

 Navigation

 	
 index

 	
 next |

 	BrightstarDB 1.3 documentation

BrightstarDB Documentation

	 Getting Started
	Architect

	Data

	Developer

	 Concepts
	Architecture

	Data Model

	Storage Features

	Client APIs

	 Why BrightstarDB?
	An Associative Model

	Schema-less Data Store

	A Semantic Data Model

	Automatic Data caching

	Full Historical Capabilities

	Developer Friendly Toolset

	Native .NET Semantic Web Database

	RDF is great for powering Object Oriented solutions

	 Supported RDF Syntaxes

	 Developing With BrightstarDB

	 BrightstarDB Configuration Options
	Configuring an Embedded Database

	Configuring the BrightstarDB Windows Service

	Running the BrightstarDB Service as an Application

	BrightstarDB Configuration Options

	Example Configuration

	Caching
	Example Configurations

	Logging

	 SPARQL Endpoint
	Configuration

	Usage

	Customization

	 Polaris Management Tool
	Running Polaris

	Polaris Interface Overview

	Configuring and Managing Connections

	Managing Stores

	Running SPARQL Queries

	Saving SPARQL Queries

	Importing Data

	Exporting Data

	Running Update Transactions

	Running SPARQL Update Transactions

	Managing Store History

	Defining and Using Prefixes

	 SdShare Server
	SdShare Server Download

	 Whats New
	BrightstarDB 1.3 Release

	BrightstarDB 1.2 Release

	BrightstarDB 1.1 Release

	BrightstarDB 1.0 Release

	BrightstarDB 1.0 Release Candidate

	BrightstarDB 1.0 Public Beta Refresh

	BrightstarDB Public Beta

	BrightstarDB Developer Preview Refresh

	 Known Issues
	SPARQL Queries

	Entity Framework Tooling

	OData Functions

	Avoid HTML Named Entities in String Values

	 Getting Support

Indices and Tables

	Search Page

 Copyright 2013, Kal Ahmed, Graham Moore.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	BrightstarDB 1.3 documentation

Getting Started

Welcome to BrightstarDB, the NoSQL semantic web database for .NET. The
documentation contains lots of examples and detailed information on all
aspects of BrightstarDB. The following sections provide some gentle hints of
where to look depending on what you are planning to do with BrightstarDB.

It’s probably a good idea, no matter what you plan to use BrightstarDB for,
to read the Concepts section and the ‘Why
BrightstarDB?’ section to understand the architecture
and ideas behind the technology.

If you just want to see the simplest example of creating a BrightstarDB
Entity Data Model then jump straight to the Developer Quick Start.

We hope you enjoy developing with BrightstarDB. Please consider joining our
community of developers and users and share any questions or comments you may
have.

Architect

If you are an architect considering using BrightstarDB then the
Concepts section is important. Following that skimming over
the different APIs will give you an overview of the different tools that
developers can use to work with BrightstarDB. The other sections that provide
a good overview of BrightstarDB’s capabilities and features are the API
Documentation, Admin API and
Polaris Management Tool sections.

Data

If you are coming to BrightstarDB from an RDF perspective and want to work
with RDF Data and SPARQL then the best place to start is the Polaris
Management Tool. This shows how to create a new store
without code, load in RDF data, and execute queries and update transactions.
Other sections of interest will probably be SPARQL Endpoint and if you are writing code the RDF Client API.

Developer

BrightstarDB provides several layers of API that are aimed at specific
development activities or scenarios. There are three main API levels, Entity
Framework, Data Objects and RDF.

BrightstarDB Entity Framework & LINQ

The BrightstarDB Entity Framework is a powerful and simple to use technology
to quickly build a typed .NET domain model that can persist object state into
a BrightstarDB instance.To use this you create a set of .NET interfaces that
define the data model. The BrightstarDB tooling takes these definitions and
creates concrete implementing classes. These classes can then be used in an
application. The flexibility of the underlying storage makes evolving the
model very easy and straight forward. BrightstarDB is optimized for
associative data which provides a high performance when working with objects.
As this is a fully typed domain model it also provides LINQ and OData support.

The main sections to see for developing .NET typed domain models are the
Developer Quick Start section, the
section on the BrightstarDB Entity Framework, and
the Entity Framework Samples.

Data Objects & Dynamic

When working with data that may change shape at runtime, or when a fixed
typed domain model is not required, the Data Object and Dynamic APIs provide
a generic object layer on top of the RDF data. This layer provides
abstractions that allow the developer to treat collections of triples as the
state of a generic object. The sections Data Object Layer and Dynamic API provide
documentation and examples of this APIs.

RDF & SPARQL

To work programmatically with RDF, SPARQL, and SPARQL see update the
RDF Client API and SPARQL Endpoint sections.

Mobile Applications

If you are building apps for Windows Phone devices, there is
some additional information on this in the Developing for Windows Phone section.

 Copyright 2013, Kal Ahmed, Graham Moore.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	BrightstarDB 1.3 documentation

Concepts

Architecture

BrightstarDB is a native .NET NoSQL semantic web database. It can be used as
an embedded database or run as a service. When run as a service clients can
connect using HTTP, TCP/IP or Named Pipes. While the core data model is RDF
triples and the query language SPARQL BrightstarDB provides a code-first
Entity Framework. The Entity Framework tools take .NET interfaces and
generate concrete classes that persist their data in BrightstarDB. As well as
the Entity Framework there is a low level RDF API for
working with the underlying data. BrightstarDB (in the Enterprise and Server
versions) also provides a management studio called Polaris for running queries and transactions against a BrightstarDB
service.

The following diagram provides an overview of the BrightstarDB architecture.

[image: _images/Architecture.png]

Data Model

BrightstarDB supports the W3C RDF [http://www.w3.org/TR/2004/REC-rdf-primer-20040210/] and SPARQL 1.1 Query [http://www.w3.org/TR/sparql11-query/] and Update [http://www.w3.org/TR/sparql11-update/].
standards, the data model stored is triples with a graph context (often this
is called a quad store). The triple data structure is very powerful,
especially for creating associative data models, merging data from many
sources, and for giving unique persistent and global identity to ‘things’.

A triple is defined as having three parts: A subject URI, a predicate
URI, and an object value. The subject URI is the identifier for some thing. A
person, company, product etc. The predicate is an identifier for a property
type and the object can either be the identifier for another thing, or a
literal value. Literal values can also have data types.

An example of a literal property assigned to some thing is:

<http://www.brightstardb.com/companies/brightstardb> <http://www.w3.org/2000/01/rdf-schema#label> "BrightstarDB" .

and a connection between two entities is described:

<http://www.brightstardb.com/companies/brightstardb> <http://www.brightstardb.com/types/hasproduct> <http://www.brightstardb.com/products/brightstardb> .

Storage Features

BrightstarDB is a write once, read many store (WORM). Modifications to data
are appended to the end of the storage file, no data is ever overwritten. It
employs a single writer, concurrent reader model. This supports concurrent
read with no possibility of reading dirty data. Reads are not blocked while
writes occur. The WORM store approach supports rollback or querying of the
complete database at any transaction point. The store can be periodically
coalesced to manage file size growth at the expense of removing previous
transaction points.

Client APIs

There are three different code layers with which to access BrightstarDB. The
first of these is the RDF Client API. This is a low
level API that allows developers to insert and delete triples, and run SPARQL
queries. The second API layer is the Data Object Layer. This provides the ability to treat a collection of
triples with the same subject as a single unit and also provides support for
RDF list structures and optimistic locking. The highest API layer is the
BrightstarDB Entity Framework. BrightstarDB enables
data-binding from items at the Data Object Layer to full .NET objects
described by a programmer-defined interface. As well as storing object state
BrightstarDB also allows developers to use LINQ expressions to query the data
they have created.

 Copyright 2013, Kal Ahmed, Graham Moore.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	BrightstarDB 1.3 documentation

Why BrightstarDB?

BrightstarDB is a unique and powerful data storage technology for the .NET
platform. It combines flexibility, scalability and performance while allowing
applications to be created using tools developers are familiar with.

An Associative Model

All databases adopt some fundamental world view about how data is stored.
Relational databases use tables, and document stores use documents.
BrightstarDB has adopted a very flexible, associative data model based on the
W3C RDF data model.

BrightstarDB uses the powerful and simple RDF graph data model to represent
all the different kinds of models that are to be stored. The model is based
on a concept of a triple. Each triple is the assignment of a property to an
identified resource. This simple structure can be used to describe and
represent data of any shape. This flexibility means that evolving systems, or
creating systems that merge data together is very simple.

Few existing NoSQL databases offer a data model that understands, and
automatically manages relationships between data entities. Most NoSQL
databases require the application developer to take care of updating ‘join’
documents, or adding redundant data into ‘document’ representations, or
storing extra data in a key value store. This makes many NoSQL databases not
particularly good at dealing with many real word data models, such as social
networks, or any graph like data structure.

Schema-less Data Store

The associative model used in BrightstarDB means data can be inserted into a
BrightstarDB database without the need to define a traditional database
schema. This further enhances flexibility and supports solution evolution
which is a critical feature of modern software solutions.

While the schema-less data store enables data of any shape to be imported and
linked together, application developers often need to work with a specific
shape of data. BrightstarDB is unique in allowing application developers to
map multiple .NET typed domain models over any BrightstarDB data store.

A Semantic Data Model

While many NoSQL databases are schema-less, few are inherently able to
automatically merge together information about the same logical entity.
BrightstarDB implements the W3C RDF data model. This is a directed graph data
model that supports the merging of data from different sources without
requiring any application intervention. All entities are identified by a URI.
This means that all properties assigned to that identifier can be seen to
constitute a partial representation of that thing.

This unique property makes BrightstarDB ideal for building enterprise
information integration solutions where there is a fundamental need to bring
together data about a single entity from many different systems.

Automatic Data caching

Query results, and entity representations are cached to further improve
performance for query intensive applications. Normally, data caching is done
by applications but BrightstarDB provides this feature as a core capability.

Full Historical Capabilities

BrightstarDB uses a form of data storage that preserves full historical data
at every transaction point. This allows applications to perform queries at
any previous point in time, it ensures fully audit-able data and allows data
stores to be returned to any previous state or snapshots taken at any point
in time. This approach does increase the amount of disk space used, but
BrightstarDB provides a feature to consolidate down to just the currently
required data.

Developer Friendly Toolset

Most developers on .NET are accustomed to using objects and LINQ for building
their applications. Database technologies that require a fundamental move
away from this impose a large burden upon the developer. BrightstarDB
provides a complete typed domain model interface to work with the data in the
store. It adopts a unique position where the object model is an operational
view onto the data. This means that many different object models can overlay
the same semantic data model.

Native .NET Semantic Web Database

If you are working on .NET and want the power and flexibility of a semantic
web data store. Then BrightstarDB is a great place to start. With support for
the SPARQL query language and also the NTriples data format building semantic
web based applications is simple and fun with BrightstarDB.

RDF is great for powering Object Oriented solutions

Objects are composed of properties, each property is either a literal value
or a reference to another object. This creates a graph or related things with
properties. ORM systems requires that tables are organised is specific ways
to facilitate storing object state. Changes to either the object model or the
relational schema often require a reciprocal change. RDF on the other hand
can ideally be used to store both literal properties and object relationships
and if the object model needs to change then new property value can be added
as there is no fixed schema. Similalry, if additional RDF data is added to
the store the object model can either ignore or make use of this data. In
this way the object model is an operational, read/write, view of the RDF data.

 Copyright 2013, Kal Ahmed, Graham Moore.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	BrightstarDB 1.3 documentation

Supported RDF Syntaxes

As BrightstarDB is built on the W3C RDF data model, we also provide the ability
to import and export your data as RDF.

BrightstarDB supports a number of different RDF syntaxes for file-based import.
This list of supported file formats applies both to import jobs created using
the BrightstarDB API (see RDF Client API for details),
and to file import using Polaris (see Polaris Management Tool for details). To determine the parser to be used, BrightstarDB
checks the file extension, so it is important to use the correct file extension
for the syntax you are importing. The supported syntaxes and their file
extensions are listed in the table below as shown, BrightstarDB also supports
reading from files that are compressed with the GZip compression method.

	RDF Syntax
	File Extension (uncompressed)
	File Extension (GZip compressed)

	NTriples
	.nt
	.nt.gz

	NQuads
	.nq
	.nq.gz

	RDF/XML
	.rdf
	.rdf.gz

	Turtle
	.ttl
	.ttl.gz

	RDF/JSON
	.rj or .json
	.rj.gz or .json.gz

 Copyright 2013, Kal Ahmed, Graham Moore.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	BrightstarDB 1.3 documentation

Developing With BrightstarDB

This section takes you through all of the basic principles of working with the BrightstarDB
APIs.

BrightstarDB provides three different levels of API:

	At the highest level the Entity Framework allows you to define
your application data model in code. You can then use LINQ to query the data and simple
operations on your application data entities to create, update and delete objects.

	The Data Object Layer provides a simple abstract API for
dealing with RDF resources, you can retrieve a resource and all its properties with a single
call. This layer provides no direct query functionality, but it can be combined with the
SPARQL query functionality provided by the RDF Client API. This layer also has a separate
abstraction for use with Dynamic Objects.

	The RDF Client API provides the lowest level interface to
BrightstarDB allowing you to add or remove RDF triples and to execute SPARQL queries.

If you are new to BrightstarDB and to RDF, we recommend you start with the Entity Framework
and take a walk through our Developer Quick Start. If
you are already comfortable with RDF and SPARQL you may wish to start with the lower level APIs.

If you are the kind of person that just likes to dive straight into sample code, please take a
moment to read about Running the BrightstarDB Samples first.

 Copyright 2013, Kal Ahmed, Graham Moore.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	BrightstarDB 1.3 documentation

BrightstarDB Configuration Options

BrightstarDB can be used as an embedded database or accessed as a WCF service. In either case there are certain global configuration options that can be set in the application’s config file.

Configuring an Embedded Database

There is no additional configuration required to create and use an embedded database. See the section on Getting Started or the Entity Framework for examples of creating and using an embedded database. However if you wish to override some of the default settings you can do so by adding an <appSettings> section to the applications’s .config file (if one does not already exist) and then adding one or more of the configuration options details below.

Configuring the BrightstarDB Windows Service

The installer will create a windows service called “BrightstarDB”. This exposes a WCF service endpoint that can be used to access the database. The configuration for this service can be found in BrightstarService.exe.config in the [INSTALLDIR]Service folder.

Running the BrightstarDB Service as an Application

Running the service as an application rather than a Windows service can be done by running the BrightstarService.exe located in the [INSTALLDIR]Service folder. The configuration from the .config file is used by the service when it starts up. However, some properties can also be overridden using command line parameters passed to the service. Note that either no parameters are passed or all four parameters are required.

BrightstarService.exe [<base location> <http port> <tcp port> <pipe name>]

- <base location> specifies the path to the directory where the BrightstarDB stores are located. This overrides the BrightstarDB.StoreLocation configuration option.

- <http port> specifies the port that the HTTP interface to the BrightstarDB service will use to listen for connections. This overrides the BrightstarDB.HttpPort configuration option.

- <tcp port> specifies the port that the TCP interface to the BrightstarDB service will use to listen for connections. This overrides the BrightstarDB.TcpPort configuration option.

- <pipe name> specifies the name of the named pipe that the named pipe interface to the BrightstarDB service will use to listen for connections. This overrides the BrightstarDB.NetNamedPipeName configuration option.

BrightstarDB Configuration Options

The following list describes all the available configuration options for BrightstarDB.

	BrightstarDB.StoreLocation - specifies the path to the directory where stores are persisted. For Windows Phone 7.1 this path is fixed as the directory “brightstar” in the isolated storage for the application, so this setting has no effect.

	BrightstarDB.LogLevel - configures the level of detail that is logged by the BrightstarDB application. The valid options are ERROR, INFO, WARN, DEBUG, and ALL. For more information about logging and configuring where logs are written please refer to the section Logging. For Windows Phone 7.1 this setting is fixed as ERROR and cannot be overridden.

	BrightstarDB.TxnFlushTripleCount - specifies a batch size for importing large sets of triples. At the end of each batch BrightstarDB will perform housekeeping tasks to try to ensure a lower memory footprint. The default value is 10,000 on .NET 4.0. For applications that run on larger, more capable hardware (with available memory of 4GB or more) the value can usually be increased to 50,000 or even 100,000 - but it is worth testing the configured value before committing to it in deployment. For Windows Phone 7.1 this value is fixed as 1,000 and cannot be overridden.

	BrightstarDB.ConnectionString - specifies the default connection string to use when creating a BrightstarDB client. This setting can be used by applications that want to enable the user to choose the store that they connect to as a runtime configuration option.

	BrightstarDB.PageCacheSize - specifies the amount of memory in MB to be used by the BrightstarDB store page cache. This setting applies only to applications that open a BrightstarDB store as the cache is used to cache pages of data from the data.bs and resources.bs data files. The default value is 2048 on .NET 4.0 and 4 on Windows Phone 7.1. Note that this memory is not all allocated on startup so actual memory usage by the application may initially be lower than this value.

	BrightstarDB.EnableQueryCache - specifies whether or not the application should cache the results of SPARQL queries. Allowed values are “true” or “false” and the setting defaults to “true”. Query caching is only available on .NET 4.0 so this setting has no effect on Windows Phone 7.1

	BrightstarDB.QueryCacheDirectory - specifies the folder location where cached results are stored.

	BrightstarDB.QueryCacheMemory - specifies the amount of memory in MB to be used by the SPARQL query cache. The default value is 256.

	BrightstarDB.QueryCacheDisk - specifies the amount of disk space (in MB) to be used by the SPARQL query cache. The default value is 2048. The disk space used will be in a subdirectory under the location specified by the BrightstarDB.StoreLocation configuration property.

	BrightstarDB.HttpPort - specifies the port number used by the BrightstarDB WCF service to listen for incoming HTTP requests. The default value is 8090.

	BrightstarDB.TcpPort - specifies the port number used by the BrightstarDB WCF service to listen for incoming TCP requests. The default value is 8095.

	BrightstarDB.NetNamedPipeName - specifies the name of the pipe used by the BrighstarDB WCF service to listen for incoming named pipe requests. The default value is “brightstar”.

	BrightstarDB.PersistenceType - specifies the default type of persistence used for the main BrighstarDB index files. Allowed values are “appendonly” or “rewrite” (values are case-insensitive). For more information about the store persistence types please refer to the section Store Persistence Types.

Example Configuration

The sample below shows all the BrightstarDB options with usage comments.

<?xml version="1.0"?>
<configuration>
 <appSettings>
 <!-- The folder where stores are persisted, this is set by the installer but can be changed later. -->
 <add key="BrightstarDB.StoreLocation" value="C:\Program Files (x86)\BrightstarDB\Data" />

 <!-- The logging level for the server. -->
 <add key="BrightstarDB.LogLevel" value="ALL" />

 <!-- Indicates the number of triples in a transaction to process before doing a partial commit.
 Larger numbers require more machine memory but result in faster transaction processing. -->
 <add key="BrightstarDB.TxnFlushTripleCount" value="100000" />

 <!-- For client applications this property value is used to connect to a store. See the section below for more detail on connection strings -->
 <add key="BrightstarDB.ConnectionString" value="Type=embedded;StoresDirectory=c:\brightstar;StoreName=test" />

 <!-- Specifies the maximum amount of memory (in MB) to use for page caching. -->
 <add key="BrightstarDB.PageCacheSize" value="2048" />

 <!-- Enable (true) or disable (false) the caching of SPARQL query results -->
 <add key-"BrightstarDB.EnableQueryCache" value="true" />

 <!-- The amount of memory to use for the SPARQL query cache -->
 <add key="BrightstarDB.QueryCacheMemory" value="512" />

 <!-- The amount of disk space (in MB) to use for the SPARQL query cache. This only applies to server / embedded applications -->
 <add key="BrightstarDB.QueryCacheDisk" value="2048" />

 <!-- Set the http port that the brightstar service runs on. default value is 8090. -->
 <add key="BrightstarDB.HttpPort" value="8090" />

 <!-- Set the tcp port that the brightstar service runs on. default value is 8095. -->
 <add key="BrightstarDB.TcpPort" value="8095" />

 <!-- Set the tcp port that the brightstar service runs on. default value is brightstar. -->
 <add key="BrightstarDB.NetNamedPipeName" value="brightstar" />

 <!-- The default store index persistence type -->
 <add key="BrightstarDB.PersistenceType" value="AppendOnly" />
 </appSettings>
</configuration>

Caching

BrightstarDB provides facilities for caching the results of SPARQL queries both in memory and to disk. Caching complex SPARQL queries or queries that potentially return large numbers of results can provide a significant performance improvement. Caching is controlled through a combination of settings in the application configuration file (the web.config for web apps, or the .exe.config for other executables).

AppSetting Key Default Value Description
BrightstarDB.EnableQueryCache false Boolean value (“true” or “false”) that specifies if the system should cache the result of SPARQL queries.
BrightstarDB.QueryCacheMemory 256 The size in MB of the in-memory query cache.
BrightstarDB.QueryCacheDirectory <undefined> The path to the directory to be used for the disk cache. If left undefined, then the behaviour depends on whether the BrightstarDB.StoreLocation setting is provided. If it is, then a disk cache will be created in the _bscache subdirectory of the StoreLocation, otherwise disk caching will be disabled.
BrightstarDB.QueryCacheDiskSpace 2048 The size in MB of the disk cache.

Example Configurations

To cache in the _bscache subdirectory of a fixed store location (a good choice for server applications), it is necessary only to enable caching and ensure that the store location is specified in the configuration file:

<configuration>
 <appSettings>
 <add key="BrightstarDB.EnableQueryCache" value="true" />
 <!-- disk cache will be written to the directory d:\brightstar_bscache -->
 <add key="BrightstarDB.StoreLocation" value="d:\brightstar\" />
 </appSettings>
</configuration>

To cache in some other location (e.g. a fast disk dedicated to caching):

<configuration>
 <appSettings>
 <add key="BrightstarDB.EnableQueryCache" value="true" />
 <add key="BrightstarDB.StoreLocation" value="d:\brightstar\" />

 <!-- Cache on a different disk from the B* stores to maximize disk throughput.
 Disk cache will be written to the directory e:\bscache -->
 <add key="BrightstarDB.QueryCacheDirectory" value="e:\bscache\"/>

 <!-- Allow disk cache to grow to up to 200GB in size -->
 <add key="BrightstarDB.QueryCacheDiskSpace" value="204800" />
 </appSettings>
</configuration>

This sample has no disk cache because there is no valid location for the cache to be created:

<configuration>
 <appSettings>
 <add key="BrightstarDB.EnableQueryCache" value="true" />
 <!-- 1GB in-memory cache -->
 <add key="BrightstarDB.QueryCacheMemory" value=1024"/>

 <!-- This property is not used because there is no
 BrightstarDB.QueryCacheDirectory or
 BrightstarDB.StoreLocation setting defined. -->
 <add key="BrightstarDB.QueryCacheDiskSpace" value="204800" />

 </appSettings>
</configuration>

Logging

BrightstarDB uses the .NET diagnostics infrastructure for logging. This provides a good deal of runtime flexibility over what messages are logged and how/where they are logged. All logging performed by BrightstarDB is written to a TraceSource [http://msdn.microsoft.com/en-us/library/system.diagnostics.tracesource.aspx] named “BrightstarDB”.

The default configuration for this trace source depends on whether or not the BrightstarDB.StoreLocation configuration setting is provided in the application configuration file. If this setting is provided then the BrightstarDB trace source will be automatically configured to write to a log.txt file contained in the directory specified as the store location. By default the trace source is set to log Information level messages and above.

Other logging options can be configured by entries in the <system.diagnostics> section of the application configuration file.

To log all messages (including debug messages), you can modify the TraceSource’s switchLevel as follows:

<system.diagnostics>
 <sources>
 <source name="BrightstarDB" switchValue="Verbose"/>
 </sources>
</system.diagnostics>

Equally you can use other switchValue settings to reduce the amount of logging performed by BrightstarDB.

 Copyright 2013, Kal Ahmed, Graham Moore.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	BrightstarDB 1.3 documentation

SPARQL Endpoint

BrightstarDB comes with a separate IIS service that exposes a SPARQL endpoint. The SPARQL endpoint supports update and query as specified in the SPARQL 1.1 W3C recommendation.

Configuration

The SPARQL endpoint is provided as a ready to run IIS service. To configure the service following these steps:

	Open IIS Management studio and either create a new Website or a new Application under the default site.

	Set the ‘Physical Path’ to point to [INSTALLDIR]SparqlService

	Ensure that the Application Pool for the service has the required access rights to the [INSTALLDIR]SparqlService folder.

	In the [INSTALLDIR]SparqlServiceweb.config file set the BrightstarDB.ConnectionString to point at a running BrightstarDB service. By default it connects to an HTTP service running on the same machine.

Usage

The SPARQL service accepts both query and update operations. The following URI patterns are supported.

Query

GET /{storename}/sparql?query={query expression}

Will execute the query provided as the query parameter value against the store indicated.

POST /{storename}/sparql

Will look for the query as an unencoded value in the request body.

Update

POST /{storename}/update

Will execute the update provided as the value in the request body.

Customization

The source code for the SPARQL endpoint is provided in the sample folder. It is provided to allow for customization and configuration of additional security options.

 Copyright 2013, Kal Ahmed, Graham Moore.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	BrightstarDB 1.3 documentation

Polaris Management Tool

Polaris is a Windows desktop application that allows a user to manage various
aspects of local and remote BrightstarDB servers. Using Polaris you can:

	Create and delete stores on the server

	Import N-Triples or N-Quads files into a store

	Run a SPARQL query against a store

	Run an update transaction against a store

Polaris is optionally installed as part of the BrightstarDB installer, if it
is not initially installed, it can be installed later by re-running the
installer and selecting the appropriate option.

Running Polaris

Polaris can be run by clicking on its short-cut, which can be found inside
the folder BrightstarDB on the Start Menu. Alternatively it can be run from
the command-line. To run from the command-line, run the
BrightstarDB.Polaris.exe executable. This executable can be found in
[INSTALLDIR]ToolsPolaris. The executable accepts the following command line
parameters:

	Parameter
	Description

	/log:{log file name} [/verbose]
	With the /log: option specified on the
command-line, Polaris will write logging
information to the file named after
the colon (:) character. The optional
/verbose flag will ensure that more
verbose logging information is also written
to this file.

Polaris Interface Overview

The Polaris user interface consists of three areas as shown in the screenshot
below.

[image: _images/polaris01.png]
The areas of the interface are:

	The Menu Area contains the Polaris menu items and, depending on the
current tab selected in the Tab Area may also display a toolbar.

	The Server List contains a list of all the servers that Polaris has been
configured with connection strings for. If Polaris is able to establish a
connection to the server, the list of stores on that server can be viewed
or hidden by clicking on the toggle button to the left of the server name.

	The Tab Area contains tabs for running SPARQL queries or transaction
updates against a store.

Configuring and Managing Connections

To configure Polaris with a new connection, click on File > Connect... to
bring up the Connection Properties dialog as shown in the screenshot below.

[image: _images/polaris02.png]
The fields of this dialog should be filled out as follows:

	Connection Name: Enter a memorable name for this connection - this is
the name that will be displayed in the Polaris interface.

	Connection Type: Choose the protocol to use to connect to the server.
This may be one of:

	
	Embedded: Select this option to connect directly to the store data

	files. This is only recommended when the data files are accessible on a
local disk and should not be used to access data files that any other
process (such as a BrightstarDB server) could be attempting to access at
the same time.

	HTTP: Connect to the server using the HTTP protocol. This is the
recommended protocol to use to connect to a remote server.

	TCP: Connect to the server using the TCP protocol

	Named Pipes: Connect to the server over a named pipe.

	Stores Directory: This property is required only for the Embedded
connection type. Specify the full path to the directory that contains the
BrightstarDB server’s store folders.

	Server Name: This property is required for all connection types other
than Embedded. Specify the name of the machine that hosts the BrightstarDB
server.

	Port Number: This property is required for the HTTP and TCP
connection types. For HTTP, the default port number is 8090. For TCP, the
default is 8095.

	Server Path: This property is required for the HTTP and TCP
connection types. For both connection types, the default path is
‘brightstar’ (without the quotes).

