
Bugwarrior Documentation
Release 0.8.0

Ralph Bean

Aug 20, 2018

Contents

1 Build Status 3

2 Contents 5
2.1 Getting bugwarrior . 5
2.2 How to use . 6
2.3 How to Configure . 7
2.4 Supported Services . 11
2.5 Example Configuration . 38
2.6 How to Contribute . 41
2.7 FAQ . 42

3 Indices and tables 43

i

ii

Bugwarrior Documentation, Release 0.8.0

bugwarrior is a command line utility for updating your local taskwarrior database from your forge issue trackers.

Contents 1

http://taskwarrior.org

Bugwarrior Documentation, Release 0.8.0

2 Contents

CHAPTER 1

Build Status

Branch Status

master

develop

3

http://travis-ci.org/#!/ralphbean/bugwarrior
http://travis-ci.org/#!/ralphbean/bugwarrior

Bugwarrior Documentation, Release 0.8.0

4 Chapter 1. Build Status

CHAPTER 2

Contents

2.1 Getting bugwarrior

2.1.1 Requirements

To use bugwarrior, you need python 2.7 and taskwarrior. Upon installation, the setup script will automatically down-
load and install missing python dependencies.

Note that some of those dependencies have a C extension module (e.g. the cryptography package). If those
packages are not yet present on your system, the setup script will try to build them locally, for which you will need a C
compiler (e.g. gcc) and the necessary header files (python and, for the cryptography package, openssl). A convenient
way to install those is to use your usual package manager (dnf, yum, apt, etc). Header files are installed from
development packages (e.g. python-devel and openssl-devel on Fedora or python-dev libssl-dev
on Debian).

2.1.2 Installing from the Python Package Index

Installing from https://pypi.python.org/pypi/bugwarrior is easy with pip:

$ pip install bugwarrior

By default, bugwarrior will be installed with support for the following services: Bitbucket, Github, Gitlab,
Pagure, Phabricator, Redmine, Teamlab, and Versionone. There is optional support for Jira, Megaplan.ru, Ac-
tive Collab, Debian BTS, Trac, Bugzilla, and but those require extra dependencies that are installed by specifying
bugwarrior[service] in the commands above. For example, if you want to use bugwarrior with Jira:

$ pip install "bugwarrior[jira]"

The following extra dependency sets are available:

• keyring (See also linux installation instructions.)

• jira

5

https://pypi.python.org/pypi/bugwarrior
https://github.com/jaraco/keyring#linux

Bugwarrior Documentation, Release 0.8.0

• megaplan

• activecollab

• bts

• trac

• bugzilla

• gmail

2.1.3 Installing from Source

You can find the source on github at http://github.com/ralphbean/bugwarrior. Either fork/clone if you plan to do
development on bugwarrior, or you can simply download the latest tarball:

$ wget https://github.com/ralphbean/bugwarrior/tarball/master -O bugwarrior-latest.
→˓tar.gz
$ tar -xzvf bugwarrior-latest.tar.gz
$ cd ralphbean-bugwarrior-*
$ python setup.py install

2.1.4 Installing from Distribution Packages

bugwarrior has been packaged for Fedora. You can install it with the standard dnf (yum) package management tools
as follows:

$ sudo dnf install bugwarrior

2.2 How to use

Just run bugwarrior-pull.

2.2.1 Cron

It’s ideal to create a cron task like:

*/15 * * * * /usr/bin/bugwarrior-pull

Bugwarrior can emit desktop notifications when it adds or completes issues to and from your local ~/.task/ db. If
your bugwarriorrc file has notifications turned on, you’ll also need to tell cron which display to use by adding the
following to your crontab:

DISPLAY=:0

*/15 * * * * /usr/bin/bugwarrior-pull

2.2.2 systemd timer

If you would prefer to use a systemd timer to run bugwarrior-pull on a schedule, you can create the following
two files:

6 Chapter 2. Contents

http://github.com/ralphbean/bugwarrior

Bugwarrior Documentation, Release 0.8.0

$ cat ~/.config/systemd/user/bugwarrior-pull.service
[Unit]
Description=bugwarrior-pull

[Service]
Environment="DISPLAY=:0"
ExecStart=/usr/bin/bugwarrior-pull
Type=oneshot

[Install]
WantedBy=default.target
$ cat ~/.config/systemd/user/bugwarrior-pull.timer
[Unit]
Description=Run bugwarrior-pull hourly and on boot

[Timer]
OnBootSec=15min
OnUnitActiveSec=1h

[Install]
WantedBy=timers.target

Once those files are in place, you can start and enable the timer:

$ systemctl --user enable bugwarrior-pull.timer
$ systemctl --user start bugwarrior-pull.timer

2.2.3 Exporting a list of UDAs

Most services define a set of UDAs in which bugwarrior store extra information about the incoming ticket. Usually,
this includes things like the title of the ticket and its URL, but some services provide an extensive amount of metadata.
See each service’s documentation for more information.

For using this data in reports, it is recommended that you add these UDA definitions to your taskrc file. You can
generate your list of UDA definitions by running the following command:

bugwarrior-uda

You can add those lines verbatim to your taskrc file if you would like Taskwarrior to know the human-readable
name and data type for the defined UDAs.

Note: Not adding those lines to your taskrc file will have no negative effects aside from Taskwarrior not knowing
the human-readable name for the field, but depending on what version of Taskwarrior you are using, it may prevent
you from changing the values of those fields or using them in filter expressions.

2.3 How to Configure

First, add a file named .config/bugwarrior/bugwarriorrc to your home folder. This file must include at
least a [general] section including the following option:

• targets: A comma-separated list of other section names to use as task sources.

Optional options include:

2.3. How to Configure 7

Bugwarrior Documentation, Release 0.8.0

• taskrc: Specify which TaskRC configuration file to use. By default, will use the system default (usually
~/.taskrc).

• shorten: Set to True to shorten links.

• inline_links: When False, links are appended as an annotation. Defaults to True.

• annotation_links: When True will include a link to the ticket as an annotation. Defaults to False.

• annotation_comments: When False skips putting issue comments into annotations. Defaults to True.

• legacy_matching: Set to False to instruct Bugwarrior to match issues using only the issue’s unique
identifiers (rather than matching on description).

• log.level: Set to one of DEBUG, INFO, WARNING, ERROR, CRITICAL, or DISABLED to control the
logging verbosity. By default, this is set to DEBUG.

• log.file: Set to the path at which you would like logging messages written. By default, logging messages
will be written to stderr.

• annotation_length: Import maximally this number of characters of incoming annotations. Default: 45.

• description_length: Use maximally this number of characters in the description. Default: 35.

• merge_annotations: If False, bugwarrior won’t bother with adding annotations to your tasks at all.
Default: True.

• merge_tags: If False, bugwarrior won’t bother with adding tags to your tasks at all. Default: True.

• static_fields: A comma separated list of attributes that shouldn’t be updated by bugwarrior. Use for
values that you want to tune manually. Default: priority.

In addition to the [general] section, sections may be named [flavor.myflavor] and may be selected using
the --flavor option to bugwarrior-pull. This section will then be used rather than the [general] section.

A more-detailed example configuration can be found at Example Configuration.

2.3.1 Common Service Configuration Options

All services support common configuration options in addition to their service-specific features. These con-
figuration options are meant to be prefixed with the service name, e.g. github.add_tags, or gitlab.
default_priority.

The following options are supported:

• SERVICE.only_if_assigned: If set to a username, only import issues assigned to the specified user.

• SERVICE.also_unassigned: If set to True and only_if_assigned is set, then also create tasks for
issues that are not assigned to anybody. Defaults to False.

• SERVICE.default_priority: Assign this priority (‘L’, ‘M’, or ‘H’) to newly-imported issues. Defaults
to M.

• SERVICE.add_tags: A comma-separated list of tags to add to an issue. In most cases, plain strings will
suffice, but you can also specify templates. See the section Field Templates for more information.

2.3.2 Field Templates

By default, Bugwarrior will import issues with a fairly verbose description template looking something like this:

(BW)Issue#10 - Fix perpetual motion machine .. http://media.giphy.com/media/
→˓LldEzRPqyo2Yg/giphy.gif

8 Chapter 2. Contents

Bugwarrior Documentation, Release 0.8.0

but depending upon your workflow, the information presented may not be useful to you.

