

Welcome to Django Bricks’s documentation!

Warning

Beta software
You are using a software that has not reached a stable version yet. Please
beware that interfaces might change, APIs might disappear and general
breakage can occur before 1.0.

If you plan to use this software for something important, please read the
roadmap, and the issue tracker in Github. If you are unsure about the
future of this project, please talk to the developers, or (better yet) get
involved with the development of Django Bricks!

Django Bricks is a library for creating web components for Django. A Brick is a
reusable object with well defined server-side and client-side behaviors and
interfaces. Django Bricks allow us to build reusable pieces of functionality
in Django while avoiding a little bit of HTML and Javascript ;)

	Overview

	Installation instructions

	Preparing your Django project

	Tags

	Bricks.js library

	Bricks-flavored JSON

	Remote Procedure Calls (RPC)

	API documentation

	Frequently asked questions

	License

Indices and tables

	Index

	Module Index

	Search Page

Overview

[image: Documentation Status]
 [http://bricks.readthedocs.io/en/latest/?badge=latest][image: Build status]
 [https://travis-ci.org/fabiommendes/django-bricks][image: Code Climate]
 [https://codeclimate.com/github/fabiommendes/django-bricks][image: Code coverage]
 [https://codecov.io/gh/fabiommendes/django-bricks][image: Code issues]
 [https://www.quantifiedcode.com/app/project/ee91ade50a344c87ac99638670c76580]
Django web components

Django-brick is a library that implements server-side web components for
your Django application. The goal is to reuse code by building simple pluggable
pieces. Think of Lego bricks for the web.

[image: _images/legos.jpg]

	alt:	https://upload.wikimedia.org/wikipedia/commons/thumb/3/32/Lego_Color_Bricks.jpg/1024px-Lego_Color_Bricks.jpg

Client-side programming has plenty responses for this task: React, Polymer,
Vue.js, X-tag etc. Django Bricks provides a server-side alternative that
can free you from writing some JavaScript and HTML ;).

Enter the brick

A brick is a Python component with a a well defined interface to present itself
for the client. Usually this means that it can render itself as HTML5 (but
sometimes we may need more complicated behaviors). Pehaps the most
simple brick that you can use is just a HTML5 tag. Django-bricks implement these
building blocks in the bricks.html5 module. The most important action a
bricks.Tag brick can make is to render itself as HTML:

>>> from bricks.html5 import p
>>> elem = p("Hello World!", class_='hello')

This can be converted to HTML by calling str() on the element:

>>> print(str(elem))
<p class="hello">Hello World!</p>

Python and HTML have very different semantics. HTML’s syntax gravitates
around tag attributes + children nodes and does not have a very natural
counterpart in most programming languages. Of course we can build a tag in a
imperative style, but the end result often feels awkward. We introduce a
mini-language to declare HTML fragments in a more natural way:

>>> from bricks.html5 import div, p, h1
>>> fragment = \
... div(class_="alert-box")[
... h1('Hello Python'),
... p('Now you can write HTML in Python!'),
...]

By default, bricks convert it to a very compact HTML; we insert no indentation
and only a minimum whitespace. We can pretty print the fragment using the
.pretty method:

>>> print(fragment.pretty())
<div class="alert-box">
 <h1>Hello Python</h1>
 <p>Now you can write HTML in Python!</p>
</div>

This is useful for debugging but, it is recommend to never output prettified
HTML in production. This just stresses the rendering engine and produces larger
files for no real gain for our end users and developers.

Installation instructions

Django Bricks can be installed using pip:

$ python -m pip install django-bricks

This command will fetch the archive and its dependencies from the internet and
install them.

If you’ve downloaded the tarball, unpack it, and execute:

$ python setup.py install --user

You might prefer to install it system-wide. In this case, skip the --user
option and execute as superuser by prepending the command with sudo.

Troubleshoot

Windows users may find that these command will only works if typed from Python’s
installation directory.

Some Linux distributions (e.g. Ubuntu) install Python without installing pip.
Please install it before. If you don’t have root privileges, download the
get-pip.py script at https://bootstrap.pypa.io/get-pip.py and execute it as
python get-pip.py --user.

Django configuration

The first step is to add Bricks to your installed apps:

settings.py
...

