

 Navigation

 	
 index

 	
 next |

 	bufferkdtree 1.0 documentation

bufferkdtree

The bufferkdtree library is a Python library that aims at accelerating nearest neighbor computations using both k-d trees and graphics processing cards (GPUs) using OpenCL [https://www.khronos.org/opencl/OpenCL]. The source code is published under the GNU General Public License (GPLv2).

Contents

	Quick Overview

	Installation
	Dependencies

	Quick Installation

	Examples
	Toy Example

	Large-Scale Querying

	Reference

	License

	Changes
	Release 1.0 - (under development)

	Citations

Index

	Index

 Copyright 2014 - 2015, Fabian Gieseke.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	bufferkdtree 1.0 documentation

Quick Overview

The main approach provided by the bufferkdtree package is an efficient many-core (e.g., GPU) implementation for processing huge amounts of nearest neighor queries by means of so-called buffer k-d trees. Such trees depict modifications of standard k-d trees that make use of the massive parallelism provided by today’s many-core devices (such as GPUs) to process the leaves of the tree.

Buffer k-d trees aim at scenarios, where you are given both a large reference (e.g., 1,000,000 points) and a huge query set (e.g., 10,000,000 or more points) with an input space of moderate dimensionality (e.g., from 4 to 20 dimensions).

[image: map to buried treasure]
Workflow: In each iteration, the procedure FindLeafBatch removes query indices from both queues and distributes them to the buffers (or removes them if no further processing is needed). In case enough work has been gathered, the procedure ProcessAllBuffers is invoked, which updates the nearest neighbors and reinserts all query indices into reinsert. The process stops as soon as both queues and all buffers are empty.

Hardware Caches

The brute-force step that takes place to empty the leaves via the many-core device makes use of automatic hardware-based caching. To achieve satisfying speed-ups, this feature has to be supported by the device (see, e.g., the Kepler GK110 Whitepaper [http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf])

A detailed description of the techniques used and an experimental evaluation of the implementation using massive astronomical data sets are provided in this paper [http://jmlr.org/proceedings/papers/v32/gieseke14.pdf].

 Copyright 2014 - 2015, Fabian Gieseke.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	bufferkdtree 1.0 documentation

Installation

Dependencies

The bufferkdtree package has been tested under Ubuntu and OpenSUSE linux distributions. It requires that Python 2.6 or 2.7, a working C/C++ compiler, and OpenCL are already installed. In addition it requires several other packages, such as the development packages of Python (for header files), NumPy, pip, swig, and python-virtualenv. We recommand using the latter for installing NumPy (>=1.6.1).

For Ubuntu, these can be installed with the command:

$ sudo apt-get install python2.7 python-virtualenv python-dev python-pip swig

For OpenSUSE, these can be installed with the command:

$ sudo zypper install python python-virtualenv python-devel python-pip swig

Finally, one can create and activate a new python environment in which numpy1.6.1 is installed by:

$ mkdir ~/.virtualenvs
$ cd ~/.virtualenvs
$ mkdir bufferkdtree
$ cd bufferkdtree

creates a new python environment
$ virtualenv bufferkdtree_master

activate environment and install numpy
$ source bufferkdtree_master/bin/activate
$ pip install numpy==1.6.1

Compatibility

The implementation is based on the efficient use of implicit hardware caches. Thus, to obtain good speed-ups, the GPU at hand has to support this feature! Current architectures such as Nvidia’s Kepler architecture exhibit such caches, see, e.g., the Kepler GK110 Whitepaper [http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf].

Quick Installation

First, make sure that the OpenCL header files are available, for example by setting the C_INCLUDE_PATH environment variable in the .bashrc file:

make the OpenCL header files available, for example on a CUDA system
PATH_TO_OPENCL_INCLUDE_FOLDER could be /usr/local/cuda/include
export C_INCLUDE_PATH=PATH_TO_OPENCL_INCLUDE_FOLDER:$C_INCLUDE_PATH

The package is available on PyPI [https://pypi.python.org/pypi], but can also be installed from the sources. For instance, to install the package via PyPI on Linux machines, type:

$ sudo pip install bufferkdtree

Alternatively, you can resort to the sources:

$ git clone https://github.com/gieseke/bufferkdtree.git
$ cd bufferkdtree
$ python setup.py install --user

If you want to install the package globally for all users (on Linux machines), type:

$ sudo python setup.py build
$ sudo python setup.py install

To run the program, one may enter the examples folder and execute one of the python programs there:

$ cd examples
$ python bigastronomy.py

Previous to running the example, one should modify the python program, e.g., bigastronomy.py, in order to set:

plat_dev_ids={0:[0,1]}

if there are two available GPGPUs (devices 0 and 1), and, at the very end, one should also set n_jobs to the number of parallel threads used for multi-core execution, for example assuming 32 threads are desired:

run_algorithm(algorithm="kd_tree", leaf_size=32, n_jobs=32)

Warning

The authors are not responsible for any implications that stem from the use of this software.