To help users build descriptions that suit their needs, all services allow one to specify a SERVICE.
description_template configuration option, in which one can enter a one-line Jinja template. The context
available includes all Taskwarrior fields and all UDAs (see section named ‘Provided UDA Fields’ for each service)
defined for the relevant service.

Note: Jinja templates can be very complex. For more details about Jinja templates, please consult Jinja’s Template
Documentation.

For example, to pull-in Github issues assigned to @ralphbean, setting the issue description such that it is composed of
only the Github issue number and title, you could create a service entry like this:

[ralphs_github_account]
service = github
github.username = ralphbean
github.description_template = {{githubnumber}}: {{githubtitle}}

You can also use this tool for altering the generated value of any other Taskwarrior record field by using the same kind
of template.

Uppercasing the project name for imported issues:

SERVICE.project_template = {{project|upper}}

You can also use this feature to override the generated value of any field. This example causes imported issues to be
assigned to the ‘Office’ project regardless of what project was assigned by the service itself:

SERVICE.project_template = Office

2.3.3 Password Management

You need not store your password in plain text in your bugwarriorrc file; you can enter the following values to control
where to gather your password from:

password = @oracle:use_keyring Retrieve a password from the system keyring. The
bugwarrior-vault command line tool can be used to manage your passwords as stored in your keyring
(say to reset them or clear them). Extra dependencies must be installed with pip install bugwarrior[keyring] to
enable this feature.

password = @oracle:ask_password Ask for a password at runtime.

password = @oracle:eval:<command> Use the output of <command> as the password. For instance, to
integrate bugwarrior with the password manager pass you can use @oracle:eval:pass my/password.

2.3.4 Hooks

Use hooks to run commands prior to importing from bugwarrior-pull. bugwarrior-pull will run the commands in the
order that they are specified below.

To use hooks, add a [hooks] section to your configuration, mapping the hook you’d like to use with a comma-
separated list of scripts to execute.

[hooks]
pre_import = /home/someuser/backup.sh, /home/someuser/sometask.sh

2.3. How to Configure 9

http://jinja.pocoo.org/docs/templates/
http://jinja.pocoo.org/docs/templates/
https://github.com/ralphbean
https://www.passwordstore.org/

Bugwarrior Documentation, Release 0.8.0

Hook options:

• pre_import: The pre_import hook is invoked after all issues have been pulled from remote sources, but be-
fore they are synced to the TW db. If your pre_import script has a non-zero exit code, the bugwarrior-pull
command will exit early.

2.3.5 Notifications

Add a [notifications] section to your configuration to receive notifications when a bugwarrior pull runs, and
when issues are created, updated, or deleted by bugwarrior-pull:

[notifications]
notifications = True
backend = growlnotify
finished_querying_sticky = False
task_crud_sticky = True
only_on_new_tasks = True

Backend options:

Backend Name Operating System Required Python Modules
growlnotify MacOS X gntp
gobject Linux gobject

Note: The finished_querying_sticky and task_crud_sticky options have no effect if you are using a
notification backend other than growlnotify.

2.3.6 Configuration files

bugwarrior will look at the following paths and read its configuration from the first existing file in this order:

• ~/.config/bugwarrior/bugwarriorrc

• ~/.bugwarriorrc

• /etc/xdg/bugwarrior/bugwarriorrc

The default paths can be altered using the environment variables BUGWARRIORRC, XDG_CONFIG_HOME and
XDG_CONFIG_DIRS.

2.3.7 Environment Variables

BUGWARRIORRC

This overrides the default RC file.

XDG_CONFIG_HOME

By default, bugwarrior looks for a configuration file named $XDG_CONFIG_HOME/bugwarrior/
bugwarriorrc. If $XDG_CONFIG_HOME is either not set or empty, a default equal to $HOME/.config is
used.

XDG_CONFIG_DIRS

10 Chapter 2. Contents

Bugwarrior Documentation, Release 0.8.0

If it can’t find a user-specific configuration file (either $XDG_CONFIG_HOME/bugwarrior/bugwarriorrc or
$HOME/.bugwarriorrc), bugwarrior looks through the directories in $XDG_CONFIG_DIRS for a configu-
ration file named bugwarrior/bugwarriorrc. The directories in $XDG_CONFIG_DIRS should be separated
with a colon ‘:’. If $XDG_CONFIG_DIRS is either not set or empty, a value equal to /etc/xdg is used.

2.4 Supported Services

Bugwarrior currently supports the following services:

2.4.1 ActiveCollab 4

You can import tasks from your activeCollab 4.x instance using the activecollab service name.

Additional Requirements

Install the following packages using pip:

• pypandoc

• pyac

Instructions

Obtain your user ID and API url by logging in, clicking on your avatar on the lower left-hand of the page. When on
that page, look at the URL. The number that appears after “/user/” is your user ID.

On the same page, go to Options and API Subscriptions. Generate a read-only API key and add that to your bugwar-
riorrc file.

Bugwarrior will gather tasks and subtasks returned from the my-tasks API call. Additional API calls will be made to
gather comments associated with each task.

Note: Use of the ActiveCollab service requires that the following additional python modules be installed.

• pypandoc

• pyac

Example Service

Here’s an example of an activecollab target. This is only valid for activeCollab 4.x and greater, see ActiveCollab 2 for
activeCollab2.x.

[my_bug_tracker]
service = activecollab
activecollab.url = https://ac.example.org/api.php
activecollab.key = your-api-key
activecollab.user_id = 15

The above example is the minimum required to import issues from ActiveCollab 4. You can also feel free to use any
of the configuration options described in Common Service Configuration Options.

2.4. Supported Services 11

https://github.com/bebraw/pypandoc
https://github.com/kostajh/pyac

Bugwarrior Documentation, Release 0.8.0

Provided UDA Fields

Field Name Description Type
acbody Body Text (string)
accreatedbyname Created By Name Text (string)
accreatedon Created On Date & Time
acid ID Text (string)
acname Name Text (string)
acpermalink Permalink Text (string)
acprojectid Project ID Text (string)
actaskid Task ID Text (string)
actype Task Type Text (string)
acestimatedtime Estimated Time Text (numeric)
actrackedtime Tracked Time Text (numeric)
acmilestone Milestone Text (string)

2.4.2 ActiveCollab 2

You can import tasks from your ActiveCollab2 instance using the activecollab2 service name.

Instructions

You can obtain your user ID and API url by logging into ActiveCollab and clicking on “Profile” and then “API
Settings”. When on that page, look at the URL. The integer that appears after “/user/” is your user ID.

Projects should be entered in a comma-separated list, with the project id as the key and the name you’d like to use
for the project in Taskwarrior entered as the value. For example, if the project ID is 8 and the project’s name in
ActiveCollab is “Amazing Website” then you might enter 8:amazing_website

Note that due to limitations in the ActiveCollab API, there is no simple way to get a list of all tasks you are responsible
for in AC. Instead you need to look at each ticket that you are subscribed to and check to see if your user ID is
responsible for the ticket/task. What this means is that if you have 5 projects you want to query and each project has
20 tickets, you’ll make 100 API requests each time you run bugwarrior-pull.

Example Service

Here’s an example of an activecollab2 target. Note that this will only work with ActiveCollab 2.x - see above for 3.x
and greater.

[my_bug_tracker]
services = activecollab2
activecollab2.url = http://ac.example.org/api.php
activecollab2.key = your-api-key
activecollab2.user_id = 15
activecollab2.projects = 1:first_project, 5:another_project

The above example is the minimum required to import issues from ActiveCollab 2. You can also feel free to use any
of the configuration options described in Common Service Configuration Options.

12 Chapter 2. Contents

Bugwarrior Documentation, Release 0.8.0

Provided UDA Fields

Field Name Description Type
ac2body Body Text (string)
ac2createdbyid Created By Text (string)
ac2createdon Created On Date & Time
ac2name Name Text (string)
ac2permalink Permalink Text (string)
ac2projectid Project ID Text (string)
ac2ticketid Ticket ID Text (string)
ac2type Task Type Text (string)

2.4.3 Bitbucket

You can import tasks from your Bitbucket instance using the bitbucket service name.

