

Buffalo

Buffalo makes Pygame development blazing fast.

Getting Started

	Installing Buffalo

	Testing Buffalo

	Examples
	main.py

	menu.py

	License and Redistribution

	Original Authors

FAQs

	How Do I?
	How do I make a button?

	How do I make a button that does something?

	How do I center things?

	How do I position objects relative to their size? (or how do I know how big an object is before I make it?)

	How do I change the default value of keyword arguments?

	What is a Scene? (and how to make Pong)
	main.py (The boilerplate)

	menu.py (our first Scene)

	The constructor

	The on_escape method

	The update method and the blit method

	play.py (our second scene)

	The constructor

	The on_escape method

	The update method

	The blit method

	slider.py

	square.py

Installing Buffalo

To install Buffalo, simply download a copy of the source via ssh

git clone git@github.com:fschr/buffalo.git

or via https

git clone https://github.com/fschr/buffalo

Navigate to cloned repository and install it (Buffalo is compatible with any version of Python greater than or equal to 2.5)

python setup.py install

Of course, Buffalo requires Pygame.

Testing Buffalo

To test Buffalo, run the following command

python -m buffalo.examples.main

A fullscreen Pygame program should appear with an horizontally-centered exit button and a label aligned with the lower left corner.

Examples

To begin rapid Pygame development, use the example files as a basic template:

main.py

Import necessary modules

import pygame

from buffalo import utils

from buffalo.examples.menu import Menu

Create the main loop

def main():

 while not utils.end:
 utils.scene.logic()
 utils.scene.update()
 utils.scene.render()
 utils.delta = utils.clock.tick(utils.FRAMES_PER_SECOND)

Initialize everything

if __name__ == "__main__":

 if not utils.init(
 caption='Buffalo Project',
):
 print('buffalo.utils failed to initialize')
 pygame.quit()
 exit()

 utils.set_scene(Menu())

Call the main loop and destruct Pygame upon completion

main()

pygame.quit()

menu.py

This file represents the main menu.

First, import necessary modules

import pygame

from buffalo import utils
from buffalo.scene import Scene
from buffalo.label import Label
from buffalo.button import Button
from buffalo.input import Input
from buffalo.option import Option

Write some initialization code

class Menu(Scene):

 def __init__(self):
 Scene.__init__(self)

Add some Labels, Inputs, Options, and Buttons.

self.labels.add(
 Label(
 (5, 5),
 "Hello, World!",
)
)
self.inputs.add(
 Input(
 (50, 50),
 "I'm an Input. Edit me, please.",
)
)
self.options.add(
 Option(
 (100, 100),
 ("Option 1", "Option 2"),
)
)
self.buttons.add(
 Button(
 (200, 200),
 ("As a Button, I find this offensive."),
)
)

Define what happens when the escape key is pressed

def on_escape(self):
 exit()

Define what needs to be updated independent of framrate. If Pong were made with Buffalo, the ball’s position would be updated here. This way, the program’s speed is not dependent on framerate.

def update(self):
 pass

Finally, draw all non-Buffalo objects (Labels, Buttons, Options, and Inputs are drawn automatically).

def blit(self):
 pass

License and Redistribution

This project licensed under the GNU GENERAL PUBLIC LICENSE version 2. Everyone is free to use, modify, or redistribute this code, as long as the names of the original authors are noted.

Original Authors

Thomas Fischer

Benjamin Congdon

How Do I?

This page contains solutions and templates to common how do I _____? questions. It’s probably a good idea to read this if you haven’t used Buffalo before.

How do I make a button?

Making a button is pretty easy. Inside the constructor of an object that extends Scene, make a button and add it to self.buttons. For example,

class SomeScene(Scene):
 def __init__(self):
 Scene.__init__(self)
 hello_button = Button(utils.SCREEN_M, "Hello")
 self.buttons.add(exit_button)

will create a button in the middle of the screen (hence, passing utils.SCREEN_M as the pos argument) with text “Hello”.

How do I make a button that does something?

