

Welcome to Bulk’s documentation!

Contents:

	Configuring Bulk
	Overview

	Versions

	Package Metadata

	Repositories

	Version Bookkeeping
	Basics

	Releasing a Project

	Building a Pre-Release Project

	Other Commands

	Q & A
	Why version number and file existence is optional?

Indices and tables

	Index

	Search Page

Configuring Bulk

Contents:

	Overview

	Versions

	Package Metadata

	Repositories

Overview

Bulk’s configuration file is usually bulk.yaml in the root if your project
but can be overrident by -c or --config for most subcommands.

This is yaml config parsed by quire [http://quire.readthedocs.io/] so you can use most of its features
there.

Configuration file consists of a declaration of minimum supported version
of bulk and three sections, here is an example:

minimum-bulk: v0.4.5

versions:
- file: setup.py
 regex: ^\s*version\s*=\s*["']([^"']+)["']
- file: your_module/__init__.py
 regex: ^__version__\s*=\s*["']([^"']+)["']

metadata:
 name: your-app
 short-description: A great app in python
 long-description:
 A very great app in python

repositories:
- kind: debian
 suite: bionic
 component: your-app

All sections are optional if you don’t want to use some of the functionality
here. In particular:

	versions needed if you want to keep project version in source code in
multiple places and want to update it using bulk

	metadata is a package metadata, if you don’t build .deb package
you don’t need it

	repositories is a repository metadata, if you don’t have debian/ubuntu
repository you don’t need it.

Versions

Versions section help you with bookkeeping a version in your application,
here is the sample of versioning for python application

versions:
- file: setup.py
 regex: ^\s*version\s*=\s*["']([^"']+)["']
- file: your_module/__init__.py
 regex: ^__version__\s*=\s*["']([^"']+)["']

You might also add an example to your readme and keep version in documentation
updated too:

versions:

- file: setup.py
 regex: ^\s*version\s*=\s*["']([^"']+)["']

- file: your_module/__init__.py
 regex: ^__version__\s*=\s*["']([^"']+)["']

- file: doc/conf.py
 regex: ^version\s*=\s*u?["']([^"']+)["']
 partial-version: ^\d+\.\d+ # no patch version

- file: doc/conf.py
 regex: ^release\s*=\s*u?["']([^"']+)["']

- file: README.rst
 regex: pip\s+install\s+your-module==(\S+)

Options:

	file

	Filename to search version in, relative to project directory (usually
a directory that contains bulk.yaml)

	files

	A list of files to search. This is useful if you can use same regex in
multiple files.

Note

Neither existence of file or any one in files
is enforced. if you make a typo file will be silently skipped.
Always use bulk check-version after modifying rules.

On the upside is that you can use same bulk.yaml for many similar
projects and versions that aren’t present will be skipped.

	regex

	A regular expression that matches version. It must contain a single
capturing group (i.e. a (parenthised expression)) for capturing
actual version. Regex can match only on a single line.

The expression shouldn’t be too strict and should not try to validate
the version number itself. I.e. if version is quoted anything inside the
quotes should be considered version, if it isn’t anything to next white
space or newline is okay.

Too strict version pattern risk to be either to replace
1.2.3 to 1.2.4 in 1.2.3-beta.1 keeping beta suffix, or to
skip 1.2.3-beta.1 line in a file without updating it because it
doesn’t match.

If regex matches multiple times all matching lines are treated as
version number. Also multiple entries with the same file and different
rules can be configured.

	partial-version

	A regular expression that allows to select only portion of version
number. Few examples:

	^\d+\.\d+ – selects major.minor version but not patch

	-.*$ – selects -alpha, -beta.1, -31-g12bd530 or any
other pre-release suffix in version number.

	block-start, block-end

	Marks block where to find version number in.

For example, in Cargo.toml version number is in the [package]
section and named version, whereas version= in other case may
denote version of other things like pedependencies. So we use this:

- file: Cargo.toml
 block-start: ^\[package\]
 block-end: ^\[.*\]
 regex: ^version\s*=\s*"(\S+)"

You can specify single file multiple times in versions section. Which
effectively means you can fix version in multiple different sections.

	multiple-blocks

	(default false) By default bulk stops scanning this file for this rule
on the first block-end after block-start. If this setting is set
to true searches for the next block-start istead. This option
does nothing if no block defined.