	Pipe Name: This property is required only for the Named Pipes
connection type. Specify the named pipe used to connect to the BrightstarDB
server. The default pipe name is ‘brightstar’ (without the quotes).

When you select the HTTP, TCP or NamedPipe connection types from the
drop-down list, the dialog will automatically populate with the default
settings for making a connection to a local BrightstarDB server. You can
modify the server name and/or the other settings to make a connection to a
remote server or to a server with a non-default port setup.

When you click OK, Polaris will attempt to contact the server using the
information you have provided, if contact is established then a list of all
stores hosted on that server will be retrieved and displayed under the server
name in the Server List area. If contact cannot be established for some
reason, an error dialog will display the details of the problem encountered.

To remove a connection from the list, select the server name in the Server
List area and click on Server > Remove Server From List, or right-click on
the server name and select Remove Server From List from the popup menu. You
will be prompted to confirm this operation before the server is removed from
the list.

To edit an existing connection, select the server name in the Server List
area and click on Server > Edit Connection, or right-click on the server name
and select “Edit” from the popup menu. The Connection Properties dialog will
be displayed allowing you to edit the parameters used for the connection.

If for some reason a connection cannot be established to a server, the
message “Could not establish connection” will be displayed next to the server
name in the Server List. To attempt to reconnect to the server, select the
server from the list and click on Server > Refresh.

The connections you add to Polaris are stored in a configuration file under
your local AppData folder and they will be automatically saved when you
add/remove a connection.

Managing Stores

To add a new store to a server, select the server from the Server List area
and then click on Server > New Store.., or right-click on the server and
select New Store from the popup menu. In the dialog box that is displayed,
enter the name of the store. A default GUID-based name is generated for you,
but changing this to a more meaningful name will probably be useful for you
and other users of the server. The new store will be added to the end of the
list of stores for the server in the Server List area.

To delete a store from a server, select the store from the Server List area
and then click on Store > Delete, or right-click on the store and select
Delete. You will asked to confirm the operation before it is completed.

Removing a store from a server deletes the entire contents of the store from
the server. It is not possible to undo this operation once it is confirmed.

Running SPARQL Queries

Polaris allows users to write SPARQL queries and execute them against a
BrightstarDB store. To create a query, select the store you wish to run the
query against and then click on Store > New > SPARQL Query, or right click on
the store and select New > SPARQL Query from the popup menu. This will add a
new SPARQL Query tab to the Tab area. The interface is shown in the
screenshot below.

[image: _images/polaris03.png]
The toolbars added to the Menu area allow you to change the store that the
query will execute against by selecting the server and the store from the
drop-down lists. The query is executed either by pressing the F5 key or by
clicking on the [image: runquery] button
in the tool bar.

The tab itself is divided into a top area where you can write your SPARQL
query and a lower area which displays messages and results when a query is
executed. If part of the text in this area is selected when the query is run,
then only the selected text will be passed to BrightstarDB. A query that
results in SPARQL bindings (typically a SELECT query) will display results in
a tabular format in the Results Table tab. All queries will also display
their results in the Results XML tab.

Note

For more details about the SPARQL query language please refer to Introduction To SPARQL.

Saving SPARQL Queries

You can save SPARQL queries entered in Polaris to use in later sessions. To
save a query, select the tab that contains the query you want to save and
then click on the [image: save] button. By default your
queries will be saved to a folder named “SPARQL Queries” inside your “My
Documents” folder - if this folder does not already exist, you will be
prompted to allow Polaris to create it for you (if you choose not to allow
this, you can choose a different location to save queries to). Saved queries
are stored with a ”.sq” extension.

To load a saved query, open a new SPARQL Query tab or select an existing one
and then click on the [image: load] button. A file
dialog will appear allowing you to select the query to be loaded.

Importing Data

Polaris allows users to import RDF data from files into an existing
BrightstarDB store. Polaris supports two modes of data import: Remote and
Local. A Remote import specifies the name of a file that is located in a
specific directory on the target server and submits a job for that file to be
imported into the store. A Local import specifies the name of a file that is
accessible to Polaris, processes it locally and then creates a job to add the
data contained in that file to the target server. Remote import allows for
much more efficient loading of very large data sets but it requires that the
data file(s) should first be copied onto the server.

Note

For details about the RDF syntaxes that are supported by BrightstarDB and
Polaris, please refer to Supported RDF Syntaxes.

To run a Remote import:

	Ensure that the file to be imported is copied into the Import folder
located directly under the stores directory of the server. When connecting
to a server via HTTP, TCP or Named Pipes, the import directory is located
in the directory on the server where the stores are located (typically
[INSTALLDIR]Data). When connecting to an embedded store, the import
directory should be created in the directory specified for the embedded
store. If this directory does not exist it should be created. You should
also ensure that the user that the BrightstarDB service has sufficient
privileges to be able to read the files to be imported.

	From the Polaris interface, create a new import task by selecting the
store the data is to be imported into and then clicking Store > New >
Import Job, or by right-clicking on the store and selecting New > Import
Job from the popup menu.

	In the interface that is displayed, change the Import Method radio
button selection to Remote and enter the name of the file to be imported.
Do not specify the path to the file, just the file name - the server will
only look for this file in its Import directory.

	Click on the Start button to submit the job to the server.

	Once the job is submitted, the interface will track the job progress,
but you can at any time exit Polaris and the job will continue to run on
the server.

[image: _images/polaris04.png]
To run a Local import:

	From the Polaris interface, create a new import task by selecting the
store the data is to be imported into and clicking Store > New > Import Job.

	In the interface that is displayed, ensure the Import Method is set to
Local and enter the full path to the file to be imported - you can use the
.. button to launch a file browser to locate the file.

	Click on the Start button.

	Polaris will attempt to parse the contents of the file and create a new
job to submit the data found in the file to the server.

	Once the job is submitted, the interface will track the job progress,
but you can at any time exit Polaris and the job will continue to run on
the server.

Note

Local import is not recommended for large data files. If the file you try
to import exceeds 50MB in size a warning will be displayed - you may still
continue with the import, but you may experience better performance if you
copy the data file to the server’s import folder and use a Remote import
instead. This even applies to the case where the server connection type is
Embedded.

[image: _images/polaris05.png]

Exporting Data

You can export all of the RDF data contained in a BrightstarDB store using
Polaris. For performance and network considerations, data export is limited
to working as a remote job - the export request is submitted as a
long-running job and the data is written to a specific directory on the
target server.

To run an export:

	From the Polaris interface, create a new export task by selecting the
store that the data is to be exported from and then clicking Store > New >
Export Job, or by right-clicking on the store and selecting New > Export
Job from the popup menu.

	In the interface that is displayed, a default name for the export file
is generated based on the store name and the current date/time. You can
modify this file name if you wish.

	Click on the Start button to submit the job to the server.

	Once the job is submitted, the interface will track the job progress.
For connections other than a local embedded connection, you can exit
Polaris and the job will continue to run on the server.

	Once the job is completed, the exported data will be found in the Import
folder located directly under the stores directory of the server.

[image: _images/polaris08.png]

Running Update Transactions

An update transaction allows you to specify the triples to delete from and
add to a store. Deletions are always processed before additions, allowing you
to effectively replace or update property values by issuing a delete and an
add in the same transaction.

The triples to be deleted are specified using N-Triples syntax with one
extension. The special symbol <*> can be used in place of a URI or literal
value to specify a wildcard match so:

<http://example.org/people/alice> <http://xmlns.org/foaf/0.1/name> <*>

Would remove all FOAF name properties from the resource
http://example.org/people/alice equally, the following can be used to remove
all properties from the resource:

<http://example.org/people/alice> <*> <*>

The triples to be added are also specified using N-Triples syntax, but in
this case the wildcard symbol is not supported.

Note

For a quick introduction to the N-Triples syntax please refer to
Introduction To NTriples

To run an update transaction:

	From the Polaris interface, create a new update task by selecting the
store the update is to be executed against and clicking Store > New >
Transaction, or by right clicking on the store and selecting New >
Transaction from the popup menu.

	In the interface that is displayed, enter the triple patterns to delete
and the triples to add into the relevant boxes.

	To run the transaction click on the [image: execute] icon in the tool bar.

	A dialog box will display the outcome of the transaction.

[image: _images/polaris06.png]

Note

You can run the same transaction against a different store by changing the
selected server and store in the drop-down lists in the toolbar area.

Running SPARQL Update Transactions

The SPARQL Update support in BrightstarDB allows you to selectively update,
add or delete data in a BrightstarDB store in a transaction. BrightstarDB
supports the SPARQL 1.1 Update [http://www.w3.org/TR/sparql11-update/] language.

To run an update transaction:

	From the Polaris interface, create a new SPARQL Update task by selecting
the store the update is to be executed against and clicking Store > New >
SPARQL Update, or by right clicking on the store and selecting New > SPARQL
Update from the popup menu.

	In the interface that is displayed, enter the SPARQL Update request into
the upper text box.

	To run the transaction click on the [image: runquery] icon in the tool bar.

	The results of the operation will be displayed in the lower text area.

[image: _images/polaris10.png]

Note

You can run the same transaction against a different store by changing the
selected server and store in the drop-down lists in the toolbar area.

Managing Store History

Polaris provides the ability to view all the previous states of a
BrightstarDB store and to query the store as it existed at any previous point
in time. You can also “revert” the store to a previous state. These
operations can be performed using the Store History View. To access this
view, select the store in the Server List area on the left and click on Store
> New > History View, or right-click on the store and select New > History
View from the popup menu. This will add a new history view tab to the window
as shown in the screenshot below.

[image: _images/polaris07.png]
The tab content is divided into two panes. The left-hand pane shows a list of
the historical commit points for the store as the date/time when the store
update was committed. By default this panel lists the 20 most recent commits,
however you can use the fields at the top of the panel to restrict the date
range. The black arrow next to each date/time field allows you to pick a
date, and any of the fields in the picker can be altered by clicking on the
field and using the up and down arrows on the keyboard or the mouse wheel.
When retrieving commit points from the store, the server returns a maximum of
100 commit points in one go, if there are more than 100 commit points in the
date range, the “More...” button is enabled to allow you to retrieve the next
100 from the server. You can refresh the commit list by clicking on the ..
image:: Images/polaris_refreshbutton.png, this will clear the current
list of commit points and the current date filters and re-run the query to
retrieve the latest 20 commit points from the server.

The right-hand panel allows you to write a SPARQL query and execute it
against the store. With no commit point selected on the left, the query is
executed against the store in its current state. However, once you select a
commit point, the query is executed against that commit point. To run the
SPARQL query click on the [image: runquery] button in the tool bar.

If you wish to revert the store to a previous state, you can do this by
selecting the commit point you want to revert to and clicking on the [image: revert]
button in the toolbar. You will be prompted to confirm this action before
it is applied to the store. This action creates a new commit point that points
back to the store as it exited at the selected commit point - it does not
delete or remove the changes made since that commit point. When you revert the
store in this way, the list of commit points and the date filters are cleared
and the latest 20 commit points are retrieved from the server again.

Defining and Using Prefixes

As it can be cumbersome and slow to have to continually type in long URI
strings, Polaris provides functionality to allow you to map the namespace
URIs you most commonly use to shorter prefixes. These prefixes can be used
both in SPARQL queries and in transactions.

To manage the prefixes defined in Polaris click on File > Settings >
Prefixes. This displays the prefixes dialog, which will initially be empty.
You can add a new prefix by entering a prefix string and URI in the next
empty row. To delete a prefix, click on the row and press the Delete key. You
can also modify a prefix or URI by selecting the text and typing directly
into the text box.

[image: _images/polaris09.jpg]
Once a prefix is defined it will automatically be added to the start of any
new SPARQL query you create as PREFIX declarations, and can then be used in
the normal way that any PREFIX declaration in SPARQL can be used. Prefixes
can also be used in transactions so instead of typing a full URI you can type
the prefix followed by a colon and then the rest of the URI, the prefix and
the colon are replaced by the URI specified in the prefixes dialog. For
example if you map the prefix string “ex” to “http://contoso.com/example/”,
and dc to “http://purl.org/dc/elements/1.1/” then the following NTriple in a
transaction:

<http://contoso.com/example/1234> <http://purl.org/dc/elements/1.1/title> "This is an example" .

can be re-written more compactly as:

<ex:1234> <dc:title> "This is an example"

Note

Unlike SPARQL, the < > markers are still REQUIRED around
each prefix:restOfUri string.

 Copyright 2013, Kal Ahmed, Graham Moore.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	BrightstarDB 1.3 documentation

SdShare Server

The BrightstarDB SdShare Server is designed to be used to expose RDF data from existing data sources. The data produced can be easily consumed into a BrightstarDB instance or any SPARQL compliant data store. The server has a pluggable architecture to allow any data source to be exposed in accordance with the latest SDShare specification (SDShare) [http://sdshare.org], it comes with configurable components for ODBC enabled databases.

The SdShare Server provides two main features, firstly it exposes existing data sources as feeds of data that comply with the SdShare [http://sdshare.org] specification.Second, it runs a client service that can consume and process valid SdShare feeds. Both the producer and consumer services offer a pluggable framework to support different data sources and data destinations. In addition, a data source adaptor is provided for exposing data via any ODBC compliant database and a client component is also provided that can send updates from an SdShare feed to any SPARQL 1.1 compliant endpoint and BrightstarDB instance.

The following diagram shows the server architecture.

[image: _images/sdshare_server_architecture.png]

SdShare Server Download

The SdShare Server is is not part of the core BrightstarDB package and is made available only on request. To get access to the BrightstarDB SdShare Server please email BrightstarDB.

 Copyright 2013, Kal Ahmed, Graham Moore.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	BrightstarDB 1.3 documentation

Whats New

This section gives a brief outline of what is new / changed in each official release of BrightstarDB. Where there are breaking changes, that require either data migration or code changes in client code, these are marked with BREAKING. New features are marked with NEW and fixes for issues are marked with FIX

BrightstarDB 1.3 Release

	
	NEW: First official open source release.

	
	All documentation and examples updated to remove references to commercial licensing and license protection code.

	Build updated to remove dependencies on third-party commercial tools

	NEW: The ExecuteTransaction method now supports specifying a target graph.

	NEW: The ExecuteQuery Method now supports specifying the default graph of the SPARQL dataset.

	FIX: Disabled profiling code that was eating up significant amounts of memory during long running imports. Profiling can now be enabled globally by calling Logging.EnableProfiling(true);

BrightstarDB 1.2 Release

	NEW: Collection properties on entities now support compiling LINQ queries to SPARQL. This can be achieved by using the AsQueryable() method on the collection. e.g. myEntity.RelatedItems.AsQueryable()....// LINQ query follows

	NEW: Interface and property annotations are now copied from the entity interface to the entity class by the code generator. This applies only to annotations that are not in the BrightstarDB namespace. For interface annotations, only those annotations that are also applicable to classes can be copied through to the generated class. For more information please refer to the section Annotations in the Entity Framework API documentation.

	NEW: BrightstarDB now supports XML, JSON, CSV and TSV (tab-separated values) as SPARQL reults formats. You can specify the format you want using the optional SparqlResultsFormat parameter on the ExecuteQuery methods. The SPARQL service samples has been updated to select the appropriate results format depending on the requested content type.

	NEW: BrightstarDB generated entity classes now implement the System.ComponentModel.INotifyPropertyChanged [http://msdn.microsoft.com/en-us/library/system.componentmodel.inotifypropertychanged%28v=vs.100%29.aspx] interface and fire a notification event any time a property with a single value is modified. All collections exposed by the generated classes now implement the System.Collections.Specialized.INotifyCollectionChanged [http://msdn.microsoft.com/en-us/library/system.collections.specialized.inotifycollectionchanged%28v=vs.100%29.aspx] interface and fire a notification when an item is added to or removed from the collection or when the collection is reset. For more information please refer to the section INotifyPropertyChanged and INotifyCollectionChanged Support.

BrightstarDB 1.1 Release

	FIX: Entity Framework code generation now supports multiple levels of inheritance on interfaces.

	NEW: Polaris now supports editing the server connection details

	NEW: Installer now adds the BrightstarDB item templates for EntityContext and Entity to VS2012 Professional and above. VS2010 and VS2010 Express are also still supported. Please note that VS2012 Express editions are not supported at this time.

BrightstarDB 1.0 Release

	NEW: Added support for executing SPARQL Update commands to Polaris

	FIX: A few minor bug fixes

BrightstarDB 1.0 Release Candidate

This release introduces a BREAKING file format change. If you are upgrading from a previous version of BrightstarDB and you wish to retain the data in a store, you should export all data from that store before performing the upgrade and then after the upgrade delete and recreate the store and import the exported data.

	BREAKING: Store file format is significantly different from previous versions - please read the warning information above carefully BEFORE upgrading.

	NEW: Store now supports a file format that reduces index file growth rate

BrightstarDB 1.0 Public Beta Refresh

This release introduces some BREAKING API changes (but data store format is unaffected, so only your code needs to be modified). If you are upgrading from a previous release, please read the following carefully - in particular note the BREAKING changes that are introduced in this release.

	BREAKING: All API namespaces have now changed from NetworkedPlanet.Brightstar.* to BrightstarDB.*. Custom code will require modification and recompilation

	BREAKING: The only DLL now required for the .NET 4.0 SDK is BrightstarDB.dll.

	BREAKING: Entity sets exposed by the generated Entity Framework context class are now typed by the implementation class rather than the entity interface class. Code written on top of the Entity Framework will need to be refactored to use the interface rather than the concrete class or to cast the return values to the concrete class where necessary. Note, this reverses the change made in the Public Beta release.

	BREAKING: The default installation directory and by extension the default data store directory has changed from C:Program Files (x86)NetworkedPlanetBrightstar to C:Program Files (x86)BrightstarDB. If using the default data directory path, after upgrading you should manually copy the contents of C:Program Files(x86)NetworkedPlanetBrightstarData to C:Program Files (x86)BrightstarDBData.

	NEW: Added support for binding BrightstarDB data objects to .NET dynamic objects. For more information please refer to the section Dynamic API.

	NEW: Added an optional SPARQL endpoint implementation that runs in IIS allowing BrightstarDB to be exposed as a SPARQL 1.1 endpoint. For more information please refer to the SPARQL Endpoint section of the documentation.

	NEW: The BrightstarService service executable now supports specifying the base directory, HTTP and TCP ports and named pipe that the service listens on as command-line parameters

	NEW: The BrightstarDB API has been extended to add support for importing / exporting named graphs and for executing a transaction against a named graph.

	NEW: Added support for SPARQL 1.1

	NEW: Added support for SPARQL UPDATE

	NEW: SPARQL support now includes support for querying named graphs.

	NEW: EntityFramework now supports the use of enum property types (including Flags and Nullable enum types)

	NEW: EntityFramework now surfaces an event that is invoked immediately before changes are saved to the store. For more information please see the section SavingChanges Event.

	FIX: The XML Schema “date” datatype (http://www.w3.org/2001/XMLSchema#date) is now recognized and mapped to a System.DateTime value by EntityFramework.

	NEW: Added support for the LINQ .All() filter operator.

	FIX: The WCF service mode for the BrightstarDB service now supports concurrent requests.

	FIX: Several bug fixes for LINQ to SPARQL query generation

	NEW: BrightstarDB now supports import of a number of additional RDF syntaxes as documented in the section Supported RDF Syntaxes.

BrightstarDB Public Beta

	FIX: Several performance fixes and the introduction of configurable client and server-side caching have significantly improved the speed of SPARQL and LINQ queries. For information about configuring caching please refer to the section Caching.

	NEW: BrightstarDB Entity Framework now adds support for creating an OData provider. For more information please see the OData section of the Entity Framework API documentation.

	NEW: LINQ-to-SPARQL now has support for a number of additional String functions. For details please refer to the section LINQ Restrictions.

	NEW: Optimistic locking support has been added to the Data Object Layer and Entity Framework.

	BREAKING: Entity sets exposed by the generated Entity Framework context class are now typed by the entity interface rather than the generated implementation class. Code written on top of the Entity Framework will need to be refactored to use the interface rather than the concrete class or to cast the return values to the concrete class where necessary.

	NEW: Logging is now performed through the standard .NET tracing framework, removing the dependency on Log4Net. Please refer to the section Logging for more information.

	NEW: Polaris now supports saving SPARQL queries between sessions and configuring commonly used URI prefixes to make it quicker and easier to write SPARQL queries and transactions. These features are documented in the section Polaris Management Tool.

BrightstarDB Developer Preview Refresh

	BREAKING: A number of changes and improvements to data file format means that databases created with the initial Developer Preview cannot be used with the Developer Preview Refresh.

	NEW: Windows Phone 7.1 support. It is now possible to create applications that target Windows Phone OS 7.1 with BrightstarDB. Databases are portable between the desktop / server and the mobile version of BrightstarDB. For more information please refer to Developing for Windows Phone 7.

	NEW: The Data Object Layer is now publicly exposed and documented for developers to use as a mid-point between the low-level RDF Client API and the data-binding provided by the Entity Framework.

	BREAKING: Replaced the use of Log4Net with standard Microsoft tracing. This provides more easily configurable logging and tracing functionality.

	NEW: Polaris now provides the ability to view the previous states of a BrightstarDB store, run queries against them, and revert the database to a previous state if required.

	NEW: Polaris now provides keyboard shortcuts for menu items and a right-click context menu on the store list.

	FIX: The range of native datatypes supported by the EntityFramework has been greatly expanded.

	FIX: The scope of LINQ support by EntityFramework is now better documented,

	NEW: EntityFramework now supports String.StartsWith, String.EndsWith and Regex.IsMatch methods for string filtering in LINQ queries.

	NEW: BrightstarDB now provides support for conditional update. This functionality is used to provide optimistic locking support for the Data Object Layer and EntityFramework.

	NEW: NerdDinner sample now includes examples of a .NET MembershipProvider and RoleProvider implemented on BrightstarDB.

	NEW: EntityFramework now supports properties that are an ICollection<T> of native types such as string, int etc.

	BREAKING: The GetColumnValue extension method on XDocument now returns a typed object rather than a string whenever the bound variable’s datatype is a recognized XML Schema datatype.

	FIX: EntityFramework now supports inheritance on Entity interfaces.

	FIX: The service contract for the BrightstarDB WCF service now has a proper URI: http://www.networkedplanet.com/schemas/brightstar.

	BREAKING: ICommitPointInfo and ITransactionInfo interfaces have been significantly reworked to provide better history information for BrightstarDB stores.

	FIX: SPARQL results XML document generated by the Brightstar service now escapes all reserved XML characters in the binding values.

	FIX: Added an optimization for the SPARQL query generated by LINQ expressions that simply retrieve an entity by its identifier.

	NEW: Added more documentation and samples, especially for Windows Phone 7 applications and the Admin APIs.

 Copyright 2013, Kal Ahmed, Graham Moore.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	BrightstarDB 1.3 documentation

Known Issues

SPARQL Queries

When using the less-than (<) symbol in SPARQL queries, it is necessary to put spaces between the symbol and the rest of the query to avoid a parser error. For example the following query will fail with a parser error::

SELECT ?p ?s WHERE { ?p a <http://example.org/schema/person> . ?p <http://example.org/schema/salary> ?s . **FILTER (?s<50000)** }

but the same query written as shown below will be processed correctly.:

SELECT ?p ?s WHERE { ?p a <http://example.org/schema/person> . ?p <http://example.org/schema/salary> ?s . **FILTER (?s < 50000)** }

Entity Framework Tooling

‘_’ underscore characters are not allowed in the names of the namespace(s) containing the interfaces that are to be generated into entity classes.

Currently only the following versions of Visual Studio are provisioned with the Entity Framework item templates through the installer:

	Visual Studio C# Express 2010

	Visual Studio 2010 Professional and above

	Visual Studio 2012 Professional and above

To create an entity context class in other versions of Visual Studio, we recommend that you copy the .tt file from one of the Entity Framework samples into your own project. You may rename the file if you wish as long as you retain the .tt file extension.

OData Functions

The filter function ‘replace’ is not supported.

Avoid HTML Named Entities in String Values

Using HTML named entities in string values that are not also valid XML named entities will result in errors when parsing the SPARQL results if these string values are included in the results set. Examples of such entities are £ for a pound-symbol, © for a copyright symbol etc. It is best to avoid this situation by converting all HTML named entities to their numeric entity form before storing them in BrightstarDB (e.g. £ instead of £). A full list of HTML named entities and their numeric equivalents for HTML 4 can be found at http://www.w3.org/TR/WD-html40-970708/sgml/entities.html.

 Copyright 2013, Kal Ahmed, Graham Moore.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 previous |

 	BrightstarDB 1.3 documentation

Getting Support

If you need support while working with BrightstarDB there are two primary channels for asking for help.
All BrightstarDB users are invited to join our Google Group [https://groups.google.com/forum/#!forum/brightstardb-users]. On this group you can ask questions and see
the latest postings from the BrightstarDB team.

You can also optionally purchase a support contract from NetworkedPlanet Limited. Support contracts last for a
full year and provide you with email support from the BrightstarDB team, as well as priority bug-fixes
and product enhancements. For more information please email NetworkedPlanet Limited.

 Copyright 2013, Kal Ahmed, Graham Moore.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	BrightstarDB 1.3 documentation

Index

 Copyright 2013, Kal Ahmed, Graham Moore.
 Created using Sphinx 1.1.3.

 _images/Architecture.png
Polaris Management Studio
HTTP, TCP/IP, Named Pipe and Embedded Connection Interface Run queries and execute

transactions

_images/mvc12.png
Welcome FOZZIE\Kal! [Log Off]

BrightstarDB Ne|

Query SPARQL Editors Only Admin Only

Join A Dinner
To join the dinner Oxford Geek Burger on 14 November 2012, enter your email address below and dick RSVP.

Email Address
kal@brightstardb.com

Back To List

_static/minus.png

_images/odata_2_metadata.png
C ft | © localhost:49608/odata.svc/ IR

‘This XML file does not appear to have any style information associated with it. The document tree is shown below.

w<service xmlns:atom="http://waw.u3.org/2005/Aton” xmlns:app="http://wiw.w3.ora/2007/app"
smlns="http://wi.w3.0rg/2007/app" xmlibase="http://localnost:49608/0Data.sve/">
w<workspace>
<atonm:title>Default</atom:titles
w<collection href="Dinner">
<aton:title>Dinner</atom:title>
</collection>
v<collection href="RSVE">
<aton:title>RSVE</atom:titles
</collection>
</workspace>
</service>

_images/mvc0.png
el =

[NET Famenorké_~] St s [Deaut g [Search nstaled Templtes 2]
ASP.NET Web Application Visual C# Type: Visual G
A prjectforcetng an spplicationusing
SRR WG andies T
ASPNET MYC 2 Vi Applicaton Vil =
| cew
ooy ASPNET MYC Vi Applicaton Vil =
Repoting
| Silverlight ASP.NET MVC 4 Web Application Visual C#
Siveright for Windous Phone
Tet ASPNET Empty Web Appicaion Vi 8
we -
Workflow ASP.NET MVC 2 Empty Web Application Visual C#
HNA GomeStcio 40
Windows Installer XML ASP.NET Dynamic Data Entities Web Application Visual C#
OtherLanguages
Other rject Types o)
St ASPNET Dynamic ot Ling o SQL Web Appication Vi G
TetPojcts
ASPNET A Sever Contol Vil =
ASPNET AJAX Server Contrl Bt Vowce Ll
ASPNET Serer Contrl Vowlce
Neme SightstrDB Samplesedbinner
it DAPojecsandbon -
Soutionname: BightstarDB Semples NerdDinner s

[Add to source control

_images/odataconsumer_6_data.png
PowerPivot for Excel - Bookl

%I B Paste Append ﬁ (3, [From Data Feeds @ i Hlsotatoz < | Edrreee -
B Paste Replace E [FromText Format Text ~ Z|soztoa ¥ | £3 Column width
Paste From From From Azure Refresh | PivotTable y U iy Clear Al

33 Copy Database - Report DataMarket L From Other Sources "« < S % 0 %% | 4 Cearson Fiters

Clipboard Get External Data Reports Formatting Sort and Fittr View

[1d] [sbd92357-10b7-2e3f-9dfb-azab7cb3as40 ¥

“[111~] add Column

A group of Web Tech Profess... M Damoni
Evening 5 course dinner fori... 31/01/2012 Prof G Wilson
Big Data Meetup The Big Data meetup existst... 02/02/2012 P Harwood
|| fle... Local Startups Meeting Informal gathering for local t... 05/02/2012 1.T. Hoteman
[afb4... Murder Mystery Dinner Our events feature original a... 12/02/2012 Smeatons B... Oxford CTuffnell
I 2797... Oxford Geek Night Oxford Geek Nights offerac... 29/02/2012 JerichoTav... Oxford 1.p.Stacey
[5d3... " Historical Society Dinner 05/03/2012 Oxford Castle Oxford HKing

Record: 4 4 1007 » w

_images/polaris05.png
SPARQL Query X | doctagstore Import X

Import Method © Locel © Remote

ImportFile CAUsers\Kal\Documentsismalldataint

_images/polaris03.png
[Polaris - BrightstarD8 Management

=@l =

File Sever Store Help

Server Store:

=8/

" Local

4 Local (HTTP)
doctagstore
Sample Store

SPARQL Query X | doctagstore Import

x

SELECT 7planet Ztitle WHERE {

7planet a <http:/theforce.net/schema/Planet>

Zplanet <http://purl.org/de/terms/title>

)
ORDER BY 7title

2title

Messages | Results Table | Results XML

planet

[ttptheforce net/data/planet/20380)

title
Aaeton

hitp/theforce net/date/planet/20823

(Raghra

hitptheforce net/date/planet/21184

[Aagonar

hitptheforce net/date/planet/17277

far,

htto/ithefocee netldatalnlan=t1 1278

_images/polaris_revertbutton.png

_images/3_logon.png
BrightstarDB Nerd Dinner

Log On

Please enter your user name and password. Register if you don't have an account.

