 1,
 "fee_limit": 100000,
 "gas_price": 1000,
 "operations": [{
 "type": 1,
 "create_account": {
 "dest_address": "buQts6DfT5KavtV94JgZy75H9piwmb7KoUWg",
 "metadatas": [{
 "key": "hello",
 "value": "这是创建账号的过程中设置的一个metadata"
 }],
 "priv": {
 "thresholds": {
 "tx_threshold": 1
 }
 },
 "contract": {
 "payload": "function main(inputStr){\n /*这是合约入口函数*/ }"
 }
 }
 }]
}

	Return value

{
 "error_code": 0,//The serialized transaction error code
 "error_desc": "",//Description for the error
 "result": {
 "hash": "7ea4b61b86c5e2248e1ec24a8c04568e6b17c7121fb86f648b42b73bd3bada5d",//The transaction hash
 "transaction_blob": "0a2462755173396e70614371396d4e465a473138717538385a636d5859716436627170545533100118a08d0620e8073aad01080122a8010a24627551747336446654354b6176745639344a675a79373548397069776d62374b6f555767123a123866756e6374696f6e206d61696e28696e707574537472297b0a202f2ae8bf99e698afe59088e7baa6e585a5e58fa3e587bde695b02a2f207d1a041a020801223e0a0568656c6c6f1235e8bf99e698afe5889be5bbbae8b4a6e58fb7e79a84e8bf87e7a88be4b8ade8aebee7bdaee79a84e4b880e4b8aa6d65746164617461" //The hexadecimal representation after serializing the transaction
 }
}

submitTransaction

HTTP POST /submitTransaction

	CURL命令

curl localhost:36002/submitTransaction -X POST -d "{\"items\":[{\"transaction_blob\":\"0a2e61303032643833343562383964633334613537353734656234393736333566663132356133373939666537376236100122b90108012ab4010a2e61303032663836366337663431356537313934613932363131386363353565346365393939656232396231363461123a123866756e6374696f6e206d61696e28696e707574537472297b0a202f2ae8bf99e698afe59088e7baa6e585a5e58fa3e587bde695b02a2f207d1a06080a1a020807223e0a0568656c6c6f1235e8bf99e698afe5889be5bbbae8b4a6e58fb7e79a84e8bf87e7a88be4b8ade8aebee7bdaee79a84e4b880e4b8aa6d65746164617461\",\"signatures\":[{\"sign_data\":\"2f6612eaefbdadbe792201bb5d1e178aff118dfa0a640edb2a8ee91933efb97c4fb7f97be75195e529609a4de9b890b743124970d6bd7072b7029cfe7683ba2d\",\"public_key\":\"b00204e1c7dddc36d3153adcaa451b0ab525d3def48a0a10fdb492dc3a7263cfb88e80ee974ca4da0e1f322aa84ff9d11340c764ea756ad148e979c121619e9fe52e9054\"},{\"sign_data\":\"90C1CD2CD371F581EB8EACDA295C390D62C19FE7F080FB981584FB5F0BAB3E293B613C827CB1B2E063E5783FFD7425E1DEC0E70F17C1227FBA5997A72865A30A\",\"public_key\":\"b00168eceea7900ddcb8f694161755f98590ba7944de3bfe339610fe0cacc10a18372dcbf71b\"}]}]}"

	Function

Send the serialized transaction and signature list to the blockchain.

	The body is in json format

{
 "items" : [{//The transaction package list
 "transaction_blob" : "0a2e61303032643833343562383964633334613537353734656234393736333566663132356133373939666537376236100122b90108012ab4010a2e61303032663836366337663431356537313934613932363131386363353565346365393939656232396231363461123a123866756e6374696f6e206d61696e28696e707574537472297b0a202f2ae8bf99e698afe59088e7baa6e585a5e58fa3e587bde695b02a2f207d1a06080a1a020807223e0a0568656c6c6f1235e8bf99e698afe5889be5bbbae8b4a6e58fb7e79a84e8bf87e7a88be4b8ade8aebee7bdaee79a84e4b880e4b8aa6d65746164617461",//The hexadecimal representation after serializing the transaction
 "signatures" : [{//The first signature
 "sign_data" : "2f6612eaefbdadbe792201bb5d1e178aff118dfa0a640edb2a8ee91933efb97c4fb7f97be75195e529609a4de9b890b743124970d6bd7072b7029cfe7683ba2d",//Data signed
 "public_key" : "b00204e1c7dddc36d3153adcaa451b0ab525d3def48a0a10fdb492dc3a7263cfb88e80ee974ca4da0e1f322aa84ff9d11340c764ea756ad148e979c121619e9fe52e9054"//Public key
 }, {//The second signature
 "sign_data" : "90C1CD2CD371F581EB8EACDA295C390D62C19FE7F080FB981584FB5F0BAB3E293B613C827CB1B2E063E5783FFD7425E1DEC0E70F17C1227FBA5997A72865A30A",//Data signed
 "public_key" : "b00168eceea7900ddcb8f694161755f98590ba7944de3bfe339610fe0cacc10a18372dcbf71b"//Public key
 }
]
 }
]
}

	Keywords in json

Parameter	Type	Description
transaction_blob	string	The hexadecimal format after the transaction is serialized
sign_data	string	Data signed, in hexadecimal format. Its value is the signature data obtained by signing (transaction) the transaction_blob. **Note**: when signing, you must first convert `transaction_blob` into byte stream and then sign, and do not directly sign hexadecimal string
public_key	string	The public key, in hexadecimal format

	Return value

Note: The transaction is submitted and executed successfully.

{
"error_code": 0,//The result of the submission
"error_desc": "",//Description for the error
"result": {
 "hash": "8e97ab885685d68b8fa8c7682f77ce17a85f1b4f6c8438eda8ec955890919405",//The transaction hash
}
}

callContract

HTTP POST /callContract

	CURL命令

curl localhost:36002/callContract -X POST -d "{\"contract_address\":\"\",\"code\":\"\\\"use strict\\\";log(undefined);function query() { return 1; }\",\"input\":\"{}\",\"contract_balance\":\"100009000000\",\"fee_limit\":100000000000000000,\"gas_price\":1000,\"opt_type\":2,\"source_address\":\"\"}"

	Function

In the design of the smart contract module, we provide a sandbox environment for debugging contracts, and the state of the blockchain and contract is not changed during debugging. On BuChain, we provide you with the callContract interface to help you debug the smart contract. The smart contract can be stored in the public chain, or it can be tested by uploading the local contract code by parameters. The callContract interface will not be sent. Therefore, there is no need to pay for the transaction fee.

	The body is in json format

{
 "contract_address" : "",//Optional, the smart contract address
 "code" : "\"use strict\";log(undefined);function query() { return 1; }",//Optional, the smart contract code
 "input" : "{}",//Optional, pass parameters to the contract to be called
 "contract_balance" : "100009000000",//The initial BU balance assigned to the contract
 "fee_limit" : 100000000000000000,//The transaction fee
 "gas_price": 1000,//Optional, the gas price
 "opt_type" : 2,//Optional, the operation type
 "source_address" : "" //Optional, the original address of the simulated contract call
}

	Keywords in json

Keyword	Type	Description
contract_address	string	The smart contract address that is called, or an error is returned if it is not quired from the database. If you left it blank, the content of the **code** field is read by default.
code	string	The contract code to be debugged, if the `contract_address` is empty, the **code** field is used, and if the **code** field is also empty, an error is returned
input	string	Pass the parameters to the contract to be called
contract_balance	string	The initial BU balance assigned to the contract
fee_limit	int64	The transaction fee
gas_price	int64	The price of gas
opt_type	int	0: call the contract's read-write interface `init`, 1: call the contract's read-write interface `main`, 2: call the read-only interface `query`
source_address	string	Simulate the original address of the contract called

	Return value

{
 "error_code" : 0,//The result of the call, 0 means success
 "error_desc" : "",//Description of error code
 "result" : {
 "logs" : {
 "0-buQVkReBYUPUYHBinVDrrb9FQRpo49b9YRXq" : null　//Not used any more
 },
 "query_rets" : [
 {
 "result" : {
 "type" : "bool", //　Return the name of the variable
 "value" : false // The value of the variable is false
 }
 }
],
 "stat" : {
 "apply_time" : 6315,//Execution time
 "memory_usage" : 886176,//Memory usage
 "stack_usage": 2564,//Stack usage
 "step" : 3 //Frequency of execution
 },
 "txs" : null　//Transaction set
 }
}

testTransaction

HTTP POST /testTransaction

	CURL命令

curl localhost:36002/testTransaction -X POST -d "{\"contract_address\":\"\",\"code\":\"\\\"use strict\\\";log(undefined);function query() { return 1; }\",\"input\":\"{}\",\"contract_balance\":\"100009000000\",\"fee_limit\":100000000000000000,\"gas_price\":1000,\"opt_type\":2,\"source_address\":\"\"}"

	Function

The evaluation fee does not change the evaluation based on the account balance. The original account and the target account involved in the transaction must exist in the system, but the target address for creating the account does not have to be in the system.

	The body is in json format

{
 "items": [
 {
 "transaction_json": {
 "fee_limit": 99999999700110000,
 "gas_price": 1,
 "nonce": 1,
 "operations": [
 {
 "pay_coin": {
 "amount": 299890000,
 "dest_address": "buQkBDTfe4tx2Knw9NDKyntVmsYvYtHmAiE7"
 },
 "type": 7
 }
],
 "source_address": "buQBDf23WtBBC8GySAZHsoBMVGeENWzSRYqB"
 },
 "signature_number":1
 }
]
}

	Keywords in json

Keyword	Type	Description
source_address	string	The original address of the simulated transaction
nonce	int64	Add 1 based on the original account number
signature_number	int64	The number of signatures, the default is 1; the system will be set to 1 if not filled
metadata	string	Optional, the number of signatures
operations	array	Operation list. The payload of this transaction, which is what the transaction wants to do. See [Operations](#operations) for details

	Return value

{
 "error_code": 0,
 "error_desc": "",
 "result": {
 "hash": "7f0d9de23d6d8f2964a1efe4a458e02e43e47f60f3c22bb132b676c54a44ba04",
 "logs": null,
 "query_rets": null,
 "stat": null,
 "txs": [
 {
 "actual_fee": 264,
 "gas": 264,
 "transaction_env": {
 "transaction": {
 "fee_limit": 99999999700110000,
 "gas_price": 1,
 "nonce": 1,
 "operations": [
 {
 "pay_coin": {
 "amount": 299890000,
 "dest_address": "buQkBDTfe4tx2Knw9NDKyntVmsYvYtHmAiE7"
 },
 "type": 7
 }
],
 "source_address": "buQBDf23WtBBC8GySAZHsoBMVGeENWzSRYqB"
 }
 }
 }
]
 }
}

Example

Next, we use buQoP2eRymAcUm3uvWgQ8RnjtrSnXBXfAzsV to initiate a transaction. This transaction has only one operation, that is, creating a new account buQts6DfT5KavtV94JgZy75H9piwmb7KoUWg, and completing the account creation process by transferring BUs to the new account.

Assembling Transactions

Referring to the structure of Transactions, the following three steps are required:

	 Obtaining the account nonce value

	Assembling operations

	Generating transaction objects

Obtaining the Account Nonce Value

In the structure of the transaction, it is necessary to confirm the serial number of the transaction in the transaction initiation account. Therefore, it is necessary to obtain the nonce value of the transaction initiation account through the getAccountBase interface, and increase the nonce value by 1 based on its nonce value.

The interface call is as follows:

HTTP GET localhost:36002/getAccountBase?address=buQoP2eRymAcUm3uvWgQ8RnjtrSnXBXfAzsV
or
curl get localhost:36002/getAccountBase?address=buQoP2eRymAcUm3uvWgQ8RnjtrSnXBXfAzsV

The following content is returned:

{
 "error_code" : 0,
 "result" : {
 "address" : "buQoP2eRymAcUm3uvWgQ8RnjtrSnXBXfAzsV",
 "assets_hash" : "ad67d57ae19de8068dbcd47282146bd553fe9f684c57c8c114453863ee41abc3",
 "balance" : 96545066100,
 "metadatas_hash" : "ad67d57ae19de8068dbcd47282146bd553fe9f684c57c8c114453863ee41abc3",
 "nonce" : 20,
 "priv" : {
 "master_weight" : 1,
 "thresholds" : {
 "tx_threshold" : 1
 }
 }
 }
}

Assembling Operations

According to the structure of Operations, Operation Codes, and Transferring BU Assets structure, the json format of the generation operation is as follows:

{
 "type": 7,
 "pay_coin": {
 "dest_address": "buQts6DfT5KavtV94JgZy75H9piwmb7KoUWg",
 "amount": 10000000,
 "input": ""
 }
}

Generating Transaction Objects

In Obtaining the Account Nonce Value, the nonce value is 20, then the serial number of the new transaction is 21. According to the operation structure obtained in the Assembling Operations, the json format of the transaction is generated as follows:

{
 "source_address": "buQoP2eRymAcUm3uvWgQ8RnjtrSnXBXfAzsV",
 "nonce": 21,
 "fee_limit":1000000,
 "gas_price":1000,
 "operations": [{
 "type": 7,
 "pay_coin": {
 "dest_address": "buQts6DfT5KavtV94JgZy75H9piwmb7KoUWg",
 "amount": 10000000,
 "input": ""
 }
 }]
}

Serializing Transaction Data

This is done through the getTransactionBlob interface.

The interface call is as follows:

HTTP POST localhost:36002/getTransactionBlob
or
curl localhost:36002/getTransactionBlob -X POST -d "{\"source_address\":\"buQoP2eRymAcUm3uvWgQ8RnjtrSnXBXfAzsV\",\"nonce\":21,\"fee_limit\":1000000,\"gas_price\":1000,\"operations\":[{\"type\":7,\"pay_coin\":{\"dest_address\":\"buQts6DfT5KavtV94JgZy75H9piwmb7KoUWg\",\"amount\":10000000,\"input\":\"\"}}]}"

Return the following content:

{
 "error_code": 0,
 "error_desc": "",
 "result": {
 "hash": "3f90865062d7737904ea929cbde7c45e831e4972cf582b69a0198781c452e9e1",
 "transaction_blob": "0a246275516f50326552796d4163556d33757657675138526e6a7472536e58425866417a7356101518c0843d20e8073a2f0807522b0a24627551747336446654354b6176745639344a675a79373548397069776d62374b6f5557671080ade204"
 }
}

Signing Signatures

Signing signatures is to sign the value of transaction_blob in getTransactionBlob with the private key of buQoP2eRymAcUm3uvWgQ8RnjtrSnXBXfAzsV and generate a public key. For details, please refer to keypair.
The resulting signature data is as follows:

［{
 "sign_data": "ACF64A7D41244AFC4465DBC225D616E0499776140D46BA7A84B1B6B263DAF1422904137E0181301F480F7114EC7CC5BBE4763EDA981E565EF81EF7705596CB0B",
 "public_key": "b00168eceea7900ddcb8f694161755f98590ba7944de3bfe339610fe0cacc10a18372dcbf71b"
}］

Submitting Transaction Data

According to the signature data obtained by Signing Signatures and the transaction_blob obtained by Serializing Transaction Data, the json format of the body in the submitTransaction interface is generated as follows:

{
 "items" : [{
 "transaction_blob" : "0a246275516f50326552796d4163556d33757657675138526e6a7472536e58425866417a7356101518c0843d20e8073a2f0807522b0a24627551747336446654354b6176745639344a675a79373548397069776d62374b6f5557671080ade204",
 "signatures" : [{
 "sign_data" : "ACF64A7D41244AFC4465DBC225D616E0499776140D46BA7A84B1B6B263DAF1422904137E0181301F480F7114EC7CC5BBE4763EDA981E565EF81EF7705596CB0B",
 "public_key" : "b00168eceea7900ddcb8f694161755f98590ba7944de3bfe339610fe0cacc10a18372dcbf71b"
 }]
 }]
}

The interface call is as follows:

HTTP POST localhost:36002/submitTransaction
or
curl localhost:36002/submitTransaction -X POST -d "{\"items\":[{\"transaction_blob\":\"0a246275516f50326552796d4163556d33757657675138526e6a7472536e58425866417a7356101518c0843d20e8073a2f0807522b0a24627551747336446654354b6176745639344a675a79373548397069776d62374b6f5557671080ade204\",\"signatures\":[{\"sign_data\":\"ACF64A7D41244AFC4465DBC225D616E0499776140D46BA7A84B1B6B263DAF1422904137E0181301F480F7114EC7CC5BBE4763EDA981E565EF81EF7705596CB0B\",\"public_key\":\"b00168eceea7900ddcb8f694161755f98590ba7944de3bfe339610fe0cacc10a18372dcbf71b\"}]}]}"

Return the following content:

{
 "results": [
 {
 "error_code": 0,
 "error_desc": "",
 "hash": "3f90865062d7737904ea929cbde7c45e831e4972cf582b69a0198781c452e9e1"
 }
],
 "success_count": 1
}

Querying the Transaction Result

According to the hash obtained by the submitTransaction interface, confirm whether the transaction is executed successfully by the getTransactionHistory interface (check whether error_code under transactions is equal to 0).

The interface call is as follows:

HTTP GET localhost:36002/getTransactionHistory?hash=3f90865062d7737904ea929cbde7c45e831e4972cf582b69a0198781c452e9e1
or
curl get localhost:36002/getTransactionHistory?hash=3f90865062d7737904ea929cbde7c45e831e4972cf582b69a0198781c452e9e1

Return the following result:

{
 "error_code": 0,//The transaction is queried
 "result": {
 "total_count": 1,
 "transactions": [
 {
 "actual_fee": 245000,
 "close_time": 1552125554325904,
 "error_code": 0,//The transaction is executed successfully
 "error_desc": "",
 "hash": "3f90865062d7737904ea929cbde7c45e831e4972cf582b69a0198781c452e9e1",
 "ledger_seq": 2688046,
 "signatures": [
 {
 "public_key": "b00168eceea7900ddcb8f694161755f98590ba7944de3bfe339610fe0cacc10a18372dcbf71b",
 "sign_data": "acf64a7d41244afc4465dbc225d616e0499776140d46ba7a84b1b6b263daf1422904137e0181301f480f7114ec7cc5bbe4763eda981e565ef81ef7705596cb0b"
 }
],
 "transaction": {
 "fee_limit": 1000000,
 "gas_price": 1000,
 "nonce": 21,
 "operations": [
 {
 "pay_coin": {
 "amount": 10000000,
 "dest_address": "buQts6DfT5KavtV94JgZy75H9piwmb7KoUWg"
 },
 "type": 7
 }
],
 "source_address": "buQoP2eRymAcUm3uvWgQ8RnjtrSnXBXfAzsV"
 },
 "tx_size": 245
 }
]
 }
}

Error Codes

The error code is composed of two parts:

	error_code : Error code, approximate error classification

	error_desc : Error Description, which can accurately find the error specific information from the error description

The error list is as follows:

	Error code
	Name
	Description

	0
	ERRCODE_SUCCESS
	Successful operation

	1
	ERRCODE_INTERNAL_ERROR
	Inner service defect

	2
	ERRCODE_INVALID_PARAMETER
	Parameters error

	3
	ERRCODE_ALREADY_EXIST
	Objects already exist, such as repeated transactions submitted

	4
	ERRCODE_NOT_EXIST
	Objects do not exist, such as null account, transactions and blocks etc

	5
	ERRCODE_TX_TIMEOUT
	Transactions expired. It means the transaction has been removed from the buffer, but it still has probability to be executed

	7
	ERRCODE_MATH_OVERFLOW
	Math calculation is overflown

	20
	ERRCODE_EXPR_CONDITION_RESULT_FALSE
	The expression returns false. It means the TX failed to be executed currently, but it still has probability to be executed in the following blocks

	21
	ERRCODE_EXPR_CONDITION_SYNTAX_ERROR
	The syntax of the expression returns is false. It means that the TX must fail

	90
	ERRCODE_INVALID_PUBKEY
	Invalid public key

	91
	ERRCODE_INVALID_PRIKEY
	Invalid private key

	92
	ERRCODE_ASSET_INVALID
	Invalid assets

	93
	ERRCODE_INVALID_SIGNATURE
	The weight of the signature does not match the threshold of the operation

	94
	ERRCODE_INVALID_ADDRESS
	Invalid address

	97
	ERRCODE_MISSING_OPERATIONS
	Absent operation of TX

	98
	ERRCODE_TOO_MANY_OPERATIONS
	Over 100 operations in a single transaction

	99
	ERRCODE_BAD_SEQUENCE
	Invalid sequence or nonce of TX

	100
	ERRCODE_ACCOUNT_LOW_RESERVE
	Low reserve in the account

	101
	ERRCODE_ACCOUNT_SOURCEDEST_EQUAL
	Sender and receiver accounts are the same

	102
	ERRCODE_ACCOUNT_DEST_EXIST
	The target account already exists

	103
	ERRCODE_ACCOUNT_NOT_EXIST
	Accounts do not exist

	104
	ERRCODE_ACCOUNT_ASSET_LOW_RESERVE
	Low reserve in the account

	105
	ERRCODE_ACCOUNT_ASSET_AMOUNT_TOO_LARGE
	Amount of assets exceeds the limitation (int64)

	106
	ERRCODE_ACCOUNT_INIT_LOW_RESERVE
	Insufficient initial reserve for account creation

	111
	ERRCODE_FEE_NOT_ENOUGH
	Low transaction fee

	114
	ERRCODE_OUT_OF_TXCACHE
	TX buffer is full

	120
	ERRCODE_WEIGHT_NOT_VALID
	Invalid weight

	121
	ERRCODE_THRESHOLD_NOT_VALID
	Invalid threshold

	144
	ERRCODE_INVALID_DATAVERSION
	Invalid data version of metadata

	146
	ERRCODE_TX_SIZE_TOO_BIG
	TX exceeds upper limitation

	151
	ERRCODE_CONTRACT_EXECUTE_FAIL
	Failure in contract execution

	152
	ERRCODE_CONTRACT_SYNTAX_ERROR
	Failure in syntax analysis

	153
	ERRCODE_CONTRACT_TOO_MANY_RECURSION
	The depth of contract recursion exceeds upper limitation

	154
	ERRCODE_CONTRACT_TOO_MANY_TRANSACTIONS
	the TX submitted from the contract exceeds upper limitation

	155
	ERRCODE_CONTRACT_EXECUTE_EXPIRED
	Contract expired

	160
	ERRCODE_TX_INSERT_QUEUE_FAIL
	Failed to insert the TX into buffer

 id: api_websocket title: BUMO Websocket sidebar_label: Websocket

id: api_websocket
title: BUMO Websocket
sidebar_label: Websocket

Overview

What is Protocol Buffer3

BUMO Blockchain serializes data with protocol buffer 3, which is a general serialization protocol launched by Google. Click this proto3 [https://developers.google.com/protocol-buffers/docs/proto3] to get more information. All the data format we use are under the dir: src\proto. Other data with reference to transaction, block ,account are in the chain.proto file.