Package Metadata

Package information is stored in metadata section in bulk.yaml.
Here is an example:

metadata:
 name: your-app
 short-description: A great app in python
 long-description:
 A very great app in python. You can use it to do
 amazing things
 depends: [python3]

Options:

	name

	Package name used to name a .deb file

	short-description

	Short description of the package as shown in package search results and in
other places. It should be a one-liner

	long-description

	Long description of the package. Usually shown in GUI tools as a part of
package detail.

	depends

	List of package dependencies. It can consists of any expression allowed in
debian packages. But note if you need different dependencies for different
packages built (i.e. for different ubuntu distributions) you need to use
different bulk.yaml configs and specify ones explicity to bulk pack.

Repositories

When using bulk it’s common to track multiple repositories using single
config. Here is an example:

repositories:

- kind: debian
 suite: bionic
 component: your-app-testing
 keep-releases: 1000

- kind: debian
 suite: bionic
 component: your-app
 keep-releases: 1
 match-version: ^\d+\.\d+\.\d+$

This keeps 1000 releases in testing repository. And just one release in
stable repository. Where stable release has strict semantic version and
all releases are included in testing repository (including stable).
Non-stable releases themeselves are probably versioned with git describe
yielding versions like this: 1.2.3-34-gde103b3.

Options:

	kind

	Kind of the repository. Only debian is currently supported.

	suite

	Suite of the repository. For ubuntu it’s usually a release codename such
as xenial or bionic.

	component

	Component of the repository. Common convention is that it’s a application
name (so technically you can put multiple applications in the same
repository). Also it may include modifier like -testing or -stable.

	keep-releases

	Number of releases of the package to keep in this repository. By default
all releases are kept (i.e. it’s never cleaned up). Usual debian tools
keep exactly one package.

It’s also a good idea to keep two repositories: your-app with
keep-releases: 1 and your-app-stable with keep-releases: 100
which keep older packages. The index of the first repository is smaller
and faster to download and the latter can be used to downgrade. Note:
repositories share a pool of packages so .deb file itself isn’t
duplicated for two repositories.

	match-version

	Only add version matching this regex to the repository.

There are two good usecases for the feature:

	Sort out testing and stable versions (as in example above)

	Use a single bulk repo-add command to add packages for every
distro. This works by append something like +bionic1 suffix
to a package version and add a respective match-version
for that distribution.

	skip-version

	This is the same as match-version but is a negative filter. If
both are matched skip-version takes precedence.

	add-empty-i386-repo

	(default false) When building amd64-only repo also add an empty
index for i386 counterpart. This is needed to prevent errors on
apt update on systems which are configured to fetch both 64bit and
32bit versions of packages.

For now it’s known that ubuntu precise (12.04) default install only has
this problem. So since precise reached its end of life this option is
deprecated.

Version Bookkeeping

Bulk can be used to sync version of your application to various places in code.

Basics

Bulk uses regular expressions to find versions in some file. For example,
here is how we track versions in typical python project:

versions:

There is usually a version in setup.py
- file: setup.py
 # this isn't 100% correct as version can end in different quote or
 # there might be few version parameters in a file, but this is good
 # enough for many projects, other projects might need to tweak matcher
 regex: ^\s*version\s*=\s*["']([^"']+)["']

Also it's a good idea to put library version into
a __version__ attribute of the module itself
- file: your_module/__init__.py
 regex: ^__version__\s*=\s*["']([^"']+)["']

Put it in bulk.yaml and now you can find out version with:

> bulk get-version
1.3.5

Yes, the first time you’ve written setup.py and __init__.py you needed
to put version yourself. This is usually handled by project boilerplate.

Releasing a Project

If you obey semantic versioning in the project version run one of:

> bulk bump --breaking -g
> bulk bump --feature -g
> bulk bump --bugfix -g

The commands above will increment a major, minor or patch version of your
version number, commit the changes with a comment of
Version bumped to v1.3.6 and create an annotated tag v0.3.6 by
starting an editor and showing you changes since previous tag. You can opt-out
commit and tag creation by omitting -g which is equivalent of longer
--git-commit-and-tag.

You can also use -1, -2 and -3 which increment the specific
component of version. Technically they are are equivalent to above except
when version is zero-based 0.x.