Account Information

User name
Password

T Remember me?

Log On

search.html

 Navigation

 		
 index

 		BrightstarDB 1.3 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Kal Ahmed, Graham Moore.
 Created using Sphinx 1.1.3.

_static/comment-close.png

_images/mvc13.png
e FOZZIEWKal!

BrightstarDB Nerd Dinner

IDinner

Tite
Oxford Geek Burger

Description
Abunch of geeks get together for chat over yummy food

Event Date
14/11/2012 11:25:34

Address

Atomic Burger

Host.
Kal Ahmed

RSVPs

« kal@brightstardb.com

Edit | Back to List

_static/up-pressed.png

Data_Object_Layer.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		BrightstarDB 1.3 documentation »

 		Developing With BrightstarDB »

Data Object Layer

The Data Object Layer is a simple generic object wrapper for the underlying RDF data in any
BrightstarDB store.

Data Objects are lightweight wrappers around sets of RDF triples in the underlying
BrightstarDB store. They allow the developer to interact with the RDF data without requiring
all information to be sent in N-Triple format.

For more information about the RDF layer of BrightstarDB, please read the RDF Client API section.

Creating a Data Object Context

The following example shows how to create a new context using a connection string:

var context = BrightstarService.GetDataObjectContext("Type=http;endpoint=http://localhost:8090/brightstar;");

For more information about connection strings, please read the “Connection Strings”
topic

Creating a Store

A new store can be creating using the following code:

string storeName = "Store_" + Guid.NewGuid();
context.CreateStore(storeName);

Deleting a Store

Deleting a store is also straight forward:

context.DeleteStore(storeName);

Creating data objects

Data Objects can be created using the following code:

var fred = store.MakeDataObject("http://example.org/people/fred");

The objects can be created by passing in a well formed URI as the identity, if no identity is
given then one is automatically generated for it.

Adding information to data objects

To add information about this object we can add properties to it.

To set the value of a single property, use the following code:

var fullname = store.MakeDataObject("http://example.org/schemas/person/fullName");
fred.SetProperty(fullname, "Fred Evans");

Calling SetProperty() a second time will overwrite the previous value of the property.

To add multiple properties of the same type use the code below:

var skill = store.MakeDataObject("http://example.org/schemas/person/skill");
fred.AddProperty(skill, csharp);
fred.AddProperty(skill, html);
fred.AddProperty(skill, css);

Retrieving Data Objects

A data object can be retrieved from the store using the following code:

var fred = store.GetDataObject("http://example.org/people/fred");

If BrightstarDB does not hold any information about a given URI, then a data object is created
for it and passed back. When the developer adds properties to it and saves it, the identity
will be automatically added to BrightstarDB.

Note

GetDataObject() will never return a null object. The data object consists of all the
information that is held in BrightstarDB for a particular identity.

We can check the RDF data that an object has at any time by using the following code::

var triples = ((DataObject)fred).Triples;

Deleting Data Objects

A data object can be deleted using the following code:

var fred = store.GetDataObject("http://example.org/people/fred");
fred.Delete();

This removes all triples describing that data object from the store.

Namespace Mappings

Namespace mappings are sets of simple string prefixes for URIs, enabling the developer to use
identities that have been shortened to use the prefixes.

For example, the mapping:

{"people", "http://example.org/people/"}

Means that the short string “people:fred” will be expanded to the full identity string “http://example.org/people/fred”

These mappings are passed through as a dictionary to the OpenStore() method on the context:

_namespaceMappings = new Dictionary<string, string>()
 {
 {"people", "http://example.org/people/"},
 {"skills", "http://example.org/skills/"},
 {"schema", "http://example.org/schema/"}
 };
store = context.OpenStore(storeName, _namespaceMappings);

Note

It is best practise to set up a static dictionary within your class or configuration

Querying data using SPARQL

BrightstarDB supports SPARQL 1.1 [http://www.w3.org/TR/sparql11-query/] for querying the data in the store. These queries can be
executed via the Data Object store using the ExecuteSparql() method.

The SparqlResult returned has the results of the SPARQL query in the ResultDocument property
which is an XML document formatted according to the SPARQL XML Query Results Format [http://www.w3.org/TR/rdf-sparql-XMLres/]. The
BrightstarDB libraries provide some helpful extension methods for accessing the contents of
a SPARQL XML results document

var query = "SELECT ?skill WHERE { " +
 "<http://example.org/people/fred> <http://example.org/schemas/person/skill> ?skill " +
 "}";
var sparqlResult = store.ExecuteSparql(query);
foreach (var sparqlResultRow in sparqlResult.ResultDocument.SparqlResultRows())
{
 var val = sparqlResultRow.GetColumnValue("skill");
 Console.WriteLine("Skill is " + val);
}

Binding SPARQL Results To Data Objects

When a SPARQL query has been written to return a single variable binding, it can be passed to the
BindDataObjectsWithSparql() method. This executes the SPARQL query, and then binds each URI in
the results to a data object, and passes back the enumeration of these instances:

var skillsQuery = "SELECT ?skill WHERE {?skill a <http://example.org/schemas/skill>}";
var allSkills = store.BindDataObjectsWithSparql(skillsQuery).ToList();
foreach (var s in allSkills)
{
 Console.WriteLine("Skill is " + s.Identity);
}

Sample Program

Note

The source code for this example can be found in
[INSTALLDIR]\Samples\DataObjectLayer\DataObjectLayerSamples.sln

The sample project is a simple console application that runs through some of the basic usage
for BrightstarDB’s Data Object Layer.

Creating the context

A context is created using a connection string that specifies usage of the HTTP server:

var context = BrightstarService.GetDataObjectContext(
 @"Type=http;endpoint=http://localhost:8090/brightstar;");

Creating the store

A store is created with a unique name:

string storeName = "DataObjectLayerSample_" + Guid.NewGuid();
var store = context.CreateStore(storeName);

Namespace Mappings

In order to use simpler identities when we are creating and retrieving data objects, we set up
a dictionary of namespace mappings to use when we connect to the store:

_namespaceMappings = new Dictionary<string, string>()
 {
 {"people", "http://example.org/people/"},
 {"skills", "http://example.org/skills/"},
 {"schema", "http://example.org/schema/"}
};

store = context.OpenStore(storeName, _namespaceMappings);

Optimistic Locking

To enable support for optimistic locking, we must pass a boolean flag to the OpenStore() or
CreateStore() method:

store = context.OpenStore(storeName, _namespaceMappings, true); // Open store with optimistic locking enabled

Skills

We create a data object to use as the type of data object for skills, and then create a number
of skill data objects:

var skillType = store.MakeDataObject("schema:skill");

var csharp = store.MakeDataObject("skills:csharp");
csharp.SetType(skillType);
var html = store.MakeDataObject("skills:html");
html.SetType(skillType);
var css = store.MakeDataObject("skills:css");
css.SetType(skillType);
var javascript = store.MakeDataObject("skills:javascript");
javascript.SetType(skillType);

People

We follow the same process to create some people data objects:

var personType = store.MakeDataObject("schema:person");

var fred = store.MakeDataObject("people:fred");
fred.SetType(personType);
var william = store.MakeDataObject("people:william");
william.SetType(personType);

Properties

We create 2 data objects to use as the types for some properties that the people data objects
will hold:

var fullname = store.MakeDataObject("schema:person/fullName");
var skill = store.MakeDataObject("schema:person/skill");

We then set the single name property on the people, and add skills

Note

For multiple properties we must use the AddProperty() method rather than SetProperty() which
would overwrite any previous value

fred.SetProperty(fullname, "Fred Evans");
fred.AddProperty(skill, csharp);
fred.AddProperty(skill, html);
fred.AddProperty(skill, css);

william.SetProperty(fullname, "William Turner");
william.AddProperty(skill, html);
william.AddProperty(skill, css);
william.AddProperty(skill, javascript);

The data type of literal properties are set automatically when a property value is added or set:

var employeeNumber = store.MakeDataObject("schema:person/employeeNumber");
var dateOfBirth = store.MakeDataObject("schema:person/dateOfBirth");
var salary = store.MakeDataObject("schema:person/salary");

fred = store.GetDataObject("people:fred");
fred.SetProperty(employeeNumber, 123);
fred.SetProperty(dateOfBirth, DateTime.Now.AddYears(-30));
fred.SetProperty(salary, 18000.00);

Save Changes

Now that we have created the objects we require, we save the changes to the BrightstarDB store:

store.SaveChanges();

Querying the data

In this sample, we use a SPARQL query to return all of the skills of the data object for ‘fred’.
We can then loop through the ResultDocument of the SparqlResult returned to see the identities
of each of those skills.

const string getPersonSkillsQuery =
 "SELECT ?skill WHERE { " +
 " <http://example.org/people/fred> <http://example.org/schemas/person/skill> ?skill " +
 "}";
var sparqlResult = store.ExecuteSparql(getPersonSkillsQuery);

Binding Data Objects With SPARQL

The Data Object Store has a very useful method called BindDataObjectsWithSparql(), which takes
a SPARQL query that is written to return the URI identities of data object. The method then
returns the data objects for each of the URIs contained in the results.

In the sample we pass in a query to return URIs of any objects with the skill type:

const string skillsQuery = "SELECT ?skill WHERE {?skill a <http://example.org/schemas/skill>}";
var allSkills = store.BindDataObjectsWithSparql(skillsQuery).ToList();

Deleting Objects

To delete data objects we simply call the Delete() method of that object and save the changes
to the store:

foreach (var s in allSkills)
{
 s.Delete();
}
store.SaveChanges();

Optimistic Locking in the Data Object Layer

The Data Object Layer provides a basic level of optimistic locking support using the
conditional update support provided by the RDF Client API and a special version property that
gets assigned to data objects. To enable optimistic locking support it is necessary to enable
locking when the IDataObjectStore instance is retrieved from the context by either the
OpenStore() or CreateStore() method (see Sample Program
for an example).

With optimistic locking enabled, the Data Object Layer checks for the presence of a special
version property on every object it retrieves (the property predicate URI is
http://www.brightstardb.com/.well-known/model/version). If this property is present, its value
defines the current version number of the property. If the property is not present, the object
is recorded as being currently unversioned. On save, the DataObjectLayer uses the current
version number of all versioned data objects as the set of preconditions for the update, if
any of these objects have had their version number property modified on the server, the
precondition will fail and the update will not be applied. Also as part of the save, the
DataObjectLayer updates the version number of all versioned data objects and creates a new
version number for all unversioned data objects.

When an concurrent modification is detected, this is notified to your code by a
BrightstarClientException being raised. In your code you should catch this exception and
handle the error, typically either by abandoning updates (and notifying the user) or
re-retrieving the modified objects and attempting the update again.

Dynamic API

The Dynamic API is a thin layer on top of the data object layer. It is designed to further
ease the use of .NET with RDF data and to provide a model for persisting data in systems that
make use of the .NET dynamic keyword. The .NET dynamic keyword and dynamic runtime allow
properties of objects to be set at runtime without any prior class definition.

The following example shows how dynamics work in general. Both ‘Name’ and ‘Type’ are resolved
at runtime. In this case they are simply stored as properties in the ExpandoObject.

dynamic d = new ExpandoObject();
d.Name = "Brightstar";
d.Type = "Product";

Dynamic Context

A dynamic context can be used to create dynamic objects whose state is persisted as RDF in
BrightstarDB. To use the dynamic context a normal DataObjectContext must be created first.
From the context a store can be created or opened. The store provides methods to create and
fetch dynamic objects.

var dataObjectContext = BrightstarService.GetDataObjectContext();
// create a dynamic context
var dynaContext = new BrightstarDynamicContext(dataObjectContext);
// create a new store
var storeId = "DynamicSample" + Guid.NewGuid().ToString();
var dynaStore = dynaContext.CreateStore(storeId);

Dynamic Object

The dynamic object is a wrapper around the IDataObject. When a dynamic property is set this is
translated into an update to the IDataObject and in turn into RDF. By default the name of the
property is appended to the default namespace. By using namespace mappings any RDF vocabulary
can be mapped. To use a namespace mapping, you must access / update a property whose name is
the namespace prefix followed by __ (two underscore characters) followed by the suffix part
of the URI. For example object.foaf__name.

If the value of the property is set to be a list of values then multiple triples are created, one for each value.

dynamic brightstar = dynaStore.MakeNewObject();
brightstar.name = "BrightstarDB";

// setting a list of values creates multiple properties on the object.
brightstar.rdfs__label = new[] { "BrightstarDB", "NoSQL Database" };

dynamic product = dynaStore.MakeNewObject();
// objects are connected together in the same way
brightstar.rdfs__type = product;

Saving Changes

The data updated in a context is persisted when SaveChanges() is called on the store object.:

dynaStore.SaveChanges();

Loading Data

After opening a store dynamic objects can be loaded via the GetDataObject() method or the
BindObjectsWithSparql() method.

dynaStore = dynaContext.OpenStore(storeId);

// Retrieve a single object by its identifier
var object = dynaStore.GetDataObject(aUri);

// Use a SPARQL query that returns a single variable to return a collection of dynamic objects
var objects = dynaStore.BindObjectsWithSparql("select distinct ?dy where { ?dy ?p ?o }");

Sample Program

Note

The source code for this example can be found in [INSTALLDIR]\Samples\Dynamic\Dynamic.sln

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using BrightstarDB.Dynamic;
using BrightstarDB.Client;

namespace DynamicSamples
{
 public class Program
 {
 /// <summary>
 /// Assumes BrightstarDB is running as a service and exposing the
 /// default endpoint at http://localhost:8090/brightstar
 /// </summary>
 /// <param name="args"></param>
 static void Main(string[] args)
 {
 // gets a new BrightstarDB DataObjectContext
 var dataObjectContext = BrightstarService.GetDataObjectContext();

 // create a dynamic context
 var dynaContext = new BrightstarDynamicContext(dataObjectContext);

 // open a new store
 var storeId = "DynamicSample" + Guid.NewGuid().ToString();
 var dynaStore = dynaContext.CreateStore(storeId);

 // create some dynamic objects.
 dynamic brightstar = dynaStore.MakeNewObject();
 dynamic product = dynaStore.MakeNewObject();

 // set some properties
 brightstar.name = "BrightstarDB";
 product.rdfs__label = "Product";
 var id = brightstar.Identity;

 // use namespace mapping (RDF and RDFS are defined by default)
 // Assigning a list creates repeated RDF properties.
 brightstar.rdfs__label = new[] { "BrightstarDB", "NoSQL Database" };

 // objects are connected together in the same way
 brightstar.rdfs__type = product;

 dynaStore.SaveChanges();

 // open store and read some data
 dynaStore = dynaContext.OpenStore(storeId);
 brightstar = dynaStore.GetDataObject(brightstar.Identity);

 // property values are ALWAYS collections.
 var name = brightstar.name.FirstOrDefault();
 Console.WriteLine("Name = " + name);

 // property can also be accessed by index
 var nameByIndex = brightstar.name[0];
 Console.WriteLine("Name = " + nameByIndex);

 // they can be enumerated without a cast
 foreach (var l in brightstar.rdfs__label)
 {
 Console.WriteLine("Label = " + l);
 }

 // object relationships are navigated in the same way
 var p = brightstar.rdfs__type.FirstOrDefault();
 Console.WriteLine(p.rdfs__label.FirstOrDefault());

 // dynamic objects can also be loaded via sparql
 dynaStore = dynaContext.OpenStore(storeId);
 var objects = dynaStore.BindObjectsWithSparql(
 "select distinct ?dy where { ?dy ?p ?o }");
 foreach (var obj in objects)
 {
 Console.WriteLine(obj.rdfs__label[0]);
 }

 Console.ReadLine();
 }
 }
}

 © Copyright 2013, Kal Ahmed, Graham Moore.
 Created using Sphinx 1.1.3.

RDF_Client_API.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		BrightstarDB 1.3 documentation »

 		Developing With BrightstarDB »

RDF Client API

The RDF Client API provides a simple set of methods for creating and deleting stores,
executing transactions and running queries. It should be used when the application needs to
deal directly with RDF data. An RDF Client can connect to an embedded store or remotely to a
running BrightstarDB instance.

Creating a client

The BrightstarService class provides a number of static methods that can be used to create a
new client. The most general one takes a connection string as a parameter and returns a client
object. The client implements the BrightstarDB.IBrightstarService interface.

The following example shows how to create a new service client using a connection string:

var client = BrightstarService.GetClient(
 "Type=http;endpoint=http://localhost:8090/brightstar;");

For more information about connection strings, please read the “Connection Strings”
topic

Creating a Store

A new store can be creating using the following code:

string storeName = "Store_" + Guid.NewGuid();
client.CreateStore(storeName);

Deleting a Store

Deleting a store is also straight forward:

client.DeleteStore(storeName);

Adding data

Data is added to the store by sending the data to add in N-Triples format. Each triple must be
on a single line with no line breaks, a good way to do this is to use a StringBuilder and then
using AppendLine() for each triple:

var data = new StringBuilder();
data.AppendLine("<http://www.brightstardb.com/products/brightstar> <http://www.brightstardb.com/schemas/product/name> \\"BrightstarDB\\" .");
data.AppendLine("<http://www.brightstardb.com/products/brightstar> <http://www.brightstardb.com/schemas/product/category> <http://www.brightstardb.com/categories/nosql> .");
data.AppendLine("<http://www.brightstardb.com/products/brightstar> <http://www.brightstardb.com/schemas/product/category> <http://www.brightstardb.com/categories/.net> .");
data.AppendLine("<http://www.brightstardb.com/products/brightstar> <http://www.brightstardb.com/schemas/product/category> <http://www.brightstardb.com/categories/rdf> .");

The ExecuteTransaction() method is used to insert the N-Triples data into the store:

client.ExecuteTransaction(storeName,null, null, data.ToString());

Deleting data

Deletion is done by defining a pattern that should matching the triples to be deleted. The
following example deletes all the category data about BrightstarDB, again we use the
StringBuilder to create the delete pattern.

var deletePatternsData = new StringBuilder();
deletePatternsData.AppendLine("<http://www.brightstardb.com/products/brightstar> <http://www.brightstardb.com/schemas/product/category> <http://www.brightstardb.com/.well-known/model/wildcard> .");

The identifier http://www.brightstardb.com/.well-known/model/wildcard is a wildcard
match for any value, so the above example deletes all triples that have a subject of
http://www.brightstardb.com/products/brightstar and a predicate of
http://www.brightstardb.com/schemas/product/category.

The ExecuteTransaction() method is used to delete the data from the store:

client.ExecuteTransaction(storeName, null, deletePatternsData.ToString(), null);

Note

The string http://www.brightstardb.com/.well-known/model/wildcard is also defined
as the constant string BrightstarDB.Constants.WildcardUri.

Conditional Updates

The execution of a transaction can be made conditional on certain triples existing in the
store. The following example updates the productCode property of a resource only if its
current value is 640.

var preconditions = new StringBuilder();
preconditions.AppendLine("<http://www.brightstardb.com/products/brightstar> <http://www.brightstardb.com/schemas/product/productCode> "640"^^<http://www.w3.org/2001/XMLSchema#integer> .");
var deletes = new StringBuilder();
deletes.AppendLine("<http://www.brightstardb.com/products/brightstar> <http://www.brightstardb.com/schemas/product/productCode> "640"^^<http://www.w3.org/2001/XMLSchema#integer> .");
var inserts = new StringBuilder();
inserts.AppendLine("<http://www.brightstardb.com/products/brightstar> <http://www.brightstardb.com/schemas/product/productCode> "973"^^<http://www.w3.org/2001/XMLSchema#integer> .");
client.ExecuteTransaction(storeName, preconditions.ToString(), deletes.ToString(), inserts.ToString());

When a transaction contains condition triples, every triple specified in the preconditions
must exist in the store before the transaction is applied. If one or more triples specified in
the preconditions are not matched, a BrightstarClientException will be raised.

Data Types

In the code above we used simple triples to add a string literal object to a subject, such as:

<http://www.brightstardb.com/products/brightstar> <http://www.brightstardb.com/schemas/product/name> "BrightstarDB"

Other data types can be specified for the object of a triple by using the ^^ syntax:

<http://www.brightstardb.com/products/brightstar> <http://www.brightstardb.com/schemas/product/productCode> "640"^^<http://www.w3.org/2001/XMLSchema#integer> .
<http://www.brightstardb.com/products/brightstar> <http://www.brightstardb.com/schemas/product/releaseDate> "2011-11-11 12:00"^^<http://www.w3.org/2001/XMLSchema#dateTime> .
<http://www.brightstardb.com/products/brightstar> <http://www.brightstardb.com/schemas/product/cost> "0.00"^^<http://www.w3.org/2001/XMLSchema#decimal> .

Updating Graphs

The ExecuteTransaction() method on the IBrightstarService interface
accepts a parameter that defines the default graph URI. When this parameters is
specified, all precondition triples are tested against that graph; all delete
triple patterns are applied to that graph; and all addition triples are added
to that graph:

// This code update the graph http://example.org/graph1
client.ExecuteTransaction(storeName, preconditions, deletePatterns, additions, "http://example.org/graph1");

In addition, the format that is parsed for preconditions, delete patterns and additions
allows you to mix N-Triples and N-Quads formats together. N-Quads are simply N-Triples
with a fourth URI identifier on the end that specifies the graph to be updated. When
an N-Quad is encountered, its graph URI overrides that passed into the ExecuteTransaction()
method. For example, in the following code, one triple is added to the graph “http://example.org/graphs/alice”
and the other is added to the default graph (because no value is specified in the call
to ExecuteTransaction():

var txn1Adds = new StringBuilder();
txn1Adds.AppendLine(
 @"<http://example.org/people/alice> <http://xmlns.com/foaf/0.1/name> ""Alice"" <http://example.org/graphs/alice> .");
txn1Adds.AppendLine(@"<http://example.org/people/bob> <http://xmlns.com/foaf/0.1/name> ""Bob"" .");
var result = client.ExecuteTransaction(storeName, null, null, txn1Adds.ToString());

Note

The wildcard URI is also supported for the graph URI in delete patterns, allowing you
to delete matching patterns from all graphs in the BrightstarDB store.

Querying data using SPARQL

BrightstarDB supports SPARQL 1.1 [http://www.w3.org/TR/sparql11-query/] for querying the data in the store. A simple query on the
N-Triples above that returns all categories that the subject called “Brightstar DB” is
connected to would look like this:

var query = "SELECT ?category WHERE { " +
 "<http://www.brightstardb.com/products/brightstar> <http://www.brightstardb.com/schemas/product/category> ?category " +
 "}";

This string query can then be used by the ExecuteQuery() method to create an XDocument from
the SPARQL results (See SPARQL XML Query Results Format [http://www.w3.org/TR/rdf-sparql-XMLres/] for format of the XML document returned).

var result = XDocument.Load(client.ExecuteQuery(storeName, query));

BrightstarDB also supports several different formats for SPARQL results. The default format is XML,
but you can also add a BrightstarDB.SparqlResultsFormat parameter to the ExecuteQuery method
to control the format and encoding of the results set. For example:

var jsonResult = client.ExecuteQuery(storeName, query, SparqlResultsFormat.Json);

By default results are returned using UTF-8 encoding; however you can override this default
behaviour by using the WithEncoding() method on the SparqlResultsFormat class. The
WithEncoding() method takes a System.Text.Encoding instance and returns a SparqlResultsFormat
instance that will ask for that specific encoding:

var unicodeXmlResult = client.ExecuteQuery(
 storeName, query,
 SparqlResultsFormat.Xml.WithEncoding(Encoding.Unicode));

Querying Graphs

By default a SPARQL query will be executed against the default graph in the BrightstarDB store (that is,
the graph in the store whose identifier is http://www.brightstardb.com/.well-known/model/defaultgraph). In
SPARQL terms, this means that the default graph of the dataset consists of just the default graph in the store.
You can override this default behaviour by passing the identifier of one or more graphs to the
ExecuteQuery() method. There are two overrides of ExecuteQuery() that allow this. One accepts a single
graph identifier as a string parameter, the other accepts multiple graph identifiers as an
IEnumerable<string> parameter. The three different approaches are shown below:

// Execute query using the store's default graph as the default graph
var result = client.ExecuteQuery(storeName, query);

// Execute query using the graph http://example.org/graphs/1 as
// the default graph
var result = client.ExecuteQuery(storeName, query,
 "http://example.org/graphs/1");

// Execute query using the graphs http://example.org/graphs/1 and
// http://example.org/graphs/2 as the default graph
var result = client.ExecuteQuery(storeName, query,
 new string[] {
 "http://example.org/graphs/1",
 "http://example.org/graphs/2"});

Note

It is also possible to use the FROM and FROM NAMED keywords in the SPARQL query to define
both the default graph and the named graphs used in your query.

Using extension methods

To make working with the resulting XDocument easier there exist a number of extensions
methods. The method SparqlResultRows() returns an enumeration of XElement instances
where each XElement represents a single result row in the SPARQL results.

The GetColumnValue() method takes the name of the SPARQL result column and returns the value as
a string. There are also methods to test if the object is a literal, and to retrieve the data type
and language code.

foreach (var sparqlResultRow in result.SparqlResultRows())
{
 var val = sparqlResultRow.GetColumnValue("category");
 Console.WriteLine("Category is " + val);
}

Update data using SPARQL

BrightstarDB supports SPARQL 1.1 Update [http://www.w3.org/TR/sparql11-update/] for updating data in the store. An update operation
is submitted to BrightstarDB as a job. By default the call to ExecuteUpdate() will block until
the update job completes:

IJobInfo jobInfo = _client.ExecuteUpdate(storeName, updateExpression);

In this case, the resulting IJobInfo object will describe the final state of the update job.
However, you can also run the job asynchronously by passing false for the optional
waitForCompletion parameter:

IJobInfo jobInfo = _client.ExecuteUpdate(storeName, updateExpression, false);

In this case the resulting IJobInfo object will describe the current state of the update job
and you can use calls to GetJobInfo() to poll the job for its current status.

Data Imports

To support the loading of large data sets BrightstarDB provides an import function. Before
invoking the import function via the client API the data to be imported should be copied into
a folder called ‘import’. The ‘import’ folder should be located in the folder containing the
BrigtstarDB store data folders. After a default installation the stores folder is
[INSTALLDIR]\Data, thus the import folder should be [INSTALLDIR]\Data\import. For information
about the RDF syntaxes that BrightstarDB supports for import, please refer to Supported
RDF Syntaxes.

