

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Bravo 2.0 documentation

Bravo Documentation

Bravo [http://www.bravoserver.org/] is an elegant, speedy, and extensible implementation of the Minecraft
Alpha/Beta protocol. Only the server side is implemented. The following
introductory topics provide a better look at the project, its goals, and
current capabilities.

	A high-level introduction
	Similar and different

	Current state

	Project licensing

	Q & A

	Credits

	Features
	Standard features

	Extended features

	Differences vs. vanilla Minecraft Server
	Responsiveness

	Chunks

	Inventory

	Minecarts

	Philosophy
	Design Decisions

	Versioning

Administrator Topics

The following topics are meant for those wishing to run a Bravo server. Topics
such as installation, configuration, and troubleshooting are covered here.
No software development background is necessary.

	How to administer Bravo
	Configuration

	Plugin Data Files

	Plugins
	Packs

	Terrain generators

	Automatons

	Seasons

	Hooks

	Troubleshooting
	Configuring

	Errors

	Help!

	Web Service
	Configuration

Developer Topics

The following topics are of general use to those wishing to modify or understand
the Bravo source code. These topics are completely unecessary for those who
are only interested in running or administering a Bravo server.

	Extending Bravo
	Asynchronous Ideas

	The Good, the Bad, and the Ugly

	Parameters

	The Flexibility of Commands

	Noise
	Probability

	Core
	beta – Minecraft Beta

	blocks – Block descriptions

	chunk – Chunk data structures

	entity – Entities

	furnace – Furnace Tile

	ibravo – Interfaces

	infini – InfiniCraft

	inventory – Inventories

	location – Locations

	plugin – Plugin loader

	stdio – Console support

	world – Worlds

	Auxiliary
	simplex – Simplex noise generation

	utilities – Helper functions

	Tools
	Chunkbench

	Jsondump

	NBTdump

	Noiseview

	parser-cli

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2010, Corbin Simpson, Derrick Dymock, & Justin Noah.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Bravo 2.0 documentation

A high-level introduction

Bravo is an open source, reverse-engineered implementation of Minecraft’s server
application. Two of the major building blocks are Python [http://python.org/] and Twisted [http://twistedmatrix.com/], but
you need not be familiar with either to run, administer, and play on a
Bravo-based server.

Similar and different

While one of the goals of Bravo is to be roughly on par with the standard,
“Notchian” Minecraft server, Bravo does change and improve things for the
better, where appropriate. See Differences vs. vanilla Minecraft Server for more details.

Some of the more positive hilights include:

	More responsiveness with higher populations.

	Much less memory and bandwidth consumption.

	Better inventory system that avoids some bugs found in the standard server.

Current state

Bravo is currently in heavy development. While it is probably safe to run
creative games, we lack some elements needed for Survival-Multiplayer. Take
a look at Features to get an idea of where we currently stand.

We encourage the curious to investigate for themselves, and post any bugs,
questions, or ideas you may have to our issue tracker [https://github.com/bravoserver/bravo/issues].

Project licensing

Bravo is MIT/X11-licensed. A copy of the license is included in the
LICENSE file in the repository or distribution. This extremely
permissive license gives you all of the flexibility you could ever want.

Q & A

Why are you doing this? What’s wrong with the official Alpha/Beta server?

Plenty. The biggest architectural mistake is the choice of dozens of threads
instead of NIO and an asynchronous event-driven model, but there are other
problems as well. Additionally, the offical server development team has
recently moved to remove all other servers as options for people wishing to
deploy servers. We don’t approve of that.

Are you implying that the official Alpha server is bad?

Yes. As previous versions of this FAQ have stated, Notch is a cool guy, but
the official server is bad.

Are you going to make an open-source client? That would be awesome!

The server is free, but the client is not. Accordingly, we are not pursuing
an open-source client at this time. If you want to play Alpha, you should pay
for it. There’s already enough Minecraft piracy going on; we don’t feel like
being part of the problem. That said, Bravo’s packet parser and networking
tools could be used in a client; the license permits it, after all.

Where did the docs go?

We contribute to the Minecraft Collective’s wiki at
http://mc.kev009.com/wiki/ now, since it allows us to share data faster. All
general Minecraft data goes to that wiki. Bravo-specific docs are shipped in
ReST form, and a processed Sphinx version is available online at
http://bravo.readthedocs.org/.

Why did you make design decision <X>?

There’s an entire page dedicated to this in the documentation. Look at
docs/philosophy.rst or Philosophy.

It doesn’t install? Okay, maybe it installed, but I’m having issues!

On Freenode IRC (irc.freenode.net), #bravoserver is dedicated to Bravo
development and assistance, and #mcdevs is a more general channel for all
custom Minecraft development. You can generally get help from those channels.
If you think you have found a bug, you can directly report it on the Github
issue tracker as well.

Please, please, please read the installation instructions in the README first,
as well as the comments in bravo.ini.example. I did not type them out so that
they could be ignored. :3

Credits

Who are you guys, anyway?

Corbin Simpson (MostAwesomeDude/simpson) is the main coder. Derrick Dymock
(Ac-town) is the visionary and provider of network traffic dumps. Ben Kero
and Mark Harris are the reluctant testers and bug-reporters. The Minecraft
Coalition has been an invaluable forum for discussion.

 Copyright 2010, Corbin Simpson, Derrick Dymock, & Justin Noah.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Bravo 2.0 documentation

Features

Bravo’s extensible design means that there are many different plugins and
features. Since most servers do not have an extensive or exhaustive list of
the various plugins that they include, one is provided here for Bravo.

Standard features

These features are found in official, Mojang-sponsored, unmodified servers.

Console

Bravo provides a small, plain console suitable for piping input and output, as
well as interactive sessions.

Login

Bravo supports the two login methods supported by the Mojang-sponsored client:
offline authentication and online authentication.

Geometry

Bravo understands how to manipulate and transfer geometry. In addition, Bravo
can read and write the Alpha NBT and Beta MCR disk formats.

Time

Bravo fully implements the in-game day and night. Bravo’s days are exactly 20
minutes long.

Entities

Bravo understands the concept of entities, and is able to track the following
kinds of entities:

	Mobs

	Paintings

	Pickups

	Players

	Tiles

Mobs

Bravo understands the following mobs:

	Chickens/ducks (“Chucks”)

	Cows

	Creepers

	Ghasts

	Giant zombies

	Pigs

	Sheep

	Skeletons

	Slimes

	Spiders

	Squids

	Wolves

	Zombie pigmen

	Zombies

Tiles

Bravo understands the following tiles:

	Chests

	Furnaces

	Mob spawners

	Music blocks

	Signs

Inventory

Bravo provides server-side inventory handling.

Physics

Bravo simulates physics, including the behaviors of sand, gravel, water and
lava, and redstone.

Extended features

Bravo provides many things not in other servers. While a strict comparison of
other open-source servers is impossible due to the speedy rate at which they
are changing, the features that separate Bravo from the Mojang-sponsored
server are listed here.

Console

Bravo ships with a fancy console which supports readline-like editing
features.

Time

Bravo implements an in-game year of 360 in-game days.

Plugins

Bravo supports several different types of plugins. For more information, see
Plugins.

 Copyright 2010, Corbin Simpson, Derrick Dymock, & Justin Noah.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Bravo 2.0 documentation

Differences vs. vanilla Minecraft Server

Bravo was written from the ground up and doesn’t inherit code from any other
Minecraft project. This means that it sometimes behaves very differently, in
subtle and obvious ways, from other servers.

The “Notchian” server is the server authored by Notch and distributed by
Mojang as a companion to the Mojang-sponsored client.

Responsiveness

Bravo is occasionally perceived to be “lighter” or “snappier” compared to the
Notchian server. Reports of feeling like players are moving faster than normal
are also common. The root cause is simple: Bravo is quicker to respond to
clients than the Notchian server. This is normal, expected, and not currently
planned to be fixed.

Chunks

The Notchian server maintains a floating pattern above players, centered on
the chunk the player is standing in. This pattern is always a square of
chunks, 21 chunks to a side. This results in a total of 441 chunks being
deployed to the client at any one time. All 441 chunks are deployed before the
client is permitted to interact with the world.

Bravo does something slightly different; while Bravo also has a floating
pattern above each of its players, the pattern is a circle with the same
diameter as the Notchian server’s square. This effectively results in a circle
of 315 chunks deployed to the client; a savings of nearly 30% in memory and
bandwidth for chunks. Additionally, only the 50 closest chunks are deployed
before the client is spawned and permitted to interact with the world.

Inventory

The Notchian viewpoint of items in the inventory is as a list of slots. Each
slot holds an item, identified by a single number, and can hold 1 to 64
instances of that item. Some items can be damaged. Some items are completely
different depending on their damage.

Bravo views item identifiers as a composite key of a primary and secondary
identifier. In this scheme, items with identical primary keys and different
secondary keys are properly segregated, and item damage is stored as the
secondary key, keeping items with differing amounts of damage from occupying
the same slot. This avoids an entire class of bugs, where items can be
stacked and unstacked to change the amount of damage on them, which have
historically plagued the Notchian codebase.

Minecarts

Bravo permits minecart tracks to be placed on glass.

 Copyright 2010, Corbin Simpson, Derrick Dymock, & Justin Noah.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Bravo 2.0 documentation

Philosophy

Design Decisions

A design decision is a core component of building a large piece of
software. Roughly stated, it is a choice to use a certain language, library,
or methodology when constructing software. Design decisions can be
metaphysical, and affect other design decisions. This is merely a way of
talking formally and reasonably about choices made in producing Bravo.

This section is largely dedicated to members of the community that have
decided that things in Bravo are done incorrectly. While we agree with the need
of the community to constructively criticize itself, some things are not worth
debating again.

