
Bugjar Documentation
Release 0.1.0

Russell Keith-Magee

May 07, 2019

Contents

1 Bugjar 1
1.1 Quickstart . 1
1.2 Documentation . 2
1.3 Community . 2

2 Indices and tables 5

i

ii

CHAPTER 1

Bugjar

Bugjar is part of the BeeWare suite. The project website is http://pybee.org/bugjar.

Anyone who learned to code in the mid to late 80s probably spent some time with a Borland compiler – probably
either Turbo Pascal or Turbo C. One of the best features of the Turbo compilers was their IDE – and in particular, a
really good visual debugger that would let you inspect code while it was running.

Then we all moved to Unix, and somehow forgot what a good debugger was. GDB is perfectly functional, but isn’t
very intuitive. GDB gives you perfect control over the execution of your code, but bad contextual information to let
you know what control you should be exercising.

Then came Python. Python’s execution model contains excellent debugging hooks, and supplies PDB as a proof of
concept. PDB is an interface that shares many similarities with GDB – text mode, fantastic control, but very bad
contextual information.

So - enter bugjar. A graphical interface for debugging code. PDB, but with the context to help you step through
code in a meaningful way.

1.1 Quickstart

Bugjar can be installed with pip:

$ pip install bugjar

You can then debug a Python script by typing the following at a shell prompt:

$ bugjar myscript.py arg1 arg2

This will start a graphical interface, with myscript.py loaded into the source code window. You can set (or
remove) breakpoints by clicking on line numbers; you can step through and into code; or you can set the program
running unconstrained. Each time the debugger stops at a breakpoint, the inspector will be updated with the current
contents of locals, globals, and builtins.

The Python script will run using your current environment; if you have an active virtualenv, that environment will be
current.

When you quit the debugger, the script will be terminated.

1

http://pybee.org/
http://pybee.org/bugjar

Bugjar Documentation, Release 0.1.0

1.2 Documentation

Documentation for bugjar can be found on Read The Docs.

1.3 Community

Bugjar is part of the BeeWare suite. You can talk to the community through:

• @pybeeware on Twitter

• The BeeWare Users Mailing list, for questions about how to use the BeeWare suite.

• The BeeWare Developers Mailing list, for discussing the development of new features in the BeeWare suite, and
ideas for new tools for the suite.

Contents:

1.3.1 Headless mode

Bugjar can also operate in a headless mode. This can be use to debug processes running on a remote machine (although
it also works on local machines).

In headless mode, Bugjar is split into two parts:

• The Net: a headless backend responsible for debugging code

• The Jar: the GUI used to inspect code.

To debug in headless mode, you first start a headless debugger (the net) on the process that you want to debug:

$ bugjar-net myscript.py arg1 arg2

Then, on the machine that you want to visualize the debugging session, you start the user interface (the jar), and attach
it to the net:

$ bugjar-jar –host example.com

If the net and the jar are running on the same machine, the --host example.com argument can be ommitted.

Unlike local mode, when you quit the debugger, the script will not be terminated by closing the jar. If you close the
jar, and reopen a new session, the GUI will resume where it left off. The net is responsible for running the script; when
the net is stopped, the script will be terminated.

1.3.2 Contributing to Bugjar

If you experience problems with bugjar, log them on GitHub. If you want to contribute code, please fork the code and
submit a pull request.

Setting up your development environment

The recommended way of setting up your development envrionment for bugjar is to install a virtual environment,
install the required dependencies and start coding. Assuming that you are using virtualenvwrapper, you only
have to run:

2 Chapter 1. Bugjar

http://bugjar.readthedocs.org
http://pybee.org/
https://twitter.com/pybeeware
https://groups.google.com/forum/#!forum/beeware-users
https://groups.google.com/forum/#!forum/beeware-developers
https://github.com/pybee/bugjar/issues
https://github.com/pybee/bugjar
https://github.com/pybee/bugjar/pulls

Bugjar Documentation, Release 0.1.0

$ git clone git@github.com:pybee/bugjar.git
$ cd bugjar
$ mkvirtualenv bugjar

bugjar uses unittest (or unittest2 for Python < 2.7) for its own test suite as well as additional helper modules
for testing. To install all the requirements for bugjar, you have to run the following commands within your virutal
envrionment:

$ pip install -e .
$ pip install -r requirements_dev.txt

In case you are running a python version < 2.7 please use the requirements_dev_python2.7.txt instead
because unittest2 is not part of the standard library for these version.

Now you are ready to start hacking! Have fun!

1.3.3 Bugjar Roadmap

Bugjar is a new project - we have lots of things that we’d like to do. If you’d like to contribute, providing a patch for
one of these features:

• Port to Python 3

• Add the ability to browse objects in the stack

• Add the ability to add user-defined expressions to watch.

1.3.4 Release History

0.1.0 - August 31, 2013

Initial public release for DjangoCon US 2013.

1.3. Community 3

Bugjar Documentation, Release 0.1.0

4 Chapter 1. Bugjar

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

5

	Bugjar
	Quickstart
	Documentation
	Community

	Indices and tables