Making a button do something is pretty easy, too. Just pass a function as the func keyword argument to a Button constructor. For example,

exit_button = Button(utils.SCREEN_M, "Exit", func=sys.exit)

will create a button that calls sys.exit() when it is clicked. Be sure to pass a function and not the return value of a function as the func keyword argument. For example, the following code will cause your program to crash when the button is clicked.

exit_button = Button(utils.SCREEN_M, "Exit", func=sys.exit())

Since sys.exit() returns None, the value None will be assigned to this button’s func. When the button is clicked, it will attempt to call None, but will fail, since None is not a function.

How do I center things?

Most objects in buffalo can be centered with the x_centered and y_centered keyword arguments. For example,

self.labels.add(
 Label(
 utils.SCREEN_M,
 "This text is perfectly centered.",
 x_centered=True,
 y_centered=True,
)

will create a label who’s center position (x, y) will be equal to the 2-tuple passed as the pos argument. In this case, the label’s center position is set to utils.SCREEN_M, making it perfectly centered on the screen. It should be noted that in the above examples, since x_centered and y_centered default to False, all of the buttons are not perfectly centered on the screen. Instead, their top-left corners are perfectly centered with the screen.

How do I position objects relative to their size? (or how do I know how big an object is before I make it?)

Commonly, programmers want to make buttons and labels in the bottom left and bottom right of the screen. Take a moment to try this in Buffalo. You’ll soon realize that to make a label or button flesh with the bottom of the screen, you must first know the height of the button. To rememdy this, two keyword arguments are part of most Buffalo objects.

Suppose you want to create an exit button in the bottom-left corner of the screen. Here’s how to do that:

self.buttons.add(
 Button(
 (5, utils.SCREEN_H - 5),
 "Exit",
 invert_y_pos=True,
)
)

The keyword argument invert_y_pos positions the button so the y value of the pos argument passed to the button’s constructor actually refers to the position of the bottom, instead of the top of the button.

Normally, the pos argument sets the position of the Buffalo object’s top-left corner. Setting invert_y_pos to True causes the position of the object to be calculated such that the argument passed as pos refers to the position of the bottom-left corner of the object, rather than the position of the top-left corner.

For more clarity, check out this code:

>> button = Button((5, 5), "blah blah")
>> button.pos
(5, 5)
>> button = Button((5, 5), "blah blah", invert_x_pos=True)
>> button.pos
(-37, 5)

When invert_x_pos is True, the position of the button is automatically calculated such that the position of the top-right (instead of top-left) corner of the button is (5, 5).

How do I change the default value of keyword arguments?

Suppose you want to initalize twenty labels, but you want all of them to be red instead of white. Instead of having to pass (255, 0, 0, 255) as the keyword argutment color for every Label, you can simply change the default color. Doing this is easy:

Just before the labels are initialized
Label.DEFAULT_COLOR = (255, 0, 0, 255)

Almost every attribute of every Buffalo object has a default value that can be modified.

What is a Scene? (and how to make Pong)

In Buffalo, it is necessary to work with Scene. A Scene can be thought of as a state of your program. To help explain how to use Scene and what a Scene is, exactly, we will make Pong.

main.py (The boilerplate)

First, we need to define the entry point of our program. Here’s the boilerplate code that you should always write when using Buffalo:

import pygame

from buffalo import utils

def main():

 while not utils.end:
 utils.scene.logic()
 utils.scene.update()
 utils.scene.render()
 utils.delta = utils.clock.tick(utils.FRAMES_PER_SECOND)

if __name__ == "__main__":

 if not utils.init(
 caption="Pong Tutorial",
):
 print("buffalo.utils failed to initialize")
 pygame.quit()
 exit()

 from menu import Menu

 utils.set_scene(Menu())

 main()

 pygame.quit()

One of the only two things that should ever change in main.py is the value you pass as the caption keyword argument in utils.init. The second thing that should (rather, may) change in main.py is your imports. Notice where the line from menu import Menu is located. This is a nice thing about Python that allows users to easily workaround the classic A-imports-B-but-B-imports-A situation.

menu.py (our first Scene)

Now we need to make a main menu. Create a file called menu.py. In this file, we’ll do one thing: create a class called Menu that extends Scene.