With the data copied into the folder the following client method can be called. The parameter
is the name of the file that was copied into the import folder:

client.StartImport("data.nt");

Introduction To N-Triples

N-Triples is a consistent and simple way to encode RDF triples. N-Triples is a line based
format. Each N-Triples line encodes one RDF triple. Each line consists of the subject (a URI),
followed by whitespace, the predicate (a URI), more whitespace, and then the object (a URI or
literal) followed by a dot and a new line. The encoding of the literal may include a datatype
or language code as well as the value. URIs are enclosed in ‘<’ ‘>’ brackets. The formal
definition of the N-Triples format can be found here [http://www.w3.org/TR/2013/NOTE-n-triples-20130409/].

The following are examples of N-Triples data:

simple literal property
<http://www.brightstardb.com/products/brightstar> <http://www.brightstardb.com/schemas/product/name> "Brightstar DB" .

relationship between two resources
<http://www.brightstardb.com/products/brightstar> <http://www.brightstardb.com/schemas/product/category> <http://www.brightstardb.com/categories/nosql> .

A property with an integer value
<http://www.brightstardb.com/products/brightstar> <http://www.brightstardb.com/schemas/product/productCode> "640"^^<http://www.w3.org/2001/XMLSchema#integer> .

A property with a date/time value
<http://www.brightstardb.com/products/brightstar> <http://www.brightstardb.com/schemas/product/releaseDate> "2011-11-11 12:00"^^<http://www.w3.org/2001/XMLSchema#dateTime> .

A property with a decimal value
<http://www.brightstardb.com/products/brightstar> <http://www.brightstardb.com/schemas/product/cost> "0.00"^^<http://www.w3.org/2001/XMLSchema#decimal> .

Allowed Data Types

Data types are defined in terms of an identifier. Common data types use the XML Schema
identifiers. The prefix of these is http://www.w3.org/2001/XMLSchema#. The common primitive
datatypes are defined in the XML Schema specification [http://www.w3.org/TR/xmlschema-2/#built-in-primitive-datatypes].

Introduction To SPARQL

BrightstarDB is a triple store that implements the RDF and SPARQL standards. SPARQL,
pronounced “sparkle”, is the query language developer by the W3C for querying RDF data. SPARQL
primarily uses pattern matching as a query mechanism. A short example follows:

PREFIX ont: <http://www.brightstardb.com/schemas/>
SELECT ?name ?description WHERE {
 ?product a ont:Product .
 ?product ont:name ?name .
 ?product ont:description ?description .
}

This query is asking for all the names and descriptions of all products in the store.

SELECT is used to specify which bound variables should appear in the result set. The result of
this query is a table with two columns, one called “name” and the other “description”.

The PREFIX notation is used so that the query itself is more readable. Full URIs can be used
in the query. When included in the query directly URIs are enclosed by ‘<’ and ‘>’.

Variables are specified with the ‘?’ character in front of the variable name.

In the above example if a product did not have a description then it would not appear in the
results even if it had a name. If the intended result was to retrieve all products with their
name and the description if it existed then the OPTIONAL keyword can be used.

PREFIX ont: <http://www.brightstardb.com/schemas/>
SELECT ?name ?description WHERE {
 ?product a ont:Product .
 ?product ont:name ?name .

 OPTIONAL {
 ?product ont:description ?description .
 }
}

For more information on SPARQL 1.1 and more tutorials the following resources are worth reading.

		SPARQL 1.1 Query Language [http://www.w3.org/TR/sparql11-query/]

		Introduction to RDF Query with SPARQL Tutorial [http://www.w3.org/2004/Talks/17Dec-sparql/]

Developing for Windows Phone

For Windows Phone 7 and Windows Phone 8 (WP) developers, BrightstarDB provides a fast,
schema-less persistent data store, that is easily managed as part of the isolated storage for
an app. When running on a phone, all the key features of BrighstarDB are available, including
the Data Object Layer and the Entity Framework as well as the RDF Client API. This section covers
the main differences with the .NET 4.0 version of BrightstarDB and some important
considerations when writing your WP7 app to use BrightstarDB. The SDK provides libraries that
are compatible with Windows Phone 7.1 and Windows Phone 8, so all apps you develop with
BrightstarDB will need to target that version of the Windows Phone OS.

Data Storage And Connection Strings

When running on WP, BrightstarDB writes its data using the IsolatedStorage APIs. This means
that a BrightstarDB store opened within an application will be written into the
IsolatedStorage for that application. This keeps the stores used by different applications
separate from each other. An application can also use multiple stores, as long as each store
has a unique store name. As the BrightstarDB server is not running on the phone, the only
access to the store is by using the embedded connection type. A typical connection string used
in a WP application is shown in the code snippet below::

var connectionString = "type=embedded;storesdirectory=brightstar;storename=MyAppStore";

SDK Libraries

The BrightstarDB libraries for WP are all contained in [INSTALLDIR]\SDK\WP71. You need to add
references to these libraries to your WP application project.

Development Considerations

For the most part, working with BrightstarDB on Windows Phone is the same as working with it
on the full .NET Framework. However due to the platform and some .NET restrictions there are a
few things that you need to keep in mind when building your application.

Store Shutdown

Because BrightstarDB uses separate threads to process updates to its stores, it is necessary
for any WP app that uses BrightstarDB to cleanly shutdown the database when the application is
not in use. The easiest way to achieve this is to add code to the Application_Deactivated and
Application_Closing methods in the main application class as shown below. There is no
corresponding global startup required as BrightstarDB will automatically start the required
threads the first time you access a store.

// Code to execute when the application is deactivated (sent to background)
// This code will not execute when the application is closing
private void Application_Deactivated(object sender, DeactivatedEventArgs e)
{
 BrightstarService.Shutdown(true);
}

// Code to execute when the application is closing (eg, user hit Back)
// This code will not execute when the application is deactivated
private void Application_Closing(object sender, ClosingEventArgs e)
{
 BrightstarService.Shutdown(true);
}

EntityFramework Interfaces Must Be Public

Due to differences between the .NET Framework and Silverlight, there are is one known
limitation on the Entity Framework. All interfaces that are marked with the [Entity] attribute
must be public interfaces when building a Windows Phone application. This is because
Silverlight prevents reflection on internal classes / interfaces for reasons of code security.

Deploying a Reference Store

As well as using BrightstarDB to store user-modifiable data, you can also ship reference data
with your application. A BrightstarDB reference store can be embedded as part of your
application content and deployed to the Isolated Storage on the mobile device. Once deployed,
the store can be queried and/or updated through your code as normal. The basic steps to
deploying a store in a mobile application are as follows:

		Create the reference store

		Add the reference store files to your application and compile it

		Deploy the application to the device

		At runtime, copy the reference store files from the application directory to Isolated Storage

		Access the copied store from your code

Create The Reference Store

BrightstarDB stores are fully portable between the desktop and a mobile device through simple
file copy. You can create and update a BrightstarDB database using a .NET application on a
desktop workstation or a server and use the database files on a mobile device without the need
for any conversion.

Note

If the database you are deploying has been through a number of update transactions you may
want to consider creating a coalesced copy of the database for deployment purposes.
Coalescing the database will reduce the database size by copying only the current state of
the database and removing all the historical states of the data.

Add Database File To Your Application

Every BrightstarDB store exists in its own folder and contains at least the following files:

		master.bs

		data.bs

		resources.bs

		transactionheaders.bs

		transactions.bs

For normal operation you only need to add the master.bs, resources.bs and data.bs files to
your solution. The transactionheaders.bs and transactions.bs files are required only if your
application will need to replay the transactions that built the database.

To add the reference database to your application

		With Visual Studio, create a project for the Windows Phone application that consumes the
reference store.

		From the Project menu of the application, select Add Existing Item.

		From the Add Existing Item menu, select the master.bs file for the BrightstarDB store
that you want to add, then click Add. This will add the local file to the project.

		In Solution Explorer, right-click the local file and set the file properties so that the
file is built as Content and always copied to the output directory (Copy always).

		Repeat steps 3 and 4 for the data.bs file and resources.bs file

		Optionally repeat steps 3 and 4 for transactionheaders.bs and transactions.bs

Note

It is good practice to put the BrightstarDB data files you are copying into a folder under
your project. If you want to deploy multiple reference databases, you will have to put the
files for each store in a separate folder to avoid name clashes. The folders you define in
your project will be mirrored in the installation directory when the application is deployed.

Deploy Application

Compile and deploy your application as normal. The store files you have copied will be
available in the installation directory of the application (under the folders that you created
in the project if applicable).

Copy Database Files To Isolated Storage

BrightstarDB on a mobile device will only access stores from a named directory in the
application’s Isolated Storage. It is therefore necessary when your application starts up to
ensure that the data is copied or moved to Isolated Storage. Each BrightstarDB store you
deploy must be in its own named directory, and those directories must in turn be in a named
directory under the Isolated Storage root folder. These directory names are important as they
form the values in the connection string you provide to BrightstarDB. The directory structure
used by the sample application is shown below:

IsolatedStorageFile Root
|
+-brightstar <-- the storesDirectory value in the connection string, create a sub
 | create one sub-directory for each store you want to access
 |
 +-dining <-- the storeName value in the connection string,
 only the files for a single store should go in here

The precise way you choose to deploy or update the BrightstarDB store files is up to you, but
the simplest method (as shown in the sample code) is to check for the presence of the store
and if it is not there, copy the files from the application installation directory to Isolated
Storage. The code to do this in the sample can be found in the App() constructor in the
App.xaml.cs file:

if (!BrightstarDbDeploymentHelper.StoreExists("brightstar", "dining"))
{
 BrightstarDbDeploymentHelper.CopyStore("data", "brightstar", "dining");
}

The helper class can also be found in the sample project and has the following methods:

public static class BrightstarDbDeploymentHelper
{
 public static bool StoreExists(string storeDirectoryName, string storeName)
 {
 IsolatedStorageFile iso = IsolatedStorageFile.GetUserStoreForApplication();
 return iso.DirectoryExists(storeDirectoryName + "\\\\" + storeName) &&
 iso.FileExists(storeDirectoryName + "\\\\" + storeName + "\\\\master.bs") &&
 iso.FileExists(storeDirectoryName + "\\\\" + storeName + "\\\\resources.bs") &&
 iso.FileExists(storeDirectoryName + "\\\\" + storeName + "\\\\data.bs");
 }

 public static void CopyStore(string resourceFolderPath,
 string storeDirectoryName,
 string storeName)
 {
 IsolatedStorageFile iso = IsolatedStorageFile.GetUserStoreForApplication();
 CopyStoreFile(iso, "data.bs", resourceFolderPath, storeDirectoryName, storeName);
 CopyStoreFile(iso, "master.bs", resourceFolderPath, storeDirectoryName, storeName);
 CopyStoreFile(iso, "resources.bs", resourceFolderPath, storeDirectoryName, storeName);
 }

 private static void CopyStoreFile(IsolatedStorageFile iso, string fileName,
 string resourceFolderPath,
 string storeDirectoryName, string storeName)
 {
 if (!iso.DirectoryExists(storeDirectoryName))
 {
 iso.CreateDirectory(storeDirectoryName);
 }
 if (!iso.DirectoryExists(storeDirectoryName + "\\\\" + storeName))
 {
 iso.CreateDirectory(storeDirectoryName + "\\\\" + storeName);
 }

 // Create a stream for the file in the installation folder.
 var appResource =
 Application.GetResourceStream(
 new Uri(resourceFolderPath + "\\\\" + fileName, UriKind.Relative));
 if (appResource != null)
 {
 using (Stream input = appResource.Stream)
 {
 // Create a stream for the new file in isolated storage.
 using (
 IsolatedStorageFileStream output =
 iso.CreateFile(storeDirectoryName + "\\\\" + storeName + "\\\\" + fileName))
 {
 // Initialize the buffer.
 var readBuffer = new byte[4096];
 int bytesRead = -1;
 // Copy the file from the installation folder to isolated storage.
 while ((bytesRead = input.Read(readBuffer, 0, readBuffer.Length)) > 0)
 {
 output.Write(readBuffer, 0, bytesRead);
 }
 }
 }
 }
 else
 {
 // There is no application resource for this file, so create it as an empty file

 iso.CreateFile(storeDirectoryName + "\\\\" + storeName + "\\\\" + fileName).Close();
 }
 }
}

Access Reference Database Files

Once deployed to Isolated Storage, the BrightstarDB store can be accessed as normal. You can
use the RDF API, DataObjects API or EntityFramework to access the data depending on your
application requirements. The connection string used to access the store is as follows:

type=embedded;storesDirectory={path to directory containing store directories};storeName={name of store directory}

With our sample application, the store is contained in a directory named “dining”, which is
itself contained in a directory named “brightstar”, so the full connection string is:

type=embedded;storesDirectory=brightstar;storeName=dining

When the sample application runs, you should see a listing of top restaurants generated from a
LINQ query against the EntityFramework.

 © Copyright 2013, Kal Ahmed, Graham Moore.
 Created using Sphinx 1.1.3.

_images/polaris06.png
[Polaris - BrightstarD8 Management

[=la]

=®

Server

File Sever Store Help

Store:

(st 60 Gonirs o)), *
i}

I Local SPARQL Query % [doctagstore Import % | New Transaction X
4 Local (HTTP)

doctagstore Triples To Delete

Sample Store

<http://example.org/documentl> <> <*>

Triples To Add

<http://example.org/documentl> <http:/purl.org/dcterms/title> "Document -
<http://example.org/documentl> <http:/purl.org/dcterms/author> <httpi//e:
<http://example.org/documentl> <http:/purl.org/delterms/subject> “geology

Validation Messages

_images/polaris02.png
=10l x|
Connection Name [Local (HTTP)

Connection Type | Hitp B

B S —
B ——

Port Number 3090

Senverpath [brightstar
Pipe Name |

oK Cancel

_images/mvc15.png
Welcome FOZZIE\Kal! [

BrightstarDB Nerd Dinner

SPARQL

Enter your SPARQL query in the text box below:

SELECT 2a WHERE {2d a <nctp://brightstardb.com
/namespaces/default/Dinner>}

_images/odataconsumer_5b_success.png
rd

Table Import:

Imporing

21x

“The import operation mighttake several minutes to complete. To stop the import
‘operation, cick the Stop Import buton.

@ seceos

Total: 2 Cancelled: 0

Swcessi2 Eror0
Deti:
| Work kem | Status. | Message
(© ommer Success. 7 rows rensiered
@ rsve Success. T5rows e
Stop Import. Close

_static/down.png

_static/comment.png

Developer_Quick_Start.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		BrightstarDB 1.3 documentation »

 		Developing With BrightstarDB »

Developer Quick Start

BrightstarDB is about giving developers a really powerful, quick and clean experience in
defining and realizing persistent object systems on .NET. To achieve this BrightstarDB can use
a set of interface definitions with simple annotations to generate a full LINQ capable object
model that stores object state in a BrightstarDB instance. In this quick introduction we will
show how to create a new data model in Visual Studio, create a new BrightstarDB store and
populate it with data.

Note

The source code for this example can be found in
[INSTALLDIR]\Samples\Embedded\EntityFramework\EntityFrameworkSamples.sln

Create New Project

Create a new project in Visual Studio. For this example we chose a command line application.
After creating the project ensure the build target is set to ’.NET Framework 4’ and that the
Platform Target is set to ‘Any CPU’

In the solution explorer right click and add a new item. Choose the ‘Brightstar Entity
Context’ from the list.

[image: _images/getting-started-add-entity-context.png]
The project will now show a new component has been added called “MyEntityContext.tt”. On the
project references right click and add references. Browse to the [INSTALLDIR]\SDK\net40 folder
and include all the ”.dll” files that are there.

Create the Model

In this sample we will create a data model that contains actors and films. An actor has a name
and a date of birth. An actor can star in many films and each film has many actors. Films also
have name property.

The BrightstarDB Entity Framework requires you to define the data model as a set of .NET
interface definitions. You can either write these interfaces entirely by hand or you can use
the Brightstar Entity Definition item template. Again, right-click on the solution item in the
project explorer window and add a new item, this time from the displayed list choose
Brightstar Entity Definition and change the name of the file to IActor.cs.

Add the following code to that file:

[Entity]
public interface IActor
{
 string Name { get; set; }
 DateTime DateOfBirth { get; set; }
 ICollection<IFilm> Films { get; set; }
}

Then add another Brightstar Entity Definition named IFilm.cs and include the following code:

[Entity]
public interface IFilm
{
string Name { get; }
[InverseProperty("Films")]
ICollection<IActor> Actors { get; }
}

Generating the Context and Classes

A context is a manager for objects in a store. It provides an entry point for running LINQ
queries and creating new objects. The context and implementing classes are automatically
generated from the interface definitions. To create a context, right click on the
MyEntityContext.tt file and select “Run custom tool”. This updates the MyEntityContext.cs to
contain the context class and also classes that implement the specified interfaces.

Note

The context is not automatically rebuilt on every build. After making a change to the
interface definitions it is necessary to run the custom tool again.

Using the Context

The context can be used inside any .NET application or web service. The commented code below
shows how to initialize a context and then use that context to create and persist data. It
concludes by showing how to query the database using LINQ:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using BrightstarDB.Client;

namespace GettingStarted
{
 class Program
 {
 static void Main(string[] args)
 {

 // define a connection string
 const string connectionString = "type=http;endpoint=http://localhost:8090/brightstar;storeName=Films";

 // if the store does not exist it will be automatically
 // created when a context is created
 var ctx = new MyEntityContext(connectionString);

 // create some films
 var bladeRunner = ctx.Films.Create();
 bladeRunner.Name = "BladeRunner";

 var starWars = ctx.Films.Create();
 starWars.Name = "Star Wars";

 // create some actors and connect them to films
 var ford = ctx.Actors.Create();
 ford.Name = "Harrison Ford";
 ford.DateOfBirth = new DateTime(1942, 7, 13);
 ford.Films.Add(starWars);
 ford.Films.Add(bladeRunner);

 var hamill = ctx.Actors.Create();
 hamill.Name = "Mark Hamill";
 hamill.DateOfBirth = new DateTime(1951, 9, 25);
 hamill.Films.Add(starWars);

 // save the data
 ctx.SaveChanges();

 // open a new context, not required
 ctx = new MyEntityContext(store);

 // find an actor via LINQ
 ford = ctx.Actors.Where(a => a.Name.Equals("Harrison Ford")).FirstOrDefault();
 var dob = ford.DateOfBirth;

 // list his films
 var films = ford.Films;

 // get star wars
 var sw = films.Where(f => f.Name.Equals("Star Wars")).FirstOrDefault();

 // list actors in star wars
 foreach (var actor in sw.Actors)
 {
 var actorName = actor.Name;
 Console.WriteLine(actorName);
 }

 Console.ReadLine();
 }
 }
}

Optimistic Locking

Optimistic Locking is a way of handling concurrency control, meaning that multiple
transactions can complete without affecting each other. If Optimistic Locking is turned on,
then when a transaction tries to save data to the store, it first checks that the underlying
data has not been modified by a different transaction. If it finds that the data has been
modified, then the transaction will fail to complete.

BrightstarDB has the option to turn on optimistic locking when connecting to the store. This
is done by setting the enableOptimisticLocking flag when opening a context such as below:

ctx = new MyEntityContext(connectionString, true);
var newFilm = ctx.Films.Create();
ctx.SaveChanges();

var newFilmId = newFilm.Id;

//use optimistic locking when creating a new context
var ctx1 = new MyEntityContext(connectionString, true);
var ctx2 = new MyEntityContext(connectionString, true);

//create a film in the first context
var film1 = ctx1.Films.Where(f => f.Id.Equals(newFilmId)).FirstOrDefault();
Console.WriteLine("First context has film with ID '{0}'", film1.Id);
//create a film in the second context
var film2 = ctx2.Films.Where(f => f.Id.Equals(newFilmId)).FirstOrDefault();
Console.WriteLine("Second context has film with ID '{0}'", film2.Id);

//attempt to change the data from both contexts
film1.Name = "Raiders of the Lost Ark";
film2.Name = "American Graffiti";

//save the data to the store
try
{
 ctx1.SaveChanges();
 Console.WriteLine("Successfully updated the film to '{0}' in the store", film1.Name);
 ctx2.SaveChanges();
}
catch (Exception ex)
{
Console.WriteLine("Unable to save data to the store, as the underlying data has been modified.");
}

Console.ReadLine();

Note

Optimistic Locking can also be enabled in the configuration using the
BrightstarDB.EnableOptimisticLocking application setting

Server Side Caching

When enabled, query results are stored on disk until an update is made. If the same query is
executed, the cached result is returned. Cached results are stored in the Windows temporary
folder, and deleted when an update is made to the store.

Server side caching is enabled by default, but can be disabled by adding the appSetting below
to the application configuration file:

<add key="BrightstarDB.EnableServerSideCaching" value="false" />

Note

Server side caching is not supported on BrightstarDB for Windows Phone 7.

What Next?

While this is just a short introduction it has covered a lot of how BrightstarDB works. The
following sections provide some more conceptual details on how the store works, more details
on the Entity Framework and how to work with BrightstarDB as a triple store.

 © Copyright 2013, Kal Ahmed, Graham Moore.
 Created using Sphinx 1.1.3.

API_Documentation.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		BrightstarDB 1.3 documentation »

 		Developing With BrightstarDB »

API Documentation

The full set of classes and methods available can be found in the BrightstarDB API Docs [http://brightstardb.com/documentation/API/index.html]
online or in the BrightstarDB_API.chm file that can be found in the Docs directory of your
installation.

 © Copyright 2013, Kal Ahmed, Graham Moore.
 Created using Sphinx 1.1.3.

_images/polaris07.png
File Sever Store Help
Dgi®d
4 Local Sample Store History X
‘Sample Store
From: [[]01/01/0001 00:00:00 ¥ _ To:([] 01/01/0001 00:00:00 ¥
24/11/2011 1036:40 E
24/11/2011 08:47:48

24/11/2011 08:47:17
24/11/2011 08:46:04

Messages | Results Table | Results XML

_images/polaris01.png
[Polaris - BrightstarD8 Management

la]

=®

File Sever Store Help

Server Store:

lissi] (ongiis o)), ©) @

o SPARGLQuery X | docagrireimpor K]
4 Local (HTTP)

doctagstore

Sample Store

® €}

Messages | Results Table | Results XML

_images/sdshare_server_architecture.png
Relational Database Relational Database Another data source

The SdShare server manages multiple ‘Production
Adaptors’ that connect to an underlying data source
and expose the data contained as an SdShare Feed.
The adaptorsimplement a simple interface allowing
new data sources to be easily added. Adaptors for
ODBC ODBC Custom ODBC sources are provided with the server.

SdShare|Server

Adaptor Adaptor Adaptor

The server can also host client adaptors. This can be

in the same serverinstance or located on another
Produces Feeds machine.

The client adaptors get notified of changes on the
feeds and can then process the resource dataas it
becomes available.

Aclient adaptor that updates a SPARQL endpoint s
provided.

SdShare Server

Updates SPARQL

Custom Logging SPARQL 11 [
Client Client Client Endpoint
Adaptor

Adaptor Adaptor

_static/ajax-loader.gif

_static/file.png

_images/odata_3_querying.png
(© locahhost: 42608 odata.sve/Dr
€« C' A | © bocalhost:49608/odata.svc/Dinner?$orderby=Title&$skip=3&$top=2

<?xml version="1.0" encoding="iso-8859-17 standalone=ryes"?>
<feed xml:base="http://localnost:49608/OData. sve/"
xmlns:a="http://schemas.microsoft.con/ado/2007/08/dataservices”
/schenmas.microsoft.com/ado/2007/08/dataservices /metadata” xmlns="http://wiw.u3.0rg/2005/Aton">
<title type=vtextv>Dinner</title>
<id>nttp://localnost:49608/cdata. sve/Dinner</1d>
<updated>2012-01-27T14:29:422</updated>
<link rel=vself" citle="Dinner” href="Dinner” />
<encry>
<id>http://localhost:42608/O0Data. sve/Dinnex (*9d34409b-7932-4751-bSad-5b4c5c5215ed") </id>
<title type=mrextv></title>
<updated>2012-01-27T14:29: 422</updated>
<autnor>
<name />
</autnor>
<link rel=vedit” title="Dinner” href="Dinner (’Sd34409b-793a-4751-bSad-Sbécscsaised’)” />
<link rel="http://schemas.microsoft.com/ado/2007/08/dataservices/related/RSVPS"
type="application/atomsxml; type: "Dinner ('9d34409b-793a-4751-bSad~
Sb4cscs21sed’) /RSVES™ />
<category term="BrightstarEntities.Dinner”
scheme="nttp://schemas.microsoft.com/ado/2007/08/dataservices/schene” />
<content type="application/xml">
<m:properties>
<d:1d>9d344095-793a-4751-bSad-Sbécscs215ea</d: Td>
<d:Title>Historical Society Dimnerc/d:Title>
<d:Description minull=rtrue” />
<d:EventDate m:type="Edm.DateTime">2012-03-05T19:00:00</d:Eventbate>
<d:Address>Oxford Castle</d:Address>
<d:City>0xfora</d:Cicy>
<d:HostedBy>H King</d:Hostedsy>
</m:properties>
</content>
</entry>
<encry>
<id>htep://localhost:49608/0Data. sve/Dinner (' Eleead09-b0be-4056-b60b-d3d03063928a") </1d>
<title type=mrextv></title>
<updated>2012-01-27T14:29: 422</updated>
<autnor>
<name />
</autnor>
<link rel=vedit” citle="Dinner” href="Dinner (’flesad09-b0b4-4056-b60b-d3d03063828a")" />
<link rel="http://schemas.microsoft.com/ado/2007/08/dataservices/related/RSVPS"
type="application/atomsxml; type=feed” title="RSVPs" href=rDinner ('fleead03-b0b4-4056-b60b-
434030639282) /RSVES" />
<category term="BrightstarEntities.Dinner”
scheme="nttp://schemas.microsoft.com/ado/2007/08/dataservices/schene” />
<content type="application/xml">
<m:properties>
<d:Td>fleeas0s-b0b4-4056-b60D-d3d03063928a</d: Td>
<d:Title>Local Starcups Meeting</d:Title>
<d:Description>Informal gathering for local technology Start up companies</d:Description>

_images/mvc14.png
Welcome FOZZIE\Kal! [Log Off]

BrightstarDB Nerd Dinner

Title Deseription Event Date Address City Host

BigData Meetup Talking about lots of data oz Oxford Innovation . org &f::"

Centre
Oxford Geek A bunch of geeks get together for chat over 14/11/2012

Burger Jummy food P Atomic Burger Kal Ahmed

_images/mvc6.png
Add View

-
=
i

reate a strongly-typed view

Model cass:
IDinner (BrightstorDB.Samples NerdDinner: Models]

Scaffold template:
Reference script libraries.

MainContent

_images/polaris08.png
Sample Store Export X

Export File Name Sample Store_20111202_093150nt

_images/getting-started-add-entity-context.png
Add New Item - DocTest
Installed Templates

=]

L Cr— e Tl »
4 Vil e tems .
=it) ssembtyinformaton e Vsl Cotms | TP Vo G2 ems
Data — e oo e e By
iy Contes dassand Bightsar
Genenl o Authentiation Domain Senice Vil Coltems | e o o
b &
Vindows Forms itmap File Visal C# rems
weE
CSharp ﬁ Brightstar Entity Context Visual C# Rems
Reporting =
Sitverlight 2| Brightstar Entity Definition Visual C# Ttems
Workiow @
XNA Game Sudio 40
2] cusongam Vil 2 tems
e
@] cosempsishutese Vil 2 tems
7 coseric Vil 2 tems
P Comineon -
K| comorric Vil 2 tems
(B custom Contel Vil 2 tems
@EJ Dataset Visual C# Items.
Debugger Visualizer Vil e tems ~

Name: MyEntityContedtLtt

_static/down-pressed.png

_images/2_loggedin.png
Welcome Jen! [Log Off]

BrightstarDB Nerd Dinner

Create New

Title Event Date Address City Hosted By

Test 2/117201 Biblos, Stokes o Jen
Dinner 10:06:36 Croft. Williams

_images/odata_1_additem.png
‘Add New Item - BrightstarDB.Samples.NerdDinner

i 2] = |

Name:

Installed Templates
| 4 visualc2

Code
Data
General
Web

[
Windows Forms.
weF
Extensibility
Reporting
Silverlight

tangible modeling tools
tangible T4 Editor

Workflow

XNA Game Studio 40

mpla

P e —

e % A1 A1 B e

Fi
¥

%
=

ASP.NET Handler

ASP.NET Module

ASP.NET Server Control

Authentication Domain Service

Browser File

Domain Service Class.