Protocol Buffer3

This section provides examples of proto scripts, as well as proto source code generated by cpp, java, javascript, pyton, object-c, and php. For more information, please refer to the proto [https://github.com/bumoproject/bumo/tree/develop/src/proto].

Description of the directory structure in the above link is shown below:

	cpp: C++ source code [https://github.com/bumoproject/bumo/tree/master/src/proto/cpp]

	io: Java test program [https://github.com/bumoproject/bumo/tree/master/src/proto/io]

	go: Go test program [https://github.com/bumoproject/bumo/tree/master/src/proto/go]

	js: Javascript test program [https://github.com/bumoproject/bumo/tree/master/src/proto/js]

	Python: Python test program [https://github.com/bumoproject/bumo/tree/master/src/proto/python]

	ios: Object-c test program [https://github.com/bumoproject/bumo/tree/master/src/proto/ios]

	php: PHP test program [https://github.com/bumoproject/bumo/tree/master/src/proto/php]

websocket

BUMO Blockchain offers websocket API. You can find the"wsserver" objecct in the downloaded dir: /config/bumo.json , which assign the service port.

"wsserver":
{
 "listen_address": "0.0.0.0:36003"
}

Port Configuration

	network type
	WebSocket

	mainnet
	16003

	testnet
	26003

	beta version
	36003

Perform Transaction

	Fill in the transaction → Transaction(Details for :Transactions)

	Serializing the transaction (protocol buffer 3) to bytes stream → transaction_blob，Transaction Object has the serialization method, which is called to get the transaction_blob。

	Signing the transaction_blob with private key skey, and get the sign_data. The public key of skey is pkey。(Details for Keypair Guide)

	Submitting transaction, And you can get the message of whether the execution is successful or not through the response message.(Details for Submit Transaction)

Transactions

	In protobuf format

message Transaction {
 enum Limit{
 UNKNOWN = 0;
 OPERATIONS = 1000;
 };
 string source_address = 1;
 int64 nonce = 2;
 int64 fee_limit = 3;
 int64 gas_price =4;
 int64 ceil_ledger_seq = 5;
 bytes metadata = 6;
 repeated Operation operations = 7;
 int64 chain_id = 8;
}

	Keywords in protobuf

Keyword	Type	Description
source_address	string	The source account of the transaction, which is the account of the transaction initiator. When the transaction is successful, the nonce field of the source account will be automatically incremented by 1. The nonce in the account number is the number of transactions executed by this account
nonce	int64	Its value must be equal to the current nonce+1 of the source account of the transaction, which is designed to prevent replay attacks. If you want to know how to query the nonce of an account, you can refer to the [getAccount](../api_http#getaccount) interface in HTTP. If the account queried does not display the nonce value, the current nonce of the account is 0.
fee_limit	int64	The maximum fee that can be accepted for this transaction. The transaction will first charge a fee based on this fee. If the transaction is executed successfully, the actual cost will be charged, otherwise the fee for this field will be charged. The unit is MO, 1 BU = 10^8 MO
gas_price	int64	It is used to calculate the handling fee for each operation and also involved in the calculation of the transaction byte fee. The unit is MO, 1 BU = 10^8 MO
ceil_ledger_seq	int64	Optional, the block height restriction for this transaction, which is also an advanced feature
operations	array	The operation list. The payload of this transaction, which is what the transaction wants to do. See [Operations](#operations) for more details
metadata	string	Optional, a user-defined field that can be left blank or filled in a note

Operations

The corresponding operations in the protobuf structure of the transaction can contain one or more operations.

	In protobuf format

message Operation {
 enum Type {
 UNKNOWN = 0;
 CREATE_ACCOUNT 			= 1;
 ISSUE_ASSET 			= 2;
 PAY_ASSET = 3;
 SET_METADATA			= 4;
 SET_SIGNER_WEIGHT		= 5;
 SET_THRESHOLD			= 6;
 PAY_COIN = 7;
 LOG						= 8;
 SET_PRIVILEGE			= 9;
 };
 Type type = 1;
 string source_address = 2;
 bytes metadata	= 3;

 OperationCreateAccount		create_account 	 = 4;
 OperationIssueAsset			issue_asset 	 = 5;
 OperationPayAsset			pay_asset 		 = 6;
 OperationSetMetadata		set_metadata	 = 7;
 OperationSetSignerWeight	set_signer_weight = 8;
 OperationSetThreshold		set_threshold 	 = 9;
 OperationPayCoin			pay_coin = 10;
 OperationLog				log				 = 11;
 OperationSetPrivilege		set_privilege	 = 12;
}

	Keyword in protobuf

Keyword	Type	Description
type	int	Operation code, different operation codes perform different operations, see [Operation Codes](#operation-codes) for details
source_address	string	Optional, the source account of the operation, that is, the operator of the operation. When not filled in, the default is the same as the source account of the transaction
metadata	string	Optional, a user-defined field that can be left blank or filled in a note
create_account	OperationCreateAccount	The [Creating Accounts](#creating-accounts) operation
issue_asset	OperationIssueAsset	The [Issuing Assets](#issuing-assets) operation
pay_asset	OperationPayAsset	The [Transferring Assets](#transferring-assets) operation
set_metadata	OperationSetMetadata	The [Setting Metadata](#setting-metadata) operation
pay_coin	OperationPayCoin	The [Transferring BU Assets](#transferring-bu-assets) operation
log	OperationLog	The [Recording Logs](#recording-logs) operation
set_privilege	OperationSetPrivilege	The [Setting Privileges](#setting-privileges) operation

Operation Codes

	Operation Code
	Description

	1
	Creating Accounts

	2
	Issuing Assets

	3
	Transferring Assets

	4
	Setting Metadata

	7
	Transferring BU Assets

	8
	Recording Logs

	9
	Setting Privileges

Creating Accounts

The source account creates a new account on the blockchain. Creating Accounts are divided into Creating Normal Accounts and Creating Contract Accounts.

Protobuf format as follow:

// Key-Value pair
message KeyPair{
	string key = 1;
	string value = 2;
	int64 version = 3;
}

// Privilege
message Signer {
	enum Limit{
		SIGNER_NONE = 0;
		SIGNER = 100;
	};
	string address = 1;
	int64 weight = 2;
}
message OperationTypeThreshold{
	Operation.Type type = 1;
	int64 threshold = 2;
}
message AccountThreshold{
	int64 tx_threshold = 1; //required, [-1,MAX(INT64)] -1: indicates no setting
	repeated OperationTypeThreshold type_thresholds = 2;
}
message AccountPrivilege {
	int64 master_weight = 1;
	repeated Signer signers = 2;
	AccountThreshold thresholds = 3;
}

// Contract
message Contract{
 enum ContractType{
		JAVASCRIPT = 0;
	}
	ContractType type = 1;
	string payload = 2;
}

//　Create Account Operation
message OperationCreateAccount{
	string dest_address = 1;
	Contract contract = 2;
	AccountPrivilege priv = 3;
	repeated KeyPair metadatas = 4;	
	int64	init_balance = 5;
	string init_input = 6;
}

Creating Normal Accounts

Note: Both master_weight and tx_threshold must be 1 in the current operation. And only the following keywords are allowed to be initialized.

	Keyword in protobuf

Keyword	Type	Description
————-	——	————————————————————
dest_address	string	The address of the target account. When creating a normal account, it cannot be empty
init_balance	int64	The initial BU value of the target account, in MO, 1 BU = 10^8 MO
master_weight	int64	The master weight of the target account, which ranges [0, MAX(UINT32)]
tx_threshold	int64	The threshold for initiating a transaction below which the transaction cannot be initiated, which ranges ​​[0, MAX(INT64)]

	Query

The account information is queried through the getAccount interface in HTTP.

Creating Contract Accounts

Note: In the current operation, master_weight must be 0 and tx_threshold must be 1. And only the following keywords are allowed to be initialized

	Keyword in protobuf

Keyword	Type	Description
payload	string	The contract code
init_balance	int64	The initial BU value of the target account, in MO, 1 BU = 10^8 MO
init_input	string	Optional, the input parameter of the init function in the contract code
master_weight	int64	The master weight of the target account
tx_threshold	int64	The threshold for initiating a transaction below which it is not possible to initiate a transaction.

	Query

	The account information is queried through the getAccount interface in HTTP.

	Query with the getTransactionHistory interface in HTTP, and the result is as follows:

[
 {
 "contract_address": "buQm5RazrT9QYjbTPDwMkbVqjkVqa7WinbjM", //The contract account
 "operation_index": 0 //The operation index value in the transaction array, 0 means the first transaction
 }
]

Issuing Assets

	Function

The source account of this operation issues a digital asset, and this asset appears in the asset balance of the source account after successful execution.

	In protobuf format

message OperationIssueAsset{
 string code = 1;
 int64 amount = 2;
}

	Keyword in protobuf

Keyword	Type	Description
code	string	The code of the asset to be issued, which ranges [1, 64]
amount	int64	The amount of the asset to be issued, which ranges (0, MAX(int64))

Transferring Assets

Note: If the target account is a contract account, the current operation triggers the contract execution of the target account.

	Function

The source account of this operation transfers an asset to the target account.

	In protobuf format

message AssetKey{
 string issuer = 1;
 string code = 2;
 int32 type = 3;
}
message Asset{
 AssetKey	key = 1;
 int64		amount = 2;
}

//　Pay asset operation
message OperationPayAsset{
 string dest_address = 1;
 Asset asset = 2;
 string input = 3;
}

	Keyword in protobuf

Keyword	Type	Description
dest_address	string	The address of the target account
issuer	string	The address of the issuer
code	string	The asset code which ranges [1, 64]
amount	int64	The amount of the asset which ranges (0,MAX(int64))
input	string	Optionally, if the target account is a contract account, the input will be passed to the argument of the `main` function of the contract code. This setting is invalid if the target account is a normal account

Setting Metadata

	Function

The source account of this operation modifies or adds metadata to the metadata table.

	In protobuf format

message OperationSetMetadata{
 string	key = 1;
 string value = 2;
 int64 	version = 3;
 bool delete_flag = 4;
}

	Keyword in protobuf

Keyword	Type	Description
key	string	The keyword of metadata, which ranges (0, 1024].
value	string	The content of metadata, which ranges [0, 256K].
version	int64	Optional, metadata version number. The default value is *0*. 0: when the value is zero, it means no limit version; >0: when the value is greater than zero, it means the current value version must be this value; <0: when the value is less than zero, it means the value is illegal

Setting Privileges

	Function

Set the weights that the signer has and set the thresholds required for each operation. For details, see Assignment of Control Rights in HTTP.

	In protobuf format

message Signer {
 enum Limit{
 SIGNER_NONE = 0;
 SIGNER = 100;
 };
 string address = 1;
 int64 weight = 2;
}
message OperationTypeThreshold{
 Operation.Type type = 1;
 int64 threshold = 2;
}

//　Set privilege object
message OperationSetPrivilege{
 string master_weight = 1;
 repeated Signer signers = 2;
 string tx_threshold = 3;
 repeated OperationTypeThreshold type_thresholds = 4;
}

	Keywords in protobuf

Keyword	Type	Description
master_weight	string	Optional, by default "", it indicates the master weight of the account. "" : do not set this value; "0": set the master weight to 0; ("0", "MAX(UINT32)"]: set the weight value to this value; Other: illegal
signers	array	Optional, a list of signers that need to operate. By default is an empty object. Empty objects are not set
address	string	The signer's address that needs to operate, which should be in accordance with the address verification rules
weight	int64	Optional, by default is 0. 0: delete the signer; (0, MAX (UINT32)]: set the weight to this value, others: illegal
tx_threshold	string	Optional, by default "", it means the minimum privilege for the account. "", do not set this value; "0": set `tx_threshold` weight to 0; ("0", "MAX(INT64)"]: set the weight value to this value; others: illegal.
type_thresholds	array	Optional, a list of thresholds ​​required for different operations; by default is an empty object. Empty objects are not set
type	int	To indicate a certain operation type (0, 100]
threshold	int64	Optional, by default is 0. 0: delete the type operation; (0, MAX(INT64)]: set the weight value to this value; Other: illegal

Transferring BU Assets

Note: If the target account is a contract account, the current operation triggers the contract execution of the target account.

	Function

Two functions:

	The source account of this operation transfers a BU asset to the target account.

	The source account of this operation creates a new account on the blockchain.

	In protobuf format

message OperationPayCoin{
 string dest_address = 1;
 int64 amount = 2;
 string input = 3;
}

	protobufKeyword

Keyword	Type	Description
dest_address	string	The target account
amount	array	Optional, a list of signers that need to operate. By default is an empty object. Empty objects are not set.
input	string	Optionally, if the target account is a contract account, and the input will be passed to the argument of the `main` function of the contract code. This setting is invalid if the target account is a normal account.

Recording Logs

	Function

The source account of this operation writes the log to the blockchain.

	In protobuf format

message OperationLog{
 string topic = 1;
 repeated string datas = 2;
}

	protobufKeyword

Keyword	Type	Description
topic	string	The log topic and the parameter length is (0,128]
datas	array	The log content. The length of each element is (0,1024]

Websocket Interfaces

The websocket interface of BUMO handles various defined message types.

Message Type

enum ChainMessageType {
	CHAIN_TYPE_NONE = 0;
	CHAIN_HELLO = 10; // response with CHAIN_STATUS = 2;
	CHAIN_TX_STATUS = 11;
	CHAIN_PEER_ONLINE = 12;
	CHAIN_PEER_OFFLINE = 13;
	CHAIN_PEER_MESSAGE = 14;
	CHAIN_SUBMITTRANSACTION = 15;
	CHAIN_LEDGER_HEADER = 16; //bumo notifies the client ledger(protocol::LedgerHeader) when closed
	CHAIN_SUBSCRIBE_TX = 17; //response with CHAIN_RESPONSE
	CHAIN_TX_ENV_STORE = 18;
}

Notification Message Registration

	Function

The client registers the message with the blockchain through the interface, that is, the type of the message that needs to be received (currently the function is unavailable). The version information of the blockchain can only be obtained through this interface.

	Request Message Type

CHAIN_HELLO

	Request Data Object

message ChainHello {
	repeated ChainMessageType api_list = 1;	//By default, enable all apis
	int64	timestamp = 2;
}

	Request Parameter

	Parameter
	Type
	Description

	api_list
	array

 id: asset_issuance_development_guide_for_java title: BUMO Asset Issuance Development Guide for Java sidebar_label: Asset Issuance Development for Java

id: asset_issuance_development_guide_for_java
title: BUMO Asset Issuance Development Guide for Java
sidebar_label: Asset Issuance Development for Java

Scenario Description

The token issuer issues 1000000000 tokens on BuChain, the token code is GLA and the token name is Global.
The specific information is as follows:

	Field Name
	Required
	Example
	Description

	name
	yes
	Global
	Token name

	code
	yes
	GLA
	Token code

	totalSupply
	yes
	1000000000
	Total supply of tokens

	decimals
	yes
	8
	Token decimal

	description
	no
	
	Token description

	icon
	no
	
	Token ICON

	version
	yes
	1.0
	The version number of

Note:

	code: Capitalized spell is recommended.

	decimals: The number of decimal places which is in the range of 0~8, and 0 means no decimal place.

	totalSupply: The total supply of the tokens which are in the range of 0~2^63-1, and 0 means no limitation for the tokens. For example, when issuing 10000 tokens with 8 decimal places, the value of totalSupply is 1000000000000 (10 ^ 8 * 10000)

	icon: Base64 bit encoding, and the size of the icon file is less than 32k，200*200 pixels is recommended.

	version: The version number of the protocol, and its present value is 1.0.

Development Process for Token Issuing

In this document we use the Java language as an example to create an token issuer and issue 1000000000 tokens.

Note: Please replace the [AccountAddressOfTokenIssuer] in the examples with the account address of the token to be issued by the token issuer. And replace the [AccountPrivateKeyOfTokenIssuer] in the examples with the account private key of the token to be issued by the token issuer.

Creating an SDK Instance

We create an instance with the following code and set its url (the IP and Port of the node).

 String url = "http://seed1.bumotest.io:26002";
 SDK sdk = SDK.getInstance(url);

In BuChain, the generation time for each block is 10 seconds, and only one confirmation is needed for a transaction to get the final state.

The environment description is as follows:

	Network Environment
	IP
	Port
	Blockchain Browser

	Main network
	seed1.bumo.io
	16002
	https://explorer.bumo.io

	Test network
	seed1.bumotest.io
	26002
	https://explorer.bumotest.io

Creating an Account for the Token Issuer

The specific code for creating an account for the token issuer is as follows:

public static AccountCreateResult createAccount() {
 AccountCreateResponse response = sdk.getAccountService().create();
 if (response.getErrorCode() != 0) {
 return null;
 }
 return response.getResult();
}

The return value is as follows:

 AccountCreateResult
 address: buQYszjqVYdhcPT56GZcKHVh4i7xtx6amr2g
 privateKey: privbUAYxPLLyaxvU3EMkSTfuEDTWxAYvyCasUcCgUxDihtNXQL4oHJx
 publicKey: b001724ed9475ca4c8893329924c7dceae66c61d8577ab2c2c3b29376e143137c20a4bbed176

Note: The account created above is not activated.

Activating the Account of Token Issuer

The non-activated account needs to be activated by an activited account. Please skip this section if your issuer account is already activated.

Note:

	Main network: You can activate the account by transfering 50.03 BU to the issuer account from the BuPocket(the Wallet). The BU can be used for the transaction fee of issuing tokens.

	Test network: By accessing the faucet [https://faucet.bumotest.io], enter the address to be recharged into the edit box and click “Confirm” to complete the recharge activation.

Getting the Nonce Value

Each account maintains a nonce value which starts at 1. The nonce value represents the amount of transactions in the account.