Python

Python is occasionally seen as slow compared to statically typed languages.
Some benchmarks certainly are very unflattering to Python, but we feel that
there are several advantages to Python which are too important to sacrifice:

	Rapid prototyping

	Algorithmic simplicity

	Simple types

	Twisted

Additionally, with the advent of PyPy [http://pypy.org/], the question of whether a full-fledged
Python application is too slow for consumer hardware is rapidly fading.

Compared to Other Languages

C++

Mineserver [http://mineserver.be/] was a cool attempt to write a custom server in C++. It still
receives occasional updates, but never attempted the more ambitious features.

Haskell

The Bravo team attempted to port Bravo to Haskell. It was unsuccessful.
Haskell does not yet have a mature library for creating massively event-driven
network servers.

No Extension Modules

There are several good reasons to not ship “extension modules,” pieces of code
written in Fortran, C, or C++ which are compiled and dynamically linked
against the CPython extension API. Some of them are:

	Portability

	Python and C have different scopes of portability, and the scope of the C API
for Python is limited practically to CPython. Each module we depend on
externally has the potential to reduce the number of platforms we can
support.

	Maintainability

	C is not maintainable on the same scale as Python, even with (and, some would
argue, especially with) the extremely structured syntax required to interface
with the C API for Python. Cython is maintainable, but does not solve the
other problems.

	Dependencies

	Somebody has to provide binary versions of the modules for all the people
without compilers. Practically, this does mean that Win32 users need to have
binaries provided for them, as long as our thin veneer of Win32 compatibility
holds up.

	Forward-compatibility

	Frankly, extension modules are forever incompatible with the spirit of PyPy,
and require, at bare minimum, a recompile and prayer before they’ll
cooperate. We support running Bravo on PyPy, and on this alone, we wish to
not depend on them.

Frankly, most extension modules aren’t worth this trouble. Extension modules
which are well-tested, ubiquitous, and actively maintained, are generally
going to be favored more than extensions which break, are hard to obtain or
compile, or are derelict.

Twisted

Apparently, in this day and age, people are still of the opinion that Twisted [http://twistedmatrix.com/]
is too big and not necessary for speedy, relatively bug-free networking.
Nothing written here will convince these people; so, instead, I offer this
promise: If anybody contributes a patch which makes Bravo not depend on
Twisted, does not degrade its performance measureably, and does not break any
part of Bravo, then I will acknowledge and apply it.

No Threads

Threads are evil. They are not an effective concurrency model in most cases.
Tests done with offloading various parts of Bravo’s CPU-bound tasks to threads
have shown that threads are a liability in most cases, enforcing locking
overhead while providing little to no actual benefit in terms of speed and
latency.

However, as a concession to the CPU-centric nature of geometry generation,
Bravo will offload all geometry generation to separate processes when Ampoule
is available and enabled in its configuration file, which does yield massive
improvements to server interactivity.

Extreme Extensibility

Bravo is remarkably extensible. Pieces of functionality that are considered
essential or “core” are treated as plugins and dynamically loaded on server
startup. Actual services are dynamically started and stopped as needed.
Bravo’s core does not even provide Minecraft services by default.

The reason for this extreme plugin approach is that Bravo was designed to be
easily totally convertible; in theory, a proper set of configuration files and
external plugins can completely change Bravo’s behavior.

Versioning

Bravo’s version numbers are not very complex. Here’s a quick breakdown.

Major version numbers indicate the core structure of Bravo. A major version
bump probably means that lots of modules changed names, or that something
significant was added. In practice, this probably means that an entirely new
set of protocols was added. (The next major version bump will probably be for
InfiniCraft support.)

Minor version numbers are for changes to interfaces or any other change which
means that external code relying on Bravo’s API will have to be updated.

Patchlevel version numbers aren’t currently used, but probably will signify
that the release is a bugfix-only release with no significant change in
functionality.

The hope of all of this is that, given a series of releases with the same
major and minor, plugins do not have to be changed.

 Copyright 2010, Corbin Simpson, Derrick Dymock, & Justin Noah.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Bravo 2.0 documentation

How to administer Bravo

While Bravo is not a massively complex piece of software on its own, the
plugins and features that are available in Bravo can be overwhelming and
daunting. This page is a short but comprehensive overview for new
administrators looking to set up and run Bravo instances.

Configuration

Bravo uses a single configuration file, bravo.ini, for all of its settings.
The file is in standard INI format. Note that this is not the extended INI
format of Windows 32-bit configuration settings, nor the format of PHP’s
configuration files. Specifically, bravo.ini is parsed and written using
Python’s ConfigParser [http://docs.python.org/library/configparser.html#ConfigParser.ConfigParser] class.

An example configuration file is provided as bravo.ini.example,
and is a good starting point for new configurations.

bravo.ini should live in one of three locations:

	/etc/bravo

	~/.bravo

	The working directory

All three locations will be checked, in that order, and more-recently-loaded
configurations will override configurations in previous directories. For
sanity purposes, it is highly encouraged to either use /etc/bravo
if running as root, or ~/.bravo if running as a normal user.

The configuration file is divided up into sections. Each section starts
with a name, like [section name], and only ends when another section
starts, or at the end of the file.

A note on lists

Bravo uses long lists of named plugins, and has special facilities for
handling them.

If an option takes a list of choices, then the choices should be
comma-separated. They may be on the same line, or multiple lines; spaces do
not matter much. (As an aside, spaces matter inside plugin names, but
Bravo’s plugin collection uses only underscores, not spaces, so this should
not matter. If it does, bug your plugin authors to fix their code.)

Additionally, to simplify plugin naming, many plugin configuration options
support wildcards. Currently, the “*” wildcard is supported. A “*”
anywhere in an option list will be internally expanded to all of the
available choices for that option.

The special notation “-” before a name will forcibly remove that name from a
list.

Putting everything together, an example set of configurations might look like
this:

some_option = first, second, third
some_newline_option = first, second,
 third, fourth
some_wildcard_option = *
some_picky_option = *, -fifth
another_picky_option = -fifth, -sixth, *
a_weird_but_valid_option = seventh, -seventh

General settings

These settings apply to all of Bravo. This section is named [bravo].

	fancy_console

	Whether to enable the fancy console in standalone mode. This setting will
be overridden if the fancy console cannot be set up; e.g. on Win32
systems.

	ampoule

	Whether asynchronous chunk generators will be used. This can result in
massive improvements to Bravo’s latency and responsiveness, and defaults
to enabled. This setting will be overridden if Ampoule cannot be found.

World settings

These settings only apply to a specific world. Worlds are created by starting
the section of the configuration with “world”; an example world section might
start with [world example].

	port

	Which port to run on. Must be a number between 0 and 65535. Note that
ports below 1024 are typically privileged and cannot be bound by non-root
users.

	host

	The hostname to bind to. Defaults to no hostname, which is usually correct
for most people. If you don’t know what this is, you don’t need it.

	url

	The path to the folder to use for loading and saving world data. Must be a
valid URL.

	serializer

	Which serializer to use for saving worlds. Currently, the “anvil”
serializers is provided for compatibility with modern MC clients and
servers.

	seed

	A numeric seed to use for terrain generation. If omitted, the seed will be
generated when the world is created. This option only affects new worlds;
existing worlds already have a seed.

Plugin Data Files

Plugins have a standardized per-world storage. Only a few of the plugins that
ship with Bravo use this storage. Each plugin has complete autonomy over its
data files, but the file name varies depending on the serializer used to store
the world. For example, when using the Alpha and Beta world serializers, the
file name is <plugin>.dat, where <plugin> is the name of the plugin.

Bravo worlds have per-world IP ban lists. The IP ban lists are stored under
the plugin name “banned_ips”, with one IP address per line.

Warps and homes are stored in hey0 CSV format, in “warps” and “homes”.

 Copyright 2010, Corbin Simpson, Derrick Dymock, & Justin Noah.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Bravo 2.0 documentation

Plugins

Bravo is highly configurable and extensible. The plugins shipped with Bravo
are listed here, for convenience.

Packs

Beta

The Beta plugin pack, called “beta”, provides all of Bravo’s Beta
compatibility in one single line of configuration.

Terrain generators

The following terrain generators may be added to the generators setting
in your bravo.ini under the [world] section. The order in which
these appear in the list is not important.

Beaches

Generates simple beaches.

Beaches are areas of sand around bodies of water. This generator will form
beaches near all bodies of water regardless of size or composition; it
will form beaches at large seashores and frozen lakes. It will even place
beaches on one-block puddles.

Boring

Generates boring slabs of flat stone.

Grass

Grows grass on exposed dirt.

Caves

Carves caves and seams out of terrain.

Cliffs

Generates sheer cliffs.

Complex

Generates islands of stone and other ridiculous things.

Erosion

Erodes stone surfaces into dirt.

Float

Rips chunks out of the map, to create surreal chunks of floating land.

Safety

Generates terrain features essential for the safety of clients, such as the
indestructible bedrock at Y = 0.

Warning

Removing this generator will permit players to dig through the
bottom of the world.

Simplex

Generates organic-looking, continuously smooth terrain.

Saplings

Plants saplings at relatively silly places around the map.

Note

This generator only places saplings, and is not responsible for the
growth of trees over time. The trees automaton should be used for
ensuring that trees will grow.

Ore

Places ores and clay.

Watertable

Creates a flat water table half-way up the map (Y = 64).

Automatons

Automatons are simple tasks which examine and update the world as the world
loads and displays data to players. They are able to do periodic or delayed
work to keep the world properly. (The mental image of small robotic gardeners
roving across the hills and valleys trimming grass and dusting trees is quite
compelling and adorable!)

Automatons marked with (Beta) provide Beta compatibility and should probably
be enabled.

	lava: Enable physics for placed lava springs. (Beta)

	trees: Turn planted saplings into trees. (Beta)

	water: Enable physics for placed water springs. (Beta)

Seasons

Bravo’s years are 360 days long, with each day being 20 minutes long. For
those who would like seasons, the following seasons be added to the
seasons setting in your bravo.ini under the [world] section.