Dynamic Data Field

Generic Handler

Site Map.

Skin File

WCF Data Service

WCF Service

Web Configuration File

Visual C#

Visual C#

Visual C#

Visual C#

Visual C#

Visual C#

Visual C#

Visual C#

Visual C#

Visual C#

Visual G2

Visual C#

Visual C#

Search Installed Templates

Type: Visual C#
A class to provide an WCF Data Service.

_images/mvc5.png
Add View

-
o~

Create a strongly-typed view
Model class:
iner (BrightstarDB.Samples.NerdDinner Models)

Scaffold template:

Create as a partial view

Reference script libraries.

(Leave empty if it i set in a Razor viewstartfile)

MainContent

_images/polaris_runquerybutton.png

_static/comment-bright.png

Connection_Strings.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		BrightstarDB 1.3 documentation »

 		Developing With BrightstarDB »

Connection Strings

BrightstarDB makes use of connection strings for accessing both embedded and remote
BrightstarDB instances. The following section describes the different connection string
properties.

Type : allowed values embedded, http, tcp, and namedpipe. This indicates
the type of connection to create.

StoresDirectory : value is a file system path to the directory containing all BrightstarDB
data. Only valid for use with Type set to embedded.

Endpoint : a URI that points to the service endpoint for the specified remote service.
Valid for http, tcp, and namedpipe

StoreName : The name of a specific store to connect to.

The following are examples of connection strings. Property value pairs are separated by ‘;’
and property names are case insensitive.:

"type=http;endpoint=http://localhost:8090/brightstar;storename=test"

"type=tcp;endpoint=net.tcp://localhost:8095/brightstar;storename=test"

"type=namedpipe;endpoint=net.pipe://localhost/brightstar;storename=test"

"type=embedded;storesdirectory=c:\\brightstar;storename=test"

 © Copyright 2013, Kal Ahmed, Graham Moore.
 Created using Sphinx 1.1.3.

_images/polaris_executetransactionbutton.png

_images/mvc4.png
Add View

—
f—

Create a strongly-typed view
Model class:
iner (BrightstarDB.Samples.NerdDinner Models)

Scaffold template:

5 eference e s

Create as a partil view

(Leave empty if it i set in a Razor viewstartfile)

MainContent

_images/mvc16.png
This XML file does not appear to have any style information associated with it. The document tree is shown below.

— <sparql>
—<head>
<variable name="d"/>
</head>
— <results>
— <result>
~ <binding name="
~ <uri>
http://nerddinner. com/dinners/30d5d7fe-c06£-4a87-902£- Tacf607ca72 T
</uri>
</binding>
</result>
— <result>
~ <binding name="
~ <uri>
http://nerddinner.com/dinners/40126£60-ceab-4c66-a4f7-6c35¢80372eb
</uri>
</binding>
</result>
</results>
</sparql>

Running_The_Samples.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		BrightstarDB 1.3 documentation »

 		Developing With BrightstarDB »

Running The BrightstarDB Samples

All samples can be found in [INSTALLDIR]\Samples. Some samples are written to run against
a local BrightstarDB service. These samples only need editing if you want to run them
against BrightstarDB running on a different machine or running on a non-default port.
This is achieved by altering the BrightstarDB.ConnectionString property in the web.config
file of the sample.

 © Copyright 2013, Kal Ahmed, Graham Moore.
 Created using Sphinx 1.1.3.

_images/odataconsumer_3b_selectsets.png
SeectTablos Vo

‘Select the tables and views that you want o import data from.

Datafeed URL: hip:/localhost 49608/odata sve/

Tables and Views
v | Source Table | Friendly Name | Filter Details.
g
¥ |& | Rsve RSVP 1
SelectRelsted Tables | | Previews:
gk | tiens |[Cpoen Cancel

Entity_Framework_Samples.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		BrightstarDB 1.3 documentation »

 		Developing With BrightstarDB »

Entity Framework Samples

The following samples provide detailed information on how to build applications using
BrightstarDB. If there are classes of applications for which you would like to see other
tutorials please let us know.

Tweetbox

Note

The source code for this example can be found in
[INSTALLDIR]\Samples\EntityFramework\EntityFrameworkSamples.sln

Overview

The TweetBox sample is a simple console application that shows the speed in which BrightstarDB
can load content. The aim is not to create a Twitter style application, but to show how
objects with various relationships to one another are loading quickly, in a structure that
will be familiar to developers.

The model consists of 3 simple interfaces: IUser, ITweet and IHashTag. The relationships
between the interfaces mimic the structure on Twitter, in that Users have a many to many
relationship with other Users (or followers), and have a one to many relationship with Tweets.
The tweets have a many to many relationship with Hashtags, as a Tweet can have zero or more
Hashtags, and a Hashtag may appear in more than one Tweet.

The Interfaces

IUser

The IUser interface represents a user on Twitter, with simple string properties for the
username, bio (profile text) and date of registration. The ‘Following’ property shows the list
of users that this user follows, the other end of this relationship is shown in the
‘Followers’ property, this is marked with the ‘InverseProperty’ attribute to tell BrightstarDB
that Followers is the other end of the Following relationship. The final property is a list of
tweets that the user has authored, this is the other end of the relationship from the ITweet
interface (described below):

[Entity]
public interface IUser
{
 string Id { get; }
 string Username { get; set; }
 string Bio { get; set; }
 DateTime DateRegistered { get; set; }
 ICollection<IUser> Following { get; set; }
 [InverseProperty("Following")]
 ICollection<IUser> Followers { get; set; }
 [InverseProperty("Author")]
 ICollection<ITweet> Tweets { get; set; }
}

ITweet

The ITweet interface represents a tweet on twitter, and has simple properties for the tweet
content and the date and time it was published. The Tweet has an IUser property (‘Author’) to
relate it to the user who wrote it (the other end of this relationship is described above).
ITweet also contains a collection of Hashtags that appear in the tweet (described below):

[Entity]
public interface ITweet
{
 string Id { get; }
 string Content { get; set; }
 DateTime DatePublished { get; set; }
 IUser Author { get; set; }
 ICollection<IHashTag> HashTags { get; set; }
}

IHashTag

A hashtag is a keyword that is contained in a tweet. The same hashtag may appear in more than
one tweet, and so the collection of Tweets is marked with the ‘InverseProperty’ attribute to
show that it is the other end of the collection of HashTags in the ITweet interface:

[Entity]
public interface IHashTag
{
 string Id { get; }
 string Value { get; set; }
 [InverseProperty("HashTags")]
 ICollection<ITweet> Tweets { get; set; }
}

Initialising the BrightstarDB Context

The BrightstarDB context can be initialised using a connection string:

var connectionString = "Type=http;endpoint=http://localhost:8090/brightstar;StoreName=Tweetbox";
var context = new TweetBoxContext(connectionString);

If you have added the connection string into the Config file:

<add key="BrightstarDB.ConnectionString" value="Type=http;endpoint=http://localhost:8090/brightstar;StoreName=Tweetbox" />

then you can initialise the content with a simple:

var context = new TweetBoxContext();

For more information about connection strings, please read the
“Connection Strings” topic.

Creating a new User entity

Method 1:

var jo = context.Users.Create();
jo.Username = "JoBloggs79";
jo.Bio = "A short sentence about this user";
jo.DateRegistered = DateTime.Now;
context.SaveChanges();

Method 2:

var jo = new User {
 Username = "JoBloggs79",
 Bio = "A short sentence about this user",
 DateRegistered = DateTime.Now
 };
context.Users.Add(jo);
context.SaveChanges();

Relationships between entities

The following code snippets show the creation of relationships between entities by simply
setting properties.

Users to Users:

var trevor = context.Users.Create();
trevor.Username = "TrevorSims82";
trevor.Bio = "A short sentence about this user";
trevor.DateRegistered = DateTime.Now;
trevor.Following.Add(jo);
context.SaveChanges();

Tweets to Tweeter:

var tweet = context.Tweets.Create();
tweet.Content = "My first tweet";
tweet.DatePublished = DateTime.Now;
tweet.Tweeter = trevor;
context.SaveChanges();

Tweets to HashTags::

var nosql = context.HashTags.Where(ht => ht.Value.Equals("nosql").FirstOrDefault();
if (nosql == null)
{
 nosql = context.HashTags.Create();
 nosql.Value = "nosql";
}
var brightstardb = context.HashTags.Where(ht => ht.Value.Equals("brightstardb").FirstOrDefault();
if (brightstardb == null)
{
 brightstardb = context.HashTags.Create();
 brightstardb.Value = "brightstardb";
}
var tweet2 = context.Tweets.Create();
tweet.Content = "New fast, scalable NoSQL database for the .NET platform";
tweet.HashTags.Add(nosql);
tweet.HashTags.Add(brightstar);
tweet.DatePublished = DateTime.Now;
tweet.Tweeter = trevor;
context.SaveChanges();

Fast creation, persistence and indexing of data

In order to show the speed at which objects can be created, persisted and index in
BrightstarDB, the console application creates 100 users, each with 500 tweets. Each of those
tweets has 2 hashtags (chosen from a set of 10,000 hash tags).

		Creates 100 users

		Creates 10,000 hashtags

		Saves the users and hashtags to the database

		Loops through the existing users and adds followers and tweets (each tweet has 2 random hashtags)

		Saves the changes back to the store

		Writes out the time taken to the console

MVC Nerd Dinner

Note

The source code for this example can be found in the solution
[INSTALLDIR]\Samples\NerdDinner\BrightstarDB.Samples.NerdDinner.sln

To demonstrate the ease of using BrightstarDB with ASP.NET MVC, we will use the well-known
“Nerd Dinner” tutorial used by .NET Developers when they first learn MVC. We won’t recreate
the full Nerd Dinner application, but just a portion of it, to show how to use BrightstarDB
for code-first data persistence, and show how it not only matches the ease of creating
applications from scratch, but surpasses Entity Framework by introducing pain free model
changes (more on that later). The Brightstar.NerdDinner sample application shows a simple
model layer, using ASP.NET MVC4 for the CRUD application and BrightstarDB for data storage. In
later sections we will extend this basic functionality with support for linked data in the
form of both OData and SPARQL query support and we will show how to use BrightstarDB as the
basis for a .NET custom membership and role provider.

This tutorial is quite long, but is broken up into a number of separate sections each of which
you can follow along with in code, or you can refer to the complete sample application which
can be found in [INSTALLDIR]\Samples\NerdDinner.

		Creating The Basic Data Model - creates the initial
application and code-first data model

		Creating MVC Controllers and Views - shows how
easy it is to use this model with ASP.NET MVC4 to create web interfaces for create, update
and delete (CRUD) operations.

		Applying Model Changes - shows how BrightstarDB handles
changes to the code-first data model without data loss.

		Adding A Custom Membership Provider - describes
how to build a ASP.NET custom membership provider that uses BrightstarDB to manage user
account information.

		Adding A Custom Role Provider - builds on the
custom membership provider to enable users to be assigned different roles and levels of access

		Adding Linked Data Support - extends the web
application to provide a SPARQL and an ODATA query endpoint

		Consuming OData In PowerPivot - shows one way in
which the OData endpoint can be used - enabling data to be retrieved into Excel.

Creating The Basic Data Model

Creating the ASP.NET MVC4 Application.

Step 1: Create a New Empty ASP.NET MVC4 Application

[image: _images/mvc0.png]
Choose “ASP.NET MVC 4 Web Application” from the list of project types in Visual Studio. If you
do not already have MVC 4 installed you can download it from http://www.asp.net/mvc/mvc4.
You must also install the “Visual Web Developer” feature in Visual Studio to be able to open
and work with MVC projects. Choose a name for your application (we are using
BrightstarDB.Samples.NerdDinner), and then click OK. In the next dialog box, select “Empty”
for the template type, this mean that the project will not be pre-filled with any default
controllers, models or views so we can show every step in building the application. Choose
“Razor” as the View Engine. Leave the “Create a unit test project” box unchecked, as for the
purposes of this example project it is not needed.

[image: _images/mvc0a.png]
Step 2: Add references to BrightstarDB

Add a reference in your project to the BrightstarDB DLL from the BrightstarDB SDK.

Step 3: Add a connection string to your BrightstarDB location

Open the web.config file in the root directory your new project, and add a connection string
to the location of your BrightstarDB store. There is no setup required - you can name a store
that does not exist and it will be created the first time that you try to connect to it from
the application. The only thing you will need to ensure is that if you are using an HTTP, TCP
or Named Pipe connection, the BrightstarDB service must be running:

<appSettings>
 ...
 <add key="BrightstarDB.ConnectionString"
 value="Type=http;endpoint=http://localhost:8090/brightstar;StoreName=NerdDinner" />
 ...
</appSettings>

For more information about connection strings, please read the “Connection Strings” topic.

Step 4: Add the Brightstar Entity Context into your project

Select Add > New Item on the Models folder, and select Brightstar Entity Context from the
Data category. Rename it to NerdDinnerContext.tt

[image: _images/mvc2.png]
Step 5: Creating the data model interfaces

BrightstarDB data models are defined by a number of standard .NET interfaces with certain
attributes set. The NerdDinner model is very simple (especially for this tutorial) and only
consists of a set of “Dinners” that refer to specific events that people can attend, and also
a set of “RSVP”s that are used to track a person’s interest in attending a dinner.

We create the two interfaces as shown below in the Models folder of our project.

IDinner.cs:

using System;
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
using BrightstarDB.EntityFramework;

namespace BrightstarDB.Samples.NerdDinner.Models
{
 [Entity]
 public interface IDinner
 {
 [Identifier("http://nerddinner.com/dinners/")]
 string Id { get; }

 [Required(ErrorMessage = "Please provide a title for the dinner")]
 string Title { get; set; }

 string Description { get; set; }

 [Display(Name = "Event Date")]
 [DataType(DataType.DateTime)]
 DateTime EventDate { get; set; }

 [Required(ErrorMessage = "The event must have an address.")]
 string Address { get; set; }

 [Required(ErrorMessage = "Please enter the name of the host of this event")]
 [Display(Name = "Host")]
 string HostedBy { get; set; }

 ICollection<IRSVP> RSVPs { get; set; }
 }
}

IRSVP.cs::

using System.ComponentModel.DataAnnotations;
using BrightstarDB.EntityFramework;

namespace BrightstarDB.Samples.NerdDinner.Models
{
 [Entity]
 public interface IRSVP
 {
 [Identifier("http://nerddinner.com/rsvps/")]
 string Id { get; }

 [Display(Name = "Email Address")]
 [Required(ErrorMessage = "Email address is required")]
 string AttendeeEmail { get; set; }

 [InverseProperty("RSVPs")]
 IDinner Dinner { get; set; }
 }
}

By default, BrightstarDB identifier properties are automatically generated URIs that are
automatically. In order to work with simpler values for our entity Ids we decorate the Id
property with an identifier attribute. This adds a prefix for BrightstarDB to use when
generating and querying the entity identifiers and ensures that the actual value we get in the
Id property is just the part of the URI that follows the prefix, which will be a simple GUID
string.

In the IRSVP interface, we add an InverseProperty attribute to the Dinner property, and set it
to the name of the .NET property on the referencing type (“RSVPs”). This shows that these two
properties reflect different sides of the same association. In this case the association is a
one-to-many relationship (one dinner can have many RSVPs), but BrightstarDB also supports
many-to-many and many-to-one relationships using the same mechanism.

We can also add other attributes such as those from the System.ComponentModel.DataAnnotations
namespace to provide additional hints for the MVC framework such as marking a property as
required, providing an alternative display name for forms or specifying the way in which a
property should be rendered. These additional attributes are automatically added to the
classes generated by the BrightstarDB Entity Framework. For more information about
BrightstarDB Entity Framework attributes and passing through additional attributes, please
refer to the Annotations section of the Entity Framework documentation.

Step 6: Creating a context class to handle database persistence

Right click on the Brightstar Entity Context and select Run Custom Tool. This runs the text
templating tool that updates the .cs file contained within the .tt file with the most up to
date persistence code needed for your interfaces. Any time you modify the interfaces that
define your data model, you should re-run the text template to regenerate the context code.

We now have the basic data model for our application completed and have generated the code for
creating persistent entities that match our data model and storing them in BrightstarDB. In
the next step we will see how to use this data model and context in creating screens in our
MVC application.

Running the application

Hit F5 to start up the application in Debug mode. This opens a browser window that by default
starts in the Index action of the HomeController. As we have not yet added any dinners yet,
the list is empty, but we can click on Create New to go to the Create view to add some
dinners.

[image: _images/mvc8.png]
Note that the custom attributes entered in the entity interface have been picked up by MVC. If
you attempt to submit this form without filling in Title, Address or Host you will see the
form validation errors on the page.

After entering some data we can see them in the list on the index page:

[image: _images/mvc9.png]
We can also easily view the details of a dinner, edit the details or delete the dinner by
using the links next to each item on the list.

Creating MVC Controllers And Views

In the previous section we created the skeleton MVC application and added to it a BrightstarDB
data model for dinners and RSVPs. In this section we will start to flesh out the MVC
application with some screens for data entry and display.

Create the Home Controller

Right click on the controller folder and select “Add > Controller”. Name it “HomeController”
and select “Controller with empty Read/Write Actions”. This adds a Controller class to the
folder, with empty actions for Index(), Details(), Create(), Edit() and Delete(). This will
be the main controller for all our CRUD operations.

The basic MVC4 template for these operations makes a couple of assumptions that we need to
correct. Firstly, the id parameter passed in to various operations is assumed to be an int;
however our BrightstarDB entities use a string value for their Id, so we must change the int
id parameters to string id on the Details, Edit and Delete actions. Secondly, by default the
HttpPost actions for the Create and Edit actions accept FormCollection parameters, but because
we have a data model available it is easier to work with the entity class, so we will change
these methods to accept our data model’s classes as parameters rather than FormCollection and
let the MVC framework handle the data binding for us - for the Delete action it does not
really matter as we are not concerned with the value posted back by that action in this sample
application.

Before we start editing the Actions, we add the following line to the HomeController class:

public class HomeController : Controller
{
 NerdDinnerContext _nerdDinners = new NerdDinnerContext();
...
}

This ensures that any action invoked on the controller can access the BrightstarDB entity
framework context.

Index

This view will show a list of all dinners in the system, it’s a simple case of using LINQ to
return a list of all dinners::

public ActionResult Index()
{
 var dinners = from d in _nerdDinners.Dinners
 select d;
 return View(dinners.ToList());
}

Details

This view shows all the details of a particular dinner, so we use LINQ again to query the
store for a dinner with a particular Id. Note that we have changed the type of the id
parameter from int to string. The LINQ query here uses FirstOrDefault() which means that if
there is no dinner with the specified ID, we will get a null value returned by the query. If
that is the case, we return the user to a “404” view to display a “Not found” message in the
browser, otherwise we return the default Details view.:

public ActionResult Details(string id)
{
 var dinner = _nerdDinners.Dinners.FirstOrDefault(d => d.Id.Equals(id));
 return dinner == null ? View("404") : View(dinner);
}

Edit

The controller has two methods to deal with the Edit action, the first handles a get request
and is similar to the Details method above, but the view loads the property values into a form
ready to be edited. As with the previous method, the type of the id parameter has been changed
to string:

public ActionResult Edit(string id)
{
 var dinner = _nerdDinners.Dinners.Where(d => d.Id.Equals(id)).FirstOrDefault();
 return dinner == null ? View("404") : View(dinner);
}

The method that accept the HttpPost that is sent back after a user clicks “Save” on the view,
deals with updating the property values in the store. Note that rather than receiving the id
and FormsCollection parameters provided by the default scaffolding, we change this method to
receive a Dinner object. The Dinner class is generated by the BrightstarDB Entity Framework
from our IDinner data model interface and the MVC framework can automatically data bind the
values in the edit form to a new Dinner instance before invoking our Edit method. This
automatic data binding makes the code to save the edited dinner much simpler and shorter - we
just need to attach the Dinner object to the _nerdDinners context and then call SaveChanges()
on the context to persist the updated entity:

[HttpPost]
public ActionResult Edit(Dinner dinner)
{
 if(ModelState.IsValid)
 {
 dinner.Context = _nerdDinners;
 _nerdDinners.SaveChanges();
 return RedirectToAction("Index");
 }
 return View();
}

Create

Like the Edit method, Create displays a form on the initial view, and then accepts the
HttpPost that gets sent back after a user clicks “Save”. To make things slight easier for the
user we are pre-filling the “EventDate” property with a date one week in the future:

public ActionResult Create()
{
 var dinner = new Dinner {EventDate = DateTime.Now.AddDays(7)};
 return View(dinner);
}

When the user has entered the rest of the dinner details, we add the Dinner object to the
Dinners collection in the context and then call SaveChanges():

[HttpPost]
public ActionResult Create(Dinner dinner)
{
 if(ModelState.IsValid)
 {
 _nerdDinners.Dinners.Add(dinner);
 _nerdDinners.SaveChanges();
 return RedirectToAction("Index");
 }
 return View();
}

Delete

The first stage of the Delete method displays the details of the dinner about to be deleted to
the user for confirmation:

public ActionResult Delete(string id)
{
 var dinner = _nerdDinners.Dinners.Where(d => d.Id.Equals(id)).FirstOrDefault();
 return dinner == null ? View("404") : View(dinner);
}

When the user has confirmed the object is Deleted from the store:

[HttpPost, ActionName("Delete")]
public ActionResult DeleteConfirmed(string id, FormCollection collection)
{
 var dinner = _nerdDinners.Dinners.FirstOrDefault(d => d.Id.Equals(id));
 if (dinner != null)
 {
 _nerdDinners.DeleteObject(dinner);
 _nerdDinners.SaveChanges();
 }
 return RedirectToAction("Index");
}

Adding views

Now that we have filled in the logic for the actions, we can proceed to create the necessary
views. These views will make use of the Microsoft JQuery Unobtrusive Validation nuget package.
You can install this package through the GUI Nuget package manager or using the NuGet console
command:

PM> install-package Microsoft.jQuery.Unobtrusive.Validation

This will also install the jQuery and jQuery.Validation packages that are dependencies.

Before creating specific views, we can create a common look and feel for these views by
creating a _ViewStart.cshtml and a shared _Layout.cshtml. This approach also makes the Razor
for the individual views simpler and easier to manage. Please refer to the sample solution for
the content of these files and the 404 view that is displayed when a URL specifies an ID that
cannot be resolved.

All of the views for the Home controller need to go in the Home folder under the Views folder
- if it does not exist yet, create the Home folder within the Views folder of the MVC
solution. Then, to Add a view, right click on the “Home” folder within “Views” and select “Add
> View”. For each view we create a strongly-typed view with the appropriate scaffold template
and create it as a partial view.

The Index View uses a List template, and the IDinner model:

[image: _images/mvc3.png]

Note

If the IDinner type is not displayed in the “Model class” drop-down list, this may be
because Visual Studio is not aware of the type yet - to fix this, you must save and compile
the solution before trying to add views.

Note

If you get an error from Visual Studio when trying to add this view, please see
this blog post [http://techquila.com/tech/2012/11/mvc4-list-view-template-error-column-attribute-is-an-ambiguous-reference/] for a possible solution.

The Details View uses the Details template:

[image: _images/mvc4.png]
The Edit View uses the Edit template and also includes script library references. You may want to
modify the reference to the jquery-1.7.1.min.js script from the generated template to point to
the version of jQuery installed by the validation NuGet package (this is jquery-1.4.4.min.js
at the time of writing).

[image: _images/mvc5.png]
The Create View uses the Create template and again includes the script library references,
which you should modify in the same way as you did for the Edit view.

[image: _images/mvc6.png]
The Delete view uses the Delete template:

[image: _images/mvc6a.png]
Adding strongly typed views in this way pre-populates the HTML with tables, forms and text
where needed to display information and gather data from the user.

[image: _images/mvc7.png]

Review Site

We have now implemented all of the code we need to write within our Controller and Views to
implement the Dinner listing and Dinner creation functionality within our web application.
Running the web application for the first time should display a home page with an empty list
of dinners:

[image: _images/mvc8.png]
Clicking on the Create New link takes you to the form for entering the details for a new
dinner. Note that this form supports some basic validation through the annotation attributes
we added to the model. For example the name of the dinner host is required:

[image: _images/mvc9.png]
Once a dinner is created it shows up in the list on the home page from where you can view
details, edit or delete the dinner:

[image: _images/mvc11.png]
However, we still have no way of registering attendees! To do that we need to add another
action that will allow us to create an RSVP and attach it to a dinner.

Create the AddAttendee Action

Like the Create, Edit and Delete actions, AddAttendee will be an action with two parts to it.
The first part of the action, invoked by an HTTP GET (a normal link) will display a form in
which the user can enter the email address they want to use for the RSVP. The second part of
the action will handle the HTTP POST generated by that form when the user submits it - this
part will use the details in the form to create a new RSVP entity and connect it to the
correct event. The action will be created in the Home controller, so new methods will be added
to HomeController.cs.

This is the code for the first part of AddAttendee action - it is a similar pattern that we
have seen else where. We retrieve the dinner entity by its ID and pass it through to the view
so we can show the user some details about the dinner they have chosen to attend:

public ActionResult AddAttendee(string id)
{
 var dinner = _nerdDinners.Dinners.FirstOrDefault(x => x.Id.Equals(id));
 ViewBag.Dinner = dinner;
 return dinner == null ? View("404") : View();
}

The view invoked by this action needs to be added to the Views/Home folder as
AddAttendee.cshtml. Create a new view, named AddAttendee and strongly typed using the IDinner
type but choose the Empty scaffold and check “Create as partial view” and then edit the
.cshtml file like this:

@model BrightstarDB.Samples.NerdDinner.Models.IRSVP

<h3>Join A Dinner</h3>
<p>To join the dinner @ViewBag.Dinner.Title on @ViewBag.Dinner.EventDate.ToLongDateString(),
 enter your email address below and click RSVP.</p>

@using(@Html.BeginForm("AddAttendee", "Home")) {
 @Html.ValidationSummary(true)
 @Html.Hidden("DinnerId", ViewBag.Dinner.Id as string)
 <div class="editor-label">@Html.LabelFor(m=>m.AttendeeEmail)</div>
 <div class="editor-field">
 @Html.EditorFor(m=>m.AttendeeEmail)
 @Html.ValidationMessageFor(m=>m.AttendeeEmail)
 </div>
 <p><input type="submit" value="Register"/></p>
}
<div>
 @Html.ActionLink("Back To List", "Index")
</div>

Note the use of a hidden field in the form that carries the Dinner ID so that when we handle
the POST we know which dinner to connect the response to.

This is the code to handle the second part of the action:

[HttpPost]
public ActionResult AddAttendee(FormCollection form)
{
 if (ModelState.IsValid)
 {
 var rsvpDinnerId = form["DinnerId"];
 var dinner = _nerdDinners.Dinners.FirstOrDefault(d => d.Id.Equals(rsvpDinnerId));
 if (dinner != null)
 {
 var rsvp= new RSVP{AttendeeEmail = form["AttendeeEmail"], Dinner = dinner};
 _nerdDinners.RSVPs.Add(rsvp);
 _nerdDinners.SaveChanges();
 return RedirectToAction("Details", new {id = rsvp.Dinner.Id});
 }
 }
 return View();
}

Here we do not use the MVC framework to data-bind the form values to an RSVP object because it
will attempt to put the ID from the URL (which is the dinner ID) into the Id field of the
RSVP, which is not what we want. Instead we just get the FormCollection to allow us to
retrieve the form values. The code retrieves the DinnerId from the form and uses that to get
the IDinner entity from BrightstarDB. A new RSVP entity is then created using the
AttendeeEmail value from the form and the dinner entity just found. The RSVP is then added to
the BrightstarDB RSVPs collection and SaveChanges() is called to persist it. Finally the user
is returned to the details page for the dinner.