Example Service

Here’s an example of a Bitbucket target:

[my_issue_tracker]
service = bitbucket
bitbucket.username = ralphbean
bitbucket.login = ralphbean
bitbucket.password = mypassword

The above example is the minimum required to import issues from Bitbucket. You can also feel free to use any of the
configuration options described in Common Service Configuration Options.

Note that both bitbucket.username and bitbucket.login are required and can be set to different values.
bitbucket.login is used to specify what account bugwarrior should use to login to bitbucket. bitbucket.
username indicates which repositories should be scraped. For instance, I always have bitbucket.login set to
ralphbean (my account). But I have some targets with bitbucket.username pointed at organizations or other
users to watch issues there.

As an alternative to password authentication, there is OAuth. To get a key and secret, go to the “OAuth” section
of your profile settings and click “Add consumer”. Set the “Callback URL” to https://localhost/ and set the
appropriate permissions. Then assign your consumer’s credentials to bitbucket.key and bitbucket.secret.
Note that you will have to provide a password (only) the first time you pull, so you may want to set bitbucket.
password = @oracle:ask_password and run bugwarrior-pull --interactive on your next pull.

Service Features

Include and Exclude Certain Repositories

If you happen to be working with a large number of projects, you may want to pull issues from only a subset of your
repositories. To do that, you can use the bitbucket.include_repos option.

For example, if you would like to only pull-in issues from your project_foo and project_fox repositories,
you could add this line to your service configuration:

2.4. Supported Services 13

Bugwarrior Documentation, Release 0.8.0

bitbucket.include_repos = project_foo,project_fox

Alternatively, if you have a particularly noisy repository, you can instead choose to import all issues excepting it using
the bitbucket.exclude_repos configuration option.

In this example, noisy_repository is the repository you would not like issues created for:

bitbucket.exclude_repos = noisy_repository

Please note that the API returns all lowercase names regardless of the case of the repository in the web interface.

Filter Merge Requests

Although you can filter issues using Common Service Configuration Options, pull requests are not filtered by default.
You can filter pull requests by adding the following configuration option:

bitbucket.filter_merge_requests = True

Provided UDA Fields

Field Name Description Type
bitbucketid Issue ID Text (string)
bitbuckettitle Title Text (string)
bitbucketurl URL Text (string)

2.4.4 Debian Bug Tracking System (BTS)

You can import tasks from the Debian Bug Tracking System (BTS) using the bts service name. Debian’s bugs are
public and no authentication information is required by bugwarrior for this service.

Additional Requirements

You will need to install the following additional packages via pip:

• PySimpleSOAP

• python-debianbts

Note: If you have installed the Debian package for bugwarrior, this dependency will already be satisfied.

Example Service

Here’s an example of a Debian BTS target:

[debian_bts]
service = bts
bts.email = username@debian.org

14 Chapter 2. Contents

Bugwarrior Documentation, Release 0.8.0

The above example is the minimum required to import issues from the Debian BTS. You can also feel free to use
any of the configuration options described in Common Service Configuration Options or described in Service Features
below.

Service Features

Include all bugs for packages

If you would like more bugs than just those you are the owner of, you can specify the bts.packages option.

For example if you wanted to include bugs on the hello package, you can add this line to your service configuration:

bts.packages = hello

More packages can be specified seperated by commas.

Ultimate Debian Database (UDD) Bugs Search

If you maintain a large number of packages and you wish to include bugs from all packages where you are listed as a
Maintainer or an Uploader in the Debian archive, you can enable the use of the UDD Bugs Search.

This will peform a search and include the bugs from the result. To enable this feature, you can add this line to your
service configuration:

bts.udd = True

Excluding bugs marked pending

Debian bugs are not considered closed until the fixed package is present in the Debian archive. Bugs do cease to be
outstanding tasks however as soon as you have completed the work, and so it can be useful to exclude bugs that you
have marked with the pending tag in the BTS.

This is the default behaviour, but if you feel you would like to include bugs that are marked as pending in the BTS,
you can disable this by adding this line to your service configuration:

bts.ignore_pending = False

Excluding sponsored and NMU’d packages

If you maintain an even larger number of packages, you may wish to exclude some packages.

You can exclude packages that you have sponsored or have uploaded as a non-maintainer upload or team upload by
adding the following line to your service configuration:

bts.udd_ignore_sponsor = True

Note: This will only affect the bugs returned by the UDD bugs search service and will not exclude bugs that are
discovered due to ownership or due to packages explicitly specified in the service configuration.

2.4. Supported Services 15

https://udd.debian.org/bugs/

Bugwarrior Documentation, Release 0.8.0

Excluding packages explicitly

If you would like to exclude a particularly noisy package, that is perhaps team maintained, or a package that you have
orphaned and no longer have interest in but are still listed as Maintainer or Uploader in stable suites, you can explicitly
ignore bugs based on their binary or source package names. To do this add one of the following lines to your service
configuration:

bts.ignore_pkg = hello,anarchism
bts.ignore_src = linux

Note: The src: prefix that is commonly seen in the Debian BTS interface is not required when specifying source
packages to exclude.

Provided UDA Fields

Field Name Description Type
btsnumber Bug Number Text (string)
btsurl bugs.d.o URL Text (string)
btssubject Subject Text (string)
btssource Source Package Text (string)
btspackage Binary Package Text (string)
btsforwarded Forwarded URL Text (string)
btsstatus Status Text (string)

2.4.5 Bugzilla

You can import tasks from your Bz instance using the bugzilla service name.

Additional Dependencies

Install packages needed for Bugzilla support with:

pip install bugwarrior[bugzilla]

Example Service

Here’s an example of a bugzilla target.

This will scrape every ticket that:

1. Is not closed and

2. rbean@redhat.com is either the owner, reporter or is cc’d on the issue.

Bugzilla instances can be quite different from one another so use this with caution and please report bugs so we can
make bugwarrior support more robust!

16 Chapter 2. Contents

mailto:rbean@redhat.com

Bugwarrior Documentation, Release 0.8.0

[my_issue_tracker]
service = bugzilla
bugzilla.base_uri = bugzilla.redhat.com
bugzilla.username = rbean@redhat.com
bugzilla.password = OMG_LULZ

Alternately, if you are using a version of python-bugzilla newer than 2.1.0, you can specify an API key instead of a
password. Note that the username is still required in this case, in order to identify bugs belonging to you.

bugzilla.api_key = 4f4d475f4c554c5a4f4d475f4c554c5a

The above example is the minimum required to import issues from Bugzilla. You can also feel free to use any of the
configuration options described in Common Service Configuration Options. Note, however, that the filtering options,
including only_if_assigned and also_unassigned, do not work

There is an option to ignore bugs that you are only cc’d on:

bugzilla.ignore_cc = True

But this will continue to include bugs that you reported, regardless of whether they are assigned to you.

If your bugzilla “actionable” bugs only include ON_QA, FAILS_QA, PASSES_QA, and POST:

bugzilla.open_statuses = ON_QA,FAILS_QA,PASSES_QA,POST

This won’t create tasks for bugs in other states. The default open statuses:
“NEW,ASSIGNED,NEEDINFO,ON_DEV,MODIFIED,POST,REOPENED,ON_QA,FAILS_QA,PASSES_QA”

If you’re on a more recent Bugzilla install, the NEEDINFO status no longer exists, and has been replaced by the
“needinfo?” flag. Set “bugzilla.include_needinfos” to “True” to have taskwarrior also add bugs where information is
requested of you. The “bugzillaneedinfo” UDA will be filled in with the date the needinfo was set.

To see all your needinfo bugs, you can use “task bugzillaneedinfo.any: list”.