Winter

Causes water to freeze, and snow to be placed on certain block types. Winter
starts on the first day of the year.

Spring

Thaws frozen water and removes snow as that was placed during Winter. Spring
starts on the 90th day of the the year.

Hooks

Hooks are small pluggable pieces of code used to add event-driven
functionality to Bravo.

Build hooks

Hooks marked with (Beta) provide Beta compatibility and should probably be
enabled.

	alpha_sand_gravel: Make sand and gravel fall as if affected by gravity.
(Beta)

	bravo_snow: Make snow fall as if affected by gravity.

	build: Enable placement of blocks from inventory onto the terrain.
(Beta)

	redstone: Enable physics for placed redstone. (Beta)

	tile: Register tiles. Required for signs, furnaces, chests, etc. (Beta)

	tracks: Align minecart tracks. (Beta)

Dig hooks

	alpha_sand_gravel: Make sand and gravel fall as if affected by gravity.
(Beta)

	alpha_snow: Destroy snow when it is dug or otherwise disturbed. (Beta)

	bravo_snow: Make snow fall as if affected by gravity.

	give: Spawn pickups for blocks and items destroyed by digging. (Beta)

	lava: Enable physics for lava. (Beta)

	redstone: Enable physics for redstone. (Beta)

	torch: Destroy torches that are not attached to walls or floors. (Beta)

	tracks: Align minecart tracks. (Beta)

	water: Enable physics for water. (Beta)

 Copyright 2010, Corbin Simpson, Derrick Dymock, & Justin Noah.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Bravo 2.0 documentation

Troubleshooting

Configuring

When I connect to the server, the client gets an “End of Stream” error and the
server log says something about “ConsoleRPCProtocol”.

You are connecting to the wrong port.

Bravo always runs an RPC console by default. This console isn’t directly
accessible from clients. In order to connect a client, you must configure a
world and connect to that world. See the example bravo.ini configuration file
for an example of how to configure a world.

My world is snowy. I didn’t want this.

In bravo.ini, change your seasons list to exclude winter. A possible
incantation might be the following:

seasons = *, -winter

Errors

I get lots of RuntimeErrors from Exocet.

Upgrade to a newer Bravo which doesn’t use Exocet.

I have an error involving construct!

Install Construct. It is a required package.

I have an error involving JSON!

If you update to a newer Bravo, you won’t need JSON support.

I have an error involving IRC/AMP/ListOf!

Your Twisted is too old. You really do need Twisted 11.0 or newer.

I have an error ``TypeError: an integer is required`` when starting Bravo!

Your Twisted is too old. You really do need Twisted 11.0 or newer.

I am running as root on a Unix system and twistd cannot find
``bravo.service``. What’s going on?

For security reasons, twistd doesn’t look in non-system directories as root.
If you insist on running as root, try an incantation like the following,
setting PYTHONPATH:

PYTHONPATH=. twistd -n bravo

But seriously, stop running as root.

Help!

If you are having a hard time figuring something out, encountered a bug,
or have ideas, feel free to reach out to the community in one of several
different ways:

	IRC: #bravoserver on FreeNode

	Post to our issue tracker [https://github.com/bravoserver/bravo/issues].

	Speak up over our mailing list [http://lists.bravoserver.org/listinfo.cgi/bravo-dev-bravoserver.org].

 Copyright 2010, Corbin Simpson, Derrick Dymock, & Justin Noah.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Bravo 2.0 documentation

Web Service

Bravo comes with a simple web service which can be used to monitor the status
of your server.

Configuration

Only one web service can be defined; it uses the configuration key [web]
and has only one parameter, port, specifying the port on which to listen.
An example configuration snippet might look like this:

[web]
port = 8080

 Copyright 2010, Corbin Simpson, Derrick Dymock, & Justin Noah.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Bravo 2.0 documentation

Extending Bravo

Bravo is designed to be highly extensible. This document is a short guide to
the basics of writing extension code for Bravo.

Asynchronous Ideas

Bravo, being built on Twisted, has inherited most of the concepts of
asynchronous control flow from Twisted, and uses them liberally. Nearly every
plugin method is permitted to return a Deferred in place of their actual
return value.

The Good, the Bad, and the Ugly

There are a lot of modules in the standard library. Some of them should not be
used in Bravo.

The following modules are blacklisted because they conflict with, or are slow
compared to, Twisted’s own systems:

These modules are bad. All of them duplicate functionality available in
Twisted, and do it in ways that can interfere with Twisted’s ability to do
things in a speedy manner. Do not use them under any circumstances.

	asyncore

	multiprocessing

	socket

	subprocess

	thread

	threading

These modules are ugly. They can quite easily corrupt memory or cause server
crashes, and should be used with extreme caution and very good reasons. If you
don’t know exactly what you are doing, don’t use these.

	ctypes

	gc

	imp

	inspect

Parameters

Hooks should accept a single named parameter, factory, which will be
provided when the hook is loaded.

The Flexibility of Commands

Bravo’s command interface is designed to feel like a regular class instead of
a specialized plugin, while still providing lots of flexibility to authors.
Let’s look at a simple plugin:

class Hello(object):
 """
 Say hello to the world.
 """

 implements(IChatCommand)

 def chat_command(self, username, parameters):
 greeting = "Hello, %s!" % username
 yield greeting

 name = "hello"
 aliases = tuple()
 usage = ""

This command is a simple greeter which merely echoes a salutation to its
caller. It is an IChatCommand, so it only works in the in-game chat, but
that should not be a problem, since there is an internal, invisible adaptation
from IChatCommand to IConsoleCommand. This means that chat commands
are also valid console commands, without any action on your part! Pretty cool,
huh?

So, how does this plugin actually work? Well, nearly every line of this plugin
is required. The first thing you’ll notice is that this plugin has a class
docstring. Docstrings on commands are required; the docstring is used to
provide help text. As with all chat commands, this plugin
implements(IChatCommand), which lets it be discovered as a command.

The plugin implements the required chat_command(username, parameters),
which will be called when a player uses the command. An interesting thing to
note is that this plugin yields its return value; commands may return any
iterable of lines, including a generator!

Finally, the plugin finishes with more required interface attributes: a name
which will be used to call the command, a (possibly empty) list of aliases
which can also be used to call the command, and a (possibly empty) usage
string.

 Copyright 2010, Corbin Simpson, Derrick Dymock, & Justin Noah.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Bravo 2.0 documentation

Noise

Bravo, like all Minecraft terrain generators, relies heavily on randomness to
generate its terrain. In order to understand some of the design decisions in
the terrain generator, it is required to understand noise and its various
properties.

Probability

Noise’s probability distribution is not even, equal, or normal. It is
symmetric about 0, meaning that the absolute value of noise has all of the
same relative probabilities as the entire range of noise.

When binned into a histogram with 100 bins, a few bins become very large.

	Bin
	Probability

	0.00
	2.6150%

	0.49
	2.2262%

	0.59
	1.8274%

	0.43
	1.8248%

	0.42
	1.7888%

	0.58
	1.5939%

	0.48
	1.5194%

	0.41
	1.5118%

	0.18
	1.4715%

	0.24
	1.4366%

	0.54
	1.4072%

	0.22
	1.3825%

	0.50
	1.3786%

	0.44
	1.3696%

	0.26
	1.3680%

 Copyright 2010, Corbin Simpson, Derrick Dymock, & Justin Noah.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Bravo 2.0 documentation

Core

These modules comprise the core functionality of Bravo.

	beta – Minecraft Beta
	Packets

	Protocols

	Factories

	blocks – Block descriptions

	chunk – Chunk data structures

	entity – Entities

	furnace – Furnace Tile

	ibravo – Interfaces
	Interface Bases

	Plugins

	Hooks

	infini – InfiniCraft
	Packets

	Protocols

	Factories

	inventory – Inventories

	location – Locations

	plugin – Plugin loader

	stdio – Console support

	world – Worlds

 Copyright 2010, Corbin Simpson, Derrick Dymock, & Justin Noah.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Bravo 2.0 documentation

 	Core

beta – Minecraft Beta

Protocols and factories for Minecraft Beta, the
Mojang-authored Minecraft which everybody knows and loves.

Packets

	
bravo.beta.packets.IPacket(object)[source]

	Interface for packets.

	
class bravo.beta.packets.Metadata

	Bases: tuple

Metadata(type, value)

	
type

	Alias for field number 0

	
value

	Alias for field number 1

	
bravo.beta.packets.Speed

	alias of speed

	
bravo.beta.packets.make_error_packet(message)[source]

	Convenience method to generate an error packet bytestream.

	
bravo.beta.packets.make_packet(packet, *args, **kwargs)[source]

	Constructs a packet bytestream from a packet header and payload.

The payload should be passed as keyword arguments. Additional containers
or dictionaries to be added to the payload may be passed positionally, as
well.

	
bravo.beta.packets.parse_packets(bytestream)[source]

	Opportunistically parse out as many packets as possible from a raw
bytestream.

Returns a tuple containing a list of unpacked packet containers, and any
leftover unparseable bytes.

	
bravo.beta.packets.parse_packets_incrementally(bytestream)[source]

	Parse out packets one-by-one, yielding a tuple of packet header and packet
payload.

This function returns a generator.

This function will yield all valid packets in the bytestream up to the
first invalid packet.

	Returns:	a generator yielding tuples of headers and payloads

	
bravo.beta.packets.simple(name, fmt, *args)[source]

	Make a customized namedtuple representing a simple, primitive packet.

Protocols

	
class bravo.beta.protocol.BetaProxyProtocol[source]

	Bases: bravo.beta.protocol.BetaServerProtocol

A BetaServerProtocol that proxies for an InfiniCraft client.

	
add_node(address, port)[source]

	Add a new node to this client.

	
class bravo.beta.protocol.BetaServerProtocol[source]

	Bases: object, twisted.internet.protocol.Protocol, twisted.protocols.policies.TimeoutMixin

The Minecraft Alpha/Beta server protocol.