The code used to get the nonce value is as follows:

 public long getAccountNonce() {
 long nonce = 0;

 // Init request
 String accountAddress = [AccountAddressOfTokenIssuer];
 AccountGetNonceRequest request = new AccountGetNonceRequest();
 request.setAddress(accountAddress);

 // Call getNonce
 AccountGetNonceResponse response = sdk.getAccountService().getNonce(request);
 if (0 == response.getErrorCode()) {
 nonce = response.getResult().getNonce();
 } else {
 System.out.println("error: " + response.getErrorDesc());
 }
 return nonce;
 }

The return value is as follows:

 nonce: 28

Grouping Oprations for Token Issuing

A transaction can consist of multiple operations, each pointing to a specific transaction content.

Two operations are needed to issue tokens: AssetIssueOperation, and AccountSetMetadataOperation.

The specific code for grouping operations for token issuing is as follows:

 public BaseOperation[] buildOperations() {
 // The account address to issue apt1.0 token
 String issuerAddress = [AccountAddressOfTokenIssuer];
 // The token name
 String name = "Global";
 // The token code
 String code = "GLA";
 // The apt token version
 String version = "1.0";
 // The apt token icon
 String icon = "";
 // The total supply number of tokens
 Long totalSupply = 1000000000L;
 // The present supply number of tokens
 Long nowSupply = 1000000000L;
 // The token description
 String description = "GLA TOKEN";
 // The token decimals
 Integer decimals = 0;

 // Build token issuance operation
 AssetIssueOperation assetIssueOperation = new AssetIssueOperation();
 assetIssueOperation.setSourceAddress(issuerAddress);
 assetIssueOperation.setCode(code);
 assetIssueOperation.setAmount(nowSupply);

 // If this is an atp 1.0 token, you must set metadata like this
 JSONObject atp10Json = new JSONObject();
 atp10Json.put("name", name);
 atp10Json.put("code", code);
 atp10Json.put("description", description);
 atp10Json.put("decimals", decimals);
 atp10Json.put("totalSupply", totalSupply);
 atp10Json.put("icon", icon);
 atp10Json.put("version", version);

 String key = "asset_property_" + code;
 String value = atp10Json.toJSONString();
 // Build setMetadata
 AccountSetMetadataOperation accountSetMetadataOperation = new AccountSetMetadataOperation();
 accountSetMetadataOperation.setSourceAddress(issuerAddress);
 accountSetMetadataOperation.setKey(key);
 accountSetMetadataOperation.setValue(value);

 BaseOperation[] operations = {assetIssueOperation, accountSetMetadataOperation};
 return operations;
 }

Serializing Transactions

Transactions are serialized for network transmission.

Note:

	feeLimit: The maximum fee the transaction initiator will pay for the transaction, and please fill in 50.03 BU when the operation is issuing tokens.

	nonce: The nonce value of this transaction initiator, which can be obtained by adding 1 to the current nonce value.

The specific code for serializing transactions is as follows.
In the example, nonce is the series number of account obtained by calling getAccountNonce, and operations is the operations for issuing tokens obtained by calling buildOperations.

 public String seralizeTransaction(Long nonce, BaseOperation[] operations) {
 String transactionBlob = null;

 // The account address to issue atp1.0 token
 String senderAddresss =[AccountAddressOfTokenIssuer];
 // The gasPrice is fixed at 1000L, the unit is MO
 Long gasPrice = 1000L;
 // Set up the maximum cost 50.03BU
 Long feeLimit = ToBaseUnit.BU2MO("50.03");
 // Nonce should add 1
 nonce += 1;

 // Build transaction Blob
 TransactionBuildBlobRequest transactionBuildBlobRequest = new TransactionBuildBlobRequest();
 transactionBuildBlobRequest.setSourceAddress(senderAddresss);
 transactionBuildBlobRequest.setNonce(nonce);
 transactionBuildBlobRequest.setFeeLimit(feeLimit);
 transactionBuildBlobRequest.setGasPrice(gasPrice);
 for (int i = 0; i < operations.length; i++) {
 transactionBuildBlobRequest.addOperation(operations[i]);
 }
 TransactionBuildBlobResponse transactionBuildBlobResponse = sdk.getTransactionService().buildBlob(transactionBuildBlobRequest);
 if (transactionBuildBlobResponse.getErrorCode() == 0) {
 transactionBlob = transactionBuildBlobResponse. getResult().getTransactionBlob();
 } else {
 System.out.println("error: " + transactionBuildBlobResponse.getErrorDesc());
 }
 return transactionBlob;
 }

The return value is as follows:

 transactionBlob:
 0A2462755173757248314D34726A4C6B666A7A6B7852394B584A366A537532723978424E4577101C18C0F1CED11220E8073A350802122462755173757248314D34726A4C6B666A7A6B7852394B584A366A537532723978424E45772A0B0A03474C41108094EBDC033AB6010804122462755173757248314D34726A4C6B666A7A6B7852394B584A366A537532723978424E45773A8B010A1261737365745F70726F70657274795F474C4112757B22636F6465223A22474C41222C22746F74616C537570706C79223A313030303030303030302C22646563696D616C73223A302C226E616D65223A22474C41222C2269636F6E223A22222C226465736372697074696F6E223A22474C412054

Signing Transactions

All transactions need to be signed to be valid. The signing result includes the signature data and the public key.

The specific code for signing transactions is as follows.
In the example, transactionBlob is the string of the seralized transactions obtained by calling seralizeTransaction.

 public Signature[] signTransaction(String transactionBlob) {
 Signature[] signatures = null;
 // The account private key to issue atp1.0 token
 String senderPrivateKey =[AccountPrivateKeyOfTokenIssuer];

 // Sign transaction BLob
 TransactionSignRequest transactionSignRequest = new TransactionSignRequest();
 transactionSignRequest.setBlob(transactionBlob);
 transactionSignRequest.addPrivateKey(senderPrivateKey);
 TransactionSignResponse transactionSignResponse = sdk.getTransactionService().sign(transactionSignRequest);
 if (transactionSignResponse.getErrorCode() == 0) {
 signatures = transactionSignResponse.getResult().getSignatures();
 } else {
 System.out.println("error: " + transactionSignResponse.getErrorDesc());
 }
 return signatures;
 }

The return value is as follows:

 signData: 6CEA42B11253BD49E7F1A0A90EB16448C6BC35E8684588DAB8C5D77B5E771BD5C7E1718942B32
 F9BDE14551866C00FEBA832D92F88755226434413F98E5A990C
 publicKey: b00179b4adb1d3188aa1b98d6977a837bd4afdbb4813ac65472074fe3a491979bf256ba63895

Sending Transactions

Sending transactions refers to sending the serialized transactions and the signatures to BuChain.

The specific code for sending transactions is as follows.
In the example, transactionBlob is the string of the seralized transactions obtained by calling seralizeTransaction,
and signatures is the signature data obtained by calling signTransaction.

 public String submitTransaction(String transactionBlob, Signature[] signatures) {
 String hash = null;

 // Submit transaction
 TransactionSubmitRequest transactionSubmitRequest = new TransactionSubmitRequest();
 transactionSubmitRequest.setTransactionBlob(transactionBlob);
 transactionSubmitRequest.setSignatures(signatures);
 TransactionSubmitResponse transactionSubmitResponse = sdk.getTransactionService().submit(transactionSubmitRequest);
 if (0 == transactionSubmitResponse.getErrorCode()) {
 hash = transactionSubmitResponse.getResult().getHash();
 } else {
 System.out.println("error: " + transactionSubmitResponse.getErrorDesc());
 }
 return hash;
 }

The return value is as follows:

 hash: 031fa9a7da6cf8777cdd55df782713d4d05e2465146a697832011b058c0a0cd8

Checking the Result of the Transaction Execution

Note:
The returned result of transactions sent represents whether the transaction is submitted successfully.

To check whether the transaction is executed successfully, you have to perform one of the two operations:

Querying from the Blockchain Browser

You can query the result from the BUMO Blockchain browser by the hash value you obtained above. The main network [https://explorer.bumo.io] and the test network [https://explorer.bumotest.io]：

 id: atp_10 title: BUMO ATP 10 Protocol sidebar_label: ATP 10

id: atp_10
title: BUMO ATP 10 Protocol
sidebar_label: ATP 10

Overview

ATP 10 (Account based Tokenization Protocol) provides protocol standards for issuing, transferring and issuing additional tokens based on BUMO account.

Purpose

ATP is aimed to provide interfaces for applications to issue, transfer and issue additional tokens on BUMO.

Attributes of Tokens

You can set the attributes of the tokens to be issued by setting the metadata of the source account of tokens, so the applications can manage and check token information conveniently.

	Variables
	Description

	name
	Token name

	code
	Token code

	description
	Description of tokens

	decimals
	Decimal places of tokens

	totalSupply
	Total amount of tokens (The value is 10 ^ decimals * issuing amount)

	icon
	Token icon (optional)

	version
	ATP version

Attention：

	name: Full spelled words with initial letters capitalized are recommended, such as Demo Token.

	code: Capitalization and acronyms are recommended, such as DT.

	decimals: The number of decimal places which is in the range of 0~8, and 0 means no decimal place.

	totalSupply: The value is in the range of 0 ~ (2 ^ 63 - 1). 0 means no upper limit. For example, when issuing 10000 tokens with 8 decimal places, the value of totalSupply is 1000000000000 (10 ^ 8 * 10000).

	icon: Base64-bit encoding, the file size is less than 32 k, and 200 * 200 pixels is recommended.

Operations

The operations provided in BUMO ATP 10 Protocol include Registering Tokens, Issuing Tokens,Transferring Tokens, Issuing Additional Tokens, Querying Tokens, and Querying Specified Metadata.

Registering Tokens

Registering Tokens is to set the metadata of the tokens. You can set key, value and version of the metadata by sending the Setting Metadata transaction. The following is an example of registering tokens.

	Format in json .

{
 "type": 4,
 "set_metadata": {
 "key": "asset_property_DT",
 "value": "{\"name\":\"Demon Token\",\"code\":\"DT\",\"totalSupply\":\"10000000000000\",\"decimals\":8,
 \"description\":\"This is hello Token\",\"icon\":\"iVBORw0KGgoAAAANSUhEUgAAAAE....\",\"version\":\"1.0\"}",
 "version": 0
 }
}

Attention：The value of key must be composed of the prefix asset_property_ and token code (you can refer to the code parameters when Issuing Tokens). You can check the result by Querying Specified Metadata after you have set the values.

Issuing Tokens

Issuing Tokens is to issue a certain amount of digital tokens, and these tokens can be viewed in the account balance after being issued. When issuing tokens, you can set the parameters amount (amount of tokens to be issued) and code (token code) by initiating the Issuing Assets transaction.

For example：issuing 10000 DT tokens with 8 decimal places, now the value of amount is 10 ^ 8 * 10000.

	Format in json

{
 "type": 2,
 "issue_asset": {
 "amount": 1000000000000,
 "code": "DT"
 }
}

Transferring Tokens

Transferring Tokens is to transfer a certain amount of tokens to a destination account. When transferring tokens, you can set the parameters by initiating the Transferring Assets transaction. The following table shows the parameters to be set.

	Parameter
	Description

	pay_asset.dest_address
	Address of the destination account

	pay_asset.asset.key.issuer
	Address of the token issuer

	pay_asset.asset.key.code
	Token code

	pay_asset.asset.amount
	10 ^ decimal places * amount of tokens to be transferred

	pay_asset.input
	Input parameters for triggering the contract. By default, it is an empty string

For example: transferring 500000000000 DT tokens to the destination account buQaHVCwXj9ERtFznDnAuaQgXrwj2J7iViVK.

	Format in json

 {
 "type": 3,
 "pay_asset": {
 "dest_address": "buQaHVCwXj9ERtFznDnAuaQgXrwj2J7iViVK",
 "asset": {
 "key": {
 "issuer": "buQhzVyca8tQhnqKoW5XY1hix2mCt5KTYzcD",
 "code": "DT"
 },
 "amount": 500000000000
 }
 }
 }

After the transfer, the destination account has (amount) DT tokens.

Attention: If the destination account is not activated, the transaction of transferring tokens will fail.

Issuing Additional Tokens

Issuing additional tokens is that the account continues to issue a certain amount of tokens. By setting the same transaction type code as Issuing Tokens, continue to send Issuing Tokens transaction for additional Token issuance. Applications control the amount of additional tokens to be issued and make sure that the amount does not exceed totalSupply. These tokens can be viewed in the account balance after being issued.

Querying Tokens

Querying tokens is to check the token information of the source account. The following are the parameters you have to specify when querying tokens.

	Parameter
	Description

	address
	Account address, required

	code & issuer
	The issuer is the account address which issues the tokens and the code is the token code. The specified token can be displayed correctly only when the code&issuer are both correct; otherwise all the tokens will be displayed by default

	type
	Currently the type must be 0, or you can leave it blank

The following is the code of querying tokens:

HTTP GET /getAccountAssets?address=buQhzVyca8tQhnqKoW5XY1hix2mCt5KTYzcD

	If the account has tokens, the following content will be returned:

{
 "error_code": 0,
 "result": [
 {
 "amount": 469999999997,
 "key": {
 "code": "DT",
 "issuer": "buQhzVyca8tQhnqKoW5XY1hix2mCt5KTYzcD"
 }
 },
 {
 "amount": 1000000000000,
 "key": {
 "code": "ABC",
 "issuer": "buQhzVyca8tQhnqKoW5XY1hix2mCt5KTYzcD"
 }
 }
]
}

	If the account does not have tokens, the following content will be returned:

{
 "error_code" : 0,
 "result" : null
}

Querying Specified Metadata

Querying specified metadata is to check the information about metadata, including key, value and version.

	Parameter
	Description

	address
	Account address, required

	key
	Key value of the specified metadata

The following is the code of querying specified metadata:

HTTP GET /getAccountMetaData?address=buQhzVyca8tQhnqKoW5XY1hix2mCt5KTYzcD&key=asset_property_DT

	If the specified key has a value, the following content will be returned:

{
 "error_code": 0,
 "result": {
 "asset_property_DT": {
 "key": "asset_property_DT",
 "value": "{\"name\":\"DemonToken\",\"code\":\"DT\",\"totalSupply\":\"1000000000000\",\"decimals\":8,\"description\":\"This is hello Token\",\"icon\":\"iVBORw0KGgoAAAANSUhEUgAAAAE\",\"version\":\"1.0\"}",
 "version": 4
 }
 }
}

	If the specified key does not have a value, the following content will be returned:

{
 "error_code" : 0,
 "result" : null
}

 id: atp_20 title: BUMO ATP 20 Protocol sidebar_label: ATP 20

id: atp_20
title: BUMO ATP 20 Protocol
sidebar_label: ATP 20

Overview

ATP 20 (Account based Tokenization Protocol) provides protocol standards for issuing tokens based on BUMO contracts. ATP 20 also provides interfaces for third parties to transfer and use tokens.

Purpose

Based on this standard interface, tokens can be quickly docked and used by other applications and third parties, such as wallets and exchanges.

Rule

BUMO smart contracts are implemented by JavaScript language, including initialization function init and two entry functions, main and query. The init function is used to initialize contract creation; the main function is mainly responsible for data writing, the query function is responsible for data querying.

Attributes of Tokens

The attributes of tokens are stored in the smart contract account, and you can check them by using the tokenInfo function. The attributes of tokens are as follows:

	Variable
	Description

	name
	Token name

	symbol
	Token symbol

	decimals
	Decimal places of tokens

	totalSupply
	Total amount of tokens (The value is 10 ^ decimals * issuing amount)

	version
	ATP version

Attention:

	name：Full spelled words with initial letters capitalized are recommanded, such as Demo Token.

	symbol：Capitalization and acronyms are recommended, such as DT.

	decimals：The number of decimal places which is in the range of 0~8, and 0 means no decimal place.

	totalSupply：The value is in the range of 1 ~ (2 ^ 63 - 1). For example, when issuing 10000 tokens with 8 decimal places, the value of totalSupply is 1000000000000 (10 ^ 8 * 10000).

	version：The version of ATP, Such as ATP20.

Event

The functions transfer, transferFrom , approve will trigger the event (see the description of each function for details), The event is to call the tlog function, and a transaction log is recorded on the blockchain. The log records the function call details for the user to read.

The tlog is defined as follows:

tlog(topic,args...);

	tlog: It will generate a transaction written on the block.

	topic: Log subject, must be a string type, parameter length (0,128].

	args...: It can contain up to 5 parameters, and the parameter type can be string, numeric or Boolean type, each parameter length (0,1024].

Functions

The functions provided in BUMO ATP 20 Protocol include transfer, transferFrom, approve, balanceOf, tokenInfo, and allowance.

transfer

	Function

It is used to transfer (value) tokens to the destination address (to), and the log event must be triggered. An exception will be thrown if the source account does not have enough tokens.

	Entry function

main

	The parameters are in json format

{
 "method":"transfer",
 "params":{
 "to":"buQnTmK9iBFHyG2oLce7vcejPQ1g5xLVycsj",
 "value":"1000000"
 }
}

	The json parameters

Parameter	Description
to	The address of the destination account.
value	The amount of tokens allowed to be transferred (string).

	Function call

function transfer(to, value);

	Return value

Returning true or throw an exception.

	event：

tlog('transfer', sender, to, value);

topic: The function name, here is ‘transfer’.

sender: The account address to call the contract.

to: The address of the destination account.

value: The amount of tokens allowed to be transferred (string).

approve

	Function

Authorized account spender can transfer value token from the transaction sender account.

	Entry function

main

	Parameters are in json format.

{
 "method":"approve",
 "params":{
 "spender":"buQnTmK9iBFHyG2oLce7vcejPQ1g5xLVycsj",
 "value":"1000000"
 }
}

	The json parameters

	Parameter
	Description

	spender
	The account address of the spender.

	value
	The amount of tokens an account is authorized to transfer (string).

	Function call

function approve(spender, value)

	Return value

Returning true or throw an exception.

	Event：

tlog('approve', sender, spender, value);

topic: The function name，here is ‘approve’.

sender: The account address to call the contract.

spender: The account address of the spender.

value: The amount of tokens an account is authorized to transfer (string).

transferFrom

	Function

It is used to transfer (value) tokens from the source address (from) to the destination address (to), and the log event must be triggered. Before the transferFrom function is called, the source address (from) must have authorized the destination address (to) by calling the approve function for transferring a certain amount of tokens. If the amount of tokens in the source address (from) is insufficient or if the source address (from) has not authorized the destination address (to) for transferring enough amount of tokens, then the transferFrom function will throw an exception.

	Entry function

main

	The parameters are in json format

{
 "method":"transferFrom",
 "params":{
 "from":"buQnTmK9iBFHyG2oLce7vcejPQ1g5xLVycsj",
 "to":"buQYH2VeL87svMuj2TdhgmoH9wSmcqrfBner",
 "value":"1000000"
 }
}

	The json parameters

	Parameter
	Description

	from
	The source address.

	to
	The destination address.

	value
	The amount of tokens allowed to be transferred (string).

	Function call

function transferFrom(from,to,value)

	Return value

Returning true or throw an exception.

	Event：

tlog('transferFrom', sender, from, to, value);

topic: Function name, here is transferFrom.

sender: The acount address to call the contract.

from: The source address.

to: The destination address.

value: The amount of tokens allowed to be transferred (string).

balanceOf

	Function

It is used to check the balance of the owner account.

	Entry function

query

	The parameters are in json format

{
 "method":"balanceOf",
 "params":{
 "address":"buQnTmK9iBFHyG2oLce7vcejPQ1g5xLVycsj"
 }
}

	The json parameters

	Parameter
	Description

	address
	Account address

	Function call

function balanceOf(owner)

	Return value

The balance of specified address, such as follows:

{
 "result":{
 "balanceOf":"100000000000000",
 }
}

tokenInfo

	Function

It is used to get the basic information of the token.

	Entry function

query

	The parameters are in json format

{
 "method":"tokenInfo"
}

	Function call

function tokenInfo()

	Return value

 {
 "result":{
 "type": "string",
 "value": {
 "tokenInfo": {
 "name": "DemoToken",
 "symbol": "DT",
 "decimals": 8,
 "totalSupply": "5000000000000",
 "version": "1.0"
 }
 }
 }
 }

allowance

	Function

It is used to check the amount of tokens still allowed to be transferred from the token owner.

	Entry function

query

	The parameters are in json format

{
 "method":"allowance",
 "params":{
 "owner":"buQnTmK9iBFHyG2oLce7vcejPQ1g5xLVycsj",
 "spender":"buQYH2VeL87svMuj2TdhgmoH9wSmcqrfBner"
 }
}

	The json parameters

Parameter	Description
owner	The account address of the token owner.
spender	The account address of the spender.