Note

in case of 0.x versions the version numbers are shifted.
I.e. if you have two zeros numbers 0.0.x any bump with increment a
single version. If you have 0.x.y number second component will increment
with both --breaking and --feature. This is how many existing tools
handle semver. Use -1, -2 if in doubt or to switch from 0.x
versions to 1.x.

For date-based versioning use:

> bulk bump -dg

This will force your version to something like v180317.0. If you will
subsequently run this command on the same day you will get v180317.1 and
so forth.

Note

The date here is UTC to avoid issues with different people releasing
in different timezones.

Another way to update is to use set-version:

> bulk set-version v1.3.5-beta.1
./your_module/__init__.py:1: (v1.3.5 -> v1.3.5-beta.1) __version__ = '1.3.5-beta.1'
./setup.py:6: (v1.3.5 -> v1.3.5-beta.1) version='1.3.5-beta.1',

This is useful to set some pre-release version as you see in example because we
don’t have a command-line flag for that or in case you have different version
format or just want to skip version number for some reason.

Building a Pre-Release Project

Everyting above assumes that version is stored in source code and commited to
git. Which is true for many tools. But you don’t want to commit version for
a prerelease version of application. We have a nice command for this use
case too:

> bulk with-version v1.3.6-pre4 your-build-command
1.3.5 -> 1.3.6-pre4
[.. output of your-build-command ..]
1.3.6-pre4 -> 1.3.5

This runs build with correct version and ensures that when build is complete
you will get no version change in git status.

Since the common case is using git describe for actual version we have a
shortcut for that:

> bulk with-git-version your-build-command
1.3.5 -> 1.3.5-4-gd923e59-dirty
[.. output of your-build-command ..]
1.3.5-4-gd923e59-dirty -> 1.3.5

(the -dirty here means you have modified git-tracked files locally)

Note

The git describe command is not strictly semver-compatible.
I.e. the version x.y.z-n is treated as lower than x.y.z and you’re
supposed to use x.y.z+n for that. But for now we decided to stick to
what git describe provides for now. We may provide an option to fix
that in future, in the meantime you can use with-version.

Other Commands

To check if version number is fine (consistent) run:

> vagga bulk check-version
setup.py:6: (v1.3.5) version='1.3.5',
trafaret_config/__init__.py:1: (v1.3.5) __version__ = '1.3.5'

It shows you files and lines where version number is present and will fail
if there is no version at all or version is inconsistent between multiple
files.

Note

it will not show you files and lines which are present in config
file but has no version number found. So when adding an entry in
bulk.yaml you should run check-version and make sure the actual
entry exists in the file.

To fix inconsistent version run:

> vagga bulk set-version v1.3.5 --force
setup.py:6: (v1.3.4 -> v1.3.5) version='1.3.5',
trafaret_config/__init__.py:1: (v1.2.3 -> v1.3.5) __version__ = '1.3.5'

Same restriction for not found version as for check-version applies here.

Q & A

Why version number and file existence is optional?

Sometimes we want to put and edit version number in generated files:
lock-files, code generated things and other.

Since entries in bulk.yaml are almost never modified it’s much easier to
check once after editing a file than to learn rules of what is strict and what
isn’t.

Here is just one example, when it is useful. Here is how we configure bulk in
rust projects:

- file: Cargo.toml
 block-start: ^\[package\]
 block-end: ^\[.*\]
 regex: ^version\s*=\s*"(\S+)"

- file: Cargo.lock
 block-start: ^name\s*=\s*"project-name"
 regex: ^version\s*=\s*"(\S+)"
 block-end: ^\[.*\]

The important part is that we must update Cargo.lock so that
bulk set-version/incr-version/bump -g works fine (we modify
``Cargo.lock`` together with ``Cargo.toml`` and commit in the same commit,
if we don’t do that lockfile is update on next build and needs to be commited
after).

But we also want to be able to run bulk with absent lockfile (in case we don’t
commit it into a repository) or if we want cargo to rebuild it from scratch.

Index

 _static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to Bulk’s documentation!

 		
 Configuring Bulk

 		
 Overview

 		
 Versions

 		
 Package Metadata

 		
 Repositories

 		
 Version Bookkeeping

 		
 Basics

 		
 Releasing a Project

 		
 Building a Pre-Release Project

 		
 Other Commands

 		
 Q & A

 		
 Why version number and file existence is optional?

_static/ajax-loader.gif