This class is mostly designed to be a skeleton for featureful clients. It
tries hard to not step on the toes of potential subclasses.

	
action(container)[source]

	Hook for action packets.

	
animate(container)[source]

	Hook for animate packets.

	
ascend(count)[source]

	Ascend to the next XZ-plane.

count is the number of ascensions to perform, and may be zero in
order to force this player to not be standing inside a block.

	Returns:	bool of whether the ascension was successful

This client must be located for this method to have any effect.

	
authenticated()[source]

	Called when the client has successfully authenticated with the server.

	
build(container)[source]

	Hook for build packets.

	
chat(container)[source]

	Hook for chat packets.

	
client_settings(container)[source]

	Hook for interaction setting packets.

	
complete(container)[source]

	Hook for tab-completion packets.

	
digging(container)[source]

	Hook for digging packets.

	
equip(container)[source]

	Hook for equip packets.

	
error(message)[source]

	Error out.

This method sends message to the client as a descriptive error
message, then closes the connection.

	
grounded(container)[source]

	Hook for grounded packets.

	
handshake(container)[source]

	Hook for handshake packets.

Override this to customize how logins are handled. By default, this
method will only confirm that the negotiated wire protocol is the
correct version, copy data out of the packet and onto the protocol,
and then run the authenticated callback.

This method will call the pre_handshake method hook prior to
logging in the client.

	
location_packet(container)[source]

	Hook for location packets.

	
orientation(container)[source]

	Hook for orientation packets.

	
orientation_changed()[source]

	Called when the client moves.

This callback is only for orientation, not position.

	
pickup(container)[source]

	Hook for pickup packets.

	
ping(container)[source]

	Hook for ping packets.

By default, this hook will examine the timestamps on incoming pings,
and use them to estimate the current latency of the connected client.

	
play_notes(notes)[source]

	Play some music.

Send a sequence of notes to the player. notes is a finite iterable
of pairs of instruments and pitches.

There is no way to time notes; if staggered playback is desired (and
it usually is!), then play_notes() should be called repeatedly at
the appropriate times.

This method turns the block beneath the player into a note block,
plays the requested notes through it, then turns it back into the
original block, all without actually modifying the chunk.

	
poll(container)[source]

	Hook for poll packets.

By default, queries the parent factory for some data, and replays it
in a specific format to the requester. The connection is then closed
at both ends. This functionality is used by Beta 1.8 clients to poll
servers for status.

	
position(container)[source]

	Hook for position packets.

	
position_changed()[source]

	Called when the client moves.

This callback is only for position, not orientation.

	
pre_handshake()[source]

	Whether this client should be logged in.

	
quit(container)[source]

	Hook for quit packets.

By default, merely logs the quit message and drops the connection.

Even if the connection is not dropped, it will be lost anyway since
the client will close the connection. It’s better to explicitly let it
go here than to have zombie protocols.

	
respawn(container)[source]

	Hook for respawn packets.

	
send_chat(message)[source]

	Send a chat message back to the client.

	
settings_packet(container)[source]

	Hook for presentation setting packets.

	
sign(container)[source]

	Hook for sign packets.

	
update_location()[source]

	Send this client’s location to the client.

Also let other clients know where this client is.

	
update_ping()[source]

	Send a keepalive to the client.

	
use(container)[source]

	Hook for use packets.

	
wacknowledge(container)[source]

	Hook for wacknowledge packets.

	
waction(container)[source]

	Hook for waction packets.

	
wclose(container)[source]

	Hook for wclose packets.

	
wcreative(container)[source]

	Hook for creative inventory action packets.

	
write_packet(header, **payload)[source]

	Send a packet to the client.

	
class bravo.beta.protocol.BravoProtocol(config, name)[source]

	Bases: bravo.beta.protocol.BetaServerProtocol

A BetaServerProtocol suitable for serving MC worlds to clients.

This protocol really does need to be hooked up with a BravoFactory or
something very much like it.

	
build(*args, **kwargs)[source]

	Handle a build packet.

Several things must happen. First, the packet’s contents need to be
examined to ensure that the packet is valid. A check is done to see if
the packet is opening a windowed object. If not, then a build is
run.

	
complete(container)[source]

	Attempt to tab-complete user names.

	
connectionLost(reason=<twisted.python.failure.Failure <class 'twisted.internet.error.ConnectionDone'>>)[source]

	Cleanup after a lost connection.

Most of the time, these connections are lost cleanly; we don’t have
any cleanup to do in the unclean case since clients don’t have any
kind of pending state which must be recovered.

Remember, the connection can be lost before identification and
authentication, so self.username and self.player can be None.

	
enable_chunk(x, z)[source]

	Request a chunk.

This function will asynchronously obtain the chunk, and send it on the
wire.

	Returns:	Deferred that will be fired when the chunk is obtained,
with no arguments

	
entities_near(radius)[source]

	Obtain the entities within a radius of this player.

Radius is measured in blocks.

	
pre_handshake()[source]

	Set up username and get going.

	
run_dig_hooks(chunk, coords, block)[source]

	Destroy a block and run the post-destroy dig hooks.

	
send_initial_chunk_and_location()[source]

	Send the initial chunks and location.

This method sends more than one chunk; since Beta 1.2, it must send
nearly fifty chunks before the location can be safely sent.

	
settings_packet(container)[source]

	Acknowledge a change of settings and update chunk distance.

	
use(container)[source]

	For each entity in proximity (4 blocks), check if it is the target
of this packet and call all hooks that stated interested in this
type.

	
wcreative(container)[source]

	A slot was altered in creative mode.

	
class bravo.beta.protocol.KickedProtocol(reason=None)[source]

	Bases: bravo.beta.protocol.BetaServerProtocol

A very simple Beta protocol that helps enforce IP bans, Max Connections,
and Max Connections Per IP.

This protocol disconnects people as soon as they connect, with a helpful
message.

Factories

	
class bravo.beta.factory.BravoFactory(config, name)[source]

	Bases: twisted.internet.protocol.Factory

A Factory that creates BravoProtocol objects when connected to.

Create a factory and world.

name is the string used to look up factory-specific settings from
the configuration.

	Parameters:	name (str [http://docs.python.org/library/functions.html#str]) – internal name of this factory

	
broadcast(packet)[source]

	Broadcast a packet to all connected players.

	
broadcast_for_chunk(packet, x, z)[source]

	Broadcast a packet to all players that have a certain chunk loaded.

x and z are chunk coordinates, not block coordinates.

	
broadcast_for_others(packet, protocol)[source]

	Broadcast a packet to all players except the originating player.

Useful for certain packets like player entity spawns which should
never be reflexive.

	
buildProtocol(addr)[source]

	Create a protocol.

This overriden method provides early player entity registration, as a
solution to the username/entity race that occurs on login.

	
chat(message)[source]

	Relay chat messages.

Chat messages are sent to all connected clients, as well as to anybody
consuming this factory.

	
create_entity(x, y, z, name, **kwargs)[source]

	Spawn an entirely new entity at the specified block coordinates.

Handles entity registration as well as instantiation.

	
destroy_entity(entity)[source]

	Destroy an entity.

The factory doesn’t have to know about entities, but it is a good
place to put this logic.

	
flush_all_chunks()[source]

	Flush any damage anywhere in this world to all players.

This is a sledgehammer which should be used sparingly at best, and is
only well-suited to plugins which touch multiple chunks at once.

In other words, if I catch you using this in your plugin needlessly,
I’m gonna have a chat with you.

	
flush_chunk(chunk)[source]

	Flush a damaged chunk to all players that have it loaded.

	
give(coords, block, quantity)[source]

	Spawn a pickup at the specified coordinates.

The coordinates need to be in pixels, not blocks.

If the size of the stack is too big, multiple stacks will be dropped.

	Parameters:	
	coords (tuple [http://docs.python.org/library/functions.html#tuple]) – coordinates, in pixels

	block (tuple [http://docs.python.org/library/functions.html#tuple]) – key of block or item to drop

	quantity (int [http://docs.python.org/library/functions.html#int]) – number of blocks to drop in the stack

	
players_near(player, radius)[source]

	Obtain other players within a radius of a given player.

Radius is measured in blocks.

	
protocol

	alias of BravoProtocol

	
register_entity(entity)[source]

	Registers an entity with this factory.

Registration is perhaps too fancy of a name; this method merely makes
sure that the entity has a unique and usable entity ID. In particular,
this method does not make the entity attached to the world, or
advertise its existence.

	
register_plugins()[source]

	Setup plugin hooks.

	
scan_chunk(chunk)[source]

	Tell automatons about this chunk.

	
set_username(protocol, username)[source]

	Attempt to set a new username for a protocol.

	Returns:	whether the username was changed

	
stopFactory()[source]

	Called before factory stops listening on ports. Used to perform
shutdown tasks.

	
teardown_protocol(protocol)[source]

	Do internal bookkeeping on behalf of a protocol which has been
disconnected.

Did you know that “bookkeeping” is one of the few words in English
which has three pairs of double letters in a row?

	
update_season()[source]

	Update the world’s season.

	
update_time()[source]

	Update the in-game timer.

The timer goes from 0 to 24000, both of which are high noon. The clock
increments by 20 every second. Days are 20 minutes long.

The day clock is incremented every in-game day, which is every 20
minutes. The day clock goes from 0 to 360, which works out to a reset
once every 5 days. This is a Babylonian in-game year.

 Copyright 2010, Corbin Simpson, Derrick Dymock, & Justin Noah.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Bravo 2.0 documentation

 	Core

blocks – Block descriptions

The blocks module contains descriptions of blocks.

	
class bravo.blocks.Block(slot, name, secondary=0, drop=None, replace=0, ratio=1, quantity=1, dim=16, breakable=True, orientation=None, vanishes=False)[source]

	Bases: object

A model for a block.

There are lots of rules and properties specific to different types of
blocks. This class encapsulates those properties in a singleton-style
interface, allowing many blocks to be referenced in one location.