	Function call

function allowance(owner, spender)

	Return value

 {
 "result":{
 "allowance":"1000000",
 }
 }

Contract Entry Function

init

	When the contract is created, the contract init entry function is triggered, which is responsible for the initialization of the contract creation

	Function call

function init(input_str){
}

	Parameters are in json format

{
 "params":{
 "name":"DemoToken",
 "symbol":"DT",
 "decimals":8,
 "totalSupply":"5000000000000",
 "version": "1.0"
 }
}

	Return value

Return true or throw an exception.

main

	It is used for data writing, which includes the transfer, transferFrom and approve functions.

	Function body

function main(input_str){
 let input = JSON.parse(input_str);

 if(input.method === 'transfer'){
 transfer(input.params.to, input.params.value);
 }
 else if(input.method === 'transferFrom'){
 transferFrom(input.params.from, input.params.to, input.params.value);
 }
 else if(input.method === 'approve'){
 approve(input.params.spender, input.params.value);
 }
 else{
 throw '<Main interface passes an invalid operation type>';
 }
}

query

	It is used for data querying, which includes the tokenInfo, allowance functions.

	Function body

function query(input_str){
 globalAttribute = JSON.parse(storageLoad(globalAttributeKey));

 let result = {};
 let input = JSON.parse(input_str);

 if(input.method === 'tokenInfo'){
 result.tokenInfo = globalAttribute;
 }
 else if(input.method === 'allowance'){
 result.allowance = allowance(input.params.owner, input.params.spender);
 }
 else{
 throw '<Query interface passes an invalid operation type>';
 }
 return JSON.stringify(result);
}

 id: atp_30 title: BUMO ATP 30 Protocol sidebar_label: ATP 30

id: atp_30
title: BUMO ATP 30 Protocol
sidebar_label: ATP 30

Introduction

ATP 30 (Account-based Tokenization Protocol) is “Non-Fungible Tokens”, abbreviated as “NFT”, and can be interpreted as non-interchangeable Tokens. Simply put, each token is unique and cannot be interchanged.

Note:

	TokenId is unique within the contract.

	TokenId can only be owned by one owner (i.e. address).

	An owner can have multiple NFTs, and its balance only counts

	ATP 30 provides the approve, transfer, and transferFrom interfaces for transferring ownership.

Standards

NTF ID

The NTF ID, also called the TokenId, uses a unique identifier in the contract, and the ID of each NFT is not allowed to change during the life cycle of the smart contract. The recommended implementation is: starting from 0, NTFID is incremented 1 for each new NFT.

Attributes of Token

The attributes of tokens are stored in the account of the smart contract. The attributes of tokens can be queried through the contract’s tokenInfo function. The token attributes are shown in the following table.

	Variable
	Description

	id
	The unique identifier of the token

	owner
	The owner of the token

	description
	The description of the token

	creationTime
	The time when the token is created

Attention:

	id: Starting from 0, and the id is incremented 1 for each new token.

	description: The length of the characters is 1 ~ 200k.

Event

The functions issue, transfer, approve, and transferFrom will trigger the event. The event is to call the tlog interface, and a transaction log is recorded on the blockchain. The log records the details of the function call for the user to read.

The tlog is defined as follows:

tlog(topic,args...);

	tlog: It will generate a transaction written on the block.

	topic: Log subject, must be a string type, parameter length (0,128].

	args...: It can contain up to 5 parameters, and the parameter type can be string, numeric or Boolean type, each parameter length (0,1024].

Functions

Functions in the BUMO ATP 30 protocol include issue, totalSupply, balanceOf, ownerOf, approve, transfer, transferFrom, tokensOfOwner, tokenInfo, name, and symbol.

issue

	Description

Issuing new tokens.

	Entry function

main

	The parameters are in json format.

{
 "method":"issue",
 "params": {
 "description": "demo"
 }
}

	The json parameters

	Parameter
	Description

	description
	The description of the token.

	Function

function issue(description)

	Return value

Return true or throw an exception.

	Event:

 tlog('issue', sender, tokenId, description);

topic: The function name, here is ‘issue’.

sender: The account address to call the contract.

tokenID: The tokenID transferred.

description: The description for the token.

totalSupply

	Description

Returning the total number of tokens issued.

	Entry function

query

	The parameter is in json format.

{
 "method":"totalSupply"
}

	Function:

function totalSupply()

	Return value:

{
 "result":{
 "type": "string",
 "value": {
 "totalSupply": "2"
 }
 }
}

balanceOf

	Description

Returning the sum of tokens for the specified account.

	Entry function

query

	The parameter is in json format.

{
 "method":"balanceOf",
 "params":{
 "address":"buQnTmK9iBFHyG2oLce7vcejPQ1g5xLVycsj"
 }
}

	The json parameters

	Parameter
	Description

	address
	The account address.

	Function:

function balanceOf(address)

	Return value: The total tokens for the specified address.

{
 "result":{
 "type": "number",
 "value": {
 "count": 1
 }
 }
}

ownerOf

	Description

Returning the owner of the token.

	Entry function

query

	The parameters are in json format.

{
 "method":"ownerOf",
 "params": {
 "tokenId": 1
 }
}

	The json paremeters

	Parameter
	Description

	tokenId
	The token id.

	Function:

function ownerOf(tokenId)

	Return value:

{
 "result":{
 "type": "string",
 "value": {
 "owner": "buQnTmK9iBFHyG2oLce7vcejPQ1g5xLVycsj"
 }
 }
}

approve

	Description

Authorize the account spender to transfer the token with the specified TokenId from the transaction account sender. Only the owner of the token can call.

	Entry function

main

	The parameters are in json format.

{
 "method":"approve",
 "params":{
 "spender":"buQnTmK9iBFHyG2oLce7vcejPQ1g5xLVycsj",
 "tokenId": 2
 }
}

	The json parameters

	Parameter
	Description

	spender
	The account address.

	tokenId
	The identifier of the token.

	Function

function approve(spender, tokenId)

	Return value

Return true or throw an exception.

	Event:

 tlog('approve', sender, spender, tokenId);

Topic: The method name, here is ‘approve’.

Sender: The account address to call the contract.

Spender: The authorized account address.

tokenId: The tokenId transferred.

transfer

	Description

Transfer the token with the specified tokenId to the destination address (to), and the log event must be triggered. Only the owner of the token can call.

	Entry function

main

	The parameters are in json format.

{
 "method":"transfer",
 "params":{
 "to":"buQnTmK9iBFHyG2oLce7vcejPQ1g5xLVycsj",
 "tokenId": 0
 }
}

	The json parameters

	Parameter
	Description

	to
	The destination account address.

	tokenId
	The identifier of the token.

	Function

function transfer(to, tokenId)

	Return value

Return true or throw an exception.

	Event:

tlog('transfer', sender, to, tokenId);

topic: The method name, here is ‘transfer’.

sender: The account address to call the contract.

to: The destination account address.

tokenId: The tokenId transferred.

transferFrom

	Description

The token event must be triggered when the token with tokenId is sent to the destination address(to) from the source account(from). Prior to transferFrom, from must authorize the originator of the current transaction (ie, approve operation). Only the authorized address of the token can call.

	Entry function

main

	The parameters are in json format.

{
 "method":"transferFrom",
 "params":{
 "from":"buQnTmK9iBFHyG2oLce7vcejPQ1g5xLVycsj",
 "to":"buQYH2VeL87svMuj2TdhgmoH9wSmcqrfBner",
 "tokenId": 1
 }
}

	The json parameters

	Parameter
	Description

	from
	The source account address.

	to
	The destination account address.

	tokenId
	The identifier of the token.

	Function

function transferFrom(from,to,tokenId)

	Return value

Return true or throw an exception.

	Event

tlog('transferFrom', sender, from, to, tokenId);

topic: The method name, here is ‘transferFrom’.

sender: The account address to call the contract.

from: The source account address.

to: The destination account address.

tokenId: The tokenId transferred.

tokensOfOwner

	Description

Returning all tokens of the owner.

	Entry function

query

	The parameter is in json format.

{
 "method":"ownerOf",
 "params": {
 "owner": "buQnTmK9iBFHyG2oLce7vcejPQ1g5xLVycsj"
 }
}

	The json parameters

	Parameter
	Description

	owner
	The owner of token.

	Function:

function ownerOf(tokenId)

	Return value:

{
 "result":{
 "type": "Array",
 "value": {
 "tokens": [0, 2]
 }
 }
}

tokenInfo

	Description

Returning basic information of the token.

	Entry function

query

	The parameter is in json format.

{
 "method":"tokenInfo",
 "params":{
 "tokenId": 0
 }
}

	The json parameters

	Parameter
	Description

	tokenId
	The token id.

	Function:

function tokenInfo(tokenId)

	Return value:

{
 "result":{
 "type": "string",
 "value": {
 "tokenInfo": {
 "title": "demo",
 "author": "buQnTmK9iBFHyG2oLce7vcejPQ1g5xLVycsj",
 "info": "demo",
 "creationTime": "135665626565612"
 }
 }
 }
}

name

	Description

Returning the collection name of the tokens contained in the current contract.

	Entry function

query

	The parameter is in json format.

{
 "method":"name"
}

	Function:

function name()

	Return value:

{
 "result":{
 "type": "string",
 "value": {
 "name": "demo"
 }
 }
}

symbol

	Description

Returning the collection symbol of the tokens contained in the current contract.

	Entry function

query

	The parameter is in json format.

{
 "method":"symbol"
}

	Function:

function symbol()

	Return value:

{
 "result":{
 "type": "string",
 "value": {
 "symbol": "DM"
 }
 }
}

Contract Entry

init

	When the contract is created, Entry function init is triggered which is responsible for the initialization of the contract creation.

	Function

function init(input_str){
}

	The parameters are in json format.

{
 "params":{
 "name":"DemoToken",
 "symbol":"DT"
 }
}

	Return value

Return true or throw an exception.

main

	The main function is responsible for data writing, including issue, transfer, transferFrom and approve functions.

	Function body

function main(arg) {
 const data = JSON.parse(arg);
 const operation = data.operation || '';
 const param = data.param || {};

 switch (operation) {
 case 'issue':
 issue(param);
 break;
 case 'approve':
 approve(param.to, param.tokenId);
 break;
 case 'transfer':
 transfer(param.to, param.tokenId);
 break;
 case 'transferFrom':
 transferFrom(param.from, param.to, param.tokenId);
 break;
 default:
 throw '<Main interface passes an invalid operation type>';
 }
}

query

	It is used for data querying, which includes the

 id: bupocket_user_guide title: BU Pocket APP User Guide sidebar_label: BU Pocket APP

id: bupocket_user_guide
title: BU Pocket APP User Guide
sidebar_label: BU Pocket APP

Introduction to Bu Pocket

Developed by BUMO, Bu Pocket is a digital wallet management tool that allows you to create your own identity and wallet to manage your assets. This document shows you how to use Bu Pocket.

Transferring Tokens

You can transfer tokens with Bu Pocket by following the steps below:

	Log in Bu Pocket.

	Under My tokens, select a token to transfer.

	Click Transfer.

	Enter the address in the Recipient account field.

	Enter the amount in the Transfer amount field.

	Enter a short description in the Remark field.

	Enter the fee in the Maximum transaction fee field.

	Click Next.

	Click Submit.

	Enter your password and click Confirm.

Attention:

	The account address is a string of characters starting with bu.

	The transaction fee will be charged according to the specific transaction, and the actual transaction fee must be less than the maximum transaction fee.

 id: codemach_editor_user_guide title: BUMO CodeMach Editor User Guide sidebar_label: CodeMach Editor

id: codemach_editor_user_guide
title: BUMO CodeMach Editor User Guide
sidebar_label: CodeMach Editor

Introduction

BUMO provides a developer-friendly smart contract editor, CodeMach Editor, for developers to visually debug contracts. CodeMach Editor has a bunch of extensible underlying interfaces that support JavaScript, C, C++, Python, Golang, and more. CodeMach Editor meets cross-platform operational scenarios with certifiable out-of-contract data feedback and a separate sandbox environment, so smart contracts can be executed in an isolated environment. At the same time, CodeMach Editor also provides contract interoperability and exception handling mechanisms. The URL of CodeMach Editor is as follows: https://cme.bumo.io/.

The following is the default page of the contract editor, CodeMach Editor. This page is divided into five areas. The following describes the functions of CodeMach Editor in each area.

	Area 1 is the browsing area where file directories are displayed. The Example directory is the default generated example, and the code inside can be copied and used directly. Customize is a custom folder. You can create a file by the + symbol next to Custom, or by clicking +Folder above.

	Area 2 is the code editing area, and the contract code can be edited in this area.

	Area 3 is the information area, and the current user’s account address and the number of available BUs are displayed here. When it prompts that BUs are insufficient, click the Refresh button next to it to get 100BUs again. You can set smart contract parameters at Deploy the contract, where parameters are passed in for the specified method. Once the contract parameters have been set, click the Deploy button below to generate the contract. The Contractinformation shows the return information displayed after the smart contract is executed.

	Area 4 is the console area. After the smart contract is executed, relevant information such as contract address and transaction hash will be displayed here. If an error occurs during the execution, an error message will be returned to the console area.

	Area 5 is an area to invoke smart contracts. After selecting the main function, you can configure methods and parameters to execute the main function at Deploy the contract. After selecting query, you can execute the query function by configuring methods and parameters at Deploy the contract.

The following sections describe how to use CodeMach Editor to customize files or folders, generate smart contracts, and call smart contracts.

 id: contract_hello_world title: BUMO Smart Contract(Hello World) sidebar_label: Smart Contract(Hello World)

id: contract_hello_world
title: BUMO Smart Contract(Hello World)
sidebar_label: Smart Contract(Hello World)

Overview

The contract is a JavaScript code, with a standard (ECMAScript as specified in ECMA-262). The initialization function of the contract is init, and the entry function of the execution is the main function. You must have the definition of the init and main functions in the contract code. The input argument to this function is the string input, which is specified when the contract is called.

	For details of the smart contract, refer to Introduction to Smart Contract.

	For details of the smart contract syntax, refer to Syntax in Smart Contract.

	For details of the smart contract editor, refer toIntroduction to Smart Contract Editor.

The following example is implemented in Contract Editor [https://cme.bumo.io].

Smart Contract (Hello World)

We will show you how to use the contract with a simple example.

Contract Code

	The contract source code

Edit a snippet of contract code as follows:

"use strict";
function init(bar)
{
 assert(typeof bar === 'string' && bar.length > 0, 'The param of init must be a not empty string');
 storageStore(bar, 'init : ' + bar);
}

function main(input)
{
 assert(typeof input === 'string' && input.length > 0, 'The param of main must be a not empty string');
 storageStore(input, 'main : ' + input);
}

function query(input)
{
 assert(typeof input === 'string' && input.length > 0, 'The param of query must be a not empty string');
 return storageLoad(input);
}

	Simple illustration

assert: A global function that asserts when the condition of the first argument is not met, the string content of the second argument is thrown.

storageStore: A global function that saves the specified key-value pairs into the blockchain. Key is the first argument and value is the second argument.

	The result is as follows:

 id: contract_new_interfaces title: BUMO Smart Contract Development (New Interfaces) sidebar_label: New Interfaces

id: contract_new_interfaces
title: BUMO Smart Contract Development (New Interfaces)
sidebar_label: New Interfaces

Overview

The BUMO Smart Contract is a snippet of JavaScript code, with a standard (ECMAScript as specified in ECMA-262). The initialization function of the contract is init, the entry function of the execution is the main function, and the query interface is query. The parameter string input of these functions is specified when the contract is called.

The following is a simple example:

"use strict";
function init(input)
{
 /*init whatever you want*/
 return;
}

function main(input)
{
 let para = JSON.parse(input);
 if (para.do_foo)
 {
 let x = {
 'hello' : 'world'
 };
 }
}

function query(input)
{
 return input;
}

Objects in the Interfaces

The global objects Chain and Utils are provided in the BUMO smart contract. These two objects provide various methods and variables, which can get some information about the blockchain, and can also drive the account to initiate all transactions, excluding setting thresholds and weights.

Note: The custom variables should not be duplicated with built-in objects, because this can result in uncontrollable data errors.

Method Usage

Object. method (variable)

	Obtain the account balance

Chain.getBalance('buQsZNDpqHJZ4g5hz47CqVMk5154w1bHKsHY');

	Print logs

Utils.log('hello');

	The current block number

Chain.block.number;

Read and Write Privileges

	Each function in the object has a fixed read-only or write privilege.

	Read-only permissions are interface functions that do not write data to the blockchain, such as getting the balance Chain.getBalance.

	Write permissions refer to interface functions that write data to the blockchain, such as transfer tokens Chain.payCoin.

	When writing smart contracts, you should be noted that different entry functions have different calling permissions.

	init and main can call all built-in functions.

	query can only call functions with read-only permissions, otherwise the interface will be prompted undefined during debugging or execution.

Return Value

When calling an internal function, return false if it fails or throw an exception and terminate the call, otherwise it is successful for other objects. If a parameter error is encountered, the parameter position error will be indicated in the error description. The position here refers to the index number of the parameter, that is, counting from 0. For example, parameter 1 indicates that the 2 parameter is incorrect.

The following is an example:

Chain.issueAsset("CNY", 10000);
/*
 Error description:
 Contract execute error,issueAsset parameter 1 should be a string

 It means that the second parameter should be a string
*/

Methods of the Chain Object

This section describes some methods of the Chain object, including Chain.load, Chain.store, Chain.del, Chain.getBlockHash, Chain.tlog, Chain.getAccountMetadata, Chain.getBalance, Chain.getAccountAsset, Chain.getContractProperty, Chain.payCoin, Chain.issueAsset, Chain.payAsset, Chain.delegateCall, Chain.delegateQuery, Chain.contractCall, Chain.contractQuery, and Chain.contractCreate.

Chain.load

	Description

Get the metadata information of the contract account.

	Function call

Chain.load(metadata_key);

	Parameter description

	Metadata_key: The keyword for metadata.

	Example

let value = Chain.load('abc');
/*

 Permission: Read-only.
 Return value: Return a string if it succeeds, such as 'values'; return false if it fails.
*/

Chain.store

	Description

Store the metadata information of the contract account.

	Function call

Chain.store(metadata_key, metadata_value);

	Parameter description

	metadata_key: The keyword for metadata.

	metadata_key: The content of metadata.

	Example

Chain.store('abc', 'values');
/*
 Permission: Write
 Return value: Return true if it succeeds, or throw an exception if it fails
*/

Chain.del

	Description

Delete the metadata information of the contract account.

	Function call

Chain.del(metadata_key);

	Parameter description

	metadata_key: The keyword for metadata.

	metadata_key: The metadata content.

	Example

Chain.del('abc');
/*
 Permission: Write
 Return: Return true if it succeeds, or throw an exception if it fails
*/

Chain.getBlockHash

	Description

Get block information.

	Function call

Chain.getBlockHash(offset_seq);

	Parameter description

	offset_seq: The offset from the last block ranges: [0,1024).

	Example

let ledger = Chain.getBlockHash(4);
/*
 Permission: Read-only
 Return value: Return a string if it succeeds, such as'c2f6892eb934d56076a49f8b01aeb3f635df3d51aaed04ca521da3494451afb3', or return false if it fails
*/

Chain.tlog

	Description

Output transaction logs.

	Function call

Chain.tlog(topic,args...);

	Parameter description

	tlog will generate a transaction written on the block.

	topic: The log subject, which must be a string type with a parameter length of (0,128].

	args…: It can contain up to 5 parameters, which can be string, numeric or Boolean type, with each parameter length (0,1024].

	Example

Chain.tlog('transfer',sender +' transfer 1000',true);
/*
 Permission: Write
 Return value: Return true if it succeeds, or throw an exception if it fails
*/

Chain.getAccountMetadata

	Description

Get the metadata of the specified account.

	Function call

Chain.getAccountMetadata(account_address, metadata_key);

	Parameter description

	account_address: The account address.

	metadata_key: The keyword for metadata.

	Example

let value = Chain.getAccountMetadata('buQsZNDpqHJZ4g5hz47CqVMk5154w1bHKsHY', 'abc');

/*
 Permission: Read-only
 Return value: Return a string if it succeeds, such as 'values', or return false if it fails.
*/

Chain.getBalance

	Description

Get the coin amount of the account.

