Bronky Documentation

Release 2018.8.1

Mohammad Islam

Aug 09, 2018

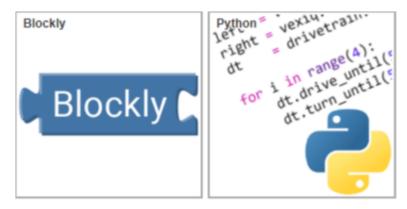
Setup

1	Creating a Project	3
2	Installing plugins	5
3	[OPTIONAL] Firmware & drivers	7
4	Pair Joystick and Cortex	9
5	Download Code to Cortex	11
6	RobotMesh API	13
7	Port Errors	15
8	Diagnostics Information	17
9	General Robot Troubleshooting Flowchart	21
10	VEXnet Troubleshooting Flowchart	23
11	Motor Troubleshooting Flowchart	27
12	Still Having Trouble?	29
13	Bronky/main.py	31
14	Bronky/vex.py	33
15	Indices and tables	35
Py	thon Module Index	37

This is Documentation for the Bronky bot by the south doyle robotics team

- Our team home page : https://soknorobo.com
- Bronky GitHub : https://github.com/Atikul10152002/Bronky

Creating a Project


- First Navigate to RobotMesh Studio
- Click on Create a New Project button

Create a New Project

• From the pop up list of target click on VEX EDR and press select button

• Now for Language selection you can choose either *Blockly* or *Python* [Recommended] and click select

• Now Name your program something that suits your Personality and click Create

Hooray!!!

You have a VEX EDR project you can mess with

Installing plugins

To install the plugins follow the guide at bottom of your screen or you can follow along with the guide

• Click on the "Please install it..." link on your project IDE.

Robot Mesh needs a browser plugin to access your serial ports. Please install it...

A screen will popup listing components to install

- On the popup screen click on the first link to "install the Robot Mesh Connect extension for your browser [Tested browser: Chrome] <- click for extension
- · Click on Add extension to add it to your browser
- Now click on the second link to Download the Robot Mesh Connect installer

2. Download the Robot Mesh Connect installer (Windows) and run it to install required components.

Links for Robot Mesh Connect installer: Windows | Mac OSX | Ubuntu 12.04 32-bit | Ubuntu 12.04 64-bit | Ubuntu 14.04 32-bit | Ubuntu 14.04 64-bit | Ubuntu 16.04 32-bit | Ubuntu 16.04 64-bit

- · Double click on the downloaded file to run and install the required components
- Refresh your browser tab

3. After installing the plugin: Refresh this page or restart your browser and come back to this page.

You may need to update the cortex firmware and install the drivers

Follow the next OPTIONAL steps if this is your first install

chapter $\mathbf{3}$

[OPTIONAL] Firmware & drivers

All drivers and firmwares are available here

- Only for Windows:
 - VEXnet Serial USB Driver
 - VEXnet Firmware Upgrade Utility
 - VEXnet Key 2.0 Firmware Upgrade Utility

Pair Joystick and Cortex

The Joystick must first be paired to the Cortex Microcontroller before they will work using the VEXnet Keys. Pairing requires a USB A-A Cable and a VEX 7.2V Battery. This process must be completed each time you use a Joystick or Cortex with a new mate. A Joystick can only communicate with a Cortex that it has been paired with. During the Pairing Process, the ID from the Cortex is transferred to the Joystick; thus mating the two units together.

- Start with the Cortex and Joystick turned OFF.
- Connect the Cortex to the Joystick using a USB A-A Cable.
- Connect the 7.2V Robot Battery to the Cortex.
- Power up only the Cortex.
- A successful tether is indicated by a Solid Green VEXnet LED on both the Joystick and the Cortex
- The Solid Green VEXnet LED must remain ON on both units at the same time for a minimum of 5 seconds.
- Disregard the other LEDs as you are only interested in the VEXnet LED.
- Pairing may take up to one minute to complete.
- Once the units have finished pairing, turn OFF the Cortex.
- Disconnect the USB A-A Cable from both units.
- Disconnect the 7.2V Robot Battery from the Cortex.
- Connect the USB KEY and trun on both the Cortex and Joystick to pair them wirelessly.