INSTALLED_APPS = [
 'bricks.app',
]

You’re done :)

(Actually we have to improve this section of our documentation. Come later to
check it out. But seriously, you can use bricks already!)

Templating

The goal of bricks.html5 is to replace your template engine by Python code
that generates HTML fragments. This approach removes the constraints imposed by
the template language and makes integration with surrounding Python code trivial.

I know what you are thinking: “it is a really bad idea to mix template with
logic”. Bricks obviously doesn’t prevent you from shooting yourself on the foot
and you can make really messy code if you want. However, things can be very
smooth if you stick to focused and simple components that adopt a more
functional style.

Our advice is: break your code in small pieces and compose these pieces in
simple and predictable ways. Incidentally, this is a good advice for any form
of code ;).

The fact is that our good old friend “a function” is probably simpler to use
and composes much better than anything a templating engine has come up with.

Let us dive in!

We want to implement a little Bootstrap element that shows a menu with actions
(this is a random example taken from Bootstrap website).

<div class="btn-group">
 <button type="button"
 class="btn btn-default dropdown-toggle"
 data-toggle="dropdown"
 aria-haspopup="true"
 aria-expanded="false">
 Action
 </button>
 <ul class="dropdown-menu">
 Action
 Another action
 Something else here
 <li role="separator" class="divider">
 Separated link

</div>

Of course we could translate this directly into bricks code by calling the
corresponding div()‘s, button()‘s, etc. But first, let us break up this
mess into smaller pieces.

from bricks.html5 import button, div, p, ul, li, span

def menu_button(name, caret=True):
 return \
 button(type='button',
 class_='btn btn-default dropdown-toggle',
 data_toggle="dropdown",
 aria_haspopup="true",
 aria-expanded="false")[
 name,
 span(class_='caret') if caret else None, # Nones are ignored
]

Ok, it looks like it’s a lot of trouble for a simple component. But now we can
reuse this piece and easily make as many buttons as we like: menu_button('File'), menu_button('Edit'),
The next step is to create a function that takes a list of strings and return
the corresponding menu (in the real world we might also want to control the href
attribute). We are also going to be clever and use the Ellipsis (...) as
a menu separator.

def menu_data(values):
 def do_item(x):
 if x is ...:
 return li(role='separator', class='divider')
 else:
 # This could parse the href from string, or take a tuple
 # input, or whatever you like. The bricks.helpers.link function
 # can be handy here.
 return li[a(href='#')[x]]

 return \
 ul(class_='dropdown-menu')[
 map(do_item, values)
]

We glue both together...

def menu(name, values, caret=True):
 return \
 div(class_='btn-group')[
 menu_button(name, caret=True),
 menu_data(values),
]

... and create as many new menu buttons as we like:

menubar = \
 div(id='menubar')[
 menu('File', ['New', 'Open', ..., 'Exit']),
 menu('Edit', ['Copy', 'Paste', ..., 'Preferences']),
 menu('Help', ['Manual', 'Topics', ..., 'About']),
]

Look how nice it is now :)

The with statement

If you have more complex logic the “with” syntax can be handy.

>>> with div(class_='card') as fragment:
... +h1('Multi-hello')
... for i in range(1, 4):
... +p('hello %s' % i)
>>> print(fragment.pretty())
<div class="card">
 <h1>Multi-hello</h1>
 <p>hello 1</p>
 <p>hello 2</p>
 <p>hello 3</p>
</div>

The unary + operator says “add me to the node defined in the last with
statement”. Nested with statements are also supported.

How does it work?

Bricks HTML syntax is obviously just regular Python wrapped in a HTML-wannabe
DSL. How does it work?

Take the example:

element = \
 div(class_="contact-card")[
 span("john", class_="contact-name"),
 span("555-1234", class_="contact-phone"),
]

The first positional argument is a single child element or a list of children.
Keyword arguments are interpreted as tag attributes. Notice we did not use
class as an argument name because it is a reserved keyword in Python.
Bricks, however, ignores all trailing underscores and converts underscores in
the middle of the argument to dashes.

If your tag uses underscore in any attribute name or if you happen to have the
attributes to values stored in a dictionary, just use the attrs argument
of a tag constructor.