	Function call

Chain.getBalance(address);

	Parameter description

	address: The account address

	Example

let balance = Chain.getBalance('buQsZNDpqHJZ4g5hz47CqVMk5154w1bHKsHY');
/*
 Permission: Read-only
 Return value: Number in string format '9999111100000'
*/

Chain.getAccountAsset

	Description

Get asset information for an account

	Function call

Chain.getAccountAsset(account_address, asset_key);

	Parameter description

	account_address: The account address.

	asset_key: The asset attributes.

	Example

let asset_key =
{
 'issuer' : 'buQsZNDpqHJZ4g5hz47CqVMk5154w1bHKsHY',
 'code' : 'CNY'
};
let bar = Chain.getAccountAsset('buQsZNDpqHJZ4g5hz47CqVMk5154w1bHKsHY', asset_key);

/*
 Permission: Read-only
 Return value: Return the asset value such as '10000' if it succeeds, or return false if it fails
*/

Chain.getContractProperty

	Description

Get the attributes of the contract account.

	Function call

Chain.getContractProperty(contract_address);

	Parameter description

	contract_address: The contract address.

	Example

let value = Chain.getContractProperty('buQcFSxQP6RV9vnFagZ31SEGh55YMkakBSGW');

/*
 Permission: Read-only
 Return value: Return a JSON object such as {"type":0, "length" : 416} if it succeeds, where the type refers to the contract type and the length refers to the code length of the contract, and if the account is not a contract, then the length is 0; return false if it fails.

*/

Chain.payCoin

	Description

Transfer tokens.

	Function call

Chain.payCoin(address, amount[, input]);

	Parameter description

	address: The target address.

	amount: The amount of BU.

	input: Optional, the contract parameter. By default, it is an empty string if it is not filled in.

	Example

Chain.payCoin("buQsZNDpqHJZ4g5hz47CqVMk5154w1bHKsHY", "10000", "{}");
/*
 Permission: Write
 Return value: Return true if it succeeds, or throw an exception if it fails
*/

Chain.issueAsset

	Description

Issue assets.

	Function call

Chain.issueAsset(code, amount);

	Parameter description

	code: The asset code.

	amount: The amount of the asset to be issued.

	Example

Chain.issueAsset("CNY", "10000");
/*
 Permission: Write
 Return value: Return true if it succeeds, or throw an exception if it fails
*/

Chain.payAsset

	Description

Transfer tokens

	Function call

Chain.payAsset(address, issuer, code, amount[, input]);

	Parameter description

	address: The target address.

	issuer: The asset issuer.

	code: The asset code.

	amount: The amount to be transferred.

	input: Optional, the contract parameter. By default, it is an empty string if it is not filled in.

	Example

Chain.payAsset("buQsZNDpqHJZ4g5hz47CqVMk5154w1bHKsHY", "buQgmhhxLwhdUvcWijzxumUHaNqZtJpWvNsf", "CNY", "10000", "{}");
/*
 Permission: Write
 Return value: Return true if it succeeds, or throw an exception if it fails
*/

Chain.delegateCall

	Description

Delegate call.

	Function call

Chain.delegateCall(contractAddress, input);

	Parameter description

	contractAddress: The address of the contract to be called.

	input：Input parameter.

The Chain.delegateCall function will trigger the main function of the contract to be called, and the Chain.delegateCall function will assign the execution environment of the current contract to the contract to be called.

	Example

let ret = Chain.delegateCall('buQBwe7LZYCYHfxiEGb1RE9XC9kN2qrGXWCY'，'{}');
/*
 Permission: Write
 Return value: Return a result if it succeeds, or throw an exception if it fails.
*/

Chain.delegateQuery

	Description

Delegate query.

	Function call

Chain.delegateQuery(contractAddress, input);

	Parameter description

	contractAddress: The address of the contract to be called.

	input：Input parameter.

The Chain.delegateQuery function will trigger the query function of the contract to be called, and the Chain.delegateQuery function will assign the execution environment of the current contract to the contract to be called.

	Example

let ret = Chain.delegateQuery('buQBwe7LZYCYHfxiEGb1RE9XC9kN2qrGXWCY'，"");
/*
 Permission: Read-only
 Return value: If the target account is a normal account, it returns true. If the target account is a contract, and the call succeeds, the string {"result":"4"} is returned, where the value of the result field is the specific result of the query, and if the call fails return {"error ":true} string.
*/

Chain.contractCall

	Description

Call contracts.

	Function call

Chain.contractCall(contractAddress, asset, amount, input);

	Parameter description

	contractAddress: The address of the contract to be called

	asset: The asset class, true for BU, object {“issue”: buxxx, “code” : USDT} for assets.

	amount: The amount of the asset.

	input：Input parameter.

The Chain.contractCall function triggers the main function entry of the contract to be called.

	Example

let ret = Chain.contractCall('buQBwe7LZYCYHfxiEGb1RE9XC9kN2qrGXWCY'，true, toBaseUnit("10"), "");
/*
 Permission: Write
 Return value: Return true if the target account is a normal account. If the target account is a contract, the return value of the main function is returned if the call succeeds, and an exception is thrown if the call fails.
*/

Chain.contractQuery

	Description

Query contracts.

	Function call

Chain.contractQuery(contractAddress, input);

	Parameter description

	contractAddress: The address of the contract to be called

	input：Input parameter.

The Chain.contractQuery function will call the query interface of the contract.

	Example

let ret = Chain.contractQuery('buQBwe7LZYCYHfxiEGb1RE9XC9kN2qrGXWCY'，"");
/*
 Permission: Read-only
 Return value: If the call succeeds, the string {"result":"xxx"} is returned, where the value of the result field is the specific result of the query, and if the call fails, return a string of {"error":true}.
*/

Chain.contractCreate

	Description

Create Contracts.

	Function call

Chain.contractCreate(balance, type, code, input);

	Parameter description

	balance: The asset that is transferred to the contract created, in string.

	type :0 indicates javascript, in integer.

	code: The contract code, in string.

	input：The initiation parameter of the init function.

The Chain.contractCreate function create contracts.

	Example

let ret = Chain.contractCreate(toBaseUnit("10"), 0, "'use strict';function init(input){return input;} function main(input){return input;} function query(input){return input;} ", "");
/*
 Permission: Write
 Return value: Return the contract address if it is created successfully, or throw an exception if it fails.
*/

Variables of the Chain Object

This section introduces some variables of the Chain object, respectively Chain.block, Chain.tx , Chain.msg related variables and Chain.thisAddress. The variables of the block information include Chain.block.timestamp, Chain.block.number. Variables for transaction information include Chain.tx.initiator, Chain.tx.sender, Chain.tx.gasPrice, Chain.tx.hash, chain.tx.feeLimit. The variables of the message include Chain.msg.initiator, Chain.msg.sender, Chain.msg.coinAmount, Chain.msg.asset, Chain.msg.nonce, Chain.msg.operationIndex.

Chain.block

Chain.block.timestamp

	Variable description

The timestamp of the block when the current transaction is executed.

Chain.block.number

	Variable description

The height of the block where the current transaction is executed.

Chain.tx

	Variable description

The transaction information signed by the user at the time of the transaction.

Chain.tx.initiator

	Variable description

The original originator of the transaction, that is the fee payer of the transaction.

Chain.tx.sender

	Variable description

The most primitive trigger of the transaction, that is the account in the transaction that triggers the execution of the contract.
For example, an account initiates a transaction, and an operation in the transaction is to call the contract Y (the source_address of the operation is x), then the value of the sender is the address of the account x during the execution of the contract Y.

	Example

let bar = Chain.tx.sender;
/*
 Then the value of bar is the account address of x.
*/

Chain.tx.gasPrice

	Variable description

The price of the gas in the transaction signature.

Chain.tx.hash

	Variable description

The hash value of the transaction.

Chain.tx.feeLimit

	Variable description

The limit fee for the transaction.

Chain.msg

A message is the information that triggers the execution of a smart contract in a transaction. During the execution of the triggered contract, the transaction information will not be changed and the message will change. For example, when calling Chain.contractCall，Chain.contractQuery in a contract, the message will change.

Chain.msg.initiator

	Variable description

The original originator account for this message.

Chain.msg.sender

	Variable description

The account number for triggering this message.

	Example

For example, an account initiates a transaction, and an operation in the transaction is to call the contract Y (the source_address of the operation is x), then the value of the sender is the address of the account x during the execution of the contract Y.

let bar = Chain.msg.sender;
/*
Then the value of bar is the account address of x.
*/

Chain.msg.coinAmount

	Variable description

The BUs for this payment operation

Chain.msg.asset

	Variable description

The assets for this payment operation

	Example

{
 "amount": 1000,
 "key" : {
 "issuer": "buQsZNDpqHJZ4g5hz47CqVMk5154w1bHKsHY",
 "code":"CNY"
 }
}

Chain.msg.nonce

	Variable description

The nonce value of the initiator in this transaction, ie the nonce value of the Chain.msg.initiator account.

Chain.msg.operationIndex

	Variable description

The sequence number for triggering this contract calling operation.

	Example

For example, an account A initiates a transaction tx0, and tx0 has a 0th (counting from 0) operation which is to transfer assets to a contract account (contract call), then the value of Chain.msg.operationIndex is 0.

let bar = Chain.msg.operationIndex;
/* bar is a non-negative integer*/

Chain.thisAddress

	Variable description

The address of the current contract account.

	Example

For example, the account x initiates a transaction to call contract Y. During this execution, the value is the address of the contract account Y.

let bar = Chain.msg.thisAddress;
/*
 The value of bar is the account address of the contract Y.
*/

Methods of the Utils Object

This section describes some of the methods of the Utils object, including Utils.log, Utils.stoI64Check, Utils.int64Add, Utils.int64Sub , Utils.int64Mul, Utils.int64Mod, Utils.int64Div, Utils.int64Compare, Utils.assert, Utils.sha256, Utils.ecVerify, Utils.toBaseUnit, Utils.addressCheck and Utils.toAddress.

Utils.log

	Description

Output logs.

	Function call

Utils.log(info);

	Parameter description

	info: The log content.

	Example

let ret = Utils.log('hello');
/*
 Permission: Read-only
 Return value: If it succeeds, no value will be returned, and a snippet of Trace log will be output in the process of executing the contract, such as V8contract log[buQsZNDpqHJZ4g5hz47CqVMk5154w1bHKsHY:hello], or return false if it fails.
*/

Utils.stoI64Check

	Description

Legal check for string numerics.

	Function call

Utils.stoI64Check(strNumber);

	Parameter description

	strNumber: String numeric parameter

	Example

let ret = Utils.stoI64Check('12345678912345');
/*
 Permission: Read-only
 Return value: Return true if it succeeds, or return false if it fails.
*/

Utils.int64Add

	Description

64-bit addition.

	Function call

Utils.int64Add(left_value, right_value);

	Parameter description

	left_value: Left value.

	right_value: Right value.

	Example

let ret = Utils.int64Add('12345678912345', 1);
/*
 Permission: Read-only
 Return value: Return a string if it succeeds, such as '12345678912346', or throw an exception if it fails.
*/

Utils.int64Sub

	Description

64-bit subtraction.

	Function call

Utils.int64Sub(left_value, right_value);

	Parameter description

	left_value: Left value.

	right_value：Right value.

	Example

let ret = Utils.int64Sub('12345678912345', 1);
/*
 Permission: Read-only
 Return value: Return a string such as '12345678912344' if it succeeds, or throw an exception if it fails.
*/

Utils.int64Mul

	Description

64-bit multiplication.

	Function call

Utils.int64Mul(left_value, right_value);

	Parameter description

	left_value: Left value.

	right_value：Right value.

	Example

let ret = Utils.int64Mul('12345678912345', 2);
/*
 Permission: Read-only
 Return value: Return a string such as '24691357824690' if it succeeds, or throw an exception if it fails.
*/

Utils.int64Mod

	Description

64-bit modulo.

	Function call

Utils.int64Mod(left_value, right_value);

	Parameter description

	left_value: Left value.

	right_value: Right value.

	Example

let ret = Utils.int64Mod('12345678912345', 2);
/*
 Permission: Read-only
 Return value: Return a string such as '1' if it succeeds, or throw an exception if it fails.
*/

Utils.int64Div

	Description

64-bit division.

	Function call

Utils.int64Div(left_value, right_value);

	Parameter description

	left_value: Left value.

	right_value: Right value.

	Example

let ret = Utils.int64Div('12345678912345', 2);
/*
 Permission: Read-only
 Return value: Return '6172839456172' if it succeeds, or throw an exception if it fails.
*/

Utils.int64Compare

	Description

64-bit comparison.

	Function call

Utils.int64Compare(left_value, right_value);

	Parameter description

	left_value: Left value.

	right_value: Right value.

	Example

let ret = Utils.int64Compare('12345678912345', 2);
/*
 Permission: Read-only
 Return value: Return 1 if it succeeds (the left value is greater than the right value), or throw an exception if it fails.
*/

	Return value

1: left value is greater than right value, 0: left value equals to right value, -1: left value less than right value.

Utils.assert

	Description

64 assertion.

	Function call

Utils.assert(condition[, message]);

	Parameter description

	condition: Assertive variable

	message: Optional, an exception message is thrown when it fails

	Example

Utils.assert(1===1, "Not valid");
/*
 Permission: Read-only
 Return value: Return true if it succeeds, or throw an exception if it fails
*/

Utils.sha256

	Description

sha256 computation.

	Function call

Utils.sha256(data[, dataType]);

	Parameter description

	data: The raw data of the hash to be calculated. According to the dataType, fill in the data in different formats.

	dataType: The data type, integer, optional field, by default is 0. 0: base16 encoded string, such as “61626364”; 1: ordinary original string, such as “abcd”; 2: base64 encoded string, such as “YWJjZA==”. If you are calculating binary data, it is recommended to use base16 or base64 encoding.

	Return value

Return a base16 encoded string if it succeeds, or return false if it fails.

	Example

let ret = Utils.sha256('61626364');
/*
 Permission: Read-only
 Function: Right
 Return value: Return a 64-byte base16 string if it succeeds, such as '88d4266fd4e6338d13b845fcf289579d209c897823b9217da3e161936f031589', or return false it fails.
*/

Utils.ecVerify

	Description

Check if the signature is legal.

	Function call

Utils.ecVerify(signedData, publicKey,blobData [, blobDataType]);

	Parameter description

	signedData: The signature data, a string encoded by base16.

	publicKey: The public key, a string encoded by base16.

	blobData: The raw data, fill in different formats of data per blobDataType.

	blobDataType: The blobData type, integer, optional field, the default is 0. 0: base16 encoded string, such as “61626364”; 1: ordinary original string, such as “abcd”; 2: base64 encoded string, such as “YWJjZA==”. If you are verifying binary data, it is recommended to use base16 or base64 encoding.

	Return value

Return true if it succeeds, or return false if it fails.

	Example

let ret = Utils.ecVerify('3471aceac411975bb83a22d7a0f0499b4bfcb504e937d29bb11ea263b5f657badb40714850a1209a0940d1ccbcfc095c4b2d38a7160a824a6f9ba11f743ad80a', 'b0014e28b305b56ae3062b2cee32ea5b9f3eccd6d738262c656b56af14a3823b76c2a4adda3c', 'abcd', 1);
/*
 Permission: Read-only
 Return value: Return true if it succeeds, or return false if it fails
*/

Utils.toBaseUnit

	Description

Transform the unit.

	Function call

Utils.toBaseUnit(value);

	Parameter description

	value: The converted number, only string is allowed to pass in, and it can contain a decimal point, which allows up to 8 digits after the decimal point.

	Return value

Return a string multiplied by 10^8 if it succeeds, or return false if it fails.

	Example

let ret = Utils.toBaseUnit('12345678912');
/*
 Permission: Read-only
 Return value: Return a string '1234567891200000000' if it succeeds, or throw an exception if it fails.
*/

Utils.addressCheck

	Description

Address legality check.

	Function call

Utils.addressCheck(address);

	Parameter description

	address The address parameter in string.

	Return value

Return true if it succeeds, or return false if it fails.

	Example

let ret = Utils.addressCheck('buQgmhhxLwhdUvcWijzxumUHaNqZtJpWvNsf');
/*
 Permission: Read-only
 Return value: Return true if it succeeds, or return false if it fails.
*/

Utils.toAddress

	Description

Transform a public key to an address.

	Function call

Utils.toAddress(public_key);

	Parameter description

	public_key The public key, a base16 encoded string

	Return value

Return the account address if it succeeds, or return false if it fails.

	Example

let ret = Utils.toAddress('b0016ebe6191f2eb73a4f62880b2874cae1191183f50e1b18b23fcf40b75b7cd5745d671d1c8');
/*
 Permission: Read-only
 Return value: Return "buQi6f36idrKiGrno3RcdjUjGAibUC37FJK6" if it succeeds, or return false if it fails.
*/

Exception Handling

	JavaScript exceptions

When an uncaught JavaScript exception occurs during contract execution, the processing rules:

	The execution of this contract fails and all transactions made in the contract will not take effect.

	The transaction that triggered this contract is a failure. The error code is 151.

	Failure in transaction execution

 id: dex_10 title: BUMO DEX 10 Protocol sidebar_label: DEX 10

id: dex_10
title: BUMO DEX 10 Protocol
sidebar_label: DEX 10

Introduction

BUMO DEX 1.0 (Decentralized Exchange) is a decentralized asset exchange protocol based on BUMO smart contracts. The protocol provides free and decentralized exchange for all types of assets issued on BUMO.

Purpose

The decentralized asset exchange contracts based on this standard interface allow all types of assets issued on BUMO to be safely and quickly exchanged on the chain without having to rely on centralized exchanges, and the contracts can be used by other applications and integrated by third parties.

Rule

The BUMO smart contract is implemented in JavaScript and contains the initialization function init and two entry functions main, and query. The init function is used to initialize the contract when it is created; the main function is mainly responsible for data writing, and the query function is responsible for data querying.

The DEX 1.0 protocol supports free conversion between ATP tokens and BU, and the service fee is charged in BU. When the assets are exchanged, the party paying BUs needs to pay the service fee separately according to the service fee ratio in addition to the planned exchange amount, which is similar to the tax excluded from the price, that is, the service fee is not included in the exchange amount. The party paying the atp or ctp tokens pays the service fee in BU received after the transaction is completed according to the service fee rate, which is similar to the tax included in the price, that is, the service fee is included in the exchange amount. The ratio of service fee to transaction amount can be set by the DEX contract.

Attributes of DEX

The attributes of DEX stored in the smart contract’s account can be queried through the contract’s dexInfo function. The attributes are shown in the following table.

	Variable
	Description

	owner
	The owner the DEX contract

	feeRate
	The service fee ratio

	version
	The decentralized exchange Version

Attention:

	owner: If the default value is not given when a DEX contract is created, then by default the creator of the default DEX contract is the owner.

	feeRate: The unit is 1/(10^8). For example, the feeRate is 50000, then the service rate is 50000/(10^8) = 5/10000.

	version：The version of DEX. Such as 1.0.

Functions

makeOrder

	Post orders for ATP tokens or CTP tokens to exchange with BUs, support conversion between ATP and BU, CTP and BU, BU and ATP, and BU and CTP.

	When the ATP tokens are exchanged, they are marked with the issuer (the issuer address), code (the asset code), and value (exchange quantity).

	When the CTP tokens are exchanged, they are marked with the issuer (the CTP contract address) and the value (exchange quantity).

	BU is the native token in BUMO, so there is no need to mark. When BUs are exchanged, just provide the value (quantity).

	If the redemption tokens in the order are a CTP asset, you have to grant the DEX contract the amount to be exchanged prior to issuing the order.

	If the redemption tokens in the order are an ATP asset, you have to trigger it with payAsset, and the asset and amount of the asset must be the same as that to be redeemed.

	If the redemption tokens in the order are BUs, you have to trigger it with payCoin, and the amount to be transferred must be the amount of BUs to redeemed plus service fee.

	The entry function is main.

	Parameters are in json format:

{
'method':'makeOrder',
'params':{
'own':{ //ATP token
'issuer':buQxxx',
'code':'EUR',
'value':10000,
},
'target':{ //BU
'value':1000,
},
'fee':5,
'expiration':'2018...'
}
}

own: The token information exchanged by the order, including the issuer (the issuance address), code (the asset code), and value (number of redemption), where CTP tokens have no code, and BU tokens have no issuer and code.

target: The token to which the order is redeemed, including the issuer, code, and value. The CTP token has no code and the BU has no issuer and code.

fee: The service fee paid by the order posting account to the DEX contract to redeem the asset. If the tokens to be redeemed is not BU, the DEX contract will deduct from the redeemed BUs according to the redemption ratio.

expiration: The due date of the order, the order is invalid after the date.