Since the source code is rather short, I’ll just paste it all right here. We can talk about it afterwards.

import sys
import pygame

from buffalo import utils
from buffalo.scene import Scene
from buffalo.label import Label
from buffalo.button import Button
from buffalo.input import Input
from buffalo.option import Option

from play import Play

class Menu(Scene):

 def __init__(self):
 Scene.__init__(self)

 self.BACKGROUND_COLOR = (0, 0, 0, 255)
 Button.DEFAULT_BG_COLOR = (100, 0, 0, 255)

 self.labels.add(
 Label(
 utils.SCREEN_M,
 "PONG",
 x_centered=True,
 y_centered=True,
 font="default48",
)
)

 def go_to_play():
 utils.set_scene(Play())

 self.buttons.add(
 Button(
 (utils.SCREEN_W // 2, utils.SCREEN_H // 2 + 100),
 ("Play"),
 x_centered=True,
 y_centered=True,
 func=go_to_play,
)
)
 self.buttons.add(
 Button(
 (utils.SCREEN_W // 2, utils.SCREEN_H // 2 + 160),
 ("Exit"),
 x_centered=True,
 y_centered=True,
 func=sys.exit,
)
)

 def on_escape(self):
 exit()

 def update(self):
 pass

 def blit(self):
 pass

The first thing we do is import standard library modules, pygame, and all of the stuff we’ll need from Buffalo. Then, our class begins. All Scene objects must contain four methods:

	The constructor (def __init__(self):)

	The on_escape method

	The update method

	The blit method

The constructor

The constructor is where everything is initialized. First, the background color of this scene is set to black, and the default color of buttons is set to dark red. Next, we add a label that says “PONG” in the center of the screen. Finally, Two buttons are added: one that says “Play” and one that says “Exit”.

The play button might seem a little bit complicated. It’s positioned just below the center of the screen, so as not to over lap the “PONG” label, and its func (go_to_play) is defined just before the button is initialized.

The exit button is fairly straightforward if you understand how the play button works. When it is pressed, sys.exit() is called, exiting the program.

The on_escape method

The contents of on_escape cause the program to exit when the ESCAPE key is pressed.

The update method and the blit method

We don’t need to update or blit anything other than Buffalo objects, so update and blit are empty.

play.py (our second scene)

Here’s the source code for our second scene. Hopefully, this Scene will help soldifiy the concept of a Scene.

import pygame

from buffalo import utils
from buffalo.scene import Scene

from slider import Slider
from square import Square

class Play(Scene):

 def __init__(self):
 Scene.__init__(self)

 self.BACKGROUND_COLOR = (0, 0, 0, 255)

 self.slider1 = Slider(
 (50, utils.SCREEN_H // 2 - Slider.HEIGHT),
 (pygame.K_w, pygame.K_s),
)
 self.slider2 = Slider(
 (utils.SCREEN_W - Slider.WIDTH - 50, utils.SCREEN_H // 2 - Slider.HEIGHT),
 (pygame.K_UP, pygame.K_DOWN),
)
 self.square = Square(
 (utils.SCREEN_W // 2 - Square.WIDTH // 2, utils.SCREEN_H // 2 - Square.HEIGHT // 2),
)

 def go_to_menu(self):
 from menu import Menu
 utils.set_scene(Menu())

 def on_escape(self):
 self.go_to_menu()

 def update(self):
 keys = pygame.key.get_pressed()
 self.slider1.update(keys)
 self.slider2.update(keys)
 self.square.update((self.slider1.fPos, self.slider2.fPos))

 def blit(self):
 self.slider1.blit(utils.screen)
 self.slider2.blit(utils.screen)
 self.square.blit(utils.screen)

Again, we have four important methods in this class (Play) that extends Scene:

The constructor

I don’t think the constructor needs much explaining; things are initialized.

The on_escape method

This doesn’t need much explaining either. When the ESCAPE key is pressed, on_escape is called. When on_escape is called, go_to_menu is called, which does exactly that.

The update method

The update method is called a certain number of times each second, independent of any computer’s FPS. As such, this is the method in which the logic of every non-Buffalo object needs to be. For example, the positions of both sliders and the square are updated here. Each slider’s position is a function of the keys pressed at the time update is called. The position of the square is a function of the sliders’ positions.

The blit method

This is the method where everything that is not a Buffalo object is drawn. I.e., the sliders and squares are drawn in this method.