<div my_attr="1" attrs="2" data-attr="3">foo</div>

div('foo', attrs={'my_attr': 1, 'attrs': 2}, data_attr=3)

Imperative API

The contact-card element above could have been created in a more regular
imperative fashion:

element = div(class_="contact-card")
span1 = span("john", class_="contact-name")
span2 = span("555-1234", class_="contact-phone")
element.children.extend([span1, span2])

This is not as expressive as the first case and forces us to think imperative
instead of thinking in declarative markup. This is not very natural for HTML
and also tends to be more verbose. The “square bracket syntax” is just regular
Python indexing syntax abused to call .children.extend to insert child
elements into the tag’s children attribute.

More specifically, the tag[args] creates a copy of the original tag, flatten
all list and tuple arguments, insert them into the copied object, and return it.
The same hack is applied to the metaclass and this allow us to call tags that do
not define any attribute like this:

element = \
 div[
 span('Foo'),
 span('Bar'),
]

And since lists, tuples, mappings, and generators are flattened, we can also
define a tag’s children with list comprehensions and maps:

element = \
 div[
 [span(x) for x in words],
 map(lambda x, y: a(x, href=b), words, hyperlinks),
]

Since square brackets were already taken to define the children elements of a
tag, we cannot use them to directly access the children elements of a tag.
Instead, this must be done explicitly using the tag.children interface.
It behaves just as a regular list so you can do things as

>>> elem = div('foo', class_='elem')
>>> elem.children.append('Hello world')
>>> first = elem.children.pop(0)
>>> print(elem)
<div class="elem">Hello world</div>

Similarly to children, attributes are also exposed in a special attribute named
attrs that behaves like a dictionary:

>>> elem = div('foo', class_='elem')
>>> elem.attrs['data-answer'] = 42
>>> elem.attrs.keys()
dict_keys(['class', 'data-answer'])

The attrs dictionary also exposes the id and class elements as read-only
values. id is also exposed as an attribute and class is constructed from
the list of classes in the tag.classes attribute.

>>> elem = div('foo', class_='class', id='id')
>>> elem.id, elem.classes
('id', ['class'])
>>> elem.id = 'new-id'
>>> print(elem)
<div id="new-id" class="class">foo</div>

Javascript API

Basic API

	
bricks(api_name, {args})

	This function call a registered function in the server and return
its result.

It can be called either with a pure positional or pure named arguments
form.

	bricks(‘api-name’, {arg1: value1, arg2: value2, ...}):

	The most common form of remote call requires named arguments.

	bricks(‘api-name*’, arg1, arg2, arg3, ...):

	This will call the remote api function with the given arguments and
return the result. An asterisk in the end of the api function name
tells that it expect positional arguments only. This is required if
you want to pass a single positional argument that is an object in
order to avoid bricks RPC to interpret it as a dictionary of named
arguments.

This function returns a jQuery promise and callbacks can be attached to it
using the .then(), .done(), .fail(), etc methods:

bricks('get-user-data', 'user123'))
 .then(function(result) {
 // do something with the result
 })
 .then(function(result) {
 // do something else
 });

In Django, api functions are registered using the @bricks.rpc.api
decorator to a function. These functions always receive a request as
the first argument, followed by the arguments passed from javascript.
The return value is transmitted back to the client and returned to the
caller.

import bricks

@bricks.rpc.api
def function(request, arg1, arg2, arg3, ...):
 ...
 return value

All exceptions raised in python-land are transmitted to javascript,
adapted, and re-raised there.

Remember that all communication is done through JSON streams, hence all
input arguments and the resulting value must be JSON-encodable.

	See Also:

	bricks.sync() - Synchronous call (for debug purposes)

	
bricks.sync(api_name, {args})

	This function accepts the same signature but immediately returns the
result. Synchronous AJAX functions should never be used in production
since they lock the client until the request is completed, degrading user
experience. You won’t notice it testing locally since the latency is so low, but
surely a client in a slow internet connection with think your site is broken.

