

Welcome to Buildozer’s documentation!

Buildozer is a tool that aim to package mobiles application easily. It
automates the entire build process, download the prerequisites like
python-for-android, Android SDK, NDK, etc.

Buildozer manages a file named buildozer.spec in your application directory,
describing your application requirements and settings such as title, icon,
included modules etc. It will use the specification file to create a package
for Android, iOS, and more.

Currently, Buildozer supports packaging for:

	Android: via Python for Android [https://github.com/kivy/python-for-android]. You must have a Linux or OSX
computer to be able to compile for Android.

	iOS: via Kivy iOS [https://github.com/kivy/kivy-ios]. You must have an OSX
computer to be able to compile for iOS.

	Supporting others platform is in the roadmap (such as .exe for Windows, .dmg
for OSX, etc.)

If you have any questions about Buildozer, please refer to the Kivy’s user
mailing list [https://groups.google.com/forum/#!forum/kivy-users].

	Installation
	Targeting Android

	Targeting IOS

	Quickstart
	Init and build for Android

	Run my application

	Install on non-connected devices

	Specifications
	Section [app]

	Contribute
	Write your own recipe

Indices and tables

	Index

	Module Index

	Search Page

Installation

Buildozer is tested on Python 3.8 and above but may work on
earlier versions, back to Python 3.3.
Depending the platform you want to target, you might need more tools installed.
Buildozer tries to give you hints or tries to install few things for
you, but it doesn’t cover every situation.

First, install the buildozer project with:

pip3 install --user --upgrade buildozer

Targeting Android

Android on Ubuntu 20.04 and 22.04 (64bit)

(expected to work as well in later version, but only regularly tested in the latest LTS)

sudo apt update
sudo apt install -y git zip unzip openjdk-17-jdk python3-pip autoconf libtool pkg-config zlib1g-dev libncurses5-dev libncursesw5-dev libtinfo5 cmake libffi-dev libssl-dev
pip3 install --user --upgrade Cython==0.29.33 virtualenv # the --user should be removed if you do this in a venv

add the following line at the end of your ~/.bashrc file
export PATH=$PATH:~/.local/bin/

If openjdk-17 is not compatible with other installed programs, for Buildozer the minimum compatible openjdk version is 11.

Android on Windows 10 or 11

To use buildozer in Windows you need first to enable Windows Subsystem for Linux (WSL) and install a Linux distribution: https://docs.microsoft.com/en-us/windows/wsl/install.

These instructions were tested with WSL 1 and Ubuntu 18.04 LTS, and WSL2 with Ubuntu 20.04 and 22.04.

After installing WSL and Ubuntu on your Windows machine, open Ubuntu, run the commands listed in the previous section, and restart your WSL terminal to enable the path change.

Copy your Kivy project directory from the Windows partition to the WSL partition, and follow the Quickstart Instructions. Do not change to the project directory on the Windows partition and build there, this may give unexpected and obscure fails.

For debugging, WSL does not have direct access to USB. Copy the .apk file to the Windows partition and run ADB (Android Debug Bridge) from a Windows prompt. ADB is part of Android Studio, if you do not have this installed you can install just the platform tools which also contain ADB.

	Go to https://developer.android.com/studio/releases/platform-tools and click on “Download SDK Platform-Tools for Windows”.

	Unzip the downloaded file to a new folder. For example, “C:\platform-tools”.

Before Using Buildozer

If you wish, clone your code to a new folder, where the build process will run.

You don’t need to create a virtualenv for your code requirements. But just add these requirements to a configuration file called buildozer.spec as you will see in the following sections.

Before running buildozer in your code folder, remember to go into the buildozer folder and activate the buildozer virtualenv.

Android on macOS

python3 -m pip install --user --upgrade Cython==0.29.33 virtualenv # the --user should be removed if you do this in a venv

TroubleShooting

Buildozer stuck on “Installing/updating SDK platform tools if necessary”

Press “y” then enter to continue, the license acceptance system is silently waiting for your input

Aidl not found, please install it.

Buildozer didn’t install a necessary package

~/.buildozer/android/platform/android-sdk/tools/bin/sdkmanager "build-tools;29.0.0"

Then press “y” then enter to accept the license.

python-for-android related errors

See the dedicated p4a troubleshooting documentation [https://python-for-android.readthedocs.io/en/latest/troubleshooting/].

Targeting IOS

Install XCode and command line tools (through the AppStore)

Install homebrew (https://brew.sh)

brew install pkg-config sdl2 sdl2_image sdl2_ttf sdl2_mixer gstreamer autoconf automake

Install pip and virtualenv

python3 -m pip install --user --upgrade pip virtualenv kivy-ios

Quickstart

Let’s get started with Buildozer!