Next, we modify the Details view so that it shows all attendees of a dinner. This is the
updated CSHTML for the Details view:

@model BrightstarDB.Samples.NerdDinner.Models.IDinner

<fieldset>
 <legend>IDinner</legend>

 <div class="display-label">
 @Html.DisplayNameFor(model => model.Title)
 </div>
 <div class="display-field">
 @Html.DisplayFor(model => model.Title)
 </div>

 <div class="display-label">
 @Html.DisplayNameFor(model => model.Description)
 </div>
 <div class="display-field">
 @Html.DisplayFor(model => model.Description)
 </div>

 <div class="display-label">
 @Html.DisplayNameFor(model => model.EventDate)
 </div>
 <div class="display-field">
 @Html.DisplayFor(model => model.EventDate)
 </div>

 <div class="display-label">
 @Html.DisplayNameFor(model => model.Address)
 </div>
 <div class="display-field">
 @Html.DisplayFor(model => model.Address)
 </div>

 <div class="display-label">
 @Html.DisplayNameFor(model => model.HostedBy)
 </div>
 <div class="display-field">
 @Html.DisplayFor(model => model.HostedBy)
 </div>

 <div class="display-label">
 @Html.DisplayNameFor(model=>model.RSVPs)
 </div>
 <div class="display-field">
 @if (Model.RSVPs != null)
 {

 @foreach (var r in Model.RSVPs)
 {
 @r.AttendeeEmail
 }

 }
 </div>
</fieldset>
<p>
 @Html.ActionLink("Edit", "Edit", new { id=Model.Id }) |
 @Html.ActionLink("Back to List", "Index")
</p>

Finally we modify the Index view to add an Add Attendee action link to each row in the table.
This is the updated CSHTML for the Index view:

@model IEnumerable<BrightstarDB.Samples.NerdDinner.Models.IDinner>

<p>
 @Html.ActionLink("Create New", "Create")
</p>
<table>
 <tr>
 <th>
 @Html.DisplayNameFor(model => model.Title)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Description)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.EventDate)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Address)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.HostedBy)
 </th>
 <th></th>
 </tr>

@foreach (var item in Model) {
 <tr>
 <td>
 @Html.DisplayFor(modelItem => item.Title)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Description)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.EventDate)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Address)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.HostedBy)
 </td>
 <td>
 @Html.ActionLink("Add Attendee", "AddAttendee", new { id=item.Id }) |
 @Html.ActionLink("Edit", "Edit", new { id=item.Id }) |
 @Html.ActionLink("Details", "Details", new { id=item.Id }) |
 @Html.ActionLink("Delete", "Delete", new { id=item.Id })
 </td>
 </tr>
}

</table>

Now we can use the Add Attendee link on the home page to register attendance at an event:

[image: _images/mvc12.png]
And we can then see this registration on the event details page:

[image: _images/mvc13.png]

Applying Model Changes

Change during development happens and many times, changes impact the persistent data model.
Fortunately it is easy to modify the persistent data model with BrightstarDB.

As an example we are going to add the requirement for dinners to have a specific City field
(perhaps to allow grouping of dinners by the city the occur in for example).

The first step is to modify the IDinner interface to add a City property:

[Entity]
public interface IDinner
{
 [Identifer("http://nerddinner.com/dinners#")]
 string Id { get; }
 string Title { get; set; }
 string Description { get; set; }
 DateTime EventDate { get; set; }
 string Address { get; set; }
 string City { get; set; }
 string HostedBy { get; set; }
 ICollection<IRSVP> RSVPs { get; set; }
}

Because this change modifies an entity interface, we need to ensure that the generated context
classes are also updated. To update the context, right click on the NerdDinnerContext.tt and
select “Run Custom Tool”

That is all that needs to be done from a BrightstarDB point of view! The City property is now
assignable on all new and existing Dinner entities and you can write LINQ queries that make
use of the City property. Of course, there are still a couple of things that need to change in
our web interface. Open the Index, Create, Delete, Details and Edit views to add the new City
property to the HTML so that you will be able to view and amend its data - the existing HTML
in each of these views should provide you with the examples you need.

Note that if you create a new dinner, you will be required to enter a City, but existing
dinners will not have a city assigned:

[image: _images/mvc14.png]
If you use a query to find or group dinners by their city, those dinners that have no value
for the city will not be returned by the query, and of course if you try to edit one of those
dinners, then you will be required to provide a value for the City field.

Adding a Custom Membership Provider

Custom Membership Providers are a quick and straightforward way of managing membership
information when you wish to store that membership data in a data source that is not supported
by the membership providers included within the .NET framework. Often developers will need to
implement custom membership providers even when storing the data in a supported data source,
because the schema of that membership information differs from that in the default providers.

In this topic we are going to add a Custom Membership Provider to the Nerd Dinner sample so
that users can register and login.

Adding the Custom Membership Provider and login Entity

		Add a new class to your project and name it BrightstarMembershipProvider.cs

		Make the class extend System.Web.Security.MembershipProvider. This is the abstract class
that all ASP.NET membership providers must inherit from.

		Right click on the MembershipProvider class name and choose “Implement abstract class”
from the context menu, this automatically creates all the override methods that your custom
class can implement.

		Add a new interface to the Models directory and name it INerdDinnerLogin.cs

		Add the [Entity] attribute to the interface, and add the properties shown below:

		The Id property is decorated with the Identifier attribute to allow us to work with
simpler string values rather than the full URI that is generated by BrightstarDB (for more
information, please read the Entity Framework Documentation).

[Entity]
public interface INerdDinnerLogin
{
 [Identifier("http://nerddinner.com/logins/")]
 string Id { get; }
 string Username { get; set; }
 string Password { get; set; }
 string PasswordSalt { get; set; }
 string Email { get; set; }
 string Comments { get; set; }
 DateTime CreatedDate { get; set; }
 DateTime LastActive { get; set; }
 DateTime LastLoginDate { get; set; }
 bool IsActivated { get; set; }
 bool IsLockedOut { get; set; }
 DateTime LastLockedOutDate { get; set; }
 string LastLockedOutReason { get; set; }
 int? LoginAttempts { get; set; }
}

To update the Brightstar Entity Context, right click on the NerdDinnerContext.tt file and
select “Run Custom Tool” from the context menu.

Configuring the application to use the Brightstar Membership Provider

To configure your web application to use this custom Membership Provider, we simply need to
change the configuration values in the Web.config file in the root directory of the
application. Change the membership node contained within the <system.web> to the
snippet below:

<membership defaultProvider="BrightstarMembershipProvider">
 <providers>
 <clear/>
 <add name="BrightstarMembershipProvider"
 type="BrightstarDB.Samples.NerdDinner.BrightstarMembershipProvider, BrightStarDB.Samples.NerdDinner"
 enablePasswordReset="true"
 maxInvalidPasswordAttempts="5"
 minRequiredPasswordLength="6"
 minRequiredNonalphanumericCharacters="0"
 passwordAttemptWindow="10"
 applicationName="/" />
 </providers>
</membership>

Note that if the name of your project is not BrightstarDB.Samples.NerdDinner, you will have to
change the type=”” attribute to the correct full type reference.

We must also change the authentication method for the web application to Forms authentication.
This is done by adding the following inside the <system.web> section of the Web.config file:

<authentication mode="Forms"/>

If after making these changes you see an error message like this in the browser:

Parser Error Message: It is an error to use a section registered as
allowDefinition='MachineToApplication' beyond application level. This error can be caused by
a virtual directory not being configured as an application in IIS.

The most likely problem is that you have added the <membership> and <authentication> tags into
the Web.config file contained in the Views folder. These configuration elements must ONLY go
in the Web.config file located in the project’s root directory.

Adding functionality to the Custom Membership Provider

Note

For the purpose of keeping this example simple, we will leave some of these methods to throw
System.NotImplementedException, but you can add in whatever logic suits your business requirements
once you have the basic functionality up and running.

The full code for the BrightstarMembershipProvider.cs is given below, but can be broken down
as follows:

Initialization

We add an Initialize() method along with a GetConfigValue() helper method to handle retrieving
the configuration values from Web.config, and setting default values if it is unable to
retrieve a value.

Private helper methods

We add three more helper methods: CreateSalt() and CreatePasswordHash() to help us with user
passwords, and ConvertLoginToMembershipUser() to return a built in .NET MembershipUser object
when given the BrightstarDB INerdDinnerLogin entity.

CreateUser()

The CreateUser() method is used when a user registers on our site, the first part of this code
validates based on the configuration settings (such as whether an email must be unique) and
then creates a NerdDinnerLogin entity, adds it to the NerdDinnerContext and saves the changes
to the BrightstarDB store.

GetUser()

The GetUser() method simply looks up a login in the BrightstarDB store, and returns a .NET
MembershipUser object with the help of the ConvertLoginToMembershipUser() method mentioned
above.

GetUserNameByEmail()

The GetUserNameByEmail() method is similar to the GetUser() method but looks up by email
rather than username. It’s used by the CreateUser() method if the configuration settings
specify that new users must have unique emails.

ValidateUser()

The ValidateUser() method is used when a user logs in to our web application. The login is
looked up in the BrightstarDB store by username, and then the password is checked. If the
checks pass successfully then it returns a true value which enables the user to successfully
login.

using System;
using System.Collections.Specialized;
using System.Linq;
using System.Security.Cryptography;
using System.Web.Security;
using BrightstarDB.Samples.NerdDinner.Models;

namespace BrightstarDB.Samples.NerdDinner
{
 public class BrightstarMembershipProvider : MembershipProvider
 {

 #region Configuration and Initialization

 private string _applicationName;
 private const bool _requiresUniqueEmail = true;
 private int _maxInvalidPasswordAttempts;
 private int _passwordAttemptWindow;
 private int _minRequiredPasswordLength;
 private int _minRequiredNonalphanumericCharacters;
 private bool _enablePasswordReset;
 private string _passwordStrengthRegularExpression;
 private MembershipPasswordFormat _passwordFormat = MembershipPasswordFormat.Hashed;

 private string GetConfigValue(string configValue, string defaultValue)
 {
 if (string.IsNullOrEmpty(configValue))
 return defaultValue;

 return configValue;
 }

 public override void Initialize(string name, NameValueCollection config)
 {
 if (config == null) throw new ArgumentNullException("config");

 if (string.IsNullOrEmpty(name)) name = "BrightstarMembershipProvider";

 if (String.IsNullOrEmpty(config["description"]))
 {
 config.Remove("description");
 config.Add("description", "BrightstarDB Membership Provider");
 }

 base.Initialize(name, config);

 _applicationName = GetConfigValue(config["applicationName"],
 System.Web.Hosting.HostingEnvironment.ApplicationVirtualPath);
 _maxInvalidPasswordAttempts = Convert.ToInt32(
 GetConfigValue(config["maxInvalidPasswordAttempts"], "10"));
 _passwordAttemptWindow = Convert.ToInt32(
 GetConfigValue(config["passwordAttemptWindow"], "10"));
 _minRequiredNonalphanumericCharacters = Convert.ToInt32(
 GetConfigValue(config["minRequiredNonalphanumericCharacters"],
 "1"));
 _minRequiredPasswordLength = Convert.ToInt32(
 GetConfigValue(config["minRequiredPasswordLength"], "6"));
 _enablePasswordReset = Convert.ToBoolean(
 GetConfigValue(config["enablePasswordReset"], "true"));
 _passwordStrengthRegularExpression = Convert.ToString(
 GetConfigValue(config["passwordStrengthRegularExpression"], ""));

 }

 #endregion

 #region Properties

 public override string ApplicationName
 {
 get { return _applicationName; }
 set { _applicationName = value; }
 }

 public override int MaxInvalidPasswordAttempts
 {
 get { return _maxInvalidPasswordAttempts; }
 }

 public override int MinRequiredNonAlphanumericCharacters
 {
 get { return _minRequiredNonalphanumericCharacters; }
 }

 public override int MinRequiredPasswordLength
 {
 get { return _minRequiredPasswordLength; }
 }

 public override int PasswordAttemptWindow
 {
 get { return _passwordAttemptWindow; }
 }

 public override MembershipPasswordFormat PasswordFormat
 {
 get { return _passwordFormat; }
 }

 public override string PasswordStrengthRegularExpression
 {
 get { return _passwordStrengthRegularExpression; }
 }

 public override bool RequiresUniqueEmail
 {
 get { return _requiresUniqueEmail; }
 }
 #endregion

 #region Private Methods

 private static string CreateSalt()
 {
 var rng = new RNGCryptoServiceProvider();
 var buffer = new byte[32];
 rng.GetBytes(buffer);
 return Convert.ToBase64String(buffer);
 }

 private static string CreatePasswordHash(string password, string salt)
 {
 var snp = string.Concat(password, salt);
 var hashed = FormsAuthentication.HashPasswordForStoringInConfigFile(snp, "sha1");
 return hashed;

 }

 /// <summary>
 /// This helper method returns a .NET MembershipUser object generated from the
 /// supplied BrightstarDB entity
 /// </summary>
 private static MembershipUser ConvertLoginToMembershipUser(INerdDinnerLogin login)
 {
 if (login == null) return null;
 var user = new MembershipUser("BrightstarMembershipProvider",
 login.Username, login.Id, login.Email,
 "", "", login.IsActivated, login.IsLockedOut,
 login.CreatedDate, login.LastLoginDate,
 login.LastActive, DateTime.UtcNow, login.LastLockedOutDate);
 return user;
 }

 #endregion

 public override MembershipUser CreateUser(
 string username,
 string password,
 string email,
 string passwordQuestion,
 string passwordAnswer,
 bool isApproved,
 object providerUserKey,
 out MembershipCreateStatus status)
 {
 var args = new ValidatePasswordEventArgs(email, password, true);

 OnValidatingPassword(args);

 if (args.Cancel)
 {
 status = MembershipCreateStatus.InvalidPassword;
 return null;
 }

 if (string.IsNullOrEmpty(email))
 {
 status = MembershipCreateStatus.InvalidEmail;
 return null;
 }

 if (string.IsNullOrEmpty(password))
 {
 status = MembershipCreateStatus.InvalidPassword;
 return null;
 }

 if (RequiresUniqueEmail && GetUserNameByEmail(email) != "")
 {
 status = MembershipCreateStatus.DuplicateEmail;
 return null;
 }

 var u = GetUser(username, false);

 try
 {
 if (u == null)
 {
 var salt = CreateSalt();

 //Create a new NerdDinnerLogin entity and set the properties
 var login = new NerdDinnerLogin
 {
 Username = username,
 Email = email,
 PasswordSalt = salt,
 Password = CreatePasswordHash(password, salt),
 CreatedDate = DateTime.UtcNow,
 IsActivated = true,
 IsLockedOut = false,
 LastLockedOutDate = DateTime.UtcNow,
 LastLoginDate = DateTime.UtcNow,
 LastActive = DateTime.UtcNow
 };

 //Create a context using the connection string in the Web.Config
 var context = new NerdDinnerContext();

 //Add the entity to the context
 context.NerdDinnerLogins.Add(login);

 //Save the changes to the BrightstarDB store
 context.SaveChanges();

 status = MembershipCreateStatus.Success;
 return GetUser(username, true /*online*/);
 }
 }
 catch (Exception)
 {
 status = MembershipCreateStatus.ProviderError;
 return null;
 }

 status = MembershipCreateStatus.DuplicateUserName;
 return null;
 }

 public override MembershipUser GetUser(string username, bool userIsOnline)
 {
 if (string.IsNullOrEmpty(username)) return null;
 //Create a context using the connection string in Web.config
 var context = new NerdDinnerContext();
 //Query the store for a NerdDinnerLogin that matches the supplied username
 var login = context.NerdDinnerLogins.Where(l =>
 l.Username.Equals(username)).FirstOrDefault();
 if (login == null) return null;
 if(userIsOnline)
 {
 // if the call states that the user is online, update the LastActive property
 // of the NerdDinnerLogin
 login.LastActive = DateTime.UtcNow;
 context.SaveChanges();
 }
 return ConvertLoginToMembershipUser(login);
 }

 public override string GetUserNameByEmail(string email)
 {
 if (string.IsNullOrEmpty(email)) return "";
 //Create a context using the connection string in Web.config
 var context = new NerdDinnerContext();
 //Query the store for a NerdDinnerLogin that matches the supplied username
 var login = context.NerdDinnerLogins.Where(l =>
 l.Email.Equals(email)).FirstOrDefault();
 if (login == null) return string.Empty;
 return login.Username;
 }

 public override bool ValidateUser(string username, string password)
 {
 //Create a context using the connection string set in Web.config
 var context = new NerdDinnerContext();
 //Query the store for a NerdDinnerLogin matching the supplied username
 var logins = context.NerdDinnerLogins.Where(l => l.Username.Equals(username));
 if (logins.Count() == 1)
 {
 //Ensure that only a single login matches the supplied username
 var login = logins.First();
 // Check the properties on the NerdDinnerLogin to ensure the user account is
 // activated and not locked out
 if (login.IsLockedOut || !login.IsActivated) return false;
 // Validate the password of the NerdDinnerLogin against the supplied password
 var validatePassword = login.Password == CreatePasswordHash(password, login.PasswordSalt);
 if (!validatePassword)
 {
 //return validation failure
 return false;
 }
 //return validation success
 return true;
 }
 return false;
 }

 #region MembershipProvider properties and methods not implemented for this tutorial
...
 #endregion

 }
}

Extending the MVC application

All the models, views and controllers needed to implement the logic logic are generated
automatically when creating a new MVC4 Web Application if the option for “Internet
Application” is selected. However, if you are following this tutorial through from the
beginning you will need to add this infrastructure by hand. The infrastructure includes:

		An AccountController class with ActionResult methods for logging in, logging out and
registering (in AccountController.cs in the Controllers folder).

		AccountModels.cs which contains classes for LogonModel and RegisterModel (in the Models
folder).

		LogOn, Register, ChangePassword and ChangePasswordSuccess views that use the models to
display form fields and validate input from the user (in the Views/Account folder).

		A _LogOnPartial view that is used in the main _Layout view to display a login link, or the
username if the user is logged in (in the Views/Shared folder).

Note

These files can be found in [INSTALLDIR]\Samples\NerdDinner\BrightstarDB.Samples.NerdDinner

The details of the contents of these files is beyond the scope of this tutorial, however the
infrastructure is all designed to work with the configured Membership Provider for the web
application - in our case the BrightstarMembershipProvider class we have just created.

The AccountController created here has some dependencies on the Custom Role Provider discussed
in the next section. You will need to complete the steps in the next section before you will
be able to successfully register a user in the web application.

Summary

In this tutorial we have walked through some simple steps to use a Custom Membership Provider
to allow BrightstarDB to handle the authentication of users on your MVC3 Web Application.

For simplicity, we have kept the same structure of membership information as we would find in
a default provider, but you can expand on this sample to include extra membership information
by simply adding more properties to the BrightstarDB entity.

Adding a Custom Role Provider

As with Custom Membership Providers, Custom Role Providers allow developers to use role
management within application when either the role information is stored in a data source
other than that supported by the default providers, or the role information is managed in a
schema which differs from that set out in the default providers.

In this topic we are going to add a Custom Role Provider to the Nerd Dinner sample so that we
can restrict certain areas from users who are not members of the appropriate role.

Adding the Custom Role Provider

		Add the following line to the INerdDinnerLogin interface’s properties:

ICollection<string> Roles { get; set; }

		To update the context classes, right click on the NerdDinnerContext.tt file and select “Run Custom Tool” from the context menu.

		Add a new class to your project and name it BrightstarRoleProvider.cs

		Make this new class inherit from the RoleProvider class (System.Web.Security namespace)

		Right click on the RoleProvider class name and choose “Implement abstract class” from the
context menu, this automatically creates all the override methods that your custom class can
implement.

Configuring the application to use the Brightstar Membership Provider

To configure your web application to use the Custom Role Provider, add the following to your
Web.config, inside the <system.web> section:

<roleManager enabled="true" defaultProvider="BrightstarRoleProvider">
 <providers>
 <clear/>
 <add name="BrightstarRoleProvider"
 type="BrightstarDB.Samples.NerdDinner.BrightstarRoleProvider" applicationName="/" />
 </providers>
</roleManager>

To set up the default login path for the web application, replace the <authentication> element
in the Web.config file with the following:

<authentication mode="Forms">
 <forms loginUrl="/Account/LogOn"/>
</authentication>

Adding functionality to the Custom Role Provider

The full code for the BrightstarRoleProvider.cs is given below, but can be broken down as
follows:

Initialization

We add an Initialize() method along with a GetConfigValue() helper method to handle retrieving
the configuration values from Web.config, and setting default values if it is unable to
retrieve a value.

GetRolesForUser()

This method returns the contents of the Roles collection that we added to the INerdDinnerLogin
entity as a string array.

AddUsersToRoles()

This method loops through the usernames and role names supplied, and looks up the logins
from the BrightstarDB store. When found, the role names are added to the Roles collection for
that login.

RemoveUsersFromRoles()

This method loops through the usernames and role names supplied, and looks up the
logins from the BrightstarDB store. When found, the role names are removed from the Roles
collection for that login.

IsUserInRole()

The BrightstarDB store is searched for the login who matches the supplied username, and then a
true or false is passed back depending on whether the role name was found in that login’s Role
collection. If the login is inactive or locked out for any reason, then a false value is
passed back.

GetUsersInRole()

BrightstarDB is queried for all logins that contain the supplied role name in their Roles
collection.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Security;
using BrightstarDB.Samples.NerdDinner.Models;

namespace BrightstarDB.Samples.NerdDinner
{
 public class BrightstarRoleProvider : RoleProvider
 {
 #region Initialization

 private string _applicationName;

 private static string GetConfigValue(string configValue, string defaultValue)
 {
 if (string.IsNullOrEmpty(configValue))
 return defaultValue;

 return configValue;
 }

 public override void Initialize(string name,
 System.Collections.Specialized.NameValueCollection config)
 {
 if (config == null) throw new ArgumentNullException("config");

 if (string.IsNullOrEmpty(name)) name = "NerdDinnerRoleProvider";

 if (String.IsNullOrEmpty(config["description"]))
 {
 config.Remove("description");
 config.Add("description", "Nerd Dinner Membership Provider");
 }
 base.Initialize(name, config);
 _applicationName = GetConfigValue(config["applicationName"],
 System.Web.Hosting.HostingEnvironment.ApplicationVirtualPath);
 }

 #endregion

 /// <summary>
 /// Gets a list of the roles that a specified user is in for the configured
 /// applicationName.
 /// </summary>
 /// <returns>
 /// A string array containing the names of all the roles that the specified user is
 /// in for the configured applicationName.
 /// </returns>
 /// <param name="username">The user to return a list of roles for.</param>
 public override string[] GetRolesForUser(string username)
 {
 if (string.IsNullOrEmpty(username)) throw new ArgumentNullException("username");
 //create a new BrightstarDB context using the values in Web.config
 var context = new NerdDinnerContext();
 //find a match for the username
 var login = context.NerdDinnerLogins.Where(l =>
 l.Username.Equals(username)).FirstOrDefault();
 if (login == null) return null;
 //return the Roles collection
 return login.Roles.ToArray();
 }

 /// <summary>
 /// Adds the specified user names to the specified roles for the configured
 /// applicationName.
 /// </summary>
 /// <param name="usernames">
 /// A string array of user names to be added to the specified roles.
 /// </param>
 /// <param name="roleNames">
 /// A string array of the role names to add the specified user names to.
 /// </param>
 public override void AddUsersToRoles(string[] usernames, string[] roleNames)
 {
 //create a new BrightstarDB context using the values in Web.config
 var context = new NerdDinnerContext();
 foreach (var username in usernames)
 {
 //find the match for the username
 var login = context.NerdDinnerLogins.Where(l =>
 l.Username.Equals(username)).FirstOrDefault();
 if (login == null) continue;
 foreach (var role in roleNames)
 {
 // if the Roles collection of the login does not already contain the
 // role, then add it
 if (login.Roles.Contains(role)) continue;
 login.Roles.Add(role);
 }
 }
 context.SaveChanges();
 }

 /// <summary>
 /// Removes the specified user names from the specified roles for the configured
 /// applicationName.
 /// </summary>
 /// <param name="usernames">
 /// A string array of user names to be removed from the specified roles.
 /// </param>
 /// <param name="roleNames">
 /// A string array of role names to remove the specified user names from.
 /// </param>
 public override void RemoveUsersFromRoles(string[] usernames, string[] roleNames)
 {
 //create a new BrightstarDB context using the values in Web.config
 var context = new NerdDinnerContext();
 foreach (var username in usernames)
 {
 //find the match for the username
 var login = context.NerdDinnerLogins.Where(l =>
 l.Username.Equals(username)).FirstOrDefault();
 if (login == null) continue;
 foreach (var role in roleNames)
 {
 //if the Roles collection of the login contains the role, then remove it
 if (!login.Roles.Contains(role)) continue;
 login.Roles.Remove(role);
 }
 }
 context.SaveChanges();
 }

 /// <summary>
 /// Gets a value indicating whether the specified user is in the specified role for
 /// the configured applicationName.
 /// </summary>
 /// <returns>
 /// true if the specified user is in the specified role for the configured
 /// applicationName; otherwise, false.
 /// </returns>
 /// <param name="username">The username to search for.</param>
 /// <param name="roleName">The role to search in.</param>
 public override bool IsUserInRole(string username, string roleName)
 {
 try
 {
 //create a new BrightstarDB context using the values in Web.config
 var context = new NerdDinnerContext();
 //find a match for the username
 var login = context.NerdDinnerLogins.Where(l =>
 l.Username.Equals(username)).FirstOrDefault();
 if (login == null || login.IsLockedOut || !login.IsActivated)
 {
 // no match or inactive automatically returns false
 return false;
 }
 // if the Roles collection of the login contains the role we are checking
 // for, return true
 return login.Roles.Contains(roleName.ToLower());
 }
 catch (Exception)
 {
 return false;
 }
 }

 /// <summary>
 /// Gets a list of users in the specified role for the configured applicationName.
 /// </summary>
 /// <returns>
 /// A string array containing the names of all the users who are members of the
 /// specified role for the configured applicationName.
 /// </returns>
 /// <param name="roleName">The name of the role to get the list of users for.</param>
 public override string[] GetUsersInRole(string roleName)
 {
 if (string.IsNullOrEmpty(roleName)) throw new ArgumentNullException("roleName");
 //create a new BrightstarDB context using the values in Web.config
 var context = new NerdDinnerContext();
 //search for all logins who have the supplied roleName in their Roles collection
 var usersInRole = context.NerdDinnerLogins.Where(l =>
 l.Roles.Contains(roleName.ToLower())).Select(l => l.Username).ToList();
 return usersInRole.ToArray();
 }

 /// <summary>
 /// Gets a value indicating whether the specified role name already exists in the
 /// role data source for the configured applicationName.
 /// </summary>
 /// <returns>
 /// true if the role name already exists in the data source for the configured
 /// applicationName; otherwise, false.
 /// </returns>
 /// <param name="roleName">The name of the role to search for in the data source.</param>
 public override bool RoleExists(string roleName)
 {
 //for the purpose of the sample the roles are hard coded
 return roleName.Equals("admin") ||
 roleName.Equals("editor") ||
 roleName.Equals("standard");
 }

 /// <summary>
 /// Gets a list of all the roles for the configured applicationName.
 /// </summary>
 /// <returns>
 /// A string array containing the names of all the roles stored in the data source
 /// for the configured applicationName.
 /// </returns>
 public override string[] GetAllRoles()
 {
 //for the purpose of the sample the roles are hard coded
 return new string[] { "admin", "editor", "standard" };
 }

 /// <summary>
 /// Gets an array of user names in a role where the user name contains the specified
 /// user name to match.
 /// </summary>
 /// <returns>
 /// A string array containing the names of all the users where the user name matches
 /// <paramref name="usernameToMatch"/> and the user is a member of the specified role.
 /// </returns>
 /// <param name="roleName">The role to search in.</param>
 /// <param name="usernameToMatch">The user name to search for.</param>
 public override string[] FindUsersInRole(string roleName, string usernameToMatch)
 {
 if (string.IsNullOrEmpty(roleName)) {
 throw new ArgumentNullException("roleName");
 }
 if (string.IsNullOrEmpty(usernameToMatch)) {
 throw new ArgumentNullException("usernameToMatch");
 }

 var allUsersInRole = GetUsersInRole(roleName);
 if (allUsersInRole == null || allUsersInRole.Count() < 1) {
 return new string[] { "" };
 }
 var match = (from u in allUsersInRole where u.Equals(usernameToMatch) select u);
 return match.ToArray();
 }

 #region Properties

 /// <summary>
 /// Gets or sets the name of the application to store and retrieve role information for.
 /// </summary>
 /// <returns>
 /// The name of the application to store and retrieve role information for.
 /// </returns>
 public override string ApplicationName
 {
 get { return _applicationName; }
 set { _applicationName = value; }
 }

 #endregion

 #region Not Implemented Methods

 /// <summary>
 /// Adds a new role to the data source for the configured applicationName.
 /// </summary>
 /// <param name="roleName">The name of the role to create.</param>
 public override void CreateRole(string roleName)
 {
 //for the purpose of the sample the roles are hard coded
 throw new NotImplementedException();
 }

 /// <summary>
 /// Removes a role from the data source for the configured applicationName.
 /// </summary>
 /// <returns>
 /// true if the role was successfully deleted; otherwise, false.
 /// </returns>
 /// <param name="roleName">The name of the role to delete.</param>
 /// <param name="throwOnPopulatedRole">If true, throw an exception if <paramref name="roleName"/> has
 /// one or more members and do not delete <paramref name="roleName"/>.</param>
 public override bool DeleteRole(string roleName, bool throwOnPopulatedRole)
 {
 //for the purpose of the sample the roles are hard coded
 throw new NotImplementedException();
 }

 #endregion
 }
}

Adding Secure Sections to the Website

To display the functionality of the new Custom Role Provider, add 2 new ViewResult methods to
the Home Controller. Notice that the [Authorize] MVC attribute has been added to each of the
methods to restrict access to users in those roles only.