This function exists for debug purposes only.

	
bricks.call(api_name, {args})

	Like the regular bricks function, but will not run any program returned by
the server.

import bricks

@bricks.api
def crazy_function(client, arg1, arg2, ...):
 client.alert("The server is crazy!")
 client.jquery('div').hide()
 return 42

Using bricks.call() prevents the client code from executing.

bricks.call('crazy-function')
 .then(function(result) {
 console.log('the answer is ' + result)
 })

It will not hide any div or show any javascript alert.

	
bricks.js(api_name, {args})

	Consumes an API entry point that simply returns some javascript code and
immediately execute it.

In Django, functions those entry points are registered using the
@bricks.rpc.js decorator:

import bricks

@bricks.rpc.js
def js_maker(request, arg1, arg2, arg3, ...):
 return string_of_javascript_code()

	
bricks.rpc(api_name, options)

	The workhorse behind bricks(), bricks.call(),
bricks.js() and bricks.html() functions. It receives a
single object argument that understands the following parameters

	Args:

	
	api:

	Api name of the called function/program

	params:

	List of positional arguments to be passed to the calling function.

	kwargs:

	An object with all the named arguments.

	server:

	Override the default server root. Usually bricks will open the URL
at http://<localdomain>/bricks/api-function-name.

	async:

	If true, returns a promise. Otherwise, it blocks execution and
returns the result of the function call.

	method:

	Can be any of ‘api’, ‘program’, ‘js’, or ‘html’.

	program:

	If true (default), execute any received programmatic instructions.

	error:

	If true (default), it will raise any exceptions raised by the remote
call.

	result:

	If given, will determine the result value of the function call.

	timeout:

	Maximum amount of time (in seconds) to wait for a server response.
Default to 30.0.

	converter:

	A function that process the resulting JSON result and convert it
to the desired value.

The bricks.json module

The bricks.json module defines a few functions for handling the bricks
flavored JSON. The API was modeled after Python’s json module rather than
Javascript.

Supported types

Besides regular JSON types, the js-client for bricks also implement a few
additional data types.

	Type name (@)
	Python
	Javascript
	Notes

	datetime
	datetime.datetime
	Date
	

	
bricks.json.encode(obj)

	Encode object into a bricks-flavored JSON-compatible structure.

	
bricks.json.decode(obj)

	Return the Javascript object equivalent to the given bricks-flavored
JSON-compatible structure.

	
bricks.json.dumps(obj)

	Stringfy javascript object to a bricks-flavored JSON stream.

	
bricks.json.loads(String data)

	Load javascript object from a bricks-flavored JSON encoded string.

Bricks flavored JSON

Bricks uses JSON as a data serialization format for server/client and P2P
communication. JSON is obviously constrained to just a few primitive data types.
In order to serialize more complex data, it is usually necessary to transform it
to a JSON-friendly format such as a dictionary or list (a.k.a Objects and
Arrays, in JavaScript parlance).

This approach is fine if the receiving end of communication knows exactly which
kind of data to expect and how to construct the desired object from JSON. Bricks
defines a simple protocol to handle extension types: all non-primitive types
must define an ‘@’ key mapping to the extension type name.

{
 '@': 'datetime',
 'year': 1982,
 'month': 1,
 'day': 6,
 'hour': 12,
 'minute': 52,
 'second': 0,
 'microsecond': 0,
}

Of course both ends of communication must still agree on how to
serialize/deserialize this data type. Bricks makes no attempt to define an schema
or any kind of formal description of a data type and its validation. These are
orthogonal concerns that could be handled by third party libraries.

Bricks implements transformation for a few common Python types (such as the
datetime example given bellow) and bricks.js handles them in Javascript when
feasible.

The bricks.json module

The bricks.json provides basic functions for manipulating JSON data.

Conversion from/to JSON is handled by the bricks.json.decode() and brick.json.encode()
functions:

>>> from bricks.json import encode, decode
>>> encode({1, 2, 3})
{
 '@': 'set',
 'data': [1, 2, 3],
}
>>> decode({'@': 'set', 'data': [1, 2, 3]})
{1, 2, 3}

Custom types

Support for custom types is given by the

Remote Procedure Calls (RPC)

Bricks provides a module for simple RPC based on the JSON-RPC 2.0 spec <http://www.jsonrpc.org/specification>. The
module implements views that can be used either by the frontend through our
JavaScript library or by other Python programs to call Bricks RPC endpoints.
The later can be useful in a distributed server architecture, where one server
can call endpoints defined by other.