If the filtering options are not sufficient to find the set of bugs you’d like, you can tell Bugwarrior exactly which bugs
to sync by pasting a full query URL from your browser into the bugzilla.query_url option:

bugzilla.query_url = https://bugzilla.mozilla.org/query.cgi?bug_status=ASSIGNED&
→˓email1=myname%40mozilla.com&emailassigned_to1=1&emailtype1=exact

Provided UDA Fields

Field Name Description Type
bugzillasummary Summary Text (string)
bugzillaurl URL Text (string)
bugzillabugid Bug ID Numeric (integer)
bugzillastatus Bugzilla Status Text (string)
bugzillaneedinfo Needinfo Date

2.4.6 Gerrit

You can import code reviews from a Gerrit instance using the gerrit service name.

2.4. Supported Services 17

Bugwarrior Documentation, Release 0.8.0

Example Service

Here’s an example of a gerrit project:

[my_issue_tracker]
service = gerrit
gerrit.base_uri = https://yourhomebase.xyz/gerrit/
gerrit.username = your_username
gerrit.password = your_http_digest_password

The above example is the minimum required to import issues from Gerrit.

Note that the password is typically not your normal login password. Go to the “HTTP Password” section in your
account settings to generate/retrieve this password.

You can also pass an optional gerrit.ssl_ca_path option which will use an alternative certificate authority to
verify the connection.

You can also feel free to use any of the configuration options described in Common Service Configuration Options.

Provided UDA Fields

Field Name Description Type
gerritid Issue ID Text (string)
gerritsummary Summary Text (string)
gerriturl URL Text (string)

The Gerrit service provides a limited set of UDAs. If you have need for some other values not present here, please file
a request (there’s lots of metadata in there that we could expose).

2.4.7 Github

You can import tasks from your Github instance using the github service name.

Example Service

Here’s an example of a Github target:

[my_issue_tracker]
service = github
github.login = ralphbean
github.password = OMG_LULZ
github.username = ralphbean

The above example is the minimum required to import issues from Github. You can also feel free to use any of the
configuration options described in Common Service Configuration Options or described in Service Features below.

github.login is used to specify what account bugwarrior should use to login to github, combined with github.
password.

If two-factor authentication is used, github.token must be given rather than github.password. To get a
token, go to the “Personal access tokens” section of your profile settings. Only the public_repo scope is required,
but access to private repos can be gained with repo as well.

18 Chapter 2. Contents

Bugwarrior Documentation, Release 0.8.0

Service Features

Repo Owner

github.username indicates which repositories should be scraped. For instance, I always have github.login
set to ralphbean (my account). But I have some targets with github.username pointed at organizations or other
users to watch issues there. This parameter is required unless github.query is provided.

Include and Exclude Certain Repositories

By default, issues from all repos belonging to github.username are included. To turn this off, set:

github.include_user_repos = False

If you happen to be working with a large number of projects, you may want to pull issues from only a subset of your
repositories. To do that, you can use the github.include_repos option.

For example, if you would like to only pull-in issues from your project_foo and project_fox repositories,
you could add this line to your service configuration:

github.include_repos = project_foo,project_fox

Alternatively, if you have a particularly noisy repository, you can instead choose to import all issues excepting it using
the github.exclude_repos configuration option.

In this example, noisy_repository is the repository you would not like issues created for:

github.exclude_repos = noisy_repository

Import Labels as Tags

The Github issue tracker allows you to attach labels to issues; to use those labels as tags, you can use the github.
import_labels_as_tags option:

github.import_labels_as_tags = True

Also, if you would like to control how these labels are created, you can specify a template used for converting the
Github label into a Taskwarrior tag.

For example, to prefix all incoming labels with the string ‘github’ (perhaps to differentiate them from any existing tags
you might have), you could add the following configuration option:

github.label_template = github_{{label}}

In addition to the context variable {{label}}, you also have access to all fields on the Taskwarrior task if needed.

Note: See Field Templates for more details regarding how templates are processed.

Filter Pull Requests

Although you can filter issues using Common Service Configuration Options, pull requests are not filtered by default.
You can filter pull requests by adding the following configuration option:

2.4. Supported Services 19

Bugwarrior Documentation, Release 0.8.0

github.filter_pull_requests = True

Get involved issues

By default, bugwarrior pulls all issues across owned and member repositories assigned to the authenticated user. To
disable this behavior, use:

github.include_user_issues = False

Instead of fetching issues and pull requests based on {{username}}’s owned repositories, you may instead get
those that {{username}} is involved in. This includes all issues and pull requests where the user is the author, the
assignee, mentioned in, or has commented on. To do so, add the following configuration option:

github.involved_issues = True

Queries

If you want to write your own github query, as described at https://help.github.com/articles/searching-issues/:

github.query = assignee:octocat is:open

Note that this search covers both issues and pull requests, which github treats as a special kind of issue.

To disable the pre-defined queries described above and synchronize only the issues matched by the query, set:

github.include_user_issues = False
github.include_user_repos = False

GitHub Enterprise Instance

If you’re using GitHub Enterprise, the on-premises version of GitHub, you can point bugwarrior to it with the
github.host configuration option. E.g.:

github.host = github.acme.biz

Provided UDA Fields

Field Name Description Type
githubbody Body Text (string)
githubcreatedon Created Date & Time
githubmilestone Milestone Text (string)
githubnumber Issue/PR # Numeric
githubtitle Title Text (string)
githubtype Type Text (string)
githubupdatedat Updated Date & Time
githuburl URL Text (string)
githubrepo username/reponame Text (string)
githubuser Author of issue/PR Text (string)
githubnamespace project namespace Text (string)

20 Chapter 2. Contents

https://help.github.com/articles/searching-issues/

Bugwarrior Documentation, Release 0.8.0

2.4.8 Gitlab

You can import tasks from your Gitlab instance using the gitlab service name.

Example Service

Here’s an example of a Gitlab target:

[my_issue_tracker]
service = gitlab
gitlab.login = ralphbean
gitlab.token = OMG_LULZ
gitlab.host = gitlab.com

The above example is the minimum required to import issues from Gitlab. You can also feel free to use any of the
configuration options described in Common Service Configuration Options or described in Service Features below.

The gitlab.token is your private API token.

Service Features

Include and Exclude Certain Repositories

If you happen to be working with a large number of projects, you may want to pull issues from only a subset of your
repositories. To do that, you can use the gitlab.include_repos option.

For example, if you would like to only pull-in issues from your own project_foo and team bar’s project_fox
repositories, you could add this line to your service configuration (replacing me by your own login):

gitlab.include_repos = me/project_foo, bar/project_fox

Alternatively, if you have a particularly noisy repository, you can instead choose to import all issues excepting it using
the gitlab.exclude_repos configuration option.

In this example, noisy/repository is the repository you would not like issues created for:

gitlab.exclude_repos = noisy/repository

Hint: If you omit the repository’s namespace, bugwarrior will automatically add your login as namespace. E.g. the
following are equivalent:

gitlab.login = foo
gitlab.include_repos = bar

and:

gitlab.login = foo
gitlab.include_repos = foo/bar

2.4. Supported Services 21

Bugwarrior Documentation, Release 0.8.0

Filtering Repositories with Regular Expressions

If you don’t want to list every single repository you want to include or exclude, you can additionally use the op-
tions gitlab.include_regex and gitlab.exclude_regex and specify a regular expression (suitable for
Python’s re module). No default namespace is applied here, the regular expressions are matched to the full repository
name with its namespace.

The regular expressions can be used in addition to the lists explained above. So if a repository is not included in
gitlab.include_repos, it can still be included by gitlab.include_regex, and vice versa; and likewise
for gitlab.exclude_repos and gitlab.exclude_regex.

Note: If a repository matches both the inclusion and the exclusion options, the exclusion takes precedence.

For example, you want to include only the repositories foo/node and bar/node as well as all repositories in the
namespace foo starting with ep_, but not foo/ep_example:

gitlab.include_repos = foo/node, bar/node
gitlab.include_regex = foo/ep_.*
gitlab.exclude_repos = foo/ep_example

Import Labels as Tags

The gitlab issue tracker allows you to attach labels to issues; to use those labels as tags, you can use the gitlab.
import_labels_as_tags option:

gitlab.import_labels_as_tags = True

Also, if you would like to control how these labels are created, you can specify a template used for converting the
gitlab label into a Taskwarrior tag.