You can find the rest of the (undocumented) source code below.

slider.py

import pygame

from buffalo import utils

class Slider(object):

 WIDTH, HEIGHT = 50, 250
 COLOR = (255, 255, 255, 255)
 SPEED = 10.0

 def __init__(self, pos, keybindings):
 self.pos = pos
 self.up, self.down = keybindings

 x, y = self.pos
 self.fPos = float(x), float(y)

 self.yv = 0.0
 self.surface = utils.empty_surface((Slider.WIDTH, Slider.HEIGHT))
 self.surface.fill(Slider.COLOR)

 def update(self, keys):
 self.yv = 0.0
 if keys[self.up]:
 self.yv += -Slider.SPEED
 if keys[self.down]:
 self.yv += Slider.SPEED
 if not keys[self.down] and not keys[self.up]:
 self.yv = 0.0
 x, y = self.fPos
 y = y + self.yv if y + self.yv + Slider.HEIGHT <= utils.SCREEN_H and y + self.yv >= 0 else y
 self.fPos = x, y
 self.pos = int(x), int(y)

 def blit(self, dest):
 dest.blit(self.surface, self.pos)

square.py

from random import random

import pygame

from buffalo import utils

from slider import Slider

class Square(object):

 WIDTH, HEIGHT = 40, 40
 COLOR = (255, 255, 255, 255)

 def __init__(self, pos):
 self.pos = pos
 x, y = self.pos
 self.fPos = float(x), float(y)

 rxv, ryv = random(), random()
 minimum, mult = 3.0, 8.0
 while abs(rxv) < minimum:
 rxv = (-mult / 2) + mult * random()
 while abs(ryv) < minimum:
 ryv = (-mult / 2) + mult * random()

 self.xv, self.yv = rxv, ryv
 self.surface = utils.empty_surface((Square.WIDTH, Square.HEIGHT))
 self.surface.fill(Square.COLOR)

 def update(self, sliderPositions):
 x, y = self.fPos
 for sliderPosition in sliderPositions:
 sx, sy = sliderPosition
 if abs(x - (sx + Slider.WIDTH)) <= 5.0 or abs(sx - (x + Square.WIDTH)) <= 5.0:
 if y <= sy + Slider.HEIGHT and y + Square.HEIGHT >= sy:
 ydiff = ((y + Square.HEIGHT / 2) - (sy + Slider.HEIGHT / 2))
 ydmax = ydiff / (Slider.HEIGHT / 2)
 boost = 0.005 * ydiff / ydmax
 self.xv = -(self.xv + boost) if self.xv > 0.0 else -(self.xv - boost)
 self.yv = self.yv + boost if self.yv > 0.0 else self.yv - boost
 break
 if y <= 0.0 or y + Square.HEIGHT >= utils.SCREEN_H:
 self.yv = -self.yv
 x += self.xv
 y += self.yv
 self.fPos = x, y
 self.pos = int(x), int(y)

 def blit(self, dest):
 dest.blit(self.surface, self.pos)

Index

Buffalo

Buffalo makes Pygame development blazingly fast. It comes with a scene manager and an array of slim GUI objects (like buttons, text inputs, and more).

Check out our Read the Docs [http://buffalo.readthedocs.org/en/latest/] for examples, documentation, and an installation guide.

License and Redistribution

This project licensed under the GNU GENERAL PUBLIC LICENSE version 2. Everyone is free to use, modify, or redistribute this code, as long as the names of the original authors are noted.

Original Authors

Thomas Fischer

Benjamin Congdon

 nav.xhtml

 Table of Contents

 		Buffalo

 		Installing Buffalo

 		Testing Buffalo

 		Examples

 		main.py

 		menu.py

 		License and Redistribution

 		Original Authors

 		How Do I?

 		How do I make a button?

 		How do I make a button that does something?

 		How do I center things?

 		How do I position objects relative to their size? (or how do I know how big an object is before I make it?)

 		How do I change the default value of keyword arguments?

 		What is a Scene? (and how to make Pong)

 		main.py (The boilerplate)

 		menu.py (our first Scene)

 		The constructor

 		The on_escape method

 		The update method and the blit method

 		play.py (our second scene)

 		The constructor

 		The on_escape method

 		The update method

 		The blit method

 		slider.py

 		square.py

_static/file.png

_static/minus.png

_static/comment.png

_static/down-pressed.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

_static/up.png

_static/up-pressed.png

_static/comment-close.png

_static/comment-bright.png