	Function: Functions of makeOrder(own, target, fee, expiration).

	Return value: Return true or throw an exception.

cancelOrder

	The account posting the order cancels it.

	The entry function main.

	The parameter is in json format:

{
 'method':'cancelOrder',
 'params':{
 'order':'order_1'
 }
}

order: The sequence number of the order cancelled.

	Function: function cancelOrder(order)

	Return value: return true or throw an exception

takeOrder

	For order filling or partial filling, the function should be thrown if the order has been completed or has expired.

	If the redemption tokens in the order are a CTP asset, you have to grant the DEX contract the amount to be exchanged prior to filling the order.

	If the redemption tokens in the order are an ATP asset, you have to trigger it with payAsset when filling the order, and the asset and amount of the asset must be the same as that to be redeemed.

	If the redemption tokens in the order are BUs, you have to trigger it with payCoin when filling the order, and the amount to be transferred must be the amount of BUs to redeemed plus service fee.

	The entry function is main.

	The parameters are in json format:

{
 'method':'takeOrder',
 'params':{
 'order':'order_1',
 'fee':5,
 }
}

order: The sequence number of the order fully filled or partially filled.

fee: The fee paid to the DEX contract by the account filling the order to redeem the asset. If the tokens to be redeemed is not BU, the DEX contract will deduct from the redeemed BUs according to the redemption ratio.

	Function: the function takeOrder(order).

	Return value: Return true or throw an exception.

updateFeeRate

	Change the service fee ratio of the DEX contract. If the contract is called by a non-contract owner, it should be thrown.

	The entry function is main.

	The parameter is in json format:

{
 'method' : 'updateFeeRate',
 'params' : {
 'rate' : '50000' //unit 1/(10^8)
 }
}

rate: The ratio of the service fee to the token exchange amount.

	Function: the function updateFeeRate(rate)

	Return value: Return true or throw an exception

updateOwner

	Change the owner of the DEX contract. After the contract is changed, the original contract owner will lose control of the DEX contract. If the contract is called by one other than the owner, the function should be thrown.

	The entry function is main.

	The parameter is in json format:

{
 'method' : 'updateOwner',
 'params' : {
 'address' : 'buQnTmK9iBFHyG2oLce7vcejPQ1g5xLVycsj'
 }
}

address: The address of the new owner of the DEX contract.

	Function: The function updateOwner(address).

	Return value: Return true or throw an exception.

clearExpiredOrder

	Clear an uncompleted but expired order in a DEX contract, which should be thrown if it is called by a non-contract owner.

	The entry function is main.

	The parameter is in json format:

{
 'method' : 'clearExpiredOrder',
}

	Function: the function clearExpiredOrder().

	Return value: Return true or throw an exception.

withdrawFee

	The service fee is withdrawn from the DEX contract, which should be thrown if it is called by a non-contract owner.

	The entry function is main.

	The parameter is in json format.

{
 'method' : 'withdrawFee',
 'params' : {
 'value': 10000
 }
}

value: The amount to be withdrawn.

	Function: The function withdrawFee(value).

	Return value: Return true or throw an exception.

dexInfo

	Return basic information about the DEX contract.

	The entry function is query.

	The parameter is in json format.

{
 'method':'dexInfo'
}

	Function: The function dexInfo().

	Return value:

{
 'result':{
 'type': 'string',
 'value': {
 'dexInfo': {
 'owner': 'buQnTmK9iBFHyG2oLce7vcejPQ1g5xLVycsj',
 'feeRate': 50000, //unit 1/(10^8)
 'version': '1.0'
 }
 }
 }
}

getOrder

	Get the order details based on the order number.

	The entry function is query.

	The parameter is in json format:

{
 'method':'getOrder',
 'params' : {
 'order': 'order_1'
 }
}

order: the order number.

	Function: The function getOrder(order).

	Return value:

{
 'order_1':{
 'own':{ //ATP token
 'issuer':buQxxx',
 'code':'EUR',
 'value':10000,
 },
 'target':{ //BU
 'value':1000,
 },
 'fee':5,
 'expiration':'2018...'
 }
}

getOrderInterval

	Get the valid range of the order.

	The entry function is query.

	The parameter is in json format.

{
 'method':'getOrderInterval',
}

	Function: the function getOrderInterval().

	Return value:

{
 'orderInterval':[9, 1000]
}

Contract Entry

init

	When the contract is created, the entry function init is triggered and it is responsible for the initialization of the contract.

	Function

function init(input_str){
}

	The parameters are in json format.

{
 'params':{
 'owner':'buQnTmK9iBFHyG2oLce7vcejPQ1g5xLVycsj',
 'feeRate':'50000',
 'version': '1.0'
 }
}

	owner: If the default value is not given when a DEX contract is created, then by default the creator of the default DEX contract is the owner.

	feeRate: The unit is 1/(10^8). For example, the feeRate is 50000, then the service rate is 50000/(10^8) = 5/10000.

	version：The version of DEX. Such as 1.0.

	Return value:

Success: None.

Failure: Throw an exception.

main

	The main function is responsible for data writing, including makeOrder, cancelOrder, takeOrder, updateFeeRate, updateOwner, clearExpiredOrder, withdrawFee and other interfaces.

	Function body.

function main(input_str){
 let input = JSON.parse(input_str);

 if(input.method === 'makeOrder'){
 makeOrder(input.params.own, input.params.target, input.params.fee, input.params.expiration);
 }
 else if(input.method === 'cancelOrder'){
 cancelOrder(input.params.order);
 }
 else if(input.method === 'takeOrder'){
 takeOrder(input.params.order);
 }
 else if(input.method === 'updateFeeRate'){
 updateFeeRate(input.params.rate);
 }
 else if(input.method === 'updateOwner'){
 updateOwner(input.params.owner);
 }
 else if(input.method === 'clearExpiredOrder'){
 clearExpiredOrder();
 }
 else if(input.method === 'withdrawFee'){
 withdrawFee(input.params.value);
 }
 else{
 throw '<Main interface passes an invalid operation type>';
 }
}

query

	The query function is responsible for data query, including dexInfo, getOrder, getOrderInterval and other interfaces.

	Function body.

function query(input_str){

 let result = {};
 let input = JSON.parse(input_str);

 if(input.method === 'dexInfo'){
 result.dexInfo = dexInfo();
 }
 else if(input.method === 'getOrder'){
 result.order = getOrder(input.params.order);
 }
 else if(input.method === 'getOrderInterval'){
 result.interval = getOrderInterval();
 }
 else{
 throw '<Query interface passes an invalid operation type>';
 }
 return JSON.stringify(result);
}

 id: dpos_10 title: BUMO DPOS 10 Protocol sidebar_label: DPOS 10

id: dpos_10
title: BUMO DPOS 10 Protocol
sidebar_label: DPOS 10

DPOS Contract System

Creating Election Contracts

After the DPOS contract account is created successfully, the subsequent operations can be performed, and the account is globally unique and cannot be created repeatedly.

Upgrading Election Contracts

	Since the DPOS contract already exists in the blockchain system and cannot be changed after the contract is created, it needs to be updated by upgrading the version. Versions after BUMO v1.2.0 automatically use the new contract address, and the old contract address (buQtxgoaDrVJGtoPT66YnA2S84yE8FbBqQDJ) will be discarded.

	In order to facilitate the subsequent upgrade of the DPOS contracts and avoid using the version upgrade function every time, the new DPOS contracts are implemented by the delegateCall mechanism. The entry contract uses the delegateCall to delegate the call to the logical contract to execute, and the delegateCall can specify the address of the logical contract. Therefore, when the contract is upgraded, you only need to create a new logical contract, and then change the logical contract address stored in the entry contract to the new address. The update is decided by the Committee voting.

	Since the call test is required when the contract is created, the entry contract can only be created after the logical contract is created.

	There is no need to specify a contract address when creating a DPOS logical contract, which is automatically generated by the system. When creating a DPOS entry contract, you need to specify the contract address as: buQqzdS9YSnokDjvzg4YaNatcFQfkgXqk6ss and specify the address of the created logical contract in the entry contract.

Creating Logical Contracts

When creating a logical contract account, copy all the source code in the dpos.js file located at the src\contract\dpos.js directory as the value of the payload field in the account.

Example

 "contract" :
 {
 "payload" : "Copy all the code in the src\contract\dpos.js directory to here"
 },

Creating Entry Contracts

When creating an entry contract, first obtain the address of the logical contract, fill in the logical_contract field in the init_input parameter when creating the contract, then fill in the initial committee member address list into the commit field, and then copy all the source code in the dpos_delegate.js file as the value in the payload field of the account.

Example

 "create_account":
 {
 "dest_address": "buQqzdS9YSnokDjvzg4YaNatcFQfkgXqk6ss",
 "contract" :
 {
 "payload" : "Copy all the code in src\contract\dpos_delegate.js to here"
 },
 "init_balance": 1000000,
 "init_input" : "{
 \"method\": \"init\",
 \"params\": {
 \"logic_contract\": \"Fill in the logical contract address here\",
 \"committee\": [\"Fill in the committee address list here\"]
 }
 }",
 "priv": {
 "master_weight": 0,
 "thresholds": {
 "tx_threshold": 1
 }
 }
 }

Configuration of Election

In the contract code of dpos.js file, the following configuration can be modified as needed through the Updating Configuration of Election process.

config = {
 'gas_price' :1000, /*1000MO, which is one hundred thousandth of a BU*/
 'base_reserve' :1000000, /* 1000000MO, which is 0.01BU */
 'committee_size' : 10,
 'kol_size' : 21,
 'kol_candidate_size' : 100,
 'kol_min_pledge' : 500000000000000, /* 500 0000 0000 0000 */
 'validator_size' : 19,
 'validator_candidate_size' : 100,
 'validator_min_pledge' : 500000000000000,/* 500 0000 0000 0000 */
 'pledge_magnification' : 2,
 'pass_rate' : 0.5,
 'valid_period' : 2592000000000, /* 30 * 24 * 60 * 60 * 1000 * 1000 */
 'vote_unit' : 1000000000, /*10 00000 00000*/
 'reward_allocation_share' : [50,6,40,4], /* validators 50%, validator candidates 6%, kol 10%, kol candidates 4% */
 'logic_contract' : params.logic_contract
 };

	Parameter
	Description
	Default

	gas_price
	The fuel price of transaction fees.
	1000

	base_reserve
	The minimum reserved fee for the account.
	1000000

	committee_size
	The number of committee members.
	100

	kol_size
	The number of ecological node members.
	21

	kol_candidate_size
	The number of ecological node candidates.
	100

	kol_min_pledge
	The minimum deposit amount for ecological node candidates.
	500000000000000

	validator_size
	The number of consensus nodes.
	19

	validator_candidate_size
	The number of consensus node candidates.
	100

	validator_min_pledge
	The minimum deposit amount for consensus node candidates.
	500000000000000

	pledge_magnification
	Equity ratio of deposits.
	2

	pass_rate
	Review the pass rate of the vote. During the valid review period, the number of members who voted for the proposal exceeds the pass rate and the proposal will be executed. If votes > (total votes * pass_rate), the vote is passed. For example, assuming a total of 4 nodes, 4 * 0.5 = 2, and votes > 2, then at least 3 votes are required to pass.
	0.5

	valid_period
	The valid period, in microseconds, is applied to valid vote period and lockout period of withdrawal.
	2592000000000

	vote_unit
	The voting unit. Each vote, additional vote or the additional deposit amount of the contestant must be an integral multiple of this value.
	10 0000 0000

	reward_allocation_share
	The distribution ratio of block rewards. [50, 6, 40, 4] represents the consensus nodes evenly share 50% of the block reward, the consensus node candidates evenly share 6% of the block reward, the kols share 40% of the block reward, and the candidate kols share 4% of block reward.
	[50,6,40,4]

	logic_contract
	The address of the DPOS logical contract.
	"${logic_address}"

User Roles

Types of roles supported in DPOS contracts (any BuChain account can apply for and serve multiple roles):

role = [
 'committee',
 'validator',
 'kol'
];

Note: In the above interface parameters, committee represents the Committee, validator represents the consensus node, and kol represents the ecological node.

The role strings listed in the role field provide optional parameter values for the role parameter of the interface to distinguish various roles when DPOS contracts execute apply (apply interface), withdrawal (withdraw interface), abolish (abolish interface), and approve (approve interface) actions. See User Interface for more details.

Proposal Actions

The proposal actions in the DPOS contract:

motion = [
 'apply',
 'abolish',
 'withdraw',
 'config'
];

The action strings listed in the motion field provide optional parameter values for the operate parameter of the interface to distinguish various proposal actions when executing (approve interface) action or cleaning expired proposal (clean interface) action. See User Interface for more details. The withdraw interface will only be used when cleaning out expired proposals (clean interface), but withdrawing from the proposal does not require approval.

User Interface

Operation Interfaces

	Method
	Parameter
	Description

	apply
	role, pool, ratio, node
	The apply interface. Any BuChain account can use this interface to apply for a candidate consensus node, candidate ecological node, and committee member. The role parameter is the role applied for. The parameter value must be one of the values listed in the User Roles section; the pool parameter is the address assigned to the voter used to receive block reward; the ratio parameter is the distribution ratio of the reward, the contract will transfer the block reward obtained by the super node to the address specified by pool according to the ratio specified by ratio, the reward will be distributed to all voters who support the super node, and members of the Application Committee do not need these two parameters; node is the physical node address, and this parameter needs to be assigned only if the requested role is a candidate consensus node.

	append
	role
	The interface for pledging additional deposit. The candidate consensus node or candidate kol can pledge additional deposit by calling this interface. The role parameter is explained as above.

	setNodeAddress
	address
	The interface for setting the node address. The consensus node or the candidate consensus node can call this interface to set the physical node for generating blocks. The address parameter is the address of the new node.

	setVoteDividend
	role,pool,ratio
	The interface for setting the reward distribution for voting. The super node and its candidate nodes can call this interface to set the address and distribution ratio for assigning the rewards. The parameters are interpreted in the same way as the apply interface.

	abolish
	role,address,proof
	The interface to abolish. A role member proposes to abolish another member of the same role set. The address parameter is the address of the revoked; the proof parameter is the reason to abolish; the role parameter is interpreted as above.

	configure
	item、value
	The interface for configuration. Committee members propose to modify the value of an election configuration item. The item parameter is a modified configuration item. The parameter value must be one of the configuration items listed in the Configuration of Election section; the value parameter is the new configuration value.

	approve
	operate,item,address
	The interface for approving. Committee members vote after reviewing a proposal. The operate parameter is the action of the proposal. The parameter value must be one of the values listed in the Proposal Actions section; the item parameter is the item of the proposal, and the parameter value must be a value in User Roles Chapter or one of the values listed in the Configuration of Election section; the address parameter is the address of the proposer, and if the configuration of the approval is modified, it is the proposer's address.

	vote
	role,address
	The interface for voting. The account votes for the candidate consensus node and the candidate ecological node. The address parameter is the candidate consensus node or the candidate ecological node supported by the vote, and the role parameter is explained as above.

	unVote
	role, address
	The interface to revoke votes. The account withdraws votes. The role parameter and the address parameter are interpreted as above.

	withdraw
	role
	The interface for withdrawing. Candidate consensus nodes, candidate ecological nodes, or committee members withdraw from their set, and the parameters are explained as above.

	extract
	list
	The interface to cash out. list is a list parameter that any user can call this interface to extract the rewards of the specified address set to their respective addresses.

	clean
	operate,item,address
	The interface to clean up the expired proposal. Any account can call this interface to clean up any expired proposals. The operate parameter is the action of the proposal. The parameter value must be one of the values listed in the Proposal Actions section; the item parameter is the item of the proposal, and the parameter value must be in User Roles Chapter or one of the values listed in the Configuration of Election section; the address parameter is the address of the proposer, and if the configuration of the approval is modified, it is the proposer's address.

Query Interfaces

	Method
	Parameter
	Description

	getProposal
	operate,item,address
	The interface to query the proposal. Any BuChain account can query all types of proposal, including the proposal for candidate consensus nodes, the candidate ecological nodes and the committee members to apply for joining in or abolishing, and the proposal to modify the configuration of election. The operate parameter is the action of the proposal. The parameter value must be one of the values listed in the Proposal Actions section; the item parameter is the item of the proposal, and the parameter value must be User Roles Chapter or one of the values listed in the Configuration of Election section; the address parameter is the sponsor's address, and if the query is to modify the election configuration proposal, it is the proposer's address.

	getVoteInfo
	role,candidate,voter
	The interface to query the vote. You can query the number of votes for an account for a candidate consensus node or candidate ecological node. The candidate parameter is the address of the candidate consensus node or the candidate ecological node; voter is the address of the voting account. If the account queries its votes for an object, the voter parameter can be omitted; the role parameter is interpreted as above.

	getValidators
	None
	The interface to query the consensus node set. This interface is used to obtain a list of consensus nodes.

	getValidatorCandidates
	None
	The interface to query the candidate consensus node set. A list of candidate consensus nodes and respective shareholder rights can be obtained with this interface.

	getKols
	None
	The interface to query the ecological node set. A list of ecological nodes can be obtained with this interface.

	getKolCandidates
	None
	The interface to query the candidate ecological node set. A list of candidate ecological nodes and their respective shareholders' equity can be obtained with this interface.

	getCommittee
	None
	The interface to query the committee. A list of the committee can be obtained with this interface.

	getRewardDistribute
	None
	The interface to query the block reward distribution table. The amount of block rewards that have been allocated by all candidate consensus nodes and ecological nodes can be obtained with this interface.

	getConfiguration
	None
	The interface to query the configuration of election. All modifiable election configuration items and their current values can be obtained with this interface.

Operational Feedback

When a user triggers a DPOS contract, if an important event occurs, the DPOS contract will trigger a tlog transaction to feedback the result of the contract execution to the user. The tlog transaction prints multiple outputs in sequence, with the first output being the event name and the following output being the key information list for the event.

	Event
	Output
	Description

	addCandidate
	Address of participant, role
	An event that is triggered when an applicant successfully joins a committee or campaign list.

	deleteCandidate
	Address of to-be-deleted,role
	An event that is triggered when a committee member or campaign node is removed from the candidate list.

	updateConfigure
	Configuration item, configuration value
	The event that is triggered when the related configuration changes are elected.

	penalty
	Address of evildoer, role, amount of penalty
	The event that is triggered when the deposit of the malicious node is fined.

Privileges of Roles

Different actions can be done when different roles call different interfaces with specific parameters. In a DPOS contract, the actions that different roles can perform are as follows.

	A user is the basic role of the account, and each account is treated as a user. The actions that the user can perform are as follows:

	Apply to become a committee member, candidate consensus node and candidate ecological node.

	Vote for candidate consensus nodes and candidate ecological nodes.

	Withdraw votes for candidate consensus nodes or candidate ecological nodes that have been voted for.

Note: The ballot is the BU held by the user. 1BU is equal to one ballot. The default voting unit is 10BUs, that is, the voting amount must be a multiple of 10Us. The number of votes that the user can vote for is the number of BUs that can be transferred in the account (the minimum reserved fee for the account cannot be voted). A single user can vote for multiple candidate consensus nodes and candidate ecological nodes at the same time. All votes cast by the user can be withdrawn.

	The committee members can perform the following operations:

	Vote to review applications for committee members, consensus nodes, and ecological nodes.

	Propose to abolish an incompetent member, or propose to change a system configuration.

	Vote to review the proposal to abolish committee members, consensus nodes, ecological nodes or the change of system configuration.

Note: The principle of the committee’s review of all proposals and applications is one vote for one person, vote for it if supported, no vote if not supported, and repeated votes are regarded as one vote. If the number of votes exceeds the voting pass rate during the valid period of the review (see the pass_rate configuration item in Configuration of Election, it is considered as approval. If the number of votes does not exceed the voting pass rate until the end of the review period, the review is deemed to have failed.

	The validator consensus node can perform the following actions:

	Extract block rewards.

	Propose to abolish an incompetent consensus node.

	Withdraw from the consensus node set.

Note: The user submits the application for the consensus node to the DPOS contract. After the committee approves the vote, it can only become a candidate consensus node. Only those whose shareholder’s equity (the sum of the quality deposit and the number of votes) are ranked within the qualified position (validator_size) can become formal consensus nodes.

	Ecological nodes (also called Key Opinion Leader) can perform the following actions.

	Extract block rewards.

	Propose to abolish an incompetent ecological node.

	Withdraw from the ecological node set.