For example, to prefix all incoming labels with the string ‘gitlab’ (perhaps to differentiate them from any existing tags
you might have), you could add the following configuration option:

gitlab.label_template = gitlab_{{label}}

In addition to the context variable {{label}}, you also have access to all fields on the Taskwarrior task if needed.

Note: See Field Templates for more details regarding how templates are processed.

Include Merge Requests

Although you can filter issues using Common Service Configuration Options, merge requests are not filtered by default.
You can filter merge requests by adding the following configuration option:

gitlab.filter_merge_requests = True

Include Todo Items

By default todo items are not included. You may include them by adding the following configuration option:

22 Chapter 2. Contents

Bugwarrior Documentation, Release 0.8.0

gitlab.include_todos = True

If todo items are included, by default, todo items for all projects are included. To only fetch todo items for projects
which are being fetched, you may set:

gitlab.include_all_todos = False

Include Only One Author

If you would like to only pull issues and MRs that you’ve authored, you may set:

gitlab.only_if_author = myusername

Use HTTP

If your Gitlab instance is only available over HTTP, set:

gitlab.use_https = False

Do Not Verify SSL Certificate

If you want to ignore verifying the SSL certificate, set:

gitlab.verify_ssl = False

Provided UDA Fields

Field Name Description Type
gitlabdescription Description Text (string)
gitlabcreatedon Created Date & Time
gitlabmilestone Milestone Text (string)
gitlabnumber Issue/MR # Numeric
gitlabtitle Title Text (string)
gitlabtype Type Text (string)
gitlabupdatedat Updated Date & Time
gitlabduedate Due Date Date
gitlaburl URL Text (string)
gitlabrepo username/reponame Text (string)
gitlabupvotes Number of upvotes Numeric
gitlabdownvotes Number of downvotes Numeric
gitlabwip Work-in-Progress flag Numeric
gitlabweight Weight Numeric
gitlabauthor Issue/MR author Text (string)
gitlabassignee Issue/MR assignee Text (string)
gitlabnamespace project namespace Text (string)

2.4. Supported Services 23

Bugwarrior Documentation, Release 0.8.0

2.4.9 Gmail

You can create tasks from e-mails in your Gmail account using the gmail service name.

Additional Dependencies

Install packages needed for Gmail support with:

pip install bugwarrior[gmail]

Client Secret

In order to use this service, you need to create a product and download a client secret file. Do this by following the in-
structions on: https://developers.google.com/gmail/api/quickstart/python. You should save
the resulting secret in your home directory as .gmail_client_secret.json. You can override this location by
setting the client_secret_path option.

Example Service

Here’s an example of a gmail target:

[my_gmail]
service = gmail
gmail.query = label:action OR label:readme
gmail.login_name = you@example.com

The specified query can be any gmail search term. By default it will select starred threads. One task is created per
selected thread, not per e-mail.

You do not need to specify the login_name, but it can be useful to avoid accidentally fetching data from the wrong
account. (This also allows multiple targets with the same login to share the same authentication token.)

Authentication

When you first run bugwarrior-pull, a browser will be opened and you’ll be asked to authorise the application
to access your e-mail. Once authorised a token will be stored in your bugwarrior data directory.

Provided UDA Fields

+———————+———————————–+—————| | gmailthreadid | Thread Id | Text
(string) | +———————+———————————–+—————| | gmailsubject | Subject | Text
(string) | +———————+———————————–+—————| | gmailurl | URL | Text (string) |
+———————+———————————–+—————| | gmaillastsender | Last Sender’s Name | Text
(string) | +———————+———————————–+—————| | gmaillastsender | Last Sender’s
E-mail Address | Text (string) | +———————+———————————–+—————| | gmailsnippet |
Snippet of text from conversation | Text (string) | +———————+———————————–+—————|

2.4.10 Jira

You can import tasks from your Jira instance using the jira service name.

24 Chapter 2. Contents

Bugwarrior Documentation, Release 0.8.0

Additional Requirements

Install the following package using pip:

• jira

Example Service

Here’s an example of a jira project:

[my_issue_tracker]
service = jira
jira.base_uri = https://bug.tasktools.org
jira.username = ralph
jira.password = OMG_LULZ

Note: The base_uri must not have a trailing slash.

The above example is the minimum required to import issues from Jira. You can also feel free to use any of the
configuration options described in Common Service Configuration Options or described in Service Features below.

Service Features

Specify the Query to Use for Gathering Issues

By default, the JIRA plugin will include any issues that are assigned to you but do not yet have a resolution set, but
you can fine-tune the query used for gathering issues by setting the jira.query parameter.

For example, to select issues assigned to ‘ralph’ having a status that is not ‘closed’ and is not ‘resolved’, you could
add the following configuration option:

jira.query = assignee = ralph and status != closed and status != resolved

This query needs to be modified accordingly to the literal values of your Jira instance; if the name contains any
character, just put it in quotes, e.g.

jira.query = assignee = ‘firstname.lastname’ and status != Closed and status != Resolved and status !=
Done

Jira v4 Support

If you happen to be using a very old version of Jira, add the following configuration option to your service configura-
tion:

jira.version = 4

Do Not Verify SSL Certificate

If you want to ignore verifying the SSL certificate, set:

2.4. Supported Services 25

Bugwarrior Documentation, Release 0.8.0

jira.verify_ssl = False

Import Labels and Sprints as Tags

The Jira issue tracker allows you to attach labels to issues; to use those labels as tags, you can use the jira.
import_labels_as_tags option:

jira.import_labels_as_tags = True

You can also import the names of any sprints associated with an issue as tags, by setting the jira.
import_sprints_as_tags option:

jira.import_sprints_as_tags = True

If you would like to control how these labels are created, you can specify a template used for converting the Jira label
into a Taskwarrior tag.

For example, to prefix all incoming labels with the string ‘jira’ (perhaps to differentiate them from any existing tags
you might have), you could add the following configuration option:

jira.label_template = jira_{{label}}

In addition to the context variable {{label}}, you also have access to all fields on the Taskwarrior task if needed.

Note: See Field Templates for more details regarding how templates are processed.

Kerberos authentication

If the password is specified as @kerberos, the service plugin will try to authenticate against server with kerberos.
A ticket must be already present on the client (created by running kinit or any other method).

Provided UDA Fields

Field Name Description Type
jiradescription Description Text (string)
jiraid Issue ID Text (string)
jirasummary Summary Text (string)
jiraurl URL Text (string)
jiraestimate Estimate Decimal (numeric)

2.4.11 Megaplan

You can import tasks from your Megaplan instance using the megaplan service name.

26 Chapter 2. Contents

Bugwarrior Documentation, Release 0.8.0

Additional Requirements

Install the following package using pip:

• megaplan

Example Service

Here’s an example of a Megaplan target:

[my_issue_tracker]
service = megaplan
megaplan.hostname = example.megaplan.ru
megaplan.login = alice
megaplan.password = secret
megaplan.project_name = example

The above example is the minimum required to import issues from Megaplab. You can also feel free to use any of the
configuration options described in Common Service Configuration Options.

Provided UDA Fields

Field Name Description Type
megaplanid Issue ID Text (string)
megaplantitle Title Text (string)
megaplanurl URL Text (string)

2.4.12 Pagure

You can import tasks from your private or public pagure instance using the pagure service name.

Example Service

Here’s an example of a Pagure target:

[my_issue_tracker]
service = pagure
pagure.tag = releng
pagure.base_url = https://pagure.io

The above example is the minimum required to import issues from Pagure. You can also feel free to use any of the
configuration options described in Common Service Configuration Options or described in Service Features below.

Note that either pagure.tag or pagure.repo is required.

• pagure.tag offers a flexible way to import issues from many pagure repos. It will include issues from every
repo on the pagure instance that is tagged with the specified tag. It is similar in usage to a github “organization”.
In the example above, the entry will pull issues from all “releng” pagure repos.

• pagure.repo offers a simple way to import issues from a single pagure repo.

Note – no authentication tokens are needed to pull issues from pagure.

2.4. Supported Services 27

https://pagure.io

Bugwarrior Documentation, Release 0.8.0

Service Features

Include and Exclude Certain Repositories

If you happen to be working with a large number of projects, you may want to pull issues from only a subset of your
repositories. To do that, you can use the pagure.include_repos option.