[Authorize(Roles = "editor")]
public ViewResult SecureEditorSection()
{
 return View();
}

[Authorize(Roles = "admin")]
public ViewResult SecureAdminSection()
{
 return View();
}

Right click on the View() methods, and select “Add View” for each. This automatically adds the
SecureEditorSection.cshtml and SecureAdminSection.cshtml files to the Home view folder.

To be able to navigate to these sections, open the file Views/Shared/_Layout.cshtml and add
two new action links to the main navigation menu:

<div id="menucontainer">
 <ul id="menu">
 @Html.ActionLink("Home", "Index", "Home")
 @Html.ActionLink("Query SPARQL", "Index", "Sparql")
 @Html.ActionLink("Editors Only", "SecureEditorSection", "Home")
 @Html.ActionLink("Admin Only", "SecureAdminSection", "Home")

</div>

In a real world application, you would manage roles within your own administration section,
but for the purpose of this sample we are going with an overly simplistic way of adding a user
to a role.

Running the Application

Press F5 to run the application. You will notice a [Log On] link in the top right hand corner
of the screen. You can navigate to the registration page via the logon page.

[image: _images/1_register.png]
Register

Choosing a username, email and password will create a login entity for you in the BrightstarDB
store, and automatically log you in.

[image: _images/2_loggedin.png]
Logged In

The partial view that contains the login link code recognizes that you are logged in and
displays your username and a [Log Off] link. Clicking the links clears the cookies that keep
you logged in to the website.

[image: _images/3_logon.png]
Log On

You can log on again at any time by entering your username and password.

Role Authorization

Clicking on the navigation links to “Secure Editor Section” will allow access to that view.
Whereas the “Secure Admin Section” will not pass authorization - by default MVC redirects the
user to the login view.

Adding Linked Data Support

As data on the web becomes more predominant, it is becoming increasingly important to be able
to expose the underlying data of a web application in some way that is easy for external
applications to consume. While many web applications choose to expose bespoke APIs, these are
difficult for developers to use because each API has its own data structures and calls to
access data. However there are two well supported standards for publishing data on the web -
OData and SPARQL.

OData is an open standard, originally created by Microsoft, that provides a framework for
exposing a collection of entities as data accessible by URIs and represented in ATOM feeds.
SPARQL is a standard from the W3C for querying an RDF data store. Because BrightstarDB is,
under the hood, an RDF data store adding SPARQL support is pretty straightforward; and because
the BrightstarDB Entity Framework provides a set of entity classes, it is also very easy to
create an OData endpoint.

In this section we will show how to add these different forms of Linked Data to your web
application.

Create a SPARQL Action

The standard way of interfacing to a SPARQL endpoint is to either use an HTTP GET with a
?query= parameter that carries the SPARQL query as a string; or to use an HTTP POST which has
a form encoded in the POST request with a query field in it. For this example we will do the
latter as it is easiest to show and test with a browser-based API. We will create a query
action at /sparql, and include a form that allows a SPARQL query to be submitted through the
browser. To do this we need to create a new Controller to handle the /sparql URL.

Right-click on the Controllers folder and choose Add > Controller. In the dialog that is
displayed, change the controller name to SparqlController, and choose the Empty MVC Controller
template option from the drop-down list.

Edit the SparqlController.cs file to add the following two methods to the class:

public ViewResult Index()
{
 return View();
}

[HttpPost]
[ValidateInput(false)]
public ActionResult Index(string query)
{
 if (String.IsNullOrEmpty(query))
 {
 return View("Error");
 }
 var client = BrightstarService.GetClient();
 var results = client.ExecuteQuery("NerdDinner", query);
 return new FileStreamResult(results, "application/xml; charset=utf-16");
}

The first method just displays a form that will allow a user to enter a SPARQL query. The
second method handles a POST operation and extracts the SPARQL query and executes it,
returning the results to the browser directly as an XML data stream.

Create a new folder under Views called “Sparql” and add a new View to the Views\Sparql with
the name Index.cshtml. This view simply displays a form with a large enough text box to allow
a query to be entered:

<h2>SPARQL</h2>

@using (Html.BeginForm()) {
 @Html.ValidationSummary(true)

 <p>Enter your SPARQL query in the text box below:</p>

 @Html.TextArea("query",
 "SELECT ?d WHERE {?d a <http://brightstardb.com/namespaces/default/Dinner>}",
 10, 50, null)
 <p>
 <input type="submit" value="Query" />
 </p>
}

Now you can compile and run the web application again and click on the Query SPARQL link at
the top of the page (or simply navigate to the /sparql address for the web application). As
this is a normal browser HTTP GET, you will see the form rendered by the first of the two
action methods. By default this contains a SPARQL query that should work nicely against the
NerdDinner entity model, returning the URI identifiers of all Dinner entities in the
BrightstarDB data store.

[image: _images/mvc15.png]
Clicking on the Query button submits the form, simulating an HTTP POST from an external
application. The results are returned as raw XML, which will be formatted and displayed
depending on which browser you use and your browser settings (the screenshot below is from a
Firefox browser window).

[image: _images/mvc16.png]

Creating an OData Provider

The Open Data Protocol (OData) is an open web protocol for querying and updating data. An
OData provider can be added to BrightstarDB Entity Framework projects to allow OData consumers
to query the underlying data.

The following steps describe how to create an OData provider to an existing project (in this
example we add to the NerdDinner MVC Web Application project).

		Right-click on the project in the Solution Explorer and select Add New Item. In the dialog
that is displayed click on Web, and select WCF Data Service. Rename this to OData.svc and
click Add.

[image: _images/odata_1_additem.png]

		Change the class inheritance from DataService to EntityDataService, and add the name of the
BrightstarEntityContext to the type argument.

		Edit the body of the method with the following configuration settings:

public class OData : EntityDataService<NerdDinnerContext>
{
 // This method is called only once to initialize service-wide policies.
 public static void InitializeService(DataServiceConfiguration config)
 {
 config.SetEntitySetAccessRule("*", EntitySetRights.AllRead);
 config.SetEntitySetAccessRule("NerdDinnerLogin", EntitySetRights.None);
 config.SetServiceOperationAccessRule("*", ServiceOperationRights.All);
 config.DataServiceBehavior.MaxProtocolVersion = DataServiceProtocolVersion.V2;
 }
}

Note

The NerdDinnerLogin set has been given EntitySetRights of None. This hides the set (which
contains sensitive login information) from the OData service

		Rebuild and run the project. Browse to /OData.svc and you will see the standard OData
metadata page displaying the entity sets from BrightstarDB

[image: _images/odata_2_metadata.png]

		The OData service can now be queried using the standard OData conventions. There are a
few restrictions when using OData services with BrighstarDB.

[image: _images/odata_3_querying.png]

Consuming OData in PowerPivot

The data in BrighstarDB can be consumed by various OData consumers. In this topic we look at
consuming the data using PowerPivot (a list of recommended OData consumers can be found
odata.org/consumers [http://odata.org/consumers]).

To consume OData from BrightstarDB in PowerPivot:

		Open Excel, click the PowerPivot tab and open the PowerPivot window.
If you do not have PowerPivot installed, you can download it from powerpivot.com [http://powerpivot.com]

		To consume data from BrightstarDB, click the From Data Feeds button in the Get External Data section:

[image: _images/odataconsumer_1_feedbutton.png]

		Add a name for your feed, and enter the URL of the OData service file for your BrightstarDB application.

[image: _images/odataconsumer_2b_connect.png]

		Click Test Connection to make sure that you can connect to your OData service and then click Next

[image: _images/odataconsumer_3b_selectsets.png]

		Select the sets that you wish to consume and click Finish

[image: _images/odataconsumer_5b_success.png]

		This then shows all the data that is consumed from the OData service in the PowerPivot window.
When any data is added or edited in the BrightstarDB store, the data in the PowerPivot windows
can be updated by clicking the Refresh button.

[image: _images/odataconsumer_6_data.png]

Mapping to Existing RDF Data

Note

The source code for this example can be found in
[INSTALLDIR]\Samples\EntityFramework\EntityFrameworkSamples.sln

One of the things that makes BrightstarDB unique is the ability to map multiple object models
onto the same data and to map an object model onto existing RDF data. An example of this could
be when some contact data in the RDF FOAF vocabulary is imported into BrightstarDB and an application
wants to make use of that data. Using the BrightstarDB annotations it is possible to map
object classes and properties to existing types and property types.

The following FOAF RDF triples are added to the data store.

<http://www.brightstardb.com/people/david> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://xmlns.com/foaf/0.1/Person> .
<http://www.brightstardb.com/people/david> <http://xmlns.com/foaf/0.1/nick> "David" .
<http://www.brightstardb.com/people/david> <http://xmlns.com/foaf/0.1/name> "David Summers" .
<http://www.brightstardb.com/people/david> <http://xmlns.com/foaf/0.1/Organization> "Microsoft" .
<http://www.brightstardb.com/people/simon> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://xmlns.com/foaf/0.1/Person> .
<http://www.brightstardb.com/people/simon> <http://xmlns.com/foaf/0.1/nick> "Simon" .
<http://www.brightstardb.com/people/simon> <http://xmlns.com/foaf/0.1/name> "Simon Williamson" .
<http://www.brightstardb.com/people/simon> <http://xmlns.com/foaf/0.1/Organization> "Microsoft" .
<http://www.brightstardb.com/people/simon> <http://xmlns.com/foaf/0.1/knows> <http://www.brightstardb.com/people/david> .

Triples can be loaded into the BrightStarDB using the following code::

var triples = new StringBuilder();
triples.AppendLine(@"<http://www.brightstardb.com/people/simon> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://xmlns.com/foaf/0.1/Person> .");
triples.AppendLine(@"<http://www.brightstardb.com/people/simon> <http://xmlns.com/foaf/0.1/nick> ""Simon"" .");
triples.AppendLine(@"<http://www.brightstardb.com/people/simon> <http://xmlns.com/foaf/0.1/name> ""Simon Williamson"" .");
triples.AppendLine(@"<http://www.brightstardb.com/people/simon> <http://xmlns.com/foaf/0.1/Organization> ""Microsoft"" .");
triples.AppendLine(@"<http://www.brightstardb.com/people/simon> <http://xmlns.com/foaf/0.1/knows> <http://www.brightstardb.com/people/david> .");
client.ExecuteTransaction(storeName, null, triples.ToString());

Defining Mappings

To access this data from the Entity Framework, we need to define the mappings between the RDF
predictates and the properties on an object that represents an entity in the store.

The properties are marked up with the PropertyType attribute of the RDF predicate. If the
property “Name” should match the predicate http://xmlns.com/foaf/0.1/name, we add the
attribute [PropertyType("http://xmlns.com/foaf/0.1/name")].

We can add a NamespaceDeclaration assembly attribute to the project’s AssemblyInfo.cs file
to shorten the URIs used in the attributes. The NamespaceDeclaration attribute allows us to define
a short code for a URI prefix. For example:

[assembly: NamespaceDeclaration("foaf", "http://xmlns.com/foaf/0.1/")]

With this NamespaceDeclaration attribute in the project, the PropertyType attribute can
be shortened to [PropertyType("foaf:name")]

The RDF example given above would be mapped to an entity as given below::

[Entity("http://xmlns.com/foaf/0.1/Person")]
public interface IPerson
{
 [Identifier("http://www.brightstardb.com/people/")]
 string Id { get; }

 [PropertyType("foaf:nick")]
 string Nickname { get; set; }

 [PropertyType("foaf:name")]
 string Name { get; set; }

 [PropertyType("foaf:Organization")]
 string Organisation { get; set; }

 [PropertyType("foaf:knows")]
 ICollection<IPerson> Knows { get; set; }

 [InversePropertyType("foaf:knows")]
 ICollection<IPerson> KnownBy { get; set; }
}

Adding the [Identifier("http://www.brightstardb.com/people/")] to the ID of the interface,
means that when we can query and retrieve the Id without the entire prefix

Example

Once there is RDF data in the store, and an interface that maps an entity to the RDF data, the
data can then be accessed easy using the Entity Framework by using the correct connection
string to directly access the store.

var connectionString = "Type=http;endpoint=http://localhost:8090/brightstar;StoreName=Foaf";
var context = new FoafContext(connectionString);

If you have added the connection string into the Config file:

<add key="BrightstarDB.ConnectionString"
 value="Type=http;endpoint=http://localhost:8090/brightstar;StoreName=Foaf" />

Then you can initialise the content with a simple:

var context = new FoafContext();

For more information about connection strings, please read the “Connection Strings”
topic

The code below connects to the store to access all the people in the RDF data, it then writes
their name and place of employment, along with all the people they know or are known by.

var context = new FoafContext(connectionString);
var people = context.Persons.ToList();
var count = people.Count;
Console.WriteLine(@"{0} people found in raw RDF data", count);
Console.WriteLine();
foreach(var person in people)
{
 var knows = new List<IPerson>();
 knows.AddRange(person.Knows);
 knows.AddRange(person.KnownBy);

 Console.WriteLine(@"{0} ({1}), works at {2}", person.Name, person.Nickname, person.Organisation);
 Console.WriteLine(knows.Count == 1 ? string.Format(@"{0} knows 1 other person", person.Nickname)
 : string.Format(@"{0} knows {1} other people", person.Nickname, knows.Count));
 foreach(var other in knows)
 {
 Console.WriteLine(@" {0} at {1}", other.Name, other.Organisation);
 }
 Console.WriteLine();
}

 © Copyright 2013, Kal Ahmed, Graham Moore.
 Created using Sphinx 1.1.3.

_images/mvc7.png
3 sapts.

5 Views

B [Home
%) Create.cshtml
) Delete.cshtml
) Detais.cshtml
) Edit.cshtml

. Find Re: 3 Solution Explorer [N

_static/up.png

_images/1_register.png
[Logon]

BrightstarDB Nerd Dinner

Create a New Account

Use the form below to create a new account.
Passwords are required to be a minimum of 6 characters in length.

Account Information

User name
Email address
Password

Confirm password

Register

Admin_API.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		BrightstarDB 1.3 documentation »

 		Developing With BrightstarDB »

Admin API

In addition to the APIs already covered for updating and querying stores, there are a number
of useful administration APIs also provided by BrightstarDB. A Visual Studio solution file
containing some sample applications that use these APIs can be found in
[INSTALLDIR]/Samples/StoreAdmin.

Managing Commit Points

Note

Commit Points are a feature that is only available with the Append-Only store persistence
type. If you are accessing a store that uses the Rewrite persistence type, operations on a
Commit Points are not supported and will raise a BrightstarClientException if an attempt is
made to query against or revert to a previous Commit Point.

Each time a transaction is committed to a BrightstarDB store, a new commit point is written.
Unlike a traditional database log file, a commit point provides a complete snapshot of the
state of the BrightstarDB store immediately after the commit took place. This means that it is
possible to query the BrightstarDB store as it existed at some previous point in time. It is
also possible to revert the store to a previous commit point, but in keeping with the
BrightstarDB architecture, this operation doesn’t actually delete the commit points that
followed, but instead makes a new commit point which duplicates the commit point selected for
the revert.

To Retrieve a List of Commit Points

The method to retrieve a list of commit points from a store is GetCommitPoints() on the
IBrightstarService interface. There are two versions of this method. The first takes a store
name and skip and take parameters to define a subrange of commit points to retrieve, the
second adds a date/time range in the form of two date time parameters to allow more specific
selection of a particular commit point range. The code below shows an example of using the
first of these methods:

// Create a client - the connection string used is configured in the App.config file.
var client = BrightstarService.GetClient();
foreach(var commitPointInfo in client.GetCommitPoints(storeName, 0, 10))
{
 // Do something with each commit point
}

To avoid operations that return potentially very large results sets, the server will not
return more than 100 commit points at a time, attempting to set the take parameter higher than
100 will result in an ArgumentException being raised.

The structures returned by the GetCommitPoints() method implement the ICommitPointInfo
interface, this interface provides access to the following properties:

		StoreName

		the name of the store that the commit point is associated with.

		Id

		the commit point identifier. This identifier is unique amongst all commit points in the same store.

		CommitTime

		the UTC date/time when the commit was made.

		JobId

		the GUID identifier of the transaction job that resulted in the commit. The value
of this property may be Guid.Empty for operations that were not associated with a
transaction job (e.g initial store creation).

Querying A Commit Point

To execute a SPARQL query against a particular commit point of a store, use the overload of
the ExecuteQuery() method that takes an ICommitPointInfo parameter rather than a store name
string parameter:

var resultsStream = client.ExecuteQuery(commitPointInfo, sparqlQuery);

The resulting stream can be processed in exactly the same way as if you had queried the
current state of the store.

Reverting The Store

Reverting the store takes a copy of an old commit point and pushes it to the top of the commit
point list for the store. Queries and updates are then applied to the store as normal, and the
data modified by commit points since the reverted one is effectively hidden.

This operation does not delete the commit points added since the reverted one, those commit
points are still there as long as a Coalesce operation is not performed, meaning that it is
possible to “re-revert” the store to its state before the revert was applied. The method to
revert a store is also on the IBrightstarService interface and is shown below:

var client = BrightstarService.GetClient();
ICommitPointInfo commitPointInfo = ... ; // Code to get the commit point we want to revert to
client.RevertToCommitPoint(storeName, commitPointInfo); // Reverts the store

Consolidate The Store

Over time the size of the BrightstarDB store will grow. Each separate commit adds new data to
the store, even if the commit deletes triples from the store the commit itself will extend the
store file. The ConsolidateStore() operation enables the BrightstarDB store to be compressed,
removing all commit point history. The operation rewrites the store data file to a shadow file
and then replaces the existing data file with the new compressed data file and updates the
master file. The consolidate operation blocks new writers, but allows readers to continue
accessing the data file up until the shadow file is prepared. The code required to start a
consolidate operation is shown below:

var client = BrightstarService.GetClient();
var consolidateJob = client.ConsolidateStore(storeName);

This method submits the consolidate operation to the store as a long-running job. Because this
operation may take some time to complete the call does not block, but instead returns an
IJobInfo structure which can be used to monitor the job. The code below shows a typical loop
for monitoring the consolidate job:

while (!(consolidateJob.JobCompletedOk || consolidateJob.JobCompletedWithErrors))
{
 System.Threading.Thread.Sleep(500);
 consolidateJob = client.GetJobInfo(storeName, consolidateJob.JobId);
}

 © Copyright 2013, Kal Ahmed, Graham Moore.
 Created using Sphinx 1.1.3.

_static/plus.png

Entity_Framework.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		BrightstarDB 1.3 documentation »

 		Developing With BrightstarDB »

Entity Framework

The BrightstarDB Entity Framework is the main way of working with BrightstarDB instances. For
those of you wanting to work with the underlying RDF directly please see the section on
RDF Client API. BrightstarDB allows developers to define a data model
using .NET interface definitions. BrightstarDB tools introspect these definitions to create
concrete classes that can be used to create, and update persistent data. If you haven’t read
the Getting Started section then we recommend that you do. The sample
provided there covers most of what is required for creating most data models. The following
sections in the developer guide provide more in-depth explanation of how things work along
with more complex examples.

Basics

The BrightstarDB Entity Framework tooling is very simple to use. This guide shows how to get
going, the rest of this section provides more in-depth information.

The process of using the Entity Framework is to:

		Include the BrightstarDB Entity Context item into a project.

		Define the interfaces for the data objects that should be persistent.

		Run the custom tool on the Entity Context text template file.

		Use the generated context to create, query or get and modify objects.

Including the BrightstarDB Entity Context

The Brightstar Entity Context is a text template that when run introspects the other
code elements in the project and generates a number of classes and a context in a single file
that can be found under the context file in Visual Studio. To add a new
BrightstarEntityContext add a new item to the project. Locate the item in the list called
Brightstar Entity Context, rename it if required, and add to the current project.

[image: _images/getting-started-add-entity-context.png]
Define Interfaces

Interfaces are used to define a data model contract. Only interfaces marked with the Entity
attribute will be processed by the text template. The following interfaces define a model that
captures the idea of people working for an company.:

[Entity]
public interface IPerson
{
 string Name { get; set; }
 DateTime DateOfBirth { get; set; }
 string CV { get; set; }
 ICompany Employer { get; set; }
}

[Entity]
public interface ICompany
{
 string Name { get; set; }
 [InverseProperty("Employer")]
 ICollection<IPerson> Employees { get; }
}

Including a Brightstar Entity Definition Item

One quick way to include the outline of a BrightstarDB entity in a project is to right click
on the project in the solution explorer and click Add New Item. Then select the
Brightstar Entity Definition from the list and update the name.

[image: _images/ef-include-entity-def.png]
This will add the following code file into the project.:

[Entity]
public interface IMyEntity1
{
 /// <summary>
 /// Get the persistent identifier for this entity
 /// </summary>
 string Id { get; }

 // TODO: Add other property references here
}

Run the MyEntityContext.tt Custom Tool

To ensure that the generated classes are up to date right click on the .tt file in the
solution explorer and select Run Custom Tool. This will ensure that the all the
annotated interfaces are turned into concrete classes.

Note

The custom tool is not run automatically on every rebuild so after changing an interface
remember to run it.

Using a Context

A context can be thought of as a connection to a BrightstarDB instance. It provides access to
the collections of domain objects defined by the interfaces. It also tracks all changes to
objects and is responsible for executing queries and committing transactions.

A context can be opened with a connection string. If the store named does not exist it will be
created. See the connection strings section for more information
on allowed configurations. The following code opens a new context connecting to an embedded
store:

var dataContext = new MyEntityContext("Type=embedded;StoresDirectory=c:\\brightstardb;StoreName=test");

The context exposes a collection for each entity type defined. For the types we defined above
the following collections are exposed on a context:

var people = dataContext.Persons;
var companies = dataContext.Companies;

Each of these collections are in fact IQueryable and as such support LINQ queries over the
model. To get an entity by a given property the following can be used:

var brightstardb = dataContext.Companies.Where(
 c => c.Name.Equals("BrightstarDB")).FirstOrDefault();

Once an entity has been retrieved it can be modified or related entities can be fetched:

// fetching employees
var employeesOfBrightstarDB = brightstardb.Employees;

// update the company
brightstardb.Name = "BrightstarDB";

New entities can be created either via the main collection or by using the new keyword
and attaching the object to the context:

// creating a new entity via the context collection
var bob = dataContext.Persons.Create();
bob.Name = "bob";

// or created using new and attached to the context
var bob = new Person() { Name = "Bob" };
dataContext.Persons.Add(bob);

Once a new object has been created it can be used in relationships with other objects. The
following adds a new person to the collection of employees. The same relationship could also
have been created by setting the Employer property on the person:

// Adding a new relationship between entities
var bob = dataContext.Persons.Create();
bob.Name = "bob";
brightstardb.Employees.Add(bob);

// The relationship can also be defined from the 'other side'.
var bob = dataContext.Persons.Create();
bob.Name = "bob";
bob.Employer = brightstardb;

Saving the changes that have occurred is easily done by calling a method on the context:

dataContext.SaveChanges();

Annotations

The BrightstarDB entity framework relies on a few annotation types in order to accurately
express a data model. This section describes the different annotations and how they should be
used. The only required attribute annotation is Entity. All other attributes give different
levels of control over how the object model is mapped to RDF.

TypeIdentifierPrefix Attribute

BrightstarDB makes use of URIs to identify class types and property types. These URI values
can be added on each property but to improve clarity and avoid mistakes it is possible to
configure a base URI that is then used by all attributes. It is also possible to define models
that do not have this attribute set.

The type identifier prefix can be set in the AssemblyInfo.cs file. The example below shows how
to set this configuration property:

[assembly: TypeIdentifierPrefix("http://www.mydomain.com/types/")]

Entity Attribute

The entity attribute is used to indicate that the annotated interface should be included in
the generated model. Optionally, a full URI or a URI postfix can be supplied that defines the
identity of the class. The following examples show how to use the attribute. The example with
just the value ‘Person’ uses a default prefix if one is not specified as described above:

// example 1.
[Entity]
public interface IPerson { ... }

// example 2.
[Entity("Person")]
public interface IPerson { ... }

// example 3.
[Entity("http://xmlns.com/foaf/0.1/Person")]
public interface IPerson { ... }

Example 3. above can be used to map .NET models onto existing RDF vocabularies. This allows
the model to create data in a given vocabulary but it also allows models to be mapped onto
existing RDF data.

Identity Property

The Identity property can be used to get and set the underlying identity of an Entity.
The following example shows how this is defined:

// example 1.
[Entity("Person")]
public interface IPerson {
 string Id { get; }
}

No annotation is required. It is also acceptable for the property to be called ID, {Type}Id or
{Type}ID where {Type} is the name of the type. E.g: PersonId or PersonID.

Identifier Attribute

Id property values are URIs, but in some cases it is necessary to work with simpler string
values such as GUIDs or numeric values. To do this the Id property can be decorated with the
identifier attribute. The identifier attribute requires a string property that is the
identifier prefix - this can be specified either as a URI string or as {prefix}:{rest of URI}
where {prefix} is a namespace prefix defined by the Namespace Declaration Attribute (see below):

// example 1.
[Entity("Person")]
public interface IPerson {
 [Identifier("http://www.mydomain.com/people/")]
 string Id { get; }
}

// example 2.
[Entity]
public interface ISkill {
 [Identifier("ex:skills#")]
 string Id {get;}
}
// NOTE: For the above to work there must be an assembly attribute declared like this:
[assembly:NamespaceDeclaration("ex", "http://example.org/")]

Property Inclusion

Any .NET property with a getter or setter is automatically included in the generated type, no
attribute annotation is required for this:

// example 1.
[Entity("Person")]
public interface IPerson {
 string Id { get; }
 string Name { get; set; }
}

Inverse Property Attribute

When two types reference each other via different properties that in fact reflect different
sides of the same association then it is necessary to declare this explicitly. This can be
done with the InverseProperty attribute. This attribute requires the name of the .NET property
on the referencing type to be specified:

// example 1.
[Entity("Person")]
public interface IPerson {
 string Id { get; }
 ICompany Employer { get; set; }
}

[Entity("Company")]
public interface IPerson {
 string Id { get; }
 [InverseProperty("Employer")]
 ICollection<IPerson> Employees { get; set; }
}

The above example shows that the inverse of Employees is Employer. This means that if
the Employer property on P1 is set to C1 then getting C1.Employees will
return a collection containing P1.

Namespace Declaration Attribute

When using URIs in annotations it is cleaner if the complete URI doesn’t need to be entered
every time. To support this the NamespaceDeclaration assembly attribute can be used, many
times if needed, to define namespace prefix mappings. The mapping takes a short string and the
URI prefix to be used.