Note: The user submits the application for the ecological node to the DPOS contract. After the committee approves the vote, it can only become a candidate ecological node. Only those whose shareholder’s equity (the sum of the quality deposit and the number of votes) are ranked within the qualified position (kol_size) can become formal ecological nodes.

Electing Consensus Nodes

Consensus nodes are also known as super nodes. They are major players in the blockchain consensus system. They are mainly responsible for packaging the whole network transactions within a certain period of time into a proposal, and agreeing on the proposal to generate a new block. The consensus nodes are voted by all accounts in BuChain.

The main steps for selecting a consensus node are as follows:

	A node submits an application for a consensus node to the DPOS contract and pledges a certain amount of BUs to prevent being evil.

	Committee reviews and votes for the application. After being approved, the application node is added to the candidate consensus node set.

	The users vote for the candidate consensus node, and those whose votes reach a certain number become the consensus nodes, participating in the consensus of BuChain, and obtaining the block reward.

Applying for Candidate Consensus Nodes

Any account with a network node can apply to become a candidate consensus node by transferring some BU to the DPOS contract as a deposit. After the committee has voted to review, which you can refer to Committee Approved Vote, it can become a formal candidate consensus node. But whether it can become a consensus node is determined according to the total number of votes obtained in a certain period.

	The applicant transfers some BU to the DPOS contract as a deposit. See the development document ‘Transferring BU Assets’). If the user withdraws, the deposit will be locked for 30 days. After the lockout period is expired, apply to withdraw again. the contract will return the deposit to the application account. See Withdrawal of Candidate Consensus Nodes for details.

	The input field of the ‘transferring BU assets’ operation is filled with { "method": "apply", "params":{"role":"validator", "pool":" this field is filled in the address to receive rewards for voting", "ratio ":" this field is filled in with the reward ratio for voting", "node": "this field is filled in with the physical address"}}, and pay attention to the use of escape characters.

	Parameter
	Description

	role
	The role applied for. The parameter value must be one of the values listed in the User Roles section; here is the consensus node role.

	pool
	The address to receive rewards for voting. If the parameter is not provided, the default is the applicant’s address.

	ratio
	The distribution ratio of rewards of voting. The value is the numerator of the percentage, such as 80, which means that 80% of the block rewards will be transferred to the address specified by the pool parameter, and then the pool address assigns the rewards to the supporters of the current node. If the parameter is not provided, the default is 0.

	node
	The node address, which is the address of the actual physical node participating in the BuChain consensus and block generation. In order to ensure the security of the account funds, when the user applies for the consensus node, the fund address and the node address are separated.

Example

 "pay_coin" :
 {
 "dest_address" : "buQqzdS9YSnokDjvzg4YaNatcFQfkgXqk6ss",
 "amount" :300000000000000,
 "input":
 "{
 \"method\":\"apply\",
 \"params\":
 {
 \"role\":\"validator\",
 \"pool\":\"buQhqMoJziz27DdrS4DaFjeUSspxetAfvpzu\",
 \"ratio\":0,
 \"node\":\"buQo8w52g2nQgxnfKWovUUEFQzMCTX5TRpZD\"
 }
 }"
 }

After the application is successful, the candidate consensus node information can be queried with Querying Consensus Nodes.

Pledging Additional Deposit

The candidate consensus node or the candidate ecological node may pledge additional deposit to increase its own equity ranking. The additional amount must be an integral multiple of the configuration value of vote_unit in the Configuration of Election, otherwise the operation to pledge additional deposit will be rejected.

	The input field of the transferring BU assets operation is filled with { "method" : "append", "params":{"role":"validator"}}, and pay attention to the use of escape characters.

	Parameter
	Description

	role
	The role applied for. The parameter value must be one of the values listed in the User Roles section (committee does not need pledge); here is the consensus node role.

Example

 "pay_coin" :
 {
 "dest_address" : "buQqzdS9YSnokDjvzg4YaNatcFQfkgXqk6ss",
 "amount" :10000000000000,
 "input":
 "{
 \"method\":\"append\",
 \"params\":
 {
 \"role\":\"validator\"
 }
 }"
 }

Switching Node Address

The fund address and node address of the consensus node are separate. In order to facilitate the online update and upgrade of the consensus node, the consensus node or the candidate consensus node can call this interface to modify the node address.

	Transfer 0 BU to the DPOS contract.

	The input field of the ‘transferring BU assets’ operation is filled with { "method" : "setNodeAddress", "params" : { "address" : "new node address is filled here"} }, and pay attention to the use of escape characters.

	Parameter
	Description

	address
	The new node address, which is used to replace the node that currently performs block generation.

Example

 "pay_coin" :
 {
 "dest_address" : "buQqzdS9YSnokDjvzg4YaNatcFQfkgXqk6ss",
 "amount" :0,
 "input":
 "{
 \"method\":\"setNodeAddress\",
 \"params\":
 {
 \"address\":\"buQo8w52g2nQgxnfKWovUUEFQzMCTX5TRpZD\"
 }
 }"
 }

Setting Reward Ratio for Voting

The super node calls this interface to change the address used to distributing rewards and the reward ratio.

	Transfer 0 BU to the DPOS contract.

	The input field of the transferring BU assets operation is filled with { "method" : "setVoteDividend", "params":{"role": "the role type of the super node is filled in here", "pool":" this field is filled in the address for distributing rewards", "ratio": " this field is filled in the reward ratio"}}, and pay attention to the use of escape characters.

	Parameter
	Description

	role
	The role of applied for. The parameter value must be one of the values listed in the User Roles section, but it cannot be the committee.

	pool
	The address to distribute voting rewards.

	ratio
	The reward ratio for voting. The value is the numerator of the percentage, such as 80, which means that 80% of the block reward will be transferred to the address specified by the pool parameter, and then the pool address assigns the rewards to the supporters of the current node.

Example

 "pay_coin" :
 {
 "dest_address" : "buQqzdS9YSnokDjvzg4YaNatcFQfkgXqk6ss",
 "amount" :0,
 "input":
 "{
 \"method\":\"setVoteDividend\",
 \"params\":
 {
 \"role\":\"validator\",
 \"pool\":\"buQhqMoJziz27DdrS4DaFjeUSspxetAfvpzu\",
 \"ratio\":80
 }
 }"
 }

Voting for Candidate Consensus Nodes

	Any user transfers some BU to the DPOS contract, the transfer amount is regarded as the number of votes of the user, and the address provided in the transfer parameter is regarded as the candidate consensus node to receive voting support.

	The total number of votes of the candidate consensus nodes is the sum of their own deposit and the number of votes received. The candidate consensus node increases the deposit, which is equivalent to voting for itself.

	The user can vote for multiple candidate addresses, and the number of candidate consensus nodes that can be voted depends on the size of the candidate consensus node set and the user’s account balance.

	Repeated voting on the same address is regarded as an increase in voting.

	The number of votes and the additional deposit must be an integral multiple of the value configured in vote_unit in Configuration of Election.

	The input field of the transferring BU assets operation is filled with { "method" : "vote", "params" : { "role":"validator", "address" : " the candidate consensus node address is filled in "} }, and pay attention to the use of escape characters.

	Parameter
	Description

	role
	The role of the node voted for. The parameter value must be one of the values listed in the User Roles section, and here is the consensus node role.

	address
	The address voted for.

Example: Vote for a specified candidate consensus node

 "pay_coin" :
 {
 "dest_address" : "buQqzdS9YSnokDjvzg4YaNatcFQfkgXqk6ss",
 "amount" :100000000000, /*Vote 1000BU*/
 "input":
 "{
 \"method\":\"vote\",
 \"params\":
 {
 \"role\":\"validator\",
 \"address\":\"buQtZrMdBQqYzfxvqKX3M8qLZD3LNAuoSKj4\"
 }
 }"
 }

Withdrawing Votes

	Transfer 0 BU to the DPOS contract account.

	The input field of the transferring BU assets operation is filled with { "method" : "unVote", "params" : { "role":"validator", "address" : " the candidate consensus node address is filled in "} }, and pay attention to the use of escape characters.

	The voting information is recorded in the contract and can be queried by using the getVoteInfo interface.

	Parameter
	Description

	role
	The role of the voter. The parameter value must be one of the values listed in the User Roles section, and here is the consensus node role.

	address
	The address voted for.

 "pay_coin" :
 {
 "dest_address" : "buQqzdS9YSnokDjvzg4YaNatcFQfkgXqk6ss",
 "amount" :0,
 "input":
 "{
 \"method\":\"unVote\",
 \"params\":
 {
 \"role\":\"validator\",
 \"address\":\"buQtZrMdBQqYzfxvqKX3M8qLZD3LNAuoSKj4\"
 }
 }"
 }

Withdrawal of Candidate Consensus Nodes

	The candidate consensus node can withdraw from the candidate consensus nodes by this operation and recover the entire deposit. The withdrawal process is as follows:

	The first step is to apply for withdrawal. After the application is successful, the node address is deleted in the candidate node set, and the deposit enters the lockout period, and the lockout period is 30 days.

	After the lockout period is over, it enters the second step, and the withdrawal request can be sent again. At this time, the lockout period is over, and the DPOS contract account returns the deposit to the account.

	Transfer 0 BU to the DPOS contract account.

	The input field of the transfer asset or transferring BU assets operation is filled with { "method":"withdraw", "params" :{ "role":"validator" }}, and pay attention to the use of escape characters.

	Parameter
	Description

	role
	The role of the withdrawer. The parameter value must be one of the values listed in the User Roles section, and here is the consensus node role.

Example

 "pay_coin" :
 {
 "dest_address" : "buQqzdS9YSnokDjvzg4YaNatcFQfkgXqk6ss",
 "amount" :0,
 "input":
 "{
 \"method\":\"withdraw\",
 \"params\":{
 \"role\":\"validator\"
 }
 }"
 }

Proposal to Abolish Malicious Consensus Nodes

If a consensus node finds that another consensus node is a malicious node, or is no longer suitable as a consensus node, it can apply to abolish the malicious node. After launching the ‘Abolition of Malicious Node’ proposal, the committee needs to vote to decide whether to abolish the node.

	The proposer transfers 0 BU to the DPOS contract account.

	The input field of the transfer asset or transferring BU assets operation is filled with { "method" : "abolish", "params" : { "role":"validator", "address" : "the malicious consensus node address is filled in here ", "proof": " the reason for abolishing this consensus node is filled in here"} }, and pay attention to the use of escape characters.

	Parameter
	Description

	role
	The role of the abolished node. The parameter value must be one of the values listed in the User Roles section, and here is the consensus node role.

	address
	The address of the one that is abolished.

	proof
	The reason to abolish.

Example

 "pay_coin" :
 {
 "dest_address" : "buQqzdS9YSnokDjvzg4YaNatcFQfkgXqk6ss",
 "amount" :0,
 "input":
 "{
 \"method\":\"abolish\",
 \"params\":
 {
 \"role\":\"validator\",
 \"address\":\"buQmvKW11Xy1GL9RUXJKrydWuNykfaQr9SKE\"，
 \"proof\":\"I_saw_it_uncomfotable.\"
 }
 }"
 }

Note: Both the applicant for abolishing and the one abolished must be consensus nodes.

Querying Consensus Nodes

The user can view related information by providing specified parameters to the query interface. The query interface can only be called with the callContract interface. The contract_address field is populated with the DPOS contract account address.

Querying the Current Consensus Node Set

Example

 {
 "contract_address" : "buQqzdS9YSnokDjvzg4YaNatcFQfkgXqk6ss",
 "code" : "",
 "input" : "{\"method\": \"getValidators\"}",
 "opt_type" : 2,
 "source_address" : ""
 }

Result

{
 "result": {
 "type": "string",
 "value": "{\"validators\":[
 [\"buQWT7vkMth2y9RHgSdqqw77sCybgWRsB7jM\",\"500000000000000\"],[\"buQBwe7LZYCYHfxiEGb1RE9XC9kN2qrGXWCY\",\"500000000000000\"],[\"buQWBgAWSqiES7TNh1mq2VQwonvWtESz8Z2Z\",\"500000000000000\"],[\"buQWQ4rwVW8RCzatR8XnRnhMCaCeMkE46qLR\",\"500000000000000\"],[\"buQrVDKPCVE6LfCf8TyZEaiZ8R99NrSn4Fuz\",\"500000000000000\"]]}"
 }
}

Querying Candidate Consensus Node Set

Example

 {
 "contract_address" : "buQqzdS9YSnokDjvzg4YaNatcFQfkgXqk6ss",
 "code" : "",
 "input" : "{\"method\": \"getValidatorCandidates\"}",
 "opt_type" : 2,
 "source_address" : ""
 }

Result

{
 "result": {
 "type": "string",
 "value": "{\"validator_candidates\":[
 [\"buQWT7vkMth2y9RHgSdqqw77sCybgWRsB7jM\",\"502500000000000\"],[\"buQBwe7LZYCYHfxiEGb1RE9XC9kN2qrGXWCY\",\"501500000000000\"],[\"buQWBgAWSqiES7TNh1mq2VQwonvWtESz8Z2Z\",\"500500000000000\"],[\"buQWQ4rwVW8RCzatR8XnRnhMCaCeMkE46qLR\",\"500000000000000\"],[\"buQrVDKPCVE6LfCf8TyZEaiZ8R99NrSn4Fuz\",\"500000000000000\"]]}"
 }
}

Querying the Voting Information of Consensus Nodes for Users

	Parameter
	Description

	voter
	The address for voter. If the user queries their own voting information, the address can be omitted.

	role
	The role of the one voted for. The parameter value must be one of the values listed in the User Roles section, and here is the consensus node.

	candidate
	The address voted for.

Example

 {
 "contract_address" : "buQqzdS9YSnokDjvzg4YaNatcFQfkgXqk6ss",
 "code" : "",
 "input" :
 "{
 \"method\": \"getVoteInfo\",
 \"params\":
 {
 \"voter\":\"buQrVDKPCVE6LfCf8TyZEaiZ8R99NrSn4Fuz\",
 \"role\": \"validator\",
 \"candidate\": \"buQmvKW11Xy1GL9RUXJKrydWuNykfaQr9SKE\"
 }
 }",
 "opt_type" : 2,
 "source_address" : ""
 }

Result

 {
 "result": {
 "type": "string",
 "value": "{\"voterInfo\":500000000000}"
 }
 }

Querying Application Information of Consensus Nodes

	Parameter
	Description

	operate
	The proposal action. The parameter value must be one of the values listed in the Proposal Actions section, and here is the application action.

	item
	The proposed item. The parameter value must be one of the values listed in the User Roles section or the Configuration of Election section, and here is the consensus node role.

	address
	The address of the applicant.

Example

 {
 "contract_address" : "buQqzdS9YSnokDjvzg4YaNatcFQfkgXqk6ss",
 "code" : "",
 "input" :
 "{
 \"method\": \"getProposal\",
 \"params\":
 {
 {
 \"operate\": \"apply\",
 \"item\":\"validator\",
 \"address\":\"buQmvKW11Xy1GL9RUXJKrydWuNykfaQr9SKE\"
 }
 }",
 "opt_type" : 2,
 "source_address" : ""
 }

Result

	Parameter
	Type
	Description

	proposal
	string
	The proposal.

	pledge
	string
	The deposit pledged.

	expiration
	number
	The expiry date.

	ballot
	array
	The vote list by the committee members who support this proposal.

	passTime
	number
	During the committee reviewing the proposal, this field is not available if it fails the review.

{
 "result": {
 "type": "string",
 "value": "{\"proposal\":{\"pledge\":\"500000000000000\",\"expiration\":1552098925001842,\"ballot\":[\"buQmKmaeCyGcPk9KbvnkhpLzQa34tQ9MaWwt\",\"buQYKj4TTJPVDPXCLWeBZMoCr1JPhq9Z2tJm\",\"buQZoJk8bq6A1AtsmfRw3rYJ79eMHUyct9i2\"],\"passTime\":1550802935024539}}"
 }
}

Querying the Specified Proposal to Abolish the Malicious Node

	Parameter
	Description

	operate
	The proposal action. The parameter value must be one of the values listed in the Proposal Actions section, and here is the abolishing action.

	item
	The proposed item. The parameter value must be one of the values listed in the User Roles section or the Configuration of Election section, and here is the consensus node role.

	address
	The address of the one abolished.

Example

 {
 "contract_address" : "buQqzdS9YSnokDjvzg4YaNatcFQfkgXqk6ss",
 "code" : "",
 "input" :
 "{
 \"method\": \"getProposal\",
 \"params\":
 {
 {
 \"operate\": \"abolish\",
 \"item\":\"validator\",
 \"address\":\"buQmvKW11Xy1GL9RUXJKrydWuNykfaQr9SKE\"
 }
 }",
 "opt_type" : 2,
 "source_address" : ""
 }

Result

	Parameter
	Type
	Description

	proposal
	string
	The proposal.

	informer
	string
	The address of the informant.

	reason
	string
	The reason to report.

	expiration
	number
	The expiry date.

	ballot
	array
	The vote list by the committee members who support this proposal.

{
 "result": {
 "type": "string",
 "value": "{\"proposal\":{\"informer\":\"buQWQ4rwVW8RCzatR8XnRnhMCaCeMkE46qLR\",\"reason\":\"see abnormal record\",\"expiration\":1550815129920811,\"ballot\":[\"buQWQ4rwVW8RCzatR8XnRnhMCaCeMkE46qLR\"]}}"
 }
}

Committee

The committee is independent of the candidate consensus nodes and the consensus nodes. It does not participate in the reward distribution and it is not driven by interests. The members mainly come from the foundation and the core developers. When electing or funding, a committee set is specified. New members’ participation or withdrawal from this committee must be approved by the committee members voting for it.

Main functions:

	Update configuration of election. If some members think that the current configuration of election is unreasonable, they can propose a configuration update for the election. After the committee members vote in the valid period, the new configuration for the election will be used in the next round of block packaging.

	Review candidate consensus nodes. When a node applies for a candidate consensus node, the committee members will review whether it is qualified, including physical node configuration, personal or organizational authentication information, and credit level.

	Review candidate ecological nodes. When a node applies for a candidate ecological node, the committee members will review whether it is qualified, including public influence, community contributions, and personal or organizational certification information, credit ratings, etc.

	Update DPOS logic function contracts.

Settings for Initializing Committee Members

The committee member initialization operation is done in the entry function init() when the contract is created.

Before the initialization, the committee members need to be made public in the community to accept the supervision of the users and improve their credibility.

Selecting the Committee

Applying to Join the Committee

	The user transfers 0 BU to the DPOS contract and applies to become a new member. To become a new member, you need to be approved by the current committee. Refer to Committee Approved Vote.

	The input field of the transferring BU assets operation is filled with { "method" : "apply", "params" : {"role":"committee"}}, and pay attention to the use of escape characters.

	Parameter
	Description

	role
	The role applied for. The parameter value must be one of the values listed in the User Roles section, and here is the committee member.

Example

 "pay_coin" :
 {
 "dest_address" : "buQqzdS9YSnokDjvzg4YaNatcFQfkgXqk6ss",
 "amount" :0,
 "input":
 "{
 \"method\":\"apply\"，
 \"params\" : {
 \"role\": \"committee\"
 }
 }"
 }

After the application is successful, you can query the candidate consensus node information with Querying Committee.

Committee Approved Vote

	Proposals that need to be reviewed and approved by the committee include: candidate consensus nodes, participation or withdrawal of candidate ecological nodes and new committee members, and configuration updates. After the majority of the committee members approve the proposal, it will be executed. See the pass_rate configuration item in Configuration of Election. When reviewing the vote, you need to specify the proposal action type, the proposer role, and the address of the one proposed. If the review is a configuration update proposal, use the proposal’s Configuration of Election item instead of the role, the proposer address instead of the address of the one proposed (the update configuration proposal does not have one that is proposed).

	The committee members transfer 0 BU to the DPOS contract account.

	The input field of the transferring BU assets operation is filled with { "method":"approve", "params" : {"item": "committee", "address": "the address to be included or revoked is filled in here", " Operate": "the proposal type is filled in here"} }, and pay attention to the use of escape characters.

	Parameter
	Description

	operate
	The proposal action. The parameter value must be one of the values listed in the Proposal Actions section, and here is the application action.

	item
	The proposed item. The parameter value must be one of the values listed in the User Roles section or the Configuration of Election section, and here is the committee member role.

	address
	The address of the applicant.