 Copyright 2014 - 2015, Fabian Gieseke.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	bufferkdtree 1.0 documentation

Examples

The following two examples demonstrate the use of the different implementations.

Toy Example

import numpy
from bufferkdtree.neighbors.base import NearestNeighbors

n_neighbors = 10
plat_dev_ids = {0:[0]}
n_jobs = 1
verbose = 0

Here, plat_dev_ids determines the OpenCL devices that shall be used. Each key of the dictionary corresponds to a platform id and for each platform id, a list of associated device ids can be provided. In this case, we are using platform 0 and the first device.

X = numpy.random.uniform(low=-1, high=1, size=(10000,10))

Small data set is generated. Next, three different implementations are invoked:

(1) apply buffer k-d tree implementation
nbrs_buffer_kd_tree = NearestNeighbors(algorithm="buffer_kd_tree", \
 tree_depth=9, \
 plat_dev_ids=plat_dev_ids, \
 verbose=verbose)
nbrs_buffer_kd_tree.fit(X)
dists, inds = nbrs_buffer_kd_tree.kneighbors(X, n_neighbors=n_neighbors)
print("\nbuffer_kd_tree output\n" + unicode(dists[0]))

(2) apply brute-force implementation
nbrs_brute = NearestNeighbors(algorithm="brute", \
 plat_dev_ids=plat_dev_ids, \
 verbose=verbose)
nbrs_brute.fit(X)
dists, inds = nbrs_brute.kneighbors(X, n_neighbors=n_neighbors)
print("\nbrute output\n" + unicode(dists[0]))

(3) apply k-d tree mplementation
nbrs_kd_tree = NearestNeighbors(algorithm="kd_tree", \
 n_jobs=n_jobs, \
 verbose=verbose)
nbrs_kd_tree.fit(X)
dists, inds = nbrs_kd_tree.kneighbors(X, n_neighbors=n_neighbors)
print("\nkd_tree output\n" + unicode(dists[0]))
print("")

The parameter algorithm determines the method that shall be used. The following output is produced:

Nearest Neighbors
=================

This example demonstrates the use of the different
implementations given on a small artifical data set.

buffer_kd_tree output
[0. 1.0035212 1.09866345 1.11734533 1.13440645 1.17730558
 1.1844281 1.20736992 1.2085104 1.21593559]

brute output
[0. 1.0035212 1.09866357 1.11734521 1.13440645 1.17730546
 1.18442798 1.20736992 1.2085104 1.21593571]

kd_tree output
[0. 1.0035212 1.09866357 1.11734521 1.13440645 1.17730546
 1.18442798 1.20736992 1.2085104 1.21593571]

Large-Scale Querying

The next data example is based on data from the Sloan Digital Sky Survey; the data is downloaded automatically.

import os
import time
import numpy
import generate
from bufferkdtree.neighbors.base import NearestNeighbors

parameters
plat_dev_ids = {0:[0,1,2,3]}
n_jobs = 8
verbose = 0
n_neighbors=10

Note that we are now using platform 0 with four devices (0,1,2, and 3). Next, a helper function is defined to time the runtimes needed for the training and testing phases:

def run_algorithm(algorithm="buffer_kd_tree", tree_depth=None, leaf_size=None):

 nbrs = NearestNeighbors(n_neighbors=n_neighbors, \
 algorithm=algorithm, \
 tree_depth=tree_depth, \
 leaf_size=leaf_size, \
 n_jobs = n_jobs, \
 plat_dev_ids=plat_dev_ids, \
 verbose=verbose)

 start_time = time.time()
 nbrs.fit(Xtrain)
 end_time = time.time()
 print("Fitting time: %f" % (end_time-start_time))

 start_time = time.time()
 dists, inds = nbrs.kneighbors(Xtest)
 end_time = time.time()
 print("Testing time: %f" % (end_time-start_time))