API Reference

API documentation for the Django Bricks module.

Components

Helper functions

Helper functions generate safe HTML code fragments for several useful
situations.

Rendering

	
bricks.helpers.render(obj, request=None, **kwargs)

	Renders object as a safe HTML string.

This function uses single dispatch to make it extensible for user defined
types:

@render.register(int)
def _(x, **kwargs):
 if x == 42:
 return safe('the answer')
 else:
 return safe(x)

A very common pattern is to render object from a template. This has
specific support:

render.register_template(UserProfile, 'myapp/user_profile.jinja2')

By default, it populates the context dictionary with a snake_case version
of the class name, in this case, {'user_profile': x}. The user may pass
a context keyword argument to include additional context data.

If you want to personalize how this is done, it is possible to use
register_template to register a context factory function. The function
should receive the object, a request and kwargs:

@render.register_template(UserProfile, 'myapp/user_profile.jinja2')
def context(profile, request=None, context=None, **kwargs):
 context = context or {}
 context.update(kwargs, request=request, profile=profile)
 return context

Notes

All implementations must receive the user-defined object as first
argument and accept arbitrary keyword arguments.

	
bricks.helpers.render_tag(tag, data=None, attrs=None, children_kwargs=None, request=None, **attrs_kwargs)

	Renders HTML tag.

	Parameters:	
	tag – Tag name.

	data – Children elements for the given tag. Each element is rendered with
the render_html() function.

	attrs – A dictionary of attributes.

	request – A request object that is passed to the render function when it is
applied to children.

	**attr_kwargs – Keyword arguments are converted to additional attributes.

Examples

>>> render_tag('a', 'Click me!', href='www.python.org')
'Click me!

	
bricks.helpers.markdown(text, *, output_format='html5', **kwargs)

	Renders Markdown content as HTML and return as a safe string.

Escaping

	
bricks.helpers.safe(x)

	Convert string object to a safe Markup instance.

	
bricks.helpers.escape(s) → markup

	Convert the characters &, <, >, ‘, and ” in string s to HTML-safe
sequences. Use this if you need to display text that might contain
such characters in HTML. Marks return value as markup string.

	
bricks.helpers.escape_silent(s) → markup

	Like escape but converts None to an empty string.

	
bricks.helpers.unescape(s)

	Convert all named and numeric character references (e.g. >, >,
&x3e;) in the string s to the corresponding unicode characters.
This function uses the rules defined by the HTML 5 standard
for both valid and invalid character references, and the list of
HTML 5 named character references defined in html.entities.html5.

	
bricks.helpers.sanitize(data, **kwargs)

	Sanitize HTML and return as a safe string.

Utilities

	
bricks.helpers.attr(x, **kwargs)

	Renders object as an HTML attribute value.

It define the following dispatch rules:

	str:

	Quotations and & are escaped, any other content, including <, >, is
allowed.

	numeric types:

	Are simply converted to strings.

	lists and mappings:

	Are converted to JSON and returned as safe strings. This is used in
some modern javascript frameworks reads JSON from tag attributes.

	
bricks.helpers.attrs(x, **kwargs)

	Convert object into a list of key-value HTML attributes.

	Parameters:	
	uses multiple dispatch, so the behaviour might differ a little bit (It) –

	o the first argument. (depending) –

	mappings – Renders key-values into the corresponding HTML results.

	sequences – Any non-string sequence is treated as sequence of (key, value)
pairs. If any repeated keys are found, it keeps only the last value.

	protocol (*attrs*) – Any object that define an attrs attribute that can be either a
mapping or a sequence of pairs.

	all cases, attrs takes arbitrary keyword attributes that are (In) –

	as additional attributes. PyML converts all underscores (interpreted) –

	in the attribute names to dashes since this is the most common (present) –

	in HTML. (convention) –

	
bricks.helpers.hyperlink(x, href=None, attrs=None, **kwargs)

	Creates an hyperlink string from object and renders it as an <a> tag.