The basic idea of this class is to provide some centralized data and
information about blocks, in order to abstract away as many special cases
as possible. In general, if several blocks all have some special behavior,
then it may be worthwhile to store data describing that behavior on this
class rather than special-casing it in multiple places.

	Parameters:	
	slot (int [http://docs.python.org/library/functions.html#int]) – The index of this block. Must be globally unique.

	name (str [http://docs.python.org/library/functions.html#str]) – A common name for this block.

	secondary (int [http://docs.python.org/library/functions.html#int]) – The metadata/damage/secondary attribute for this
block. Defaults to zero.

	drop (tuple [http://docs.python.org/library/functions.html#tuple]) – The type of block that should be dropped when an
instance of this block is destroyed. Defaults to the block value,
to drop instances of this same type of block. To indicate that
this block does not drop anything, set to air (0, 0).

	replace (int [http://docs.python.org/library/functions.html#int]) – The type of block to place in the map when
instances of this block are destroyed. Defaults to air.

	ratio (float [http://docs.python.org/library/functions.html#float]) – The probability of this block dropping a block
on destruction.

	quantity (int [http://docs.python.org/library/functions.html#int]) – The number of blocks dropped when this block
is destroyed.

	dim (int [http://docs.python.org/library/functions.html#int]) – How much light dims when passing through this kind
of block. Defaults to 16 = opaque block.

	breakable (bool [http://docs.python.org/library/functions.html#bool]) – Whether this block is diggable, breakable,
bombable, explodeable, etc. Only a few blocks actually genuinely
cannot be broken, so the default is True.

	orientation (tuple [http://docs.python.org/library/functions.html#tuple]) – The orientation data for a block. See
orientable() for an explanation. The data should be in standard
face order.

	vanishes (bool [http://docs.python.org/library/functions.html#bool]) – Whether this block vanishes, or is replaced by,
another block when built upon.

	
face(metadata)[source]

	Retrieve the face for given metadata corresponding to an orientation,
or None if the metadata is invalid for this block.

This method only returns valid data for orientable blocks; check
orientable() first.

	
orientable()[source]

	Whether this block can be oriented.

Orientable blocks are positioned according to the face on which they
are built. They may not be buildable on all faces. Blocks are only
orientable if their metadata can be used to directly and uniquely
determine the face against which they were built.

Ladders are orientable, signposts are not.

	Return type:	bool

	Returns:	True if this block can be oriented, False if not.

	
orientation(face)[source]

	Retrieve the metadata for a certain orientation, or None if this block
cannot be built against the given face.

This method only returns valid data for orientable blocks; check
orientable() first.

	
class bravo.blocks.Item(slot, name, secondary=0)[source]

	Bases: object

An item.

	
bravo.blocks.armor_boots = (301, 305, 309, 313, 317)

	List of slots of boots.

	
bravo.blocks.armor_chestplates = (299, 303, 307, 311, 315)

	List of slots of chestplates.

Note that slot 303 (chainmail chestplate) is a chestplate, even though it is
not normally obtainable.

	
bravo.blocks.armor_helmets = (86, 298, 302, 306, 310, 314)

	List of slots of helmets.

Note that slot 86 (pumpkin) is a helmet.

	
bravo.blocks.armor_leggings = (300, 304, 308, 312, 316)

	List of slots of leggings.