Note that either tree_depth or leaf_size is used to determine the final tree depth of the involved trees. Next, a bigger data set is downloaded automatically:

Xtrain, Ytrain, Xtest = generate.get_data_set(NUM_TRAIN=2000000, NUM_TEST=10000000)
print "-------------------------------- DATA --------------------------------"
print "Number of training patterns:\t", Xtrain.shape[0]
print "Number of test patterns:\t", Xtest.shape[0]
print "Dimensionality of patterns:\t", Xtrain.shape[1]
print "--"

print("\n\nRunning the GPU version ...")
run_algorithm(algorithm="buffer_kd_tree", tree_depth=9)

print("\n\nRunning the CPU version ...")
run_algorithm(algorithm="kd_tree", leaf_size=32)

The output should like this:

Nearest Neighbors
=================

This example demonstrates the use of both tree-based
implementations on a large-scale data set.

-------------------------------- DATA --------------------------------
Number of training patterns: 2000000
Number of test patterns: 10000000
Dimensionality of patterns: 10
--

Finally, both implementations are used to compute the neighbors for the loaded data:

print("\n\nRunning the GPU version ...")
run_algorithm(algorithm="buffer_kd_tree", tree_depth=9)

print("\n\nRunning the CPU version ...")
run_algorithm(algorithm="kd_tree", leaf_size=32)

On a Ubuntu 14.04 system with an Intel(R) Core(TM) i7-4790K running at 4.00GHz (4 cores, 8 hardware threads), 32GB RAM, two Geforce Titan Z GPUs (with two devices each), CUDA 6.5 and Nvidia driver version 340.76, the output is:

Running the GPU version ...
Fitting time: 1.394939
Testing time: 11.148126

Running the CPU version ...
Fitting time: 0.681938
Testing time: 314.787735

Performance

The performance might depend on the particular OpenCL version Nvidia driver. For instance, we observed similar speed-ups (per device) with a weeker Gefore GTX 770 given CUDA 5.5 and Nvidia driver version 319.23. Also, both implementations are based on the standard rule for splitting nodes during the construction (cyclic, median based). Other splitting rules might be beneficial and are generally data set dependent.

 Copyright 2014 - 2015, Fabian Gieseke.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	bufferkdtree 1.0 documentation

Reference

All nearest neighbor implementations can be invoked via the main ‘NearestNeigbhors’ class.

 Copyright 2014 - 2015, Fabian Gieseke.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	bufferkdtree 1.0 documentation

License

The source code is published under the GNU General Public License (GPLv2) [http://www.gnu.org/licenses/old-licenses/gpl-2.0.html].

 Copyright 2014 - 2015, Fabian Gieseke.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	bufferkdtree 1.0 documentation

Changes

Release 1.0 - (under development)

	First major release

	Python wrappers for three implementations (‘brute’, ‘kd_tree’, ‘buffer_kd_tree’)

	Several small performance improvements for both the ‘kd_tree’ and the ‘buffer_kd_tree’ implementation

	Large-scale construction possible for ‘buffer_kd_tree’, i.e., in case the training patterns on the OpenCL device, then the patterns are processed in chunks (interleaved copy/compute)

	Multi-OpenCL-Device support for accelerating the query phase (query patterns are processed in chunks)

 Copyright 2014 - 2015, Fabian Gieseke.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	bufferkdtree 1.0 documentation

Citations

If you wish to cite a paper that describes the techniques and the implementation for buffer k-d trees, please make use of the following work:

Fabian Gieseke, Justin Heinermann, Cosmin Oancea, and Christian Igel. Buffer k-d Trees: Processing Massive Nearest Neighbor Queries on GPUs. In Proceedings of the 31st International Conference on Machine Learning (ICML) 32(1), 2014, 172-180. [pdf [http://jmlr.org/proceedings/papers/v32/gieseke14.pdf]]

 Copyright 2014 - 2015, Fabian Gieseke.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	bufferkdtree 1.0 documentation

Index

 Copyright 2014 - 2015, Fabian Gieseke.
 Created using Sphinx 1.3.1.

 _static/comment-bright.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/minus.png

_static/comment.png

_static/file.png

_static/images/bufferkdtree.png
input reinsert

v

top tree

L4
buffers E coe

vV v Vv v v vV v v

(PROCESSALLBUFFERS]

TN N

_images/bufferkdtree.png
input reinsert

v

top tree

L4
buffers E coe

vV v Vv v v vV v v

(PROCESSALLBUFFERS]

TN N

_static/down.png