Download Code to Cortex

- Click the dropdown arrow beside the run button in your RobotMeshStudio IDE
- Select the option "Download: build program and download only"
- Now click the Download button situated where the run button used to be

RobotMesh API

To program the VEX EDR (Cortex) controller:

• Configure the peripherals connected to the controller in the "config" region. Create device objects in the vex module, passing the port number if necessary.

```
import sys
import vex
#region config
green_led = vex.DigitalOutput(1) # LED on Digital #1
switch = vex.DigitalInput(2) # Switch on Digital #2
motor = vex.Motor(1) # Motor on Motor #1
#endregion
```

• Write Python code invoking methods on peripheral objects or the main module.

```
green_led.on() # Turn the LED on
if switch.is_on(): # Check whether the switch is on
print "Switch is on!"
motor.run(50) # Run the motor at 50% power
sys.sleep(1) # Sleep for 1 sec
```

• For details, see the full docs for the vex module

Port Errors

For all port errors

• Unplug and re-plug the USB cable

CHAPTER $\mathbf{8}$

Diagnostics Information

Refer to the following chart for Joystick and Cortex LED patterns and meanings.

Joyetick [5]	Robot	VEXnet	Game
1000 C		Measure (yellow)	Initialize - Looking for PC or Tether Mate
		Bip (yellow)	Startup - Looking for USB Key
		Fast (yelow)	Linking - Searching for VEXnet Mate
		Past (green)	Linked
		Slow (green / yollow)	Linked - Data quality reduced
		Slow (green / red	Linked - Poor Data quality reduced
		Solid (green)	Telhered to Male or PC
		These West strates block	Fault Lost Link - Searching for VEXnet Mate
		Slow (green)	Downloading User Code [1]

Note 1: Does not apply to ROBOTC User Code Downloads

Juyattek [5]	Robot [1]	VEXnut	Game
	1000		Main Battery = Dead (+5.5v) or CORTEX OF [2]
	(yeak)		Main Battery = Low (+6.5v) [2]
	(green)		Main Battery - Good
	Gold	-	All Good: Both Joystoks connected
	Solid + 1 Dink	-	Al Good Tx1 Joyalith connected
	F361		Autonomous only mode
	Paul (web) (2)		Fault Low Backup Battery (DV-BV)
a second the second second	Dem (1900 -		Fault: User Microprocessor issue

Note 1: Robot LED only work when Linked

Note 2: Lowest CORTEX ballery color talched at Joystick and CORTEX.

Note 3: No Backup Battery only Indicated If competition cable is connected.

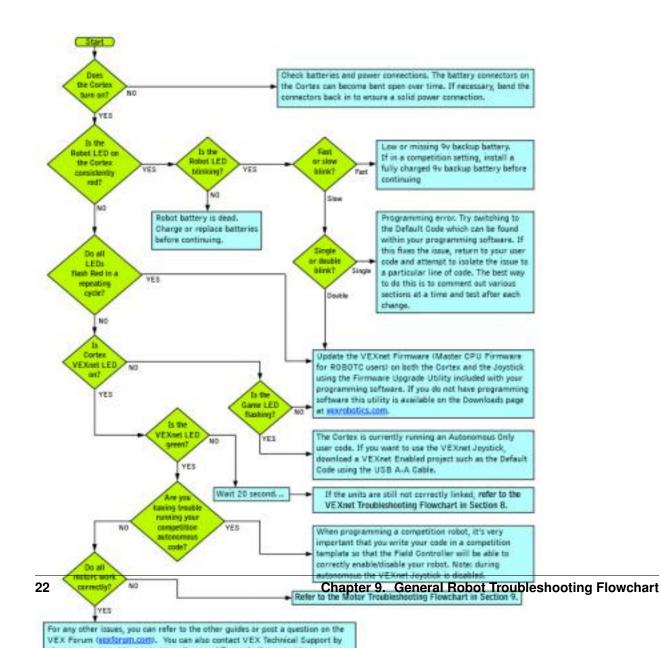
Joyaltck [5]	Robot	VERnet	Game		
			Off	No Competition connection	
			Sold (green)	Driver [4]	
			Past (green)	Autonomous	
			Fast (yellow)	Disabled	

Note 4 : Game LED Driver indicator is only used when the competition cable is connected.