Init and build for Android

	Buildozer will try to guess the version of your application, by searching a
line like __version__ = “1.0.3” in your main.py. Ensure you have one at
the start of your application. It is not mandatory but heavily advised.

	Create a buildozer.spec file, with:

buildozer init

	Edit the buildozer.spec according to the Specifications. You should
at least change the title, package.name and package.domain in the
[app] section.

	Start a Android/debug build with:

buildozer -v android debug

	Now it’s time for a coffee / tea, or a dinner if you have a slow computer.
The first build will be slow, as it will download the Android SDK, NDK, and
others tools needed for the compilation.
Don’t worry, thoses files will be saved in a global directory and will be
shared across the different project you’ll manage with Buildozer.

	At the end, you should have an APK or AAB file in the bin/ directory.

Run my application

Buildozer is able to deploy the application on your mobile, run it, and even
get back the log into the console. It will work only if you already compiled
your application at least once:

buildozer android deploy run logcat

For iOS, it would look the same:

buildozer ios deploy run

You can combine the compilation with the deployment:

buildozer -v android debug deploy run logcat

You can also set this line at the default command to do if Buildozer is started
without any arguments:

buildozer setdefault android debug deploy run logcat

now just type buildozer, and it will do the default command
buildozer

To save the logcat output into a file named my_log.txt (the file will appear in your current directory):

buildozer -v android debug deploy run logcat > my_log.txt

To see your running application’s print() messages and python’s error messages, use:

buildozer -v android deploy run logcat | grep python

Run my application from Windows 10

	Plug your Android device on a USB port.

	Open Windows PowerShell, go into the folder where you installed the Windows version of ADB, and activate the ADB daemon. When the daemon is started you must see a number besides the word “device” meaning your device was correctly detected. In case of trouble, try another USB port or USB cable.

cd C:\platform-tools\
.\adb.exe devices

	Open the Linux distribution you installed on Windows Subsystem for Linux (WSL) and proceed with the deploy commands:

buildozer -v android deploy run

It is important to notice that Windows ADB and Buildozer installed ADB must be the same version. To check the versions, open PowerShell and type:

cd C:\platform-tools\
.\adb.exe version
wsl
cd ~/.buildozer/android/platform/android-sdk/platform-tools/
./adb version

Install on non-connected devices

If you have compiled a package, and want to share it easily with others
devices, you might be interested with the serve command. It will serve the
bin/ directory over HTTP. Then you just have to access to the URL showed in
the console from your mobile:

buildozer serve

Specifications

This document explains in detail all the configuration tokens you can use in
buildozer.spec.

Section [app]

	title: String, title of your application.

It might be possible that some characters are not working depending on the
targeted platform. It’s best to try and see if everything works as expected.
Try to avoid too long titles, as they will also not fit in the title
displayed under the icon.

	package.name: String, package name.

The Package name is one word with only ASCII characters and/or numbers. It
should not contain any special characters. For example, if your application
is named Flat Jewels, the package name can be flatjewels.

	package.domain: String, package domain.

Package domain is a string that references the company or individual that
did the app. Both domain+name will become your application identifier for
Android and iOS, choose it carefully. As an example, when the Kivy`s team
is publishing an application, the domain starts with org.kivy.

	source.dir: String, location of your application sources.

The location must be a directory that contains a main.py file. It defaults
to the directory where buildozer.spec is.

	Source Inclusion/Exclusion options.

	source.include_exts: List, file extensions to include.

	source.exclude_exts: List, file extensions to exclude, even if included by
source.include_exts

	source.exclude_dirs: List, directories to exclude.

	source.exclude_patterns: List, files to exclude if they match a pattern.

	source.include_patterns: List, files to include if they match a pattern, even if excluded by
source.exclude_dirs or source.exclude_patterns

By default, not all files are in your source.dir are included. You can
use these options to alter which files are included in your app and which
are excluded.

Directories and files starting with a “.” are always excluded; this cannot be
overridden.

Files that have an extension that is not in source.include_exts are excluded.
(The default suggestion is py,png,jpg,kv,atlas. You may want to include other
file extensions such as resource files: gif, xml, mp3, etc.) File names that
have no extension (i.e contain no “.”) are not excluded here.
source.exclude_exts takes priority over source.include_exts - it excludes any listed extensions
that were previously included.