For example, if you would like to only pull-in issues from your project_foo and project_fox repositories,
you could add this line to your service configuration:

pagure.tag = fedora-infra
pagure.include_repos = project_foo,project_fox

Alternatively, if you have a particularly noisy repository, you can instead choose to import all issues excepting it using
the pagure.exclude_repos configuration option.

In this example, noisy_repository is the repository you would not like issues created for:

pagure.tag = fedora-infra
pagure.exclude_repos = noisy_repository

Import Labels as Tags

The Pagure issue tracker allows you to attach tags to issues; to use those pagure tags as taskwarrior tags, you can use
the pagure.import_tags option:

pagure.import_tags = True

Also, if you would like to control how these taskwarrior tags are created, you can specify a template used for converting
the Pagure tag into a Taskwarrior tag.

For example, to prefix all incoming labels with the string ‘pagure’ (perhaps to differentiate them from any existing
tags you might have), you could add the following configuration option:

pagure.label_template = pagure_{{label}}

In addition to the context variable {{label}}, you also have access to all fields on the Taskwarrior task if needed.

Note: See Field Templates for more details regarding how templates are processed.

Provided UDA Fields

Field Name Description Type
paguredatecreated Created Date & Time
pagurenumber Issue/PR # Numeric
paguretitle Title Text (string)
paguretype Type Text (string)
pagureurl URL Text (string)
pagurerepo username/reponame Text (string)

28 Chapter 2. Contents

https://pagure.io

Bugwarrior Documentation, Release 0.8.0

2.4.13 Phabricator

You can import Maniphest tasks from your Phabricator instance using the phabricator service name.

Additional Requirements

Install the following package using pip:

• phabricator

Example Service

Here’s an example of a Phabricator target:

[my_issue_tracker]
service = phabricator

Note: Although this may not look like enough information for us to gather information from Phabricator, but creden-
tials will be gathered from the user’s ~/.arcrc.

To set up an ~/.arcrc, install arcanist and run arc install-certificate

The above example is the minimum required to import issues from Phabricator. You can also feel free to use any of
the configuration options described in Common Service Configuration Options.

Service Features

If you have dozens of users and projects, you might want to pull the tasks and code review requests only for the specific
ones.

If you want to show only the tasks related to a specific user, you just need to add its PHID to the service configuration
like this:

phabricator.user_phids = PHID-USER-ab12c3defghi45jkl678

If you want to show only the tasks and diffs related to a specific project or a repository, just add their PHIDs to the
service configuration:

phabricator.project_phids = PHID-PROJ-ab12c3defghi45jkl678,PHID-REPO-
→˓ab12c3defghi45jkl678

Both phabricator.user_phids and phabricator.project_phids accept a comma-separated (no
spaces) list of PHIDs.

If you specify both, you will get tasks and diffs that match one or the other.

When working on a Phabricator installations with a huge number of users or projects, it is recommended that you
specify phabricator.user_phids and/or phabricator.project_phids, as the Phabricator API may
return a timeout for a query with too many results.

If you do not know PHID of a user, project or repository, you can find it out by querying Phabricator Conduit
(https://YOUR_PHABRICATOR_HOST/conduit/) – the methods which return the needed info are user.
query, project.query and repository.query respectively.

2.4. Supported Services 29

Bugwarrior Documentation, Release 0.8.0

If your ~/.arcrc includes credentials for multiple Phabricator instances, it is undefined which one will be used. To
make it explicit, you can use:

phabricator.host = https://YOUR_PHABRICATOR_HOST

Where https://YOUR_PHABRICATOR_HOST must match the corresponding json key in ~/.arcrc, which
may include /api/ besides your hostname.

Provided UDA Fields

Field Name Description Type
phabricatorid Object Text (string)
phabricatortitle Title Text (string)
phabricatortype Type Text (string)
phabricatorurl URL Text (string)

2.4.14 Redmine

You can import tasks from your Redmine instance using the redmine service name.

Only first 100 issues are imported at the moment.

Example Service

Here’s an example of a Redmine target:

[my_issue_tracker]
service = redmine
redmine.url = http://redmine.example.org/
redmine.key = c0c4c014cafebabe
redmine.user_id = 7
redmine.project_name = redmine
redmine.issue_limit = 100

You can also feel free to use any of the configuration options described in Common Service Configuration Options.

There are also redmine.login/redmine.password settings if your instance is behind basic auth.

If you want to ignore verifying the SSL certificate, set:

redmine.verify_ssl = False

Provided UDA Fields

Field Name Description Type
redmineid ID Text (string)
redminesubject Subject Text (string)
redmineurl URL Text (string)

30 Chapter 2. Contents

Bugwarrior Documentation, Release 0.8.0

2.4.15 Taiga

You can import tasks from a Taiga instance using the taiga service name.

Example Service

Here’s an example of a taiga project:

[my_issue_tracker]
service = taiga
taiga.base_uri = http://taiga.fedorainfracloud.org
taiga.auth_token = ayJ1c4VyX2F1dGhlbnQpY2F0aW9uX2lmIjo1fQ:2a2LPT:qscLbfQC_
→˓jyejQsICET5KgYNPLM

The above example is the minimum required to import issues from Taiga. You can also feel free to use any of the
configuration options described in Common Service Configuration Options.

Service Features

By default, userstories from taiga are added in taskwarrior. If you like to include taiga tasks as well, set the config
option:

taiga.include_tasks = True

Provided UDA Fields

Field Name Description Type
taigaid Issue ID Text (string)
taigasummary Summary Text (string)
taigaurl URL Text (string)

The Taiga service provides a limited set of UDAs. If you have need for some other values not present here, please file
a request (there’s lots of metadata in there that we could expose).

2.4.16 Teamlab

You can import tasks from your Teamlab instance using the teamlab service name.

Example Service

Here’s an example of a Teamlab target:

[my_issue_tracker]
service = teamlab
teamlab.hostname = teamlab.example.com
teamlab.login = alice
teamlab.password = secret
teamlab.project_name = example_teamlab

The above example is the minimum required to import issues from Teamlab. You can also feel free to use any of the
configuration options described in Common Service Configuration Options.

2.4. Supported Services 31

Bugwarrior Documentation, Release 0.8.0

Provided UDA Fields

Field Name Description Type
teamlabid ID Text (string)
teamlabprojectownerid ProjectOwner ID Text (string)
teamlabtitle Title Text (string)
teamlaburl URL Text (string)

2.4.17 Trac

You can import tasks from your Trac instance using the trac service name.

Additional Dependencies

Install packages needed for Trac support with:

pip install bugwarrior[trac]

Example Service

Here’s an example of a Trac target:

[my_issue_tracker]
service = trac
trac.base_uri = fedorahosted.org/moksha
trac.scheme = https
trac.project_template = moksha.{{traccomponent|lower}}

By default, this service uses the XML-RPC Trac plugin, which must be installed on the Trac instance. If this is not
available, the service can use Trac’s built-in CSV support, but in this mode it cannot add annotations based on ticket
comments. To enable this mode, add trac.no_xmlrpc = true.

If your trac instance requires authentication to perform the query, add:

trac.username = ralph
trac.password = OMG_LULZ

The above example is the minimum required to import issues from Trac. You can also feel free to use any of the
configuration options described in Common Service Configuration Options.

Service Features

Provided UDA Fields

Field Name Description Type
tracnumber Number Text (string)
tracsummary Summary Text (string)
tracurl URL Text (string)
traccomponent Component Text (string)

32 Chapter 2. Contents

Bugwarrior Documentation, Release 0.8.0

2.4.18 Trello

You can import tasks from Trello cards using the trello service name.