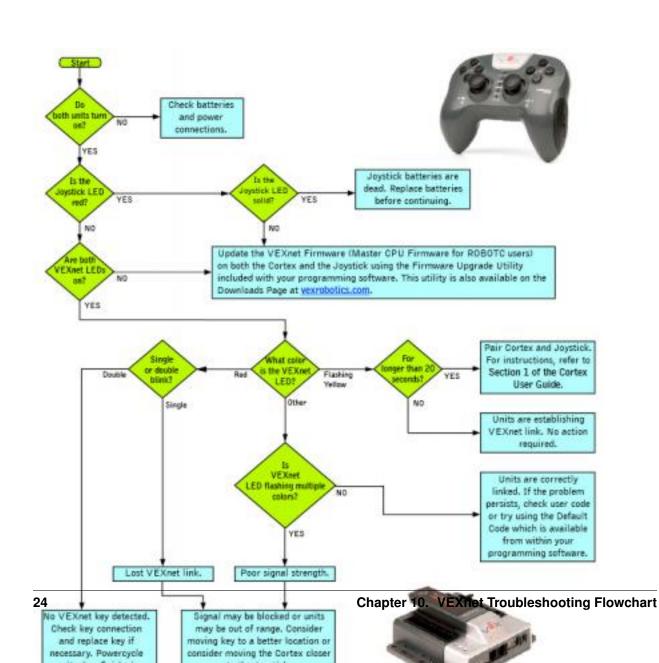
Joystick [5]	Robot	VEXnet	Game		
, best		16		Joystok Battery - Dead (+5.5v)	
(yellow)	-			Joystick Battery + Low (+6.5v)	
(green)				Joystick Battery - Good	
Fast				Two Joysticks in use	
Sold	mail		12	One Joystick in use	

Note 5 : Joystok LED only an Joystok.

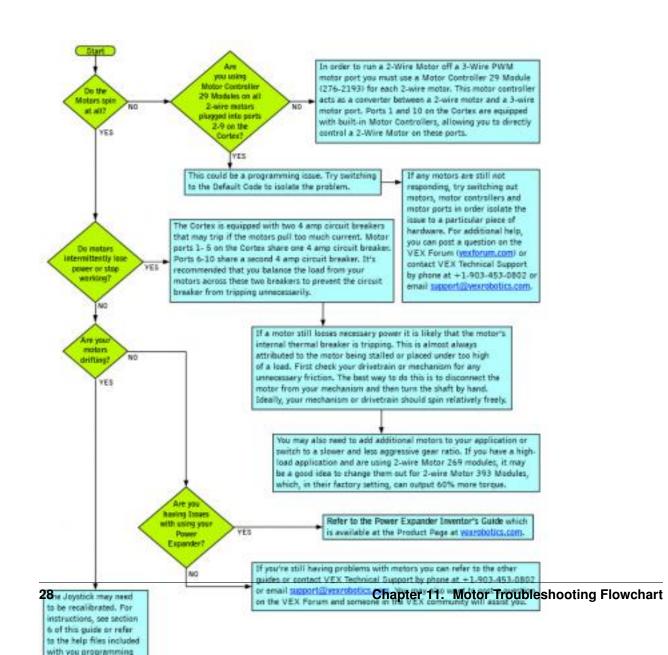
Update Utility Tool Indicators


Joystick [5]	Robot	VEXnet	Game	
		Solid (green)		Teiher to PC
	Blow (green)		Flicketing (green)	Boolicad Mode - Ready to update thmware
	Side (green)	City of yours	Processing (green)	Downloading Master Code

Other Indicators


holiabex [5]	Robot	VEXnet	Game		
100	(100)	1980	100	Flash on all 3 Indicates a Reset	
		CAME IT WITH COLUMN STREET.		NO VEXnet Key delected	-
	State (test) spans bare		Sec	invald ID in the CORTEX	
Glow (reg) Double birt		1		invalid ID in the Joystick	

General Robot Troubleshooting Flowchart



VEXnet Troubleshooting Flowchart

If the issue is still present after following this guide, update both the Cortex and Joystick with the most recent version of the VEXnet Firmware (Master CPU Firmware for ROBOTC users). If this does not resolve the problem, try using a different set of VEXnet keys. If you need further assistance you can post a question on the VEX Forum (https: //vexforum.com) or contact VEX Technical Support by phone at +1-903-453-0802 or email support@vexrobotics.com.

Motor Troubleshooting Flowchart

Still Having Trouble?