Files and directories in directories listed in source.exclude_dirs are excluded. For example, you can exclude your
tests and bin directory with:

source.exclude_dirs = tests, bin

source.exclude_patterns are also excluded. This is useful for excluding individual
files. For example:

source.exclude_patterns = license

These dir and pattern exclusions may be overridden with
source.include_patterns - files and directories that match will once again be included.

However, source.include_patterns does not override the source.include_exts nor
source.exclude_exts. source.include_patterns also cannot be used to include files or directories that
start with “.”)

	version.regex: Regex, Regular expression to capture the version in
version.filename.

The default capture method of your application version is by grepping a line
like this:

__version__ = "1.0"

The 1.0 will be used as a version.

	version.filename: String, defaults to the main.py.

File to use for capturing the version with version.regex.

	version: String, manual application version.

If you don’t want to capture the version, comment out both version.regex
and version.filename, then put the version you want directly in the
version token:

version.regex =
version.filename =
version = 1.0

	requirements: List, Python modules or extensions that your application
requires.

The requirements can be either a name of a recipe in the Python-for-android
project, or a pure-Python package. For example, if your application requires
Kivy and requests, you need to write:

requirements = kivy,requests

If your application tries to install a Python extension (ie, a Python
package that requires compilation), and the extension doesn’t have a recipe
associated to Python-for-android, it will not work. We explicitly disable
the compilation here. If you want to make it work, contribute to the
Python-for-android project by creating a recipe. See Contribute.

	presplash.filename: String, loading screen of your application.

Presplash is the image shown on the device during application loading.
It is called presplash on Android, and Loading image on iOS. The image might
have different requirements depending the platform. Currently, Buildozer
works well only with Android, iOS support is not great on this.

The image must be a JPG or PNG, preferable with Power-of-two size, e.g., a
512x512 image is perfect to target all the devices. The image is not fitted,
scaled, or anything on the device. If you provide a too-large image, it might
not fit on small screens.

	icon.filename: String, icon of your application.

The icon of your application. It must be a PNG of 512x512 size to be able to
cover all the various platform requirements.

	orientation: List, supported orientations of the application.

Indicate the orientations that your application supports.
Valid values are: portrait, landscape, portrait-reverse, landscape-reverse.
Defaults to [landscape].

	fullscreen: Boolean, fullscreen mode.

Defaults to true, your application will run in fullscreen. Means the status
bar will be hidden. If you want to let the user access the status bar,
hour, notifications, use 0 as a value.

	home_app: Boolean, Home App (launcher app) usage.

Defaults to false, your application will be listed as a Home App (launcher app) if true.

Contribute

Write your own recipe

A recipe allows you to compile libraries / python extension for the mobile.
Most of the time, the default compilation instructions doesn’t work for the
target, as ARM compiler / Android NDK introduce specificities that the library
you want doesn’t handle correctly, and you’ll need to patch. Also, because the
Android platform cannot load more than 64 inline dynamic libraries, we have a
mechanism to bundle all of them in one to ensure you’ll not hit this
limitation.

To test your own recipe via Buildozer, you need to:

	Fork Python for Android [https://github.com/kivy/python-for-android], and
clone your own version (this will allow easy contribution later):

git clone https://github.com/YOURNAME/python-for-android

	Change your buildozer.spec to reference your version:

p4a.source_dir = /path/to/your/python-for-android

	Copy your recipe into python-for-android/recipes/YOURLIB/recipe.sh

	Rebuild.

When you correctly get the compilation and your recipe works, you can ask us to
include it in the python-for-android project, by issuing a Pull Request:

	Create a branch:

git checkout --track -b recipe-YOURLIB origin/master

	Add and commit:

git add python-for-android/recipes/YOURLIB/*
git commit -am 'Add support for YOURLIB`

	Push to Github

git push origin master

	Go to https://github.com/YOURNAME/python-for-android, and you should see
your new branch and a button “Pull Request” on it. Use it, write a
description about what you did, and Send!

Index

 nav.xhtml

 Table of Contents

 		
 Welcome to Buildozer’s documentation!

 		
 Installation

 		
 Targeting Android

 		
 Android on Ubuntu 20.04 and 22.04 (64bit)

 		
 Android on Windows 10 or 11

 		
 Before Using Buildozer

 		
 Android on macOS

 		
 TroubleShooting

 		
 Targeting IOS

 		
 Quickstart

 		
 Init and build for Android

 		
 Run my application

 		
 Run my application from Windows 10

 		
 Install on non-connected devices

 		
 Specifications

 		
 Section [app]

 		
 Contribute

 		
 Write your own recipe

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