	
bravo.blocks.blocks = {0: Block((0, 0) 'air': unbreakable, transparent), 1: Block((1, 0) 'stone': drops 1 (key (4, 0), rate 100.00%)), 2: Block((2, 0) 'grass': drops 1 (key (3, 0), rate 100.00%)), 3: Block((3, 0) 'dirt'), 4: Block((4, 0) 'cobblestone'), 5: Block((5, 0) 'wood'), 'wooden-door-block': Block((64, 0) 'wooden-door-block': drops 1 (key (324, 0), rate 100.00%)), 7: Block((7, 0) 'bedrock': unbreakable), 8: Block((8, 0) 'water': unbreakable, translucent (3)), 9: Block((9, 0) 'spring': unbreakable, translucent (3)), 10: Block((10, 0) 'lava': unbreakable, transparent), 11: Block((11, 0) 'lava-spring': unbreakable, transparent), 12: Block((12, 0) 'sand'), 13: Block((13, 0) 'gravel': drops 1 (key (318, 0), rate 10.00%)), 14: Block((14, 0) 'gold-ore'), 15: Block((15, 0) 'iron-ore'), 16: Block((16, 0) 'coal-ore': drops 1 (key (263, 0), rate 100.00%)), 17: Block((17, 3) 'jungle-log': drops 1 (key (17, 0), rate 100.00%)), 18: Block((18, 3) 'jungle-leaf': translucent (1), drops 1 (key (6, 0), rate 100.00%)), 19: Block((19, 0) 'sponge'), 20: Block((20, 0) 'glass': transparent, drops 1 (key (0, 0), rate 100.00%)), 21: Block((21, 0) 'lapis-lazuli-ore': drops 6 (key (351, 4), rate 100.00%)), 22: Block((22, 0) 'lapis-lazuli-block'), 23: Block((23, 0) 'dispenser'), 24: Block((24, 0) 'sandstone'), 25: Block((25, 0) 'note-block'), 26: Block((26, 0) 'bed-block': drops 1 (key (355, 0), rate 100.00%)), 'redstone-ore': Block((73, 0) 'redstone-ore': drops 5 (key (331, 0), rate 100.00%)), 28: Block((28, 0) 'detector-rail'), 29: Block((29, 0) 'sticky-piston'), 30: Block((30, 0) 'spider-web'), 31: Block((31, 0) 'tall-grass'), 32: Block((32, 0) 'shrub'), 33: Block((33, 0) 'piston'), 35: Block((35, 15) 'black-wool': drops 1 (key (35, 0), rate 100.00%)), 6: Block((6, 3) 'jungle-sapling': transparent, drops 1 (key (6, 0), rate 100.00%)), 38: Block((38, 0) 'rose': transparent), 39: Block((39, 0) 'brown-mushroom': transparent), 40: Block((40, 0) 'red-mushroom': transparent), 'rose': Block((38, 0) 'rose': transparent), 42: Block((42, 0) 'iron'), 43: Block((43, 0) 'double-stone-slab'), 44: Block((44, 3) 'single-cobblestone-slab': transparent, drops 1 (key (44, 0), rate 100.00%)), 45: Block((45, 0) 'brick'), 46: Block((46, 0) 'tnt'), 47: Block((47, 0) 'bookshelf'), 48: Block((48, 0) 'mossy-cobblestone'), 49: Block((49, 0) 'obsidian'), 50: Block((50, 0) 'torch': transparent), 'wood': Block((5, 0) 'wood'), 52: Block((52, 0) 'mob-spawner': transparent, drops 1 (key (0, 0), rate 100.00%)), 53: Block((53, 0) 'wooden-stairs': transparent), 54: Block((54, 0) 'chest'), 55: Block((55, 0) 'redstone-wire': transparent), 56: Block((56, 0) 'diamond-ore': drops 1 (key (264, 0), rate 100.00%)), 57: Block((57, 0) 'diamond-block'), 58: Block((58, 0) 'workbench'), 'gravel': Block((13, 0) 'gravel': drops 1 (key (318, 0), rate 10.00%)), 'spider-web': Block((30, 0) 'spider-web'), 61: Block((61, 0) 'furnace'), 62: Block((62, 0) 'burning-furnace': drops 1 (key (61, 0), rate 100.00%)), 63: Block((63, 0) 'signpost': transparent, drops 1 (key (323, 0), rate 100.00%)), 64: Block((64, 0) 'wooden-door-block': drops 1 (key (324, 0), rate 100.00%)), 65: Block((65, 0) 'ladder': transparent), 66: Block((66, 0) 'tracks': transparent), 'sapling': Block((6, 0) 'sapling': transparent), 68: Block((68, 0) 'wall-sign': transparent, drops 1 (key (323, 0), rate 100.00%)), 69: Block((69, 0) 'lever': transparent), 70: Block((70, 0) 'stone-plate': transparent), 71: Block((71, 0) 'iron-door-block': drops 1 (key (330, 0), rate 100.00%)), 72: Block((72, 0) 'wooden-plate': transparent), 73: Block((73, 0) 'redstone-ore': drops 5 (key (331, 0), rate 100.00%)), 74: Block((74, 0) 'glowing-redstone-ore': drops 5 (key (331, 0), rate 100.00%)), 75: Block((75, 0) 'redstone-torch-off': transparent), 76: Block((76, 0) 'redstone-torch': transparent), 77: Block((77, 0) 'stone-button': transparent), 78: Block((78, 0) 'snow'), 79: Block((79, 0) 'ice': translucent (3), becomes 9, drops 1 (key (0, 0), rate 100.00%)), 80: Block((80, 0) 'snow-block'), 81: Block((81, 0) 'cactus': transparent), 82: Block((82, 0) 'clay': drops 4 (key (337, 0), rate 100.00%)), 83: Block((83, 0) 'reed': transparent, drops 1 (key (338, 0), rate 100.00%)), 84: Block((84, 0) 'jukebox'), 'iron-ore': Block((15, 0) 'iron-ore'), 86: Block((86, 0) 'pumpkin'), 87: Block((87, 0) 'brimstone'), 88: Block((88, 0) 'slow-sand'), 89: Block((89, 0) 'lightstone': drops 1 (key (348, 0), rate 100.00%)), 90: Block((90, 0) 'portal': transparent), 91: Block((91, 0) 'jack-o-lantern'), 92: Block((92, 0) 'cake-block': transparent), 93: Block((93, 0) 'redstone-repeater-off': transparent, drops 1 (key (356, 0), rate 100.00%)), 94: Block((94, 0) 'redstone-repeater-on': transparent, drops 1 (key (356, 0), rate 100.00%)), 95: Block((95, 0) 'locked-chest'), 96: Block((96, 0) 'trapdoor'), 97: Block((97, 0) 'hidden-silverfish': drops 1 (key (0, 0), rate 100.00%)), 98: Block((98, 0) 'stone-brick'), 99: Block((99, 0) 'huge-brown-mushroom': drops 2 (key (39, 0), rate 100.00%)), 100: Block((100, 0) 'huge-red-mushroom': drops 2 (key (40, 0), rate 100.00%)), 101: Block((101, 0) 'iron-bars'), 102: Block((102, 0) 'glass-pane'), 103: Block((103, 0) 'melon'), 104: Block((104, 0) 'pumpkin-stem': drops 3 (key (361, 0), rate 100.00%)), 105: Block((105, 0) 'melon-stem': drops 3 (key (362, 0), rate 100.00%)), 106: Block((106, 0) 'vine'), 107: Block((107, 0) 'fence-gate'), 'diamond-ore': Block((56, 0) 'diamond-ore': drops 1 (key (264, 0), rate 100.00%)), 'glowing-redstone-ore': Block((74, 0) 'glowing-redstone-ore': drops 5 (key (331, 0), rate 100.00%)), 'tall-grass': Block((31, 0) 'tall-grass'), 111: Block((111, 0) 'lily-pad': drops 1 (key (0, 0), rate 100.00%)), 112: Block((112, 0) 'nether-brick'), 'crops': Block((59, 0) 'crops': transparent), 'sand': Block((12, 0) 'sand'), 115: Block((115, 0) 'nether-wart-block': drops 1 (key (372, 0), rate 100.00%)), 'clay': Block((82, 0) 'clay': drops 4 (key (337, 0), rate 100.00%)), 'lever': Block((69, 0) 'lever': transparent), 125: Block((125, 0) 'double-wooden-slab'), 126: Block((126, 0) 'single-wooden-slab'), 'bed-block': Block((26, 0) 'bed-block': drops 1 (key (355, 0), rate 100.00%)), 129: Block((129, 0) 'emerald-ore'), 'workbench': Block((58, 0) 'workbench'), 'orange-wool': Block((35, 1) 'orange-wool': drops 1 (key (35, 0), rate 100.00%)), 'hidden-silverfish': Block((97, 0) 'hidden-silverfish': drops 1 (key (0, 0), rate 100.00%)), 'fence': Block((85, 0) 'fence': transparent), 'lightstone': Block((89, 0) 'lightstone': drops 1 (key (348, 0), rate 100.00%)), 'spring': Block((9, 0) 'spring': unbreakable, translucent (3)), 138: Block((138, 0) 'beacon'), 'torch': Block((50, 0) 'torch': transparent), 'vine': Block((106, 0) 'vine'), 109: Block((109, 0) 'stone-brick-stairs'), 'sponge': Block((19, 0) 'sponge'), 'redstone-repeater-off': Block((93, 0) 'redstone-repeater-off': transparent, drops 1 (key (356, 0), rate 100.00%)), 'melon': Block((103, 0) 'melon'), 'iron-bars': Block((101, 0) 'iron-bars'), 110: Block((110, 0) 'mycelium': drops 1 (key (3, 0), rate 100.00%)), 'cactus': Block((81, 0) 'cactus': transparent), 'sticky-piston': Block((29, 0) 'sticky-piston'), 'huge-red-mushroom': Block((100, 0) 'huge-red-mushroom': drops 2 (key (40, 0), rate 100.00%)), 'brown-mushroom': Block((39, 0) 'brown-mushroom': transparent), 27: Block((27, 0) 'powered-rail'), 'double-wooden-slab': Block((125, 0) 'double-wooden-slab'), 'shrub': Block((32, 0) 'shrub'), 'birch-log': Block((17, 2) 'birch-log': drops 1 (key (17, 0), rate 100.00%)), 113: Block((113, 0) 'nether-brick-fence'), 'blue-wool': Block((35, 11) 'blue-wool': drops 1 (key (35, 0), rate 100.00%)), 114: Block((114, 