	It implements some common use cases:

	
	str:

	Renders string as content inside the <a>... tags. Additional
options including href can be passed as keyword arguments. If no
href is given, it tries to parse a string of “Value <link>” and
uses href=’#’ if no link is found.

	dict or mapping:

	Most keys are interpreted as attributes. The visible content of
the link must be stored in the ‘content’ key:

>>> hyperlink({'href': 'www.python.com', 'content': 'Python'})
Python

	django User:

	You must monkey-patch to define get_absolute_url() function.
This function uses this result as the href field.

The full name of the user is used as the hyperlink content.

>>> hyperlink(User(first_name='Joe', username='joe123'))
Joe

In order to support other types, use the lazy_singledispatch mechanism:

@hyperlink.register(MyFancyType)
def _(x, **kwargs):
 return safe(render_object_as_safe_html(x))

See also

	pyml.helpers.attrs(): See this function for an exact explanation

	of how keyword arguments are translated into HTML attributes.

Client and JavaScript emulation

Bricks flavored JSON

Serialize/deserialize Bricks flavored JSON (see Bricks flavored JSON).

Functions

	
bricks.json.encode(data)

	Encode some arbitrary Python data into a JSON-compatible structure.

This naive implementation does not handle recursive structures. This might
change in the future.

This function encode subclasses of registered types as if they belong to
the base class. This is convenient, but is potentially fragile and make
the operation non-invertible.

	
bricks.json.decode(data)

	Decode a JSON-like structure into the corresponding Python data.

	
bricks.json.dumps(obj)

	Return a JSON string dump of a Python object.

	
bricks.json.loads(data)

	Load a string of JSON-encoded data and return the corresponding Python
object.

	
bricks.json.register(cls, name=None, encode=None, decode=None)

	Register encode/decode pair of functions for the given Python type.
Registration extends Bricks flavored JSON to handle arbitrary python
objects.

	Parameters:	
	cls – python data type

	name – name associated with the ‘@’ when encoded to JSON.

	encode – the encode function; convert object to JSON. The resulting JSON can
have non-valid JSON types as long as they can be also converted
to JSON using the bricks.json.encode() function.

	decode – decode function; converts JSON back to Python. The decode function
might assume that all elements were already converted to their most
Pythonic forms (i.e., all dictionaries with an ‘@’ key were already
decoded to their Python forms).

See also

Custom types

Errors

	
class bricks.json.JSONDecodeError

	Error raised when decoding a JSON structure to a Python object.

	
class bricks.json.JSONEncodeError

	Error raised when encoding a Python object to JSON.

Remote procedure calls (RPC)

JSON-RPC 2.0 utilities.

Functions and decorators

	
bricks.rpc.jsonrpc_endpoint(login_required=False, perms_required=None)

	Decorator that converts a function into a JSON-RPC enabled view.

After using this decorator, the function is not usable as a regular function
anymore.

@jsonrpc_endpoint(login_required=True)
def add_at_server(request, x=1, y=2):
 return x + y

Generic views

	
class bricks.rpc.RPCView(function, action='api', login_required=False, perms_required=None, request_argument=True, **kwds)

	Wraps a Bricks RPC end point into a view.

	Parameters:	
	function – (required) The function that implements the given API.

	login_required – If True, the API will only be available to logged in users.

	perms_required – The list of permissions a user can use in order gain access to the
API. A non-empty list implies login_required.

	
check_credentials(request)

	Assure that user has the correct credentials to the process.

Must raise a BadResponseError if credentials are not valid.

	
execute(request, data)

	Execute the API function and return a dictionary with the results.

	
get_content_type()

	Content type of the resulting message.

For JSON, it returns ‘application/json’.

	
get_data(request)

	Decode and return data sent by the client.

	
get_raw_response(request, data)

	Return the payload that will be sent back to the client.

The default implementation simply converts data to JSON.

	
post(request, *args, **kwargs)

	Process the given request, call handler and return result.

	
wrap_error(ex, tb=None, wrap_permission_errors=False)

	Wraps an exception raised during the execution of an API function.

Routing

Contrib modules

Frequently asked questions

Usage

Why is this file empty?

Because this project is in its infancy ;)

We don’t know which questions are the most “frequent” yet. If you have doubts
go to our issue tracker in github and post a question. If we have to
answer it twice, it might end up in this section.

License

Django Bricks.
Copyright (C) Fábio Macêdo Mendes

This program is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the License, or (at your option) any later
version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with
this program. If not, see <http://www.gnu.org/licenses/>.