The attribute can be used to specify the prefixes required (typically assembly attributes are
added to the AssemblyInfo.cs code file in the Properties folder of the project):

[assembly: NamespaceDeclaration("foaf", "http://xmlns.com/foaf/0.1/")]

Then these prefixes can be used in property or type annotation using the CURIE syntax of
{prefix}:{rest of URI}:

[Entity("foaf:Person")]
public interface IPerson { ... }

Property Type Attribute

While no decoration is required to include a property in a generated class, if the property is
to be mapped onto an existing RDF vocabulary then the PropertyType attribute can be used to do
this. The PropertyType attribute requires a string property that is either an absolute or
relative URI. If it is a relative URI then it is appended to the URI defined by the
TypeIdentifierPrefix attribute or the default base type URI. Again, prefixes defined by a
NamespaceDeclaration attribute can also be used:

// Example 1. Explicit type declaration
[PropertyType("http://www.mydomain.com/types/name")]
string Name { get; set; }

// Example 2. Prefixed type declaration.
// The prefix must be declared with a NamespaceDeclaration attribute
[PropertyType("foaf:name")]
string Name { get; set; }

// Example 3. Where "name" is appended to the default namespace
// or the one specified by the TypeIdentifierPrefix in AssemblyInfo.cs.
[PropertyType("name")]
string Name { get; set; }

Inverse Property Type Attribute

Allows inverse properties to be mapped to a given RDF predicate type rather than a .NET
property name. This is most useful when mapping existing RDF schemas to support the case where
the .NET data-binding only requires the inverse of the RDF property:

// Example 1. The following states that the collection of employees
// is found by traversing the "http://www.mydomain.com/types/employer"
// predicate from instances of Person.
[InversePropertyType("http://www.mydomain.com/types/employer")]
ICollection<IPerson> Employees { get; set; }

Additional Custom Attributes

Any custom attributes added to the entity interface that are not in the
BrightstarDB.EntityFramework namespace will be automatically copied through into the generated
class. This allows you to easily make use of custom attributes for validation, property
annotation and other purposes.

As an example, the following interface code:

[Entity("http://xmlns.com/foaf/0.1/Person")]
public interface IFoafPerson : IFoafAgent
{
 [Identifier("http://www.networkedplanet.com/people/")]
 string Id { get; }

 [PropertyType("http://xmlns.com/foaf/0.1/nick")]
 [DisplayName("Also Known As")]
 string Nickname { get; set; }

 [PropertyType("http://xmlns.com/foaf/0.1/name")]
 [Required]
 [CustomValidation(typeof(MyCustomValidator), "ValidateName",
 ErrorMessage="Custom error message")]
 string Name { get; set; }
}

would result in this generated class code:

 public partial class FoafPerson : BrightstarEntityObject, IFoafPerson
 {
 public FoafPerson(BrightstarEntityContext context, IDataObject dataObject) : base(context, dataObject) { }
 public FoafPerson() : base() { }
 public System.String Id { get {return GetIdentity(); } set { SetIdentity(value); } }
 #region Implementation of BrightstarDB.Tests.EntityFramework.IFoafPerson

 [System.ComponentModel.DisplayNameAttribute("Also Known As")]
 public System.String Nickname
 {
 get { return GetRelatedProperty<System.String>("Nickname"); }
 set { SetRelatedProperty("Nickname", value); }
 }

 [System.ComponentModel.DataAnnotations.RequiredAttribute]
 [System.ComponentModel.DataAnnotations.CustomValidationAttribute(typeof(MyCustomValidator),
 "ValidateName", ErrorMessage="Custom error message")]
 public System.String Name
 {
 get { return GetRelatedProperty<System.String>("Name"); }
 set { SetRelatedProperty("Name", value); }
 }

#endregion
 }

It is also possible to add custom attributes to the generated entity class itself. Any custom
attributes that are allowed on both classes and interfaces can be added to the entity
interface and will be automatically copied through to the generated class in the same was as
custom attributes on properties. However, if you need to use a custom attribute that is
allowed on a class but not on an interface, then you must use the
BrightstarDB.EntityFramework.ClassAttribute attribute. This custom attribute can be added to
the entity interface and allows you to specify a different custom attribute that should be
added to the generated entity class. When using this custom attribute you should ensure that
you either import the namespace that contains the other custom attribute or reference the
other custom attribute using its fully-qualified type name to ensure that the generated class
code compiles successfully.

For example, the following interface code:

[Entity("http://xmlns.com/foaf/0.1/Person")]
[ClassAttribute("[System.ComponentModel.DisplayName(\\"Person\\")]")]
public interface IFoafPerson : IFoafAgent
{
 // ... interface definition here
}

would result in this generated class code:

[System.ComponentModel.DisplayName("Person")]
public partial class FoafPerson : BrightstarEntityObject, IFoafPerson
{
 // ... generated class code here
}

Note that the DisplayName custom attribute is referenced using its fully-qualified type name
(System.ComponentModel.DisplayName), as the generated context code will not include a
using System.ComponentModel; namespace import. Alternatively, this interface code would also
generate class code that compiles correctly:

using System.ComponentModel;

[Entity("http://xmlns.com/foaf/0.1/Person")]
[ClassAttribute("[DisplayName(\\"Person\\")]")]
public interface IFoafPerson : IFoafAgent
{
 // ... interface definition here
}

Patterns

This section describes how to model common patterns using BrightstarDB Entity Framework. It
covers how to define one-to-one, one-to-many, many-to-many and reflexive relationships.

Examples of these relationship patterns can be found in the Tweetbox sample.

One-to-One

Entities can have one-to-one relationships with other entities. An example of this would be
the link between a user and a the authorization to another social networking site. The
one-to-one relationship would be described in the interfaces as follows:

[Entity]
public interface IUser {
 ...
 ISocialNetworkAccount SocialNetworkAccount { get; set; }
 ...
}

[Entity]
public interface ISocialNetworkAccount {
 ...
 [InverseProperty("SocialNetworkAccount")]
 IUser TwitterAccount { get; set; }
 ...
}

One-to-Many

A User entity can be modeled to have a one-to-many relationship with a set of Tweet entities,
by marking the properties in each interface as follows:

[Entity]
public interface ITweet {
 ...
 IUser Author { get; set; }
 ...
}

[Entity]
public interface IUser {
 ...
 [InverseProperty("Author")]
 ICollection<ITweet> Tweets { get; set; }
 ...
}

Many-to-Many

The Tweet entity can be modeled to have a set of zero or more Hash Tags. As any Hash Tag
entity could be used in more than one Tweet, this uses a many-to-many relationship pattern:

[Entity]
public interface ITweet {
 ...
 ICollection<IHashTag> HashTags { get; set; }
 ...
}

[Entity]
public interface IHashTag {
 ...
 [InverseProperty("HashTags")]
 ICollection<ITweet> Tweets { get; set; }
 ...
}

Reflexive relationship

A reflexive relationship (that refers to itself) can be defined as in the example below:

[Entity]
public interface IUser {
 ...
 ICollection<IUser> Following { get; set; }

 [InverseProperty("Following")]
 ICollection<IUser> Followers { get; set; }
 ...
}

Behaviour

The classes generated by the BrightstarDB Entity Framework deal with data and data
persistence. However, most applications require these classes to have behaviour. All generated
classes are generated as .NET partial classes. This means that another file can contain
additional method definitions. The following example shows how to add additional methods to a
generated class.

Assume we have the following interface definition:

[Entity]
public interface IPerson {
 string Id { get; }
 string FirstName { get; set; }
 string LastName { get; set; }
}

To add custom behaviour the new method signature should first be added to the interface. The
example below shows the same interface but with an added method signature to get a user’s full
name:

[Entity]
public interface IPerson {
 string Id { get; }
 string FirstName { get; set; }
 string LastName { get; set; }
 // new method signature
 string GetFullName();
}

After running the custom tool on the EntityContext.tt file there is a new class called Person.
To add additional methods add a new .cs file to the project and add the following class
declaration:

public partial class Person {
 public string GetFullName() {
 return FirstName + " " + LastName;
 }
}

The new partial class implements the additional method declaration and has access to all the
data properties in the generated class.

Optimistic Locking

The Entity Framework provides the option to enable optimistic locking when working with the
store. Optimistic locking uses a well-known version number property (the property predicate
URI is http://www.brightstardb.com/.well-known/model/version) to track the version number of
an entity, when making an update to an entity the version number is used to determine if
another client has concurrently updated the entity. If this is detected, it results in an
exception of the type BrightstarDB.Client.TransactionPreconditionsFailedException being raised.

Enabling Optimistic Locking

Optimistic locking can be enabled either through the connection string (giving the user
control over whether or not optimistic locking is enabled) or through code (giving the control
to the programmer).

To enable optimistic locking in a connection string, simply add “optimisticLocking=true” to
the connection string. e.g.

type=http;endpoint=http://localhost:8090/brightstar;storeName=myStore;optimisticLocking=true

To enable optimistic locking from code, use the optional optimisticLocking parameter on the
constructor of the context class e.g.:

var myContext = new MyEntityContext(connectionString, true);

Note

The programmatic setting always overrides the setting in the connection string - this gives
the programmer final control over whether optimistic locking is used. The programmer can
also prevent optimistic locking from being used by passing false as the value of the
optimisticLocking parameter of the constructor of the context class.

Handling Optimistic Locking Errors

Optimistic locking errors only occur when the SaveChanges() method is called on the context
class. The error is notified by raising an exception of the type
BrightstarDB.Client.TransactionPreconditionsFailedException. When this exception is caught by
your code, you have two basic options to choose from. You can apply each of these options
separately to each object modified by your update.

		Attempt the save again but first update the local context object with data from the
server. This will save all the changes you have made EXCEPT for those that were detected on
the server. This is the “store wins” scenario.

		Attempt the save again, but first update only the version numbers of the local context
object with data from the server. This will keep all the changes you have made, overwriting
any concurrent changes that happened on the server. This is the “client wins” scenario.

To attempt the save again, you must first call the Refresh() method on the context object.
This method takes two paramters - the first parameter specifies the mode for the refresh, this
can either be RefreshMode.ClientWins or RefreshMode.StoreWins depending on the scenario to be
applied. The second parameter is the entity or collection of entities to which the refresh is
to be applied. You apply different refresh strategies to different entities within the same
update if you wish. Once the conflicted entities are refreshed, you can then make a call to
the SaveChanges() method of the context once more. The code sample below shows this in
outline:

try
{
 myContext.SaveChanges();
}
catch(TransactionPreconditionsFailedException)
{
 // Refresh the conflicted object(s) - in this case with the StoreWins mode
 myContext.Refresh(RefreshMode.StoreWins, conflictedEntity);
 // Attempt the save again
 myContext.SaveChanges();
}

Note

On stores with a high degree of concurrent updates it is possible that the second call to
SaveChanges() could also result in an optimistic locking error because objects have been
further modified since the initial optimistic locking failure was reported. Production code
for highly concurrent environments should be written to handle this possibility.

LINQ Restrictions

Supported LINQ Operators

The LINQ query processor in BrightstarDB has some restrictions, but supports the most commonly
used core set of LINQ query methods. The following table lists the supported query methods.
Unless otherwise noted the indexed variant of LINQ query methods are not supported.

		Method
		Notes

		Any
		Supported as first result operator. Not supported as second or subsequent result operator

		All
		Supported as first result operator. Not supported as second or subsequent result operator

		Average
		Supported as first result operator. Not supported as second or subsequent result operator.

		Cast
		Supported for casting between Entity Framework entity types only

		Contains
		Supported for literal values only

		Count
		Supported with or without a Boolean filter expression. Supported as first result operator. Not supported as second or subsequent result operator.

		Distinct
		Supported for literal values. For entities Distinct() is supported but only to eliminate duplicates of the same Id any override of .Equals on the entity class is not used.

		First
		Supported with or without a Boolean filter expression

		LongCount
		Supported with or without a Boolean filter expression. Supported as first result operator. Not supported as second or subsequent result operator.

		Max
		Supported as first result operator. Not supported as second or subsequent result operator.

		Min
		Supported as first result operator. Not supported as second or subsequent result operator.

		OfType<TResult>
		Supported only if TResult is an Entity Framework entity type

		OrderBy
		

		OrderByDescending
		

		Select
		

		SelectMany
		

		Single
		Supported with or without a Boolean filter expression

		SingleOrDefault
		Supported with or without a Boolean filter expression

		Skip
		

		Sum
		Supported as first result operator. Not supported as second or subsequent result operator.

		Take
		

		ThenBy
		

		ThenByDescending
		

		Where
		

Supported Class Methods and Properties

In general, the translation of LINQ to SPARQL cannot translate methods on .NET datatypes into
functionally equivalent SPARQL. However we have implemented translation of a few commonly used
String, Math and DateTime methods as listed in the following table.

The return values of these methods and properties can only be used in the filtering of queries
and cannot be used to modify the return value. For example you can test that
foo.Name.ToLower().Equals("somestring"), but you cannot return the value foo.Name.ToLower().

		.NET function
		SPARQL Equivalent

		String Functions

		p0.StartsWith(string s)
		STRSTARTS(p0, s)

		p0.StartsWith(string s, bool ignoreCase,
CultureInfo culture)
		REGEX(p0, “^” + s, “i”) if ignoreCase is true;
STRSTARTS(p0, s) if ignoreCase is false

		p0.StartsWith(string s,
StringComparison comparisonOptions)
		REGEX(p0, “^” + s, “i”) if comparisonOptions is
StringComparison.CurrentCultureIgnoreCase,
StringComparison.InvariantCultureIgnoreCase or
StringComparison.OrdinalIgnoreCase;
STRSTARTS(p0, s) otherwise

		p0.EndsWith(string s)
		STRENDS(p0, s)

		
		p0.StartsWith(string s, bool ignoreCase,

		CultureInfo culture)

		REGEX(p0, s + “$”, “i”) if ignoreCase is true;
STRENDS(p0, s) if ignoreCase is false

		
		p0.StartsWith(string s, StringComparison

		comparisonOptions)

		REGEX(p0, s + “$”, “i”) if comparisonOptions is
StringComparison.CurrentCultureIgnoreCase,
StringComparison.InvariantCultureIgnoreCase or
StringComparison.OrdinalIgnoreCase;
STRENDS(p0, s) otherwise

		p0.Length
		STRLEN(p0)

		p0.Substring(int start)
		SUBSTR(p0, start)

		p0.Substring(int start, int len)
		SUBSTR(p0, start, end)

		p0.ToUpper()
		UCASE(p0)

		p0.ToLower()
		LCASE(p0)

		Date Functions

		p0.Day
		DAY(p0)

		p0.Hour
		HOURS(p0)

		p0.Minute
		MINUTES(p0)

		p0.Month
		MONTH(p0)

		p0.Second
		SECONDS(p0)

		p0.Year
		YEAR(p0)

		Math Functions

		Math.Round(decimal d)
		ROUND(d)

		Math.Round(double d)
		ROUND(d)

		Math.Floor(decimal d)
		FLOOR(d)

		Math.Floor(double d)
		FLOOR(d)

		Math.Ceiling(decimal d)
		CEIL(d)

		Math.Ceiling(decimal d)
		CEIL(d)

		Regular Expressions

		
		Regex.IsMatch(string p0,

		string expression,
RegexOptions options)

		REGEX(p0, expression, flags)
Flags are generated from the options parameter.
The supported RegexOptions are IgnoreCase,
Multiline, Singleline and
IgnorePatternWhitespace (or any combination of
these).

The static method Regex.IsMatch() is supported when used to filter on a string property
in a LINQ query e.g.:

context.Persons.Where(p => Regex.IsMatch(p.Name, "^a.*e$", RegexOptions.IgnoreCase));

However, please note that the regular expression options that can be used is limited to a
combination of IgnoreCase, Multiline, Singleline and IgnorePatternWhitespace.

OData

The Open Data Protocol (OData) is an open web protocol for querying data. An OData provider can be added to BrightstarDB Entity Framework projects to allow OData
consumers to query the underlying data in the store.

Note

Identifier Attributes must exist on any BrightstarDB entity
interfaces in order to be processed by an OData consumer

For more details on how to add a BrightstarDB OData service to your projects, read
Adding Linked Data Support in the MVC Nerd Dinner samples
chapter

OData Restrictions

The OData v2 protocol implemented by BrightstarDB does not support properties that contain a
collection of literal values. This means that BrightstarDB entity properties that are of type
ICollection<literal type> are not supported. Any properties of this type will not be
readable via the OData service.

An OData provider connected to the BrightstarDB Entity Framework as a few restrictions on how
it can be queried.

Expand

		Second degree expansions are not currently supported. e.g.
Department('5598556a-671a-44f0-b176-502da62b3b2f')?$expand=Persons/Skills

Filtering

		The arithmetic filter Mod is not supported

		The string filter functions int indexof(string p0, string p1),
string trim(string p0) and trim(string p0, string p1) are not supported.

		The type filter functions bool IsOf(type p0) and bool IsOf(expression p0, type p1)
are not supported.

Format

Microsoft WCF Data Services do not currently support the $format query option.
To return OData results formatted in JSON, the accept headers can be set in the web request
sent to the OData service.

SavingChanges Event

The generated EntityFramework context class exposes an event, SavingChanges. This event is
raised during the processing of the SaveChanges() method before any data is committed back to
the Brightstar store. The event sender is the context class itself and in the event handler
you can use the TrackedObjects property of the context class to iterate through all entities
that the context class has retrieved from the BrightstarDB store. Entities expose an IsModified
property which can be used to determine if the entity has been newly created or locally
modified. The sample code below uses this to update a Created and LastModified
timestamp on any entity that implements the ITrackable interface.:

private static void UpdateTrackables(object sender, EventArgs e)
{
 // This method is invoked by the context.
 // The sender object is the context itself
 var context = sender as MyEntityContext;

 // Iterate through just the tracked objects that implement the ITrackable interface
 foreach(var t in context.TrackedObjects
 .Where(x=>x is ITrackable && x.IsModified)
 .Cast<ITrackable>())
 {
 // If the Created property is not yet set, it will have DateTime.MinValue as its defaulft value
 // We can use this fact to determine if the Created property needs setting.
 if (t.Created == DateTime.MinValue) t.Created = DateTime.Now;

 // The LastModified property should always be updated
 t.LastModified = DateTime.Now;
 }
}

Note

The source code for this example can be found in [INSTALLDIR]\Samples\EntityFramework\EntityFrameworkSamples.sln

INotifyPropertyChanged and INotifyCollectionChanged Support

The classes generated by the Entity Framework provide support for tracking local changes. All
generated entity classes implement the System.ComponentModel.INotifyPropertyChanged [http://msdn.microsoft.com/en-us/library/system.componentmodel.inotifypropertychanged%28v=vs.100%29.aspx]
interface and fire a notification event any time a property with a single value is modified.
All collections exposed by the generated classes implement the
System.Collections.Specialized.INotifyCollectionChanged [http://msdn.microsoft.com/en-us/library/system.collections.specialized.inotifycollectionchanged%28v=vs.100%29.aspx] interface and fire a notification
when an item is added to or removed from the collection or when the collection is reset.

There are a few points to note about using these features with the Entity Framework:

Firstly, although the generated classes implement the INotifyPropertyChanged interface, your
code will typically use the interfaces. To attach a handler to the PropertyChanged event, you
need an instance of INotifyPropertyChanged in your code. There are two ways to achieve this -
either by casting or by adding INotifyPropertyChanged to your entity interface. If casting you
will need to write code like this:

// Get an entity to listen to
var person = _context.Persons.Where(x=>x.Name.Equals("Fred")).FirstOrDefault();

// Attach the NotifyPropertyChanged event handler
(person as INotifyPropertyChanged).PropertyChanged += HandlePropertyChanged;

Alternatively it can be easier to simply add the INotifyPropertyChanged interface to your
entity interface like this:

[Entity]
public interface IPerson : INotifyPropertyChanged
{
 // Property definitions go here
}

This enables you to then write code without the cast:

// Get an entity to listen to
var person = _context.Persons.Where(x=>x.Name.Equals("Fred")).FirstOrDefault();

// Attach the NotifyPropertyChanged event handler
person.PropertyChanged += HandlePropertyChanged;

When tracking changes to collections you should also be aware that the dynamically loaded
nature of these collections means that sometimes it is not possible for the change tracking
code to provide you with the object that was removed from a collection. This will typically
happen when you have a collection one one entity that is the inverse of a collection or
property on another entity. Updating the collection at one end will fire the
CollectionChanged [http://msdn.microsoft.com/en-us/library/system.collections.specialized.inotifycollectionchanged.collectionchanged%28v=vs.100%29.aspx] event on the inverse collection, but if the inverse collection is not yet
loaded, the event will be raised as a NotifyCollectionChangedAction.Reset [http://msdn.microsoft.com/en-us/library/system.collections.specialized.notifycollectionchangedaction%28v=vs.100%29.aspx] type event,
rather than a NotifyCollectionChangedAction.Remove [http://msdn.microsoft.com/en-us/library/system.collections.specialized.notifycollectionchangedaction%28v=vs.100%29.aspx] event. This is done to avoid the
overhead of retrieving the removed object from the data store just for the purpose of raising
the notification event.

Finally, please note that event handlers are attached only to the local entity objects, the
handlers are not persisted when the context changes are saved and are not available to any new
context’s you create - these handlers are intended only for tracking changes made locally to
properties in the context before a SaveChanges() is invoked. The properties are also useful
for data binding in applications where you want the user interface to update as the properties
are modified.

 © Copyright 2013, Kal Ahmed, Graham Moore.
 Created using Sphinx 1.1.3.

Store_Persistence_Types.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		BrightstarDB 1.3 documentation »

 		Developing With BrightstarDB »

Store Persistence Types

BrightstarDB supports two different file formats for storing its index information. The main
difference between the two formats is the way in which modified pages of the index are written
to the index file.

Append-Only

The Append-Only format means that BrightstarDB will write modified pages to the end of the
index file. This approach has a number of benefits:

		Writers never block readers, so any number of read operations (typically SPARQL queries)
can be executed in parallel with updates to the index. Each reader accesses the store in the
state that it was when their operation began.

		Reads can access any previous state of the store. This is because the full history of
updates to pages is maintained by the store.

		Writes are faster - because they only append to the end of the file rather than needing
to seek to a location within the file to be updated.

The down-side of this format is that the index file will grow not only as more data is added
but also with every update operation applied to the store. BrightstarDB does provide a way to
truncate a store to just its latest state, removing all the previous historical page states so
this operation executed periodically can help to keep the file size under control.

In general the Append-Only format is recommended for most systems as long as disk space is not
constrained.

Rewritable

The Rewriteable store format manages an active and a shadow copy of each page in the index.
Writes are directed to the shadow copy while readers can access the current committed state of
the store by reading from the active copy. On a commit, the shadow copy becomes the active and
vice-versa. This approach keeps file size under control as changes to an index page are always
written to one of the two copies of the page. However this format has some disadvantages
compared to the append-only store.

		Readers that take a long time to complete can get blocked by writers. In general if a
reader completes in the time taken for a write to complete, the two operations can execute
in parallel, however in the case that a reader requires access to the store across two
successive reads, there is the potential that index pages could be modified. To avoid
inconsistent results due to dirty reads, when a reader detects this it will automatically
retry its current operation. This means that in stores where there are frequent, small
updates readers can potentially be blocked for a long time as new writes keep forcing the
read operation to be retried.

		Write operations can be a bit slower - this is because pages are written to a fixed
location within the index file, requiring a disk seek before each page write.

In general the Rewritable store format is recommended for embedded applications; for mobile
devices that have space constraints to consider; or for server applications that are only
required to support infrequent and/or large updates.

Specifying the Store Persistence Type

The persistence type to use for a store must be specified when the store is created and cannot
be changed after the store has been created. The default persistence type is configured in the
application configuration file for the application (or the web.config for web applications).
To configure the default, you must add an entry to the appSetting section of the application
configuration file with the key BrightstarDB.PersistenceType and the value appendonly
for an Append-Only store or rewrite for a Rewriteable store (in both cases the values are
case-insensitive).

It is also possible to override the default persistence type at runtime by calling the
appropriate CreateStore() operation on the BrighstarDB service client API. If no default value
is defined in the application configuration file and no override value is passed to the
CreateStore() method, the default persistence type used by BrightstarDB is the Append-Only
persistence type.

 © Copyright 2013, Kal Ahmed, Graham Moore.
 Created using Sphinx 1.1.3.

_images/mvc3.png
Add View
View name:
Index
View engine:
Razor (CSHTML) =

Create a strongly-typed view

Model cass:
IDinner (BrightstorDB.Samples NerdDinner: Models]

Scaffold template:

Create as a partial view

Reference script libraries.

(Leave empty if it i set in a Razor viewstartfile)

MainContent

_images/polaris10.png
[53 Polris - BrightstarD8 Management

=@ %=

File Sever Store Window Help

Server Store:

Lol) s)

B

" Local SPARQL Update

4 Local (HTTP)
doctagstore PREFIX o, <httpy//wwwiu3.0rg/1999/02/22-rel-syntax-ns#> E
SampleStore

PREFIX mst: <httpy/media-science.com/types/>

_images/disk.png

_images/mvc8.png
Welcome FOZZIE\Kal! [Log Off]

BrightstarDB Nerd Dinner

Title Description EventDate Address Host

_images/odataconsumer_2b_connect.png
21X

ConnecttoaData Feed
Enter the information required to connect to data feed.

Frendycomecton [t

Data Feed Url [t/ Aocalhost 43608 odata sve. Brouse.
Advanced | Test Connection

<Beck Neit> Fiish Cancel

_images/mvc2.png
@lsalel
23 Solution NerdDinner’ (1 project)
& 2 Werdvinner

_images/folder.png

_images/odataconsumer_1_feedbutton.png
PowerPivot for Excel

SEnen B F 0 G

Book1

Poste P rm oo Reresh
4 copy Database - Report Databarket LI From Other Sources
Cipboara Get Extemal Data

-] £

_images/ef-include-entity-def.png
‘Add New Item - DocTest
Installed Templates

=]

T e — ey — s
prra— 5
P) Ausembtynformston e Vil oty | 9P Vsl CoRems
A prjectitem for Brightstar antty
Data = definition inteface.
Geners! = AuthenticationDomainSevice Vsl Co e
e &
Windows Fors SimapFe Vsl Co e
whr
Charp. | srightstar ntity Context Visual C# Ttems
Reporting E
Sivright 3 ..)
gt Entity Defnion Vsl Co e
Wordion &
A0A Game o 40
2] iy Vsl Co e
=
5] cosemmssese —
A cosere —
3 Coslrepon Vsl Co e
R | cusorfie Visual C2 tems
g Custom Control Visual C# ltems
@“J Dataset Visual C# Items.
“oh| Debugger Visualizer Visual C# tems

IMyEntityl.cs

_images/mvc6a.png
Add View

-
osce
f—

reate astrongly-typed view
Model cass:

IDinner (BrightstorDB.Samples NerdDinner: Models]
Scaffold template:

(S

reate as partial view

(Leave empty if it i set in a Razor viewstartfile)

MainContent

_images/mvc0a.png
New ASP.NET MVC 4 Project

Project Template
Selectatemplate: Description:
2 2 2 2 “An empty ASPNET MVCA project.
Empty Bsic Intemet lntranet
Applicstion Application
Mobile Web AP
Application
View engine:
1) Creste unit testproject
Test project name:
BrightstarDB Samples NerdDinner Tests
Test frameworc
Visual Studio Unit Test Additonalnfo

oK

_images/mvc11.png
Welcome FOZZIE\Kal! [Log Off]

BrightstarDB Nerd Dinner

Title Description Event Date

Oxford Geek A bunch of geeks get together for chat over 14/11/2012
Burger yummy food 11:25:34

_images/mvc9.png
Welcome FOZZIE\Kal! [Le

BrightstarDB Nerd Dinner

IDinner
Title
Oxford Geek Burger

Description

r for chat over yummy food

Event Date
14/11/20121125:34

Address

Atomic Burger

Host.

Please enter the name of the host of this event

Back to List

_images/polaris09.jpg
Prefix Ui

x| nttpy//contoso com/example/
hitp:/purlorg/d

_images/polaris04.png
SPARQL Query X | doctagstore Import X

Import Method © Locel © Remote

ImportFile bigdatant