If you're still having trouble, Refer to VEXnet User's Guide for further help

Bronky/main.py

main code

main.BASE_DRIVE()

Controls the base motors – Arcade drive Calculates the power for the left and right drive

and runs the four base motors

main.CLAW_DRIVE()

Controls the claw motor

The fuctions acts as a togggle

When the claw is closed it applies continious power to the motor

main.WRIST_DRIVE()

Controls the wrist motors Only when the buttons are pressed, the Motors receive power.

main.autonomous()

This is the autonomous period before the Teleop statsself. Still in test phase –

main.driver()

This is the Teleop mode where the driver has the control over the robot. The fucntion runs the claw, base and wrist in different threads

Bronky/vex.py

```
Used by autodoc_mock_imports.
class vex.Motor(self, Port#)
      Takes the port number of the Motor as Parameter.
      off()
           Turn off.
      run (self, power)
           Run at given power.
           Parameter: -100.0...100.0 (percent power).
      run_raw (self, power_raw)
           Run at given raw power.
           Parameters: -127.0...127.0 (raw power).
class vex.Joystick
      Config VexNet joystick
      is_partner (self ) \rightarrow bool
           True if this is a partner joystick, false if it is main joystick.
      set_deadband (self, value)
           Set the deadband value for all axes (threshold below which axes would read out zero)
           Parameters: value deadband threshold
      axis1 (self) \rightarrow Returns number [-100...100]
           Position on axis 1: -100.0 to 100.0.
      axis2 (self) \rightarrow Returns number [-100...100]
           Position on axis 2: -100.0 to 100.0.
      axis3 (self) \rightarrow Returns number [-100...100]
           Position on axis 3: -100.0 to 100.0.
```

```
axis4 (self) \rightarrow Returns number [-100...100]
            Position on axis 4: -100.0 to 100.0.
      accelX (self) \rightarrow bool
            Accelerometer axis X: -100.0 to 100.0.
      accelY (self) \rightarrow bool
            Accelerometer axis Y: -100.0 to 100.0.
      b5up (self) \rightarrow bool
            Button 5 pressed UP: True/False.
      b5down (self) \rightarrow bool
            Button 5 pressed DOWN: True/False.
      b6up (self) \rightarrow bool
            Button 6 pressed UP: True/False.
      b6down (self) \rightarrow bool
            Button 6 pressed DOWN: True/False.
      b7up (self) \rightarrow bool
            Button 7 pressed UP: True/False.
      b7down (self) \rightarrow bool
            Button 7 pressed DOWN: True/False.
      b7left (self) \rightarrow bool
            Button 7 pressed LEFT: True/False.
      b7right(self) \rightarrow bool
            Button 7 pressed RIGHT: True/False.
      b8up (self) \rightarrow bool
            Button 8 pressed UP: True/False.
      b8down (self) \rightarrow bool
            Button 8 pressed DOWN: True/False.
      b8left (self) \rightarrow bool
            Button 8 pressed LEFT: True/False.
      b8right (self) \rightarrow bool
            Button 8 pressed RIGHT: True/False.
vex.battery_voltage() \rightarrow number
      Get main battery voltage, in volts.
vex.battery_backup_voltage() \rightarrow number
      Get backup battery voltage, in volts.
vex.debug_output (debug_output_type)
      Set debug output type.
      debug_output_type: DebugOutput.AUTO|SERIAL|LCD|DISABLED
vex.run_driver(function)
      Run the given function in a separate thread in DRIVER ONLY competition mode.
vex.run_autonomous (function)
```

Run the given function in a separate thread in AUTONOMOUS ONLY competition mode.

vex.competition_switch() -> enum value (number)
Returns state of the competition switch, as one of the constants in CompetitionSwitchState.

Indices and tables

- genindex
- modindex

Python Module Index

m

main,31

v

vex, 33

Index

A

accelX() (vex.Joystick method), 34 accelY() (vex.Joystick method), 34 autonomous() (in module main), 31 axis1() (vex.Joystick method), 33 axis2() (vex.Joystick method), 33 axis4() (vex.Joystick method), 33

В

b5down() (vex.Joystick method), 34 b5up() (vex.Joystick method), 34 b6down() (vex.Joystick method), 34 b6up() (vex.Joystick method), 34 b7down() (vex.Joystick method), 34 b7left() (vex.Joystick method), 34 b7right() (vex.Joystick method), 34 b8down() (vex.Joystick method), 34 b8left() (vex.Joystick method), 34 b8up() (

С

CLAW_DRIVE() (in module main), 31 competition_switch() (in module vex), 34

D

debug_output() (in module vex), 34 driver() (in module main), 31

I

is_partner() (vex.Joystick method), 33

J

Joystick (class in vex), 33

Μ

main (module), 31 Motor (class in vex), 33

0

off() (vex.Motor method), 33

R

run() (vex.Motor method), 33
run_autonomous() (in module vex), 34
run_driver() (in module vex), 34
run_raw() (vex.Motor method), 33

S

set_deadband() (vex.Joystick method), 33

V

vex (module), 33

W

WRIST_DRIVE() (in module main), 31