 Python Module Index

 b

 		 	

 		
 b	

 	[image: -]
 	
 bricks	

 	
 	
 bricks.components	

 	
 	
 bricks.contrib	

 	
 	
 bricks.helpers	

 	
 	
 bricks.js	

 	
 	
 bricks.json	

 	
 	
 bricks.routes	

 	
 	
 bricks.rpc	

Index

 A
 | B
 | C
 | D
 | E
 | G
 | H
 | J
 | L
 | M
 | P
 | R
 | S
 | U
 | W

A

 	
 	attr() (in module bricks.helpers)

 	
 	attrs() (in module bricks.helpers)

B

 	
 	bricks() (built-in function)

 	bricks.call() (bricks method)

 	bricks.components (module)

 	bricks.contrib (module)

 	bricks.helpers (module)

 	bricks.js (module)

 	bricks.js() (bricks method)

 	bricks.json (module)

 	
 	bricks.json.decode() (bricks.json method)

 	bricks.json.dumps() (bricks.json method)

 	bricks.json.encode() (bricks.json method)

 	bricks.json.loads() (bricks.json method)

 	bricks.routes (module)

 	bricks.rpc (module)

 	bricks.rpc() (bricks method)

 	bricks.sync() (bricks method)

C

 	
 	check_credentials() (bricks.rpc.RPCView method)

D

 	
 	decode() (in module bricks.json)

 	
 	dumps() (in module bricks.json)

E

 	
 	encode() (in module bricks.json)

 	escape() (in module bricks.helpers)

 	
 	escape_silent() (in module bricks.helpers)

 	execute() (bricks.rpc.RPCView method)

G

 	
 	get_content_type() (bricks.rpc.RPCView method)

 	
 	get_data() (bricks.rpc.RPCView method)

 	get_raw_response() (bricks.rpc.RPCView method)

H

 	
 	hyperlink() (in module bricks.helpers)

J

 	
 	JSONDecodeError (class in bricks.json)

 	
 	JSONEncodeError (class in bricks.json)

 	jsonrpc_endpoint() (in module bricks.rpc)

L

 	
 	loads() (in module bricks.json)

M

 	
 	markdown() (in module bricks.helpers)

P

 	
 	post() (bricks.rpc.RPCView method)

R

 	
 	register() (in module bricks.json)

 	render() (in module bricks.helpers)

 	
 	render_tag() (in module bricks.helpers)

 	RPCView (class in bricks.rpc)

S

 	
 	safe() (in module bricks.helpers)

 	
 	sanitize() (in module bricks.helpers)

U

 	
 	unescape() (in module bricks.helpers)

W

 	
 	wrap_error() (bricks.rpc.RPCView method)

Warning

Beta software
You are using a software that has not reached a stable version yet. Please
beware that interfaces might change, APIs might disappear and general
breakage can occur before 1.0.

If you plan to use this software for something important, please read the
roadmap, and the issue tracker in Github. If you are unsure about the
future of this project, please talk to the developers, or (better yet) get
involved with the development of Django Bricks!

 _static/comment-close.png

_images/legos.jpg

_static/comment-bright.png

_static/minus.png

nav.xhtml

 Table of Contents

 		Welcome to Django Bricks's documentation!

 		Overview

 		Django web components

 		Enter the brick

 		Installation instructions

 		Troubleshoot

 		Preparing your Django project

 		Tags

 		The with statement

 		How does it work?

 		Imperative API

 		Bricks.js library

 		Basic API

 		The bricks.json module

 		Supported types

 		Bricks-flavored JSON

 		The bricks.json module

 		Custom types

 		Remote Procedure Calls (RPC)

 		API documentation

 		Components

 		Helper functions

 		Rendering

 		Escaping

 		Utilities

 		Client and JavaScript emulation

 		Bricks flavored JSON

 		Functions

 		Errors

 		Remote procedure calls (RPC)

 		Functions and decorators

 		Generic views

 		Routing

 		Contrib modules

 		Frequently asked questions

 		Usage

 		Why is this file empty?

 		License

_static/file.png

_static/plus.png

_static/comment.png

_static/down.png

_static/up.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/up-pressed.png