Example

 "pay_coin" :
 {
 "dest_address" : "buQqzdS9YSnokDjvzg4YaNatcFQfkgXqk6ss",
 "amount" :0,
 "input":"{
 \"method\":\"approve\",
 \"params\" : {
 \"item\":\"committee\",
 \"address\": \"buQZoJk8bq6A1AtsmfRw3rYJ79eMHUyct9i2\"，
 \"operate\": \"apply\"
 }
 }"
 }

	In the valid reviewing period, if the votes by the committee are above the pass rate, then the review is passed. Refer to Configuration of Election. If the application proposal is passed, the applicant will join to the corresponding set. If the proposal reviewed is about abolishing a node, the node will be removed from the corresponding nodes after it the proposal is passed. If the proposal reviewed is about configuration update, the value in the proposal will replace the value of the configuration item.

Withdrawal of Committee Members

	Transfer 0 BU to the DPOS contract account.

	The input field of the transfer asset or transferring BU assets operation is filled with { "method":"withdraw", "params" : {"role":"committee"} }, and pay attention to the use of escape characters.

	If committee members voluntarily withdraw, no approval is needed.

	Parameter
	Description

	role
	The role of the withdrawer. The parameter value must be one of the values listed in the User Roles section, and here is the committee member.

Example

 "pay_coin" :
 {
 "dest_address" : "buQqzdS9YSnokDjvzg4YaNatcFQfkgXqk6ss",
 "amount" :0,
 "input":"{
 \"method\":\"withdraw\",
 \"params\" : {
 \"role\":\"committee\"
 }
 }"
 }

Querying Committee

The user can view the related information by providing the specified parameters to the query interface. To call the query interface, you have to fill in the DPOS contract account address through the callContract and contract_address fields.

Example

 {
 "contract_address" : "buQqzdS9YSnokDjvzg4YaNatcFQfkgXqk6ss",
 "code" : "",
 "input" : "{\"method\": \"getCommittee\"}",
 "opt_type" : 2,
 "source_address" : ""
 }

Result

{
 "result": {
 "type": "string",
 "value": "{\"committee\":[\"buQZoJk8bq6A1AtsmfRw3rYJ79eMHUyct9i2\",\"buQYKj4TTJPVDPXCLWeBZMoCr1JPhq9Z2tJm\",\"buQcYkkoZFMwDNQgCD7DoykNZjtax4FjVSzy\",\"buQmKmaeCyGcPk9KbvnkhpLzQa34tQ9MaWwt\"]}"
 }
}

Updating Configuration of Election

	The DPOS contract not only supports the election function, but also supports updating the configuration of election. To update the configuration of election, it requires the committee to vote for confirmation. After the confirmation in the valid period, the update of the configuration for election will be triggered, and the new configuration will be adopted in the next block.

Structure of Configuration for Election

	Adjustable configuration for selection. If the operator finds that the configuration value is unreasonable, it can be modified by committee proposal and voting.

Proposal to Update Configuration for Election

	Committee members transfer 0 BU to the DPOS contract account.

	Committee members can propose to update a parameter, which only requires you to fill in the parameter that needs to be updated in the configuration.

	The input field of the transfer asset or transferring BU assets operation is filled with{ "method" : "configure", "params" : { "item" :"kol_min_pledge", "value": " the minimum deposit for ecological node is filled in here "} }, and pay attention to the use of escape characters.

	Parameter
	Description

	method
	Call the specified function inside the contract, and here is configure.

	item
	The configuration item of the proposal. The parameter value must be one of the values listed in the Configuration of Election section, and here is the minimum deposit of the ecological node.

	value
	The value of the configuration item to be modified.

Example

 "pay_coin" :
 {
 "dest_address" : "buQqzdS9YSnokDjvzg4YaNatcFQfkgXqk6ss",
 "amount" :0,
 "input":
 "{
 \"method\":\"configure\",
 \"params\":
 {
 \"item\": \"kol_min_pledge\",
 \"value\": 2000000000000
 }
 }"
 }

Note: Only members of the committee have voting rights. If the configuration update proposal is not passed within the valid period, the proposal is abolished and the configuration of election remains unchanged.

Querying Configuration of Election

The user can view the related information by providing the specified parameters to the query interface. To call the interface, you can only fill in the DPOS contract account address through the callContract and contract_address fields.

Example

 {
 "contract_address" : "buQqzdS9YSnokDjvzg4YaNatcFQfkgXqk6ss",
 "code" : "",
 "input":"{\"method\": \"getConfiguration\"}",
 "opt_type" : 2,
 "source_address" : ""
 }

Result

{
 "result": {
 "type": "string",
 "value": "{\"configuration\":{\"gas_price\":1000,\"base_reserve\":1000000,\"committee_size\":10,\"kol_size\":21,\"kol_candidate_size\":100,\"kol_min_pledge\":300000000000000,\"validator_size\":19,\"validator_candidate_size\":100,\"validator_min_pledge\":300000000000000,\"pledge_magnification\":2,\"pass_rate\":0.5,\"valid_period\":2592000000000,\"vote_unit\":1000000000,\"reward_allocation_share\":[50,8,35,7],\"logic_contract\":\"buQf9SYLbfiCBFHkwNhNAnnFgS2o2AraRxoe\"}}"
 }
}

Community Incentives

The development of the public chain ecology is inseparable from the active community. Rewarding the ecological nodes is a way to enhance the visibility of the public chain, appeal participants and increase the members of the community.

Applying for Ecological Nodes

Any user account can transfer some BU to the DPOS contract as a deposit to apply for a candidate ecological node. Only after the application is passed by the committee in a valid period can it be added to ecological node list. Refer to Committee Approved Vote . Whether it can become a formal ecological node is determined by the total number of votes cast by users in a certain period.

	The applicant transfers some BU to the DPOS contract as a deposit which can be recovered by the Withdrawal of Ecological Nodes operation. See the development document Transferring BU Assets.

	The input field of the transferring BU assets operation is filled with { "method" : "apply", "params":{"role":"kol", "pool":" the address to distribute voting rewards is filled in here", "ratio ":" the reward distribution ratio for voting is filled in here "}}, and pay attention to the use of escape characters.

	Parameter
	Description

	role
	The role applied for. The parameter value must be one of the values listed in the User Roles section, and here is the ecological node role.

	pool
	The address to distribute voting rewards. If the parameter is not provided, the default is the applicant’s address.

	ratio
	The reward ratio for voting. The value is a numerator of the percentage, such as 80, which means that 80% of the block reward will be transferred to the address specified by the pool parameter, and then the pool address assigns the reward to the supporters of the current node. If the parameter is not provided, the default is 0.

Example

 "pay_coin" :
 {
 "dest_address" : "buQqzdS9YSnokDjvzg4YaNatcFQfkgXqk6ss",
 "amount" :300000000000000,
 "input":"{
 \"method\":\"apply\",
 \"params\" : {
 \"role\":\"kol\",
 \"pool\":\"buQhqMoJziz27DdrS4DaFjeUSspxetAfvpzu\",
 \"ratio\":0,
 }
 }"
 }

After the application is successful, the candidate ecological node information can be queried through the Querying the Current Ecological Node Set interface.

Withdrawal of Ecological Nodes

	The ecological node can recover the entire deposit through this operation. The withdrawal process is a two-step process:

	The first step is to apply for withdrawal. After the application is successful, the node address is deleted in the candidate node set, and the deposit enters the lockout period, and the lockout period is 30 days.

	After the lockout period is over, it enters to the second step, and the withdrawal request can be sent again. At this time, the lockout period has passed, and the DPOS contract account returns the deposit to the account.

	Transfer 0 BU to the DPOS contract account.

	The input field of the transfer asset or transferring BU assets operation is filled with { "method":"withdraw", "params" : {"role":"kol"}}, and pay attention to the use of escape characters.

	Parameter
	Description

	role
	The role of the withdrawer. The parameter value must be one of the values listed in the User Roles section, and here is the ecological node.

Example

 "pay_coin" :
 {
 "dest_address" : "buQqzdS9YSnokDjvzg4YaNatcFQfkgXqk6ss",
 "amount" :0,
 "input":"{
 \"method\":\"withdraw\",
 \"params\" : {
 \"role\":\"kol\"
 }
 }"
 }

Ecological Nodes Casting Votes and Withdrawing Votes

	All users can transfer some BU to the DPOS contract to vote for a candidate ecological node.

	The user can vote for multiple candidate ecological nodes, and the number of candidate ecological nodes that can be voted depends on the size of the candidate ecological node set and the user’s account balance.

	Repeated voting on the same address is regarded as an increase in voting.

	The number of votes and the additional deposit must be an integral multiple of the vote_unit value configured in Configuration of Election.

	The input field of the transferring BU assets operation is filled with { "method":"vote", "params" : {"role":"kol", "address": " the address of the candidate ecological node is filled in here"}}, and pay attention to the use of escape characters.

Casting Votes

	Parameter
	Description

	role
	The role of the one voted for. The parameter value must be one of the values listed in the User Roles section, and here is the ecological node role.

	address
	The address of the one voted for.

 "pay_coin" :
 {
 "dest_address" : "buQqzdS9YSnokDjvzg4YaNatcFQfkgXqk6ss",
 "amount" :1000000000,
 "input":"{
 \"method\":\"vote\",
 \"params\" : {
 \"role\":\"kol\",
 \"address\": \"buQYKj4TTJPVDPXCLWeBZMoCr1JPhq9Z2tJm\"
 }
 }"
 }

Withdrawing Votes

	Parameter
	Description

	role
	The role of the one voted for. The parameter value must be one of the values listed in the User Roles section, and here is the ecological node role.

	address
	The address voted for.

 "pay_coin" :
 {
 "dest_address" : "buQqzdS9YSnokDjvzg4YaNatcFQfkgXqk6ss",
 "amount" :0,
 "input":"{
 \"method\":\"unVote\",
 \"params\" : {
 \"role\":\"kol\",
 \"address\": \"buQYKj4TTJPVDPXCLWeBZMoCr1JPhq9Z2tJm\"
 }
 }"
 }

Querying Application for Ecological Nodes

	Parameter
	Description

	operate
	The proposal action. The parameter value must be one of the values listed in the Proposal Actions section, and here is the application action.

	item
	The proposed item. The parameter value must be one of the values listed in the User Roles section or the Configuration of Election section, and here is the ecological node role.

	address
	The address of the applicant.

Example

 {
 "contract_address" : "buQqzdS9YSnokDjvzg4YaNatcFQfkgXqk6ss",
 "code" : "",
 "input" :"{
 \"method\": \"getProposal\",
 \"params\":{
 \"operate\": \"apply\",
 \"item\":\"kol\",
 \"address\":\"buQmvKW11Xy1GL9RUXJKrydWuNykfaQr9SKE\"
 }
 }",
 "opt_type" : 2,
 "source_address" : ""
 }

Result

{
 "result": {
 "type": "string",
 "value": "{\"proposal\":{\"pledge\":\"5000000000000\",\"expiration\":1550816576664577,\"ballot\":[\"buQmKmaeCyGcPk9KbvnkhpLzQa34tQ9MaWwt\",\"buQYKj4TTJPVDPXCLWeBZMoCr1JPhq9Z2tJm\",\"buQZoJk8bq6A1AtsmfRw3rYJ79eMHUyct9i2\"],\"passTime\":1550816546664577}}"
}

Querying Ecological Nodes Voted by Users

	Parameter
	Description

	voter
	The address of the voter. If the user queries their own voting information, it can be omitted.

	role
	The role of the one voted for. The parameter value must be one of the values listed in the User Roles section, and here is the ecological node.

	candidate
	The address of the one voted for.

Example

 {
 "contract_address" : "buQqzdS9YSnokDjvzg4YaNatcFQfkgXqk6ss",
 "code" : "",
 "input" :
 "{
 \"method\": \"getVoteInfo\",
 \"params\":
 {
 \"voter\":\"buQrVDKPCVE6LfCf8TyZEaiZ8R99NrSn4Fuz\",
 \"role\": \"kol\",
 \"candidate\": \"buQmvKW11Xy1GL9RUXJKrydWuNykfaQr9SKE\"
 }
 }",
 "opt_type" : 2,
 "source_address" : ""
 }

Result

{
 "result": {
 "type": "string",
 "value": "{\"voterInfo\":500000000000}"
 }
}

Querying the Current Ecological Node Set

The user can view the related information by providing the specified parameters to the query interface. To call the query interface you can only fill in the DPOS contract account address through the callContract and contract_address fields.

Example

 {
 "contract_address" : "buQqzdS9YSnokDjvzg4YaNatcFQfkgXqk6ss",
 "code" : "",
 "input" : "{\"method\": \"getKols\"}",
 "opt_type" : 2,
 "source_address" : ""
 }

Result

{
 "result": {
 "type": "string",
 "value": "{\"kols\":[
 [\"buQB3LtCXfLjtSJKfpaHpykEwDLf43nPxB6z\",\"605000000000000\"],[\"buQZayH6gcAFh5XdgS4tnn8Axrqo1NdutS3p\",\"600000000000000\"],[\"buQaUqDotGNM7htvPR6iHKHBxLGzVpSFkmBM\",\"600000000000000\"]]}"
 }
}

Querying Candidate Ecological Node Set

Example

 {
 "contract_address" : "buQqzdS9YSnokDjvzg4YaNatcFQfkgXqk6ss",
 "code" : "",
 "input" : "{\"method\": \"getKolCandidates\"}",
 "opt_type" : 2,
 "source_address" : ""
 }

Result

{
 "result": {
 "type": "string",
 "value": "{\"kol_candidates\":[
 [\"buQB3LtCXfLjtSJKfpaHpykEwDLf43nPxB6z\",\"605000000000000\"],[\"buQZayH6gcAFh5XdgS4tnn8Axrqo1NdutS3p\",\"600000000000000\"],[\"buQaUqDotGNM7htvPR6iHKHBxLGzVpSFkmBM\",\"600000000000000\"]]}"
 }
}

Querying Node Rewards

Example

 {
 "contract_address" : "buQqzdS9YSnokDjvzg4YaNatcFQfkgXqk6ss",
 "code" : "",
 "input" : "{\"method\": \"getRewardDistribute\"}",
 "opt_type" : 2,
 "source_address" : ""
 }

Result

The reward list is stored in the form of key-value

	Parameter
	Description

	key
	The address of super node.

	value
	Value[0] is the bonus amount, value[1] is the address to distribute rewards , and value[2] is the distribution ratio for rewards.

{
 "result": {
 "type": "string",
 "value": "{
 \"rewards\":{
 \"validators\":{
 \"buQa6cifJPAduxqWf42dUgZ72qQiLGr4VCyn\":[\"10013634880\",\"buQa6cifJPAduxqWf42dUgZ72qQiLGr4VCyn\",0]
 },
 \"kols\":{
 \"buQhqMoJziz27DdrS4DaFjeUSspxetAfvpzu\":[\"282345624\",\"buQhqMoJziz27DdrS4DaFjeUSspxetAfvpzu\",0],
 \"buQmziFKwWTvJe5hBCFa6e3FdPDPorht3wCB\":[\"282345624\",\"buQmziFKwWTvJe5hBCFa6e3FdPDPorht3wCB\",0],
 \"buQnP4jueoC37fP2VxKpsZSTNjgFHpA442jy\":[\"282345624\",\"buQnP4jueoC37fP2VxKpsZSTNjgFHpA442jy\",0],
 \"buQjxgZsG3B24PNzKzpTiwrRR3z6ok46izuR\":[\"282345624\",\"buQjxgZsG3B24PNzKzpTiwrRR3z6ok46izuR\",0],
 \"buQhtTjDmmquE4PTAKSzx4CqL7Z5LKLVG8SZ\":[\"282345624\",\"buQhtTjDmmquE4PTAKSzx4CqL7Z5LKLVG8SZ\",0]
 }
 }
 }"
 }
}

Other Interfaces

Extracting Rewards

	Any user calling this interface can receive a block reward for the specified address set. If the receiving address is not in the reward list, the address will not receive the reward.

	Transfer 0BU to the DPOS contract.

	The input field of the transfer asset or transferring BU assets operation is filled with { "method":"extract", "params":{"list":[the address set for extracting rewards is filled in here]}}, and pay attention to the use of escape characters.

	Parameter
	Description

	list
	The list to receive rewards. It is an array. The number of addresses to receive rewards cannot exceed 100. If the parameters are not provided, receive the reward of the contract trigger by default.

Extract rewards

 "pay_coin" :
 {
 "dest_address" : "buQqzdS9YSnokDjvzg4YaNatcFQfkgXqk6ss",
 "amount" :0,
 "input":"{
 \"method\":\"extract\",
 \"params\":{
 \"list\":[
 \"buQrVDKPCVE6LfCf8TyZEaiZ8R99NrSn4Fuz\",
 \"buQmziFKwWTvJe5hBCFa6e3FdPDPorht3wCB\",
 \"buQmvKW11Xy1GL9RUXJKrydWuNykfaQr9SKE\",
 \"buQnP4jueoC37fP2VxKpsZSTNjgFHpA442jy\",
 \"buQjxgZsG3B24PNzKzpTiwrRR3z6ok46izuR\"
]}
 }"
 }

Clearing Expired Proposals

For all types of expired proposals (including application for consensus nodes, ecological nodes, committee members, withdrawals and abolitions, and all types of proposals to update configuration of election), any user can trigger this interface to clean up the expired proposal.

	Transfer 0BU to the DPOS contract.

	The input field of the transferring BU assets operation is filled with { "method":"clean", "params" : {"item": " the proposal item is filled in here", "address": "the address of the proposer the proposed ", "operate": " the proposal type is filled in here"} }, and pay attention to the use of escape characters.

	If the overdue proposal to be cleared is the application proposal or the withdrawal proposal, and the proposal involves a deposit, the deposit will be refunded to the account when the proposal is cleared.

Example

 "pay_coin" :
 {
 "dest_address" : "buQqzdS9YSnokDjvzg4YaNatcFQfkgXqk6ss",
 "amount" :0,
 "input":"{
 \"method\":\"clean\",
 \"params\" : {
 \"item\":\"kol_min_pledge\",
 \"address\": \"buQZoJk8bq6A1AtsmfRw3rYJ79eMHUyct9i2\"，
 \"operate\": \"config\"
 }
 }"
 }

 id: faucet_user_guide title: BUMO Faucet User Guide sidebar_label: Faucet

id: faucet_user_guide
title: BUMO Faucet User Guide
sidebar_label: Faucet

Faucet is a web-based application for you to get test BUs. You can get 100 test BUs by entering your test account address. You can get BUs for the same account multiple times, but frequent requests are not suggested. You can use the beta version of Faucet by entering https://faucet.bumotest.io/ on a browser. The following steps show you how to get test BUs:

	Enter Faucet, shown as the following figure.

 id: installation_for_synchronous_node title: Installation Guide for BUMO Synchronization Nodes in Main Network sidebar_label: Installation Guide for Synchronization Nodes in Main Network

id: installation_for_synchronous_node
title: Installation Guide for BUMO Synchronization Nodes in Main Network
sidebar_label: Installation Guide for Synchronization Nodes in Main Network

Overview

This document will walk you through the process of installing and configuring the BUMO node in both Linux system.

Details：BUMO Installation and Maintenance Guide

System Requirements

Before installing a BUMO node, you must make sure that your system meets the following requirements.

Hardware Requirements

The hardware requirements must meet the following configurations:

	Recommended：CPU 8 cores, memory 32G, bandwidth 20M, SSD disk 500G

	Minimum：CPU 4 cores, memory 16G, bandwidth 10M, SSD disk 500G

Software Requirements

You can choose Ubuntu, Centos or MacOS systems. The following systems are supported.

	Ubuntu 14.04

	Centos 7

Installing with a Package

Installing with a package refers to installing the BUMO node with an installation package. Installing the BUMO node with the installation package consists of five parts: Obtaining the Installation Package and Extracting It, Registering the Services, Modifying the Service Startup Directory, Setting the Boot Start, and Selecting the Configuration File for the Main Network.

Example for bumo 1.3.1 version.

Obtaining the Installation Package and Extracting It

You must complete the following steps to obtain the installation package of BUMO and extract it.

	Input the following command to download the installation package of BUMO.

wget https://github.com/bumoproject/bumo/releases/download/1.3.1/buchain-1.3.1-linux-x64.tar.gz

Note:

	If you have not installed wget, you can use the apt-get install wget command to install wget.

	You can find the version you need from the https://github.com/bumoproject/bumo/releases link and then right-click the version to copy the download link.

	In this example the file is downloaded to the root directory.

	Copy the installation package to the /usr/local/ directory by inputting the following command.

cp buchain-1.3.1-linux-x64.tar.gz /usr/local/

Note: The above copy operation is done in the directory where the file is downloaded. You must copy the