0) 'nether-brick-stairs'), 'ice': Block((79, 0) 'ice': translucent (3), becomes 9, drops 1 (key (0, 0), rate 100.00%)), 108: Block((108, 0) 'brick-stairs'), 59: Block((59, 0) 'crops': transparent), 'piston': Block((33, 0) 'piston'), 'pine-log': Block((17, 1) 'pine-log': drops 1 (key (17, 0), rate 100.00%)), 'nether-wart-block': Block((115, 0) 'nether-wart-block': drops 1 (key (372, 0), rate 100.00%)), 'single-stone-slab': Block((44, 0) 'single-stone-slab': transparent), 'cake-block': Block((92, 0) 'cake-block': transparent), 'dirt': Block((3, 0) 'dirt'), 'pumpkin': Block((86, 0) 'pumpkin'), 'red-wool': Block((35, 14) 'red-wool': drops 1 (key (35, 0), rate 100.00%)), 'water': Block((8, 0) 'water': unbreakable, translucent (3)), 'tracks': Block((66, 0) 'tracks': transparent), 'jungle-leaf': Block((18, 3) 'jungle-leaf': translucent (1), drops 1 (key (6, 0), rate 100.00%)), 'nether-brick': Block((112, 0) 'nether-brick'), 37: Block((37, 0) 'flower': transparent), 'emerald-ore': Block((129, 0) 'emerald-ore'), 'stone': Block((1, 0) 'stone': drops 1 (key (4, 0), rate 100.00%)), 'brown-wool': Block((35, 12) 'brown-wool': drops 1 (key (35, 0), rate 100.00%)), 'jungle-sapling': Block((6, 3) 'jungle-sapling': transparent, drops 1 (key (6, 0), rate 100.00%)), 'dark-green-wool': Block((35, 13) 'dark-green-wool': drops 1 (key (35, 0), rate 100.00%)), 'leaves': Block((18, 0) 'leaves': translucent (1), drops 1 (key (6, 0), rate 11.11%)), 'cyan-wool': Block((35, 9) 'cyan-wool': drops 1 (key (35, 0), rate 100.00%)), 'glass-pane': Block((102, 0) 'glass-pane'), 'double-stone-slab': Block((43, 0) 'double-stone-slab'), 'fence-gate': Block((107, 0) 'fence-gate'), 41: Block((41, 0) 'gold'), 'wooden-stairs': Block((53, 0) 'wooden-stairs': transparent), 'powered-rail': Block((27, 0) 'powered-rail'), 'jukebox': Block((84, 0) 'jukebox'), 'normal-leaf': Block((18, 0) 'normal-leaf': translucent (1), drops 1 (key (6, 0), rate 100.00%)), 'magenta-wool': Block((35, 2) 'magenta-wool': drops 1 (key (35, 0), rate 100.00%)), 'detector-rail': Block((28, 0) 'detector-rail'), 'normal-sapling': Block((6, 0) 'normal-sapling': transparent), 'stone-stairs': Block((67, 0) 'stone-stairs': transparent), 'single-sandstone-slab': Block((44, 1) 'single-sandstone-slab': transparent, drops 1 (key (44, 0), rate 100.00%)), 'diamond-block': Block((57, 0) 'diamond-block'), 133: Block((133, 0) 'emerald-block'), 'brimstone': Block((87, 0) 'brimstone'), 'melon-stem': Block((105, 0) 'melon-stem': drops 3 (key (362, 0), rate 100.00%)), 'log': Block((17, 0) 'log'), 'brick-stairs': Block((108, 0) 'brick-stairs'), 'snow-block': Block((80, 0) 'snow-block'), 'beacon': Block((138, 0) 'beacon'), 'trapdoor': Block((96, 0) 'trapdoor'), 'lava-spring': Block((11, 0) 'lava-spring': unbreakable, transparent), 'red-mushroom': Block((40, 0) 'red-mushroom': transparent), 'light-blue-wool': Block((35, 3) 'light-blue-wool': drops 1 (key (35, 0), rate 100.00%)), 51: Block((51, 0) 'fire': transparent), 'bedrock': Block((7, 0) 'bedrock': unbreakable), 'pine-sapling': Block((6, 1) 'pine-sapling': transparent, drops 1 (key (6, 0), rate 100.00%)), 'lily-pad': Block((111, 0) 'lily-pad': drops 1 (key (0, 0), rate 100.00%)), 'brick': Block((45, 0) 'brick'), 'mossy-cobblestone': Block((48, 0) 'mossy-cobblestone'), 'jungle-log': Block((17, 3) 'jungle-log': drops 1 (key (17, 0), rate 100.00%)), 'fire': Block((51, 0) 'fire': transparent), 'signpost': Block((63, 0) 'signpost': transparent, drops 1 (key (323, 0), rate 100.00%)), 'single-wooden-slab': Block((44, 2) 'single-wooden-slab': transparent, drops 1 (key (44, 0), rate 100.00%)), 'glass': Block((20, 0) 'glass': transparent, drops 1 (key (0, 0), rate 100.00%)), 'reed': Block((83, 0) 'reed': transparent, drops 1 (key (338, 0), rate 100.00%)), 'lime-wool': Block((35, 5) 'lime-wool': drops 1 (key (35, 0), rate 100.00%)), 'bookshelf': Block((47, 0) 'bookshelf'), 'gold': Block((41, 0) 'gold'), 'wall-sign': Block((68, 0) 'wall-sign': transparent, drops 1 (key (323, 0), rate 100.00%)), 'normal-log': Block((17, 0) 'normal-log'), 'tnt': Block((46, 0) 'tnt'), 'pine-leaf': Block((18, 1) 'pine-leaf': translucent (1), drops 1 (key (6, 0), rate 100.00%)), 'wool': Block((35, 0) 'wool'), 'birch-sapling': Block((6, 2) 'birch-sapling': transparent, drops 1 (key (6, 0), rate 100.00%)), 60: Block((60, 0) 'soil': transparent, drops 1 (key (3, 0), rate 100.00%)), 'jack-o-lantern': Block((91, 0) 'jack-o-lantern'), 'wooden-plate': Block((72, 0) 'wooden-plate': transparent), 'air': Block((0, 0) 'air': unbreakable, transparent), 'iron': Block((42, 0) 'iron'), 'dispenser': Block((23, 0) 'dispenser'), 'grass': Block((2, 0) 'grass': drops 1 (key (3, 0), rate 100.00%)), 'redstone-wire': Block((55, 0) 'redstone-wire': transparent), 'black-wool': Block((35, 15) 'black-wool': drops 1 (key (35, 0), rate 100.00%)), 'gold-ore': Block((14, 0) 'gold-ore'), 'huge-brown-mushroom': Block((99, 0) 'huge-brown-mushroom': drops 2 (key (39, 0), rate 100.00%)), 'white-wool': Block((35, 0) 'white-wool'), 'stone-button': Block((77, 0) 'stone-button': transparent), 'soil': Block((60, 0) 'soil': transparent, drops 1 (key (3, 0), rate 100.00%)), 'locked-chest': Block((95, 0) 'locked-chest'), 'redstone-torch': Block((76, 0) 'redstone-torch': transparent), 'iron-door-block': Block((71, 0) 'iron-door-block': drops 1 (key (330, 0), rate 100.00%)), 'light-gray-wool': Block((35, 8) 'light-gray-wool': drops 1 (key (35, 0), rate 100.00%)), 'nether-brick-fence': Block((113, 0) 'nether-brick-fence'), 'stone-brick': Block((98, 0) 'stone-brick'), 'purple-wool': Block((35, 10) 'purple-wool': drops 1 (key (35, 0), rate 100.00%)), 'single-cobblestone-slab': Block((44, 3) 'single-cobblestone-slab': transparent, drops 1 (key (44, 0), rate 100.00%)), 'yellow-wool': Block((35, 4) 'yellow-wool': drops 1 (key (35, 0), rate 100.00%)), 'birch-leaf': Block((18, 2) 'birch-leaf': translucent (1), drops 1 (key (6, 0), rate 100.00%)), 'coal-ore': Block((16, 0) 'coal-ore': drops 1 (key (263, 0), rate 100.00%)), 'nether-brick-stairs': Block((114, 0) 'nether-brick-stairs'), 'sandstone': Block((24, 0) 'sandstone'), 'snow': Block((78, 0) 'snow'), 'lava': Block((10, 0) 'lava': unbreakable, transparent), 'stone-brick-stairs': Block((109, 0) 'stone-brick-stairs'), 'chest': Block((54, 0) 'chest'), 'gray-wool': Block((35, 7) 'gray-wool': drops 1 (key (35, 0), rate 100.00%)), 'mycelium': Block((110, 0) 'mycelium': drops 1 (key (3, 0), rate 100.00%)), 'furnace': Block((61, 0) 'furnace'), 'pink-wool': Block((35, 6) 'pink-wool': drops 1 (key (35, 0), rate 100.00%)), 'emerald-block': Block((133, 0) 'emerald-block'), 'ladder': Block((65, 0) 'ladder': transparent), 'stone-plate': Block((70, 0) 'stone-plate': transparent), 'cobblestone': Block((4, 0) 'cobblestone'), 'flower': Block((37, 0) 'flower': transparent), 'portal': Block((90, 0) 'portal': transparent), 'pumpkin-stem': Block((104, 0) 'pumpkin-stem': drops 3 (key (361, 0), rate 100.00%)), 'slow-sand': Block((88, 0) 'slow-sand'), 'lapis-lazuli-ore': Block((21, 0) 'lapis-lazuli-ore': drops 6 (key (351, 4), rate 100.00%)), 'lapis-lazuli-block': Block((22, 0) 'lapis-lazuli-block'), 'note-block': Block((25, 0) 'note-block'), 'redstone-repeater-on': Block((94, 0) 'redstone-repeater-on': transparent, drops 1 (key (356, 0), rate 100.00%)), 67: Block((67, 0) 'stone-stairs': transparent), 'mob-spawner': Block((52, 0) 'mob-spawner': transparent, drops 1 (key (0, 0), rate 100.00%)), 'redstone-torch-off': Block((75, 0) 'redstone-torch-off': transparent), 'obsidian': Block((49, 0) 'obsidian'), 'burning-furnace': Block((62, 0) 'burning-furnace': drops 1 (key (61, 0), rate 100.00%)), 85: Block((85, 0) 'fence': transparent)}