Options

trello.api_key
Your Trello API key, available from https://trello.com/app-key

trello.token
Trello token, see below for how to get it.

trello.include_boards
The list of board to include. If omitted, bugwarrior will use all boards the authenticated user is a member of.
This can be either the board ids of the board “short links”. The latter is the easiest option as it is part of the
board URL: in your browser, navigate to the board you want to pull cards from and look at the URL, it should
be something like https://trello.com/b/xxxxxxxx/myboard: copy the part between /b/ and the
next / in the trello.include_boards field.

trello.include_lists
If set, only pull cards from lists whose name is present in trello.include_lists.

trello.exclude_lists
If set, skip cards from lists whose name is present in trello.exclude_lists.

trello.import_labels_as_tags
A boolean that indicates whether the Trello labels should be imported as tags in taskwarrior. (Defaults to false.)

trello.label_template
Template used to convert Trello labels to taskwarrior tags. See Field Templates for more details regarding how
templates are processed. The default value is {{label|replace(' ', '_')}}.

Example Service

Here’s an example of a Trello target:

[my_project]
service = trello
trello.api_key = xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
trello.token = xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

The above example is the minimum required to import tasks from Trello. This will import every card from all the
user’s boards.

Here’s an example with more options:

[my_project]
service = trello
trello.api_key = xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
trello.token = xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
trello.include_boards = AaBbCcDd, WwXxYyZz
trello.include_lists = Todo, Doing
trello.exclude_lists = Done

(continues on next page)

2.4. Supported Services 33

https://trello.com/app-key

Bugwarrior Documentation, Release 0.8.0

(continued from previous page)

trello.only_if_assigned = someuser
trello.import_labels_as_tags = true

In this case, bugwarrior will only import cards from the specified boards if they belong to the right lists..

Feel free to use any of the configuration options described in Common Service Configuration Options or described in
Service Features below.

Service Features

Include and Exclude Certain Lists

You may want to pull cards from only a subset of the open lists in your board. To do that, you can use the trello.
include_lists and trello.exclude_lists options.

For example, if you would like to only pull-in cards from your Todo and Doing lists, you could add this line to your
service configuration:

trello.include_lists = Todo, Doing

Import Labels as Tags

Trello allows you to attach labels to cards; to use those labels as tags, you can use the trello.
import_labels_as_tags option:

trello.import_labels_as_tags = True

Also, if you would like to control how these labels are created, you can specify a template used for converting the
trello label into a Taskwarrior tag.

For example, to prefix all incoming labels with the string ‘trello’ (perhaps to differentiate them from any existing tags
you might have), you could add the following configuration option:

trello.label_template = trello_{{label}}

In addition to the context variable {{label}}, you also have access to all fields on the Taskwarrior task if needed.

Note: See Field Templates for more details regarding how templates are processed. The default value is
{{label|upper|replace(' ', '_')}}.

Provided UDA Fields

Field Name Description Type
trelloboard Board name Text (string)
trellocard Card name Text (string)
trellocardid Card ID Text (string)
trellolist List name Text (string)
trelloshortlink Short Link Text (string)
trelloshorturl Short URL Text (string)
trellourl Full URL Text (string)

34 Chapter 2. Contents

Bugwarrior Documentation, Release 0.8.0

2.4.19 VersionOne

You can import tasks from VersionOne using the versionone service name.

Additional Requirements

Install the following package using pip:

• v1pysdk-unofficial

Example Service

Here’s an example of a VersionOne project:

[my_issue_tracker]
service = versionone
versionone.base_uri = https://www3.v1host.com/MyVersionOneInstance/
versionone.usermame = somebody
versionone.password = hunter5

The above example is the minimum required to import issues from VersionOne. You can also feel free to use any of
the configuration options described in Common Service Configuration Options or described in Service Features below.

Note: This plugin does not infer a project name from any attribute of the version one Task or Story; it is recommended
that you set the project name to use for imported tasks by either using the below Set a Global Project Name feature,
or, if you require more flexibility, setting the project_template configuration option (see Field Templates).

Service Features

Restrict Task Imports to a Specific Timebox (Sprint)

You can restrict imported tasks to a specific Timebox (VersionOne’s internal generic name for a Sprint) – in this
example named ‘Sprint 2014-09-22’ – by using the versionone.timebox_name option; for example:

versionone.timebox_name = Sprint 2014-09-22

Set a Global Project Name

By default, this importer does not set a project name on imported tasks. Although you can gain more flexibility by
using Field Templates to generate a project name, if all you need is to set a predictable project name, you can use the
versionone.project_name option; in this example, to add imported tasks to the project ‘important_project’:

versionone.project_name = important_project

Set the Timezone Used for Due Dates

You can configure the timezone used for setting your tasks’ due dates by setting the versionone.timezone
option. By default, your local timezone will be used. For example:

2.4. Supported Services 35

Bugwarrior Documentation, Release 0.8.0

versionone.timezone = America/Los_Angeles

Provided UDA Fields

Field Name Description Type
versiononetaskname Task Name Text (string)
versiononetaskoid Task Object ID Text (string)
versiononestoryoid Story Object ID Text (string)
versiononestoryname Story Name Text (string)
versiononetaskreference Task Reference Text (string)
versiononetaskdetailestimate Task Detail Estimate Text (string)
versiononetaskestimate Task Estimate Text (string)
versiononetaskdescrption Task Description Text (string)
versiononetasktodo Task To Do Text (string)
versiononestorydetailestimate Story Detail Estimate Text (string)
versiononestoryurl Story URL Text (string)
versiononetaskurl Task URL Text (string)
versiononestoryestimate Story Estimate Text (string)
versiononestorynumber Story Number Text (string)
versiononestorydescription Story Description Text (string)

2.4.20 YouTrack

You can import tasks from your YouTrack instance using the youtrack service name.

Example Service

Here’s an example of a YouTrack target:

[my_issue_tracker]
service = youtrack
youtrack.host = youtrack.example.com
youtrack.login = turing
youtrack.password = 3n1Gm@

The above example is the minimum required to import issues from YouTrack. You can also feel free to use any of the
configuration options described in Common Service Configuration Options or described in Service Features below.

Service Features

Customize the YouTrack Connection

The youtrack.host field is used to construct a URL for the YouTrack server. It defaults to a secure connection
scheme (HTTPS) on the standard port (443).

To connect on a different port, set:

youtrack.port = 8443

If your YouTrack instance is only available over HTTP, set:

36 Chapter 2. Contents

Bugwarrior Documentation, Release 0.8.0

youtrack.use_https = False

If you want to ignore verifying the SSL certificate, set:

youtrack.verify_ssl = False

Specify the Query to Use for Gathering Issues

The default option selects unresolved issues assigned to the login user:

youtrack.query = for:me #Unresolved

Reference the YouTrack Search Query Grammar for additional examples.

Queries are capped at 100 max results by default, but may be adjusted to meet your needs:

youtrack.query_limit = 100

Import Issue Tags

The YouTrack issue tracker allows you to tag issues. To apply these tags in Taskwarrior, set:

youtrack.import_tags = True

If you would like to control how these tags are formatted, you can specify a template used for converting the YouTrack
tag into a Taskwarrior tag.

For example, to prefix all incoming tags with the string ‘yt_’ (perhaps to differentiate them from any existing tags you
might have), you could add the following configuration option:

youtrack.tag_template = yt_{{tag|lower}}

In addition to the context variable {{tag}}, you also have access to all fields on the Taskwarrior task if needed.

Note: See Field Templates for more details regarding how templates are processed.

Provided UDA Fields

Field Name Description Type
youtrackissue PROJECT-ISSUE# Text (string)
youtracksummary Summary Text (string)
youtrackurl URL Text (string)
youtrackproject Project short name Text (string)
youtracknumber Project issue number Numeric

2.4. Supported Services 37

https://www.jetbrains.com/help/youtrack/standalone/7.0/Search-Query-Grammar.html

Bugwarrior Documentation, Release 0.8.0

2.5 Example Configuration

Example bugwarriorrc

General stuff.
[general]
Here you define a comma separated list of targets. Each of them must have a
section below determining their properties, how to query them, etc. The name
is just a symbol, and doesn't have any functional importance.
targets = my_github, my_bitbucket, paj_bitbucket, moksha_trac, bz.redhat

If unspecified, the default taskwarrior config will be used.
#taskrc = /path/to/.taskrc

Setting this to true will shorten links with http://da.gd/
#shorten = False

Setting this to True will include a link to the ticket in the description
inline_links = False

Setting this to True will include a link to the ticket as an annotation
annotation_links = True

Setting this to True will include issue comments and author name in task
annotations
annotation_comments = True

Defines whether or not issues should be matched based upon their description.
In legacy mode, we will attempt to match issues to bugs based upon the
presence of the '(bw)' marker in the task description.
If this is false, we will only select issues having the appropriate UDA
fields defined (which is smarter, better, newer, etc..)
legacy_matching = False

log.level specifies the verbosity. The default is DEBUG.
log.level can be one of DEBUG, INFO, WARNING, ERROR, CRITICAL, DISABLED
#log.level = DEBUG

If log.file is specified, output will be redirected there. If it remains
unspecified, output is sent to sys.stderr
#log.file = /var/log/bugwarrior.log

Configure the default description or annotation length.
#annotation_length = 45

Use hooks to run commands prior to importing from bugwarrior-pull.
bugwarrior-pull will run the commands in the order that they are specified
below.
#
pre_import: The pre_import hook is invoked after all issues have been pulled
from remote sources, but before they are synced to the TW db. If your
pre_import script has a non-zero exit code, the `bugwarrior-pull` command will
exit early.
[hooks]
pre_import = /home/someuser/backup.sh, /home/someuser/sometask.sh

This section is for configuring notifications when bugwarrior-pull runs,

(continues on next page)

38 Chapter 2. Contents

Bugwarrior Documentation, Release 0.8.0

(continued from previous page)

and when issues are created, updated, or deleted by bugwarrior-pull.
Three backends are currently supported:
#
- growlnotify (v2) Mac OS X "gntp" must be installed
- gobject Linux python gobject must be installed
#
To configure, adjust the settings below. Note that neither of the
"sticky" options have any effect on Linux. They only work for
growlnotify.
#[notifications]
notifications = True
backend = growlnotify
finished_querying_sticky = False
task_crud_sticky = True
only_on_new_tasks = True

This is a github example. It says, "scrape every issue from every repository
on http://github.com/ralphbean. It doesn't matter if ralphbean owns the issue
or not."
[my_github]
service = github
github.default_priority = H
github.add_tags = open_source

This specifies that we should pull issues from repositories belonging
to the 'ralphbean' github account. See the note below about
'github.username' and 'github.login'. They are different, and you need
both.
github.username = ralphbean

I want taskwarrior to include issues from all my repos, except these
two because they're spammy or something.
github.exclude_repos = project_bar,project_baz

Working with a large number of projects, instead of excluding most of them I
can also simply include just a limited set.
github.include_repos = project_foo,project_foz

Note that login and username can be different: I can login as me, but
scrape issues from an organization's repos.
#
- 'github.login' is the username you ask bugwarrior to
login as. Set it to your account.
- 'github.username' is the github entity you want to pull
issues for. It could be you, or some other user entirely.
github.login = ralphbean
github.password = OMG_LULZ

Here's an example of a trac target.
[moksha_trac]
service = trac

trac.base_uri = fedorahosted.org/moksha
trac.username = ralph
trac.password = OMG_LULZ

(continues on next page)

2.5. Example Configuration 39

Bugwarrior Documentation, Release 0.8.0

(continued from previous page)

trac.only_if_assigned = ralph
trac.also_unassigned = True
trac.default_priority = H
trac.add_tags = work

Here's an example of a megaplan target.
[my_megaplan]
service = megaplan

megaplan.hostname = example.megaplan.ru
megaplan.login = alice
megaplan.password = secret
megaplan.project_name = example

Here's an example of a jira project. The ``jira-python`` module is
a bit particular, and jira deployments, like Bugzilla, tend to be
reasonably customized. So YMMV. The ``base_uri`` must not have a
have a trailing slash. In this case we fetch comments and
cases from jira assigned to 'ralph' where the status is not closed or
resolved.
[jira_project]
service = jira
jira.base_uri = https://jira.example.org
jira.username = ralph
jira.password = OMG_LULZ
jira.query = assignee = ralph and status != closed and status != resolved
Set this to your jira major version. We currently support only jira version
4 and 5(the default). You can find your particular version in the footer at
the dashboard.
jira.version = 5
jira.add_tags = enterprisey,work

Here's an example of a phabricator target
[my_phabricator]
service = phabricator
No need to specify credentials. They are gathered from ~/.arcrc

Here's an example of a teamlab target.
[my_teamlab]
service = teamlab

teamlab.hostname = teamlab.example.com
teamlab.login = alice
teamlab.password = secret
teamlab.project_name = example_teamlab

Here's an example of a redmine target.
[my_redmine]
service = redmine
redmine.url = http://redmine.example.org/
redmine.key = c0c4c014cafebabe
redmine.user_id = 7
redmine.project_name = redmine
redmine.add_tags = chiliproject

[activecollab]
(continues on next page)

40 Chapter 2. Contents

Bugwarrior Documentation, Release 0.8.0

(continued from previous page)

service = activecollab
activecollab.url = https://ac.example.org/api.php
activecollab.key = your-api-key
activecollab.user_id = 15
activecollab.add_tags = php

[activecollab2]
service = activecollab2
activecollab2.url = http://ac.example.org/api.php
activecollab2.key = your-api-key
activecollab2.user_id = 15
activecollab2.projects = 1:first_project, 5:another_project

[my_gmail]
service = gmail
gmail.query = label:action OR label:readme
gmail.login_name = you@example.com

2.6 How to Contribute

2.6.1 Setting up your development environment

First, make sure you have the necessary Requirements.

You should also install the virtualenv tool for python. (I use a wrapper for it called virtualenvwrapper which is
awesome but not required.) Virtualenv will help isolate your dependencies from the rest of your system.

$ sudo yum install python-virtualenv git
$ mkdir -p ~/virtualenvs/
$ virtualenv ~/virtualenvs/bugwarrior

You should now have a virtualenv in a ~/virtualenvs/ directory. To use it, you need to “activate” it like this:

$ source ~/virtualenv/bugwarrior/bin/activate
(bugwarrior)$ which python

At any time, you can deactivate it by typing deactivate at the command prompt.

Next step – get the code!

(bugwarrior)$ git clone git@github.com:ralphbean/bugwarrior.git
(bugwarrior)$ cd bugwarrior
(bugwarrior)$ python setup.py develop
(bugwarrior)$ which bugwarrior-pull

This will actually run it.. be careful and back up your task directory!

(bugwarrior)$ bugwarrior-pull

2.6.2 Making a pull request

Create a new branch for each pull request based off the develop branch:

2.6. How to Contribute 41

https://pypi.python.org/pypi/virtualenv
https://pypi.python.org/pypi/virtualenvwrapper

Bugwarrior Documentation, Release 0.8.0

(bugwarrior)$ git checkout -b my-shiny-new-feature develop

Please add tests when appropriate and run the test suite before opening a PR:

(bugwarrior)$ python setup.py nosetests

We look forward to your contribution!

2.6.3 Works in progress

The best way to get help and feedback before you pour too much time and effort into your branch is to open a “work
in progress” pull request. We will not leave it open indefinitely if it doesn’t seem to be progressing, but there’s nothing
to lose in soliciting some pointers and concerns.

Please begin the title of your work in progress pr with “[WIP]” and explain what remains to be done or what you’re
having trouble with.

2.7 FAQ

2.7.1 Can bugwarrior support <some issue tracking system>?

Sure! But our general rule here is that we won’t write a backend for a service unless we use it personally, otherwise
it’s hard to be sure that it really works.

We also try to rely on people to become maintainers of the different backend plugins they use so that they don’t suffer
bit rot over time.

In summary, we need someone who 1) uses <some issue tracking system> and 2) can develop the plugin. Could it be
you? :)

42 Chapter 2. Contents

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

43

Bugwarrior Documentation, Release 0.8.0

44 Chapter 3. Indices and tables

Index

B
BUGWARRIORRC, 10

E
environment variable

BUGWARRIORRC, 10
XDG_CONFIG_DIRS, 10
XDG_CONFIG_HOME, 10

X
XDG_CONFIG_DIRS, 10
XDG_CONFIG_HOME, 10

45

	Build Status
	Contents
	Getting bugwarrior
	How to use
	How to Configure
	Supported Services
	Example Configuration
	How to Contribute
	FAQ

	Indices and tables