	A dictionary of Block objects.

This dictionary can be indexed by slot number or block name.

	
bravo.blocks.items = {'': Item((398, 0) ''), 'wooden-door': Item((324, 0) 'wooden-door'), 379: Item((379, 0) ''), 'emerald': Item((388, 0) 'emerald'), 'compass': Item((345, 0) 'compass'), 'blaze-rod': Item((369, 0) 'blaze-rod'), 'chainmail-leggings': Item((304, 0) 'chainmail-leggings'), 'paper': Item((339, 0) 'paper'), 'glass-bottle': Item((374, 0) 'glass-bottle'), 'shears': Item((359, 0) 'shears'), 'cooked-porkchop': Item((320, 0) 'cooked-porkchop'), 'fermented-spider-eye': Item((376, 0) 'fermented-spider-eye'), 261: Item((261, 0) 'bow'), 'sugar-cane': Item((338, 0) 'sugar-cane'), 'slimeball': Item((341, 0) 'slimeball'), 'purple-dye': Item((351, 5) 'purple-dye'), 'chainmail-helmet': Item((302, 0) 'chainmail-helmet'), 348: Item((348, 0) 'glowstone-dust'), 'magma-cream': Item((378, 0) 'magma-cream'), 'diamond-chestplate': Item((311, 0) 'diamond-chestplate'), 349: Item((349, 0) 'raw-fish'), 'nether-star': Item((399, 0) 'nether-star'), 'cocoa-beans': Item((351, 3) 'cocoa-beans'), 'wooden-sword': Item((268, 0) 'wooden-sword'), 'string': Item((287, 0) 'string'), 'pink-dye': Item((351, 9) 'pink-dye'), 346: Item((346, 0) 'fishing-rod'), 'pumpkin-seeds': Item((361, 0) 'pumpkin-seeds'), 'melon-slice': Item((360, 0) 'melon-slice'), 'snowball': Item((332, 0) 'snowball'), 'flint': Item((318, 0) 'flint'), 'iron-helmet': Item((306, 0) 'iron-helmet'), 'dye': Item((351, 0) 'dye'), 'magenta-dye': Item((351, 13) 'magenta-dye'), 'diamond-pickaxe': Item((278, 0) 'diamond-pickaxe'), 'bread': Item((297, 0) 'bread'), 'iron-boots': Item((309, 0) 'iron-boots'), 'leather-chestplate': Item((299, 0) 'leather-chestplate'), 'iron-door': Item((330, 0) 'iron-door'), 'diamond-shovel': Item((277, 0) 'diamond-shovel'), 'raw-porkchop': Item((319, 0) 'raw-porkchop'), 'leather': Item((334, 0) 'leather'), 'gold-chestplate': Item((315, 0) 'gold-chestplate'), 'gold-sword': Item((283, 0) 'gold-sword'), 'charcoal': Item((263, 1) 'charcoal'), 'green-music-disc': Item((2257, 0) 'green-music-disc'), 'rotten-flesh': Item((367, 0) 'rotten-flesh'), 'blocks-music-disc': Item((2258, 0) 'blocks-music-disc'), 'ghast-tear': Item((370, 0) 'ghast-tear'), 'arrow': Item((262, 0) 'arrow'), 361: Item((361, 0) 'pumpkin-seeds'), 'iron-chestplate': Item((307, 0) 'iron-chestplate'), 396: Item((396, 0) ''), 'water-bucket': Item((326, 0) 'water-bucket'), 'iron-pickaxe': Item((257, 0) 'iron-pickaxe'), 'cooked-fish': Item((350, 0) 'cooked-fish'), 'bone': Item((352, 0) 'bone'), 'diamond-leggings': Item((312, 0) 'diamond-leggings'), 363: Item((363, 0) 'raw-beef'), 'blaze-powder': Item((377, 0) 'blaze-powder'), 'mine-cart': Item((328, 0) 'mine-cart'), 'leather-leggings': Item((300, 0) 'leather-leggings'), 'bone-meal': Item((351, 15) 'bone-meal'), 'raw-beef': Item((363, 0) 'raw-beef'), 'ink-sac': Item((351, 0) 'ink-sac'), 'sign': Item((323, 0) 'sign'), 'diamond-axe': Item((279, 0) 'diamond-axe'), 366: Item((366, 0) 'cooked-chicken'), 'storage-minecart': Item((342, 0) 'storage-minecart'), 'redstone': Item((331, 0) 'redstone'), 'stone-sword': Item((272, 0) 'stone-sword'), 'wooden-axe': Item((271, 0) 'wooden-axe'), 'stone-axe': Item((275, 0) 'stone-axe'), 'paintings': Item((321, 0) 'paintings'), 'clock': Item((347, 0) 'clock'), 'milk': Item((335, 0) 'milk'), 'gold-boots': Item((317, 0) 'gold-boots'), 'clay-brick': Item((336, 0) 'clay-brick'), 'boat': Item((333, 0) 'boat'), 'gold-nugget': Item((371, 0) 'gold-nugget'), 'far-music-disc': Item((2260, 0) 'far-music-disc'), 364: Item((364, 0) 'steak'), 399: Item((399, 0) 'nether-star'), 'diamond-sword': Item((276, 0) 'diamond-sword'), 373: Item((373, 0) 'potions'), 'redstone-repeater': Item((356, 0) 'redstone-repeater'), 'stone-hoe': Item((291, 0) 'stone-hoe'), 'nether-wart': Item((372, 0) 'nether-wart'), 'wheat': Item((296, 0) 'wheat'), 'light-blue-dye': Item((351, 12) 'light-blue-dye'), 'powered-minecart': Item((343, 0) 'powered-minecart'), 384: Item((384, 0) ''), 2257: Item((2257, 0) 'green-music-disc'), 2256: Item((2256, 0) 'gold-music-disc'), 376: Item((376, 0) 'fermented-spider-eye'), 2258: Item((2258, 0) 'blocks-music-disc'), 2259: Item((2259, 0) 'chirp-music-disc'), 'cookie': Item((357, 0) 'cookie'), 'ender-pearl': Item((368, 0) 'ender-pearl'), 'spawn-egg': Item((383, 0) 'spawn-egg'), 'green-dye': Item((351, 2) 'green-dye'), 314: Item((314, 0) 'gold-helmet'), 'diamond-boots': Item((313, 0) 'diamond-boots'), 'steak': Item((364, 0) 'steak'), 'leather-boots': Item((301, 0) 'leather-boots'), 'gold-helmet': Item((314, 0) 'gold-helmet'), 'lapis-lazuli': Item((351, 4) 'lapis-lazuli'), 'bow': Item((261, 0) 'bow'), 'gray-dye': Item((351, 8) 'gray-dye'), 'clay-balls': Item((337, 0) 'clay-balls'), 'seeds': Item((295, 0) 'seeds'), 'yellow-dye': Item((351, 11) 'yellow-dye'), 2260: Item((2260, 0) 'far-music-disc'), 'potions': Item((373, 0) 'potions'), 'fishing-rod': Item((346, 0) 'fishing-rod'), 256: Item((256, 0) 'iron-shovel'), 257: Item((257, 0) 'iron-pickaxe'), 258: Item((258, 0) 'iron-axe'), 259: Item((259, 0) 'flint-and-steel'), 260: Item((260, 0) 'apple'), 'apple': Item((260, 0) 'apple'), 262: Item((262, 0) 'arrow'), 263: Item((263, 0) 'coal'), 264: Item((264, 0) 'diamond'), 265: Item((265, 0) 'iron-ingot'), 266: Item((266, 0) 'gold-ingot'), 267: Item((267, 0) 'iron-sword'), 268: Item((268, 0) 'wooden-sword'), 269: Item((269, 0) 'wooden-shovel'), 270: Item((270, 0) 'wooden-pickaxe'), 271: Item((271, 0) 'wooden-axe'), 272: Item((272, 0) 'stone-sword'), 273: Item((273, 0) 'stone-shovel'), 274: Item((274, 0) 'stone-pickaxe'), 275: Item((275, 0) 'stone-axe'), 276: Item((276, 0) 'diamond-sword'), 277: Item((277, 0) 'diamond-shovel'), 278: Item((278, 0) 'diamond-pickaxe'), 279: Item((279, 0) 'diamond-axe'), 280: Item((280, 0) 'stick'), 281: Item((281, 0) 'bowl'), 282: Item((282, 0) 'mushroom-soup'), 283: Item((283, 0) 'gold-sword'), 284: Item((284, 0) 'gold-shovel'), 285: Item((285, 0) 'gold-pickaxe'), 286: Item((286, 0) 'gold-axe'), 287: Item((287, 0) 'string'), 288: Item((288, 0) 'feather'), 289: Item((289, 0) 'sulphur'), 290: Item((290, 0) 'wooden-hoe'), 291: Item((291, 0) 'stone-hoe'), 292: Item((292, 0) 'iron-hoe'), 293: Item((293, 0) 'diamond-hoe'), 294: Item((294, 0) 'gold-hoe'), 295: Item((295, 0) 'seeds'), 296: Item((296, 0) 'wheat'), 297: Item((297, 0) 'bread'), 298: Item((298, 0) 'leather-helmet'), 299: Item((299, 0) 'leather-chestplate'), 300: Item((300, 0) 'leather-leggings'), 301: Item((301, 0) 'leather-boots'), 302: Item((302, 0) 'chainmail-helmet'), 303: Item((303, 0) 'chainmail-chestplate'), 304: Item((304, 0) 'chainmail-leggings'), 305: Item((305, 0) 'chainmail-boots'), 306: Item((306, 0) 'iron-helmet'), 307: Item((307, 0) 'iron-chestplate'), 308: Item((308, 0) 'iron-leggings'), 309: Item((309, 0) 'iron-boots'), 310: Item((310, 0) 'diamond-helmet'), 311: Item((311, 0) 'diamond-chestplate'), 312: Item((312, 0) 'diamond-leggings'), 313: Item((313, 0) 'diamond-boots'), 'feather': Item((288, 0) 'feather'), 315: Item((315, 0) 'gold-chestplate'), 'diamond-helmet': Item((310, 0) 'diamond-helmet'), 317: Item((317, 0) 'gold-boots'), 'gold-ingot': Item((266, 0) 'gold-ingot'), 319: Item((319, 0) 'raw-porkchop'), 320: Item((320, 0) 'cooked-porkchop'), 321: Item((321, 0) 'paintings'), 322: Item((322, 0) 'golden-apple'), 'diamond': Item((264, 0) 'diamond'), 324: Item((324, 0) 'wooden-door'), 325: Item((325, 0) 'bucket'), 326: Item((326, 0) 'water-bucket'), 327: Item((327, 0) 'lava-bucket'), 328: Item((328, 0) 'mine-cart'), 329: Item((329, 0) 'saddle'), 330: Item((330, 0) 'iron-door'), 331: Item((331, 0) 'redstone'), 332: Item((332, 0) 'snowball'), 'iron-leggings': Item((308, 0) 'iron-leggings'), 334: Item((334, 0) 'leather'), 335: Item((335, 0) 'milk'), 336: Item((336, 0) 'clay-brick'), 337: Item((337, 0) 'clay-balls'), 338: Item((338, 0) 'sugar-cane'), 318: Item((318, 0) 'flint'), 340: Item((340, 0) 'book'), 'stick': Item((280, 0) 'stick'), 342: Item((342, 0) 'storage-minecart'), 343: Item((343, 0) 'powered-minecart'), 344: Item((344, 0) 'egg'), 345: Item((345, 0) 'compass'), 'sulphur': Item((289, 0) 'sulphur'), 347: Item((347, 0) 'clock'), 'lava-bucket': Item((327, 0) 'lava-bucket'), 'gold-shovel': Item((284, 0) 'gold-shovel'), 350: Item((350, 0) 'cooked-fish'), 351: Item((351, 0) 'dye'), 352: Item((352, 0) 'bone'), 353: Item((353, 0) 'sugar'), 354: Item((354, 0) 'cake'), 355: Item((355, 0) 'bed'), 356: Item((356, 0) 'redstone-repeater'), 357: Item((357, 0) 'cookie'), 358: Item((358, 0) 'map'), 359: Item((359, 0) 'shears'), 360: Item((360, 0) 'melon-slice'), 316: Item((316, 0) 'gold-leggings'), 362: Item((362, 0) 'melon-seeds'), 'saddle': Item((329, 0) 'saddle'), 'bucket': Item((325, 0) 'bucket'), 365: Item((365, 0) 'raw-chicken'), 'bed': Item((355, 0) 'bed'), 333: Item((333, 0) 'boat'), 368: Item((368, 0) 'ender-pearl'), 369: Item((369, 0) 'blaze-rod'), 370: Item((370, 0) 'ghast-tear'), 371: Item((371, 0) 'gold-nugget'), 372: Item((372, 0) 'nether-wart'), 'iron-axe': Item((258, 0) 'iron-axe'), 374: Item((374, 0) 'glass-bottle'), 375: Item((375, 0) 'spider-eye'), 'cake': Item((354, 0) 'cake'), 377: Item((377, 0) 'blaze-powder'), 378: Item((378, 0) 'magma-cream'), 'raw-chicken': Item((365, 0) 'raw-chicken'), 380: Item((380, 0) ''), 381: Item((381, 0) ''), 382: Item((382, 0) ''), 383: Item((383, 0) 'spawn-egg'), 'stone-pickaxe': Item((274, 0) 'stone-pickaxe'), 'iron-hoe': Item((292, 0) 'iron-hoe'), 386: Item((386, 0) ''), 387: Item((387, 0) ''), 388: Item((388, 0) 'emerald'), 389: Item((389, 0) ''), 390: Item((390, 0) ''), 'wooden-hoe': Item((290, 0) 'wooden-hoe'), 392: Item((392, 0) ''), 393: Item((393, 0) ''), 394: Item((394, 0) ''), 395: Item((395, 0) ''), 'gold-pickaxe': Item((285, 0) 'gold-pickaxe'), 397: Item((397, 0) ''), 'iron-ingot': Item((265, 0) 'iron-ingot'), 398: Item((398, 0) ''), 'gold-hoe': Item((294, 0) 'gold-hoe'), 'chirp-music-disc': Item((2259, 0) 'chirp-music-disc'), 323: Item((323, 0) 'sign'), 'chainmail-chestplate': Item((303, 0) 'chainmail-chestplate'), 'cyan-dye': Item((351, 6) 'cyan-dye'), 'mushroom-soup': Item((282, 0) 'mushroom-soup'), 'stone-shovel': Item((273, 0) 'stone-shovel'), 'light-gray-dye': Item((351, 7) 'light-gray-dye'), 'glowstone-dust': Item((348, 0) 'glowstone-dust'), 'sugar': Item((353, 0) 'sugar'), 'bowl': Item((281, 0) 'bowl'), 'iron-shovel': Item((256, 0) 'iron-shovel'), 'normal-coal': Item((263, 0) 'normal-coal'), 'gold-leggings': Item((316, 0) 'gold-leggings'), 'book': Item((340, 0) 'book'), 385: Item((385, 0) ''), 'spider-eye': Item((375, 0) 'spider-eye'), 'iron-sword': Item((267, 0) 'iron-sword'), 'gold-music-disc': Item((2256, 0) 'gold-music-disc'), 'map': Item((358, 0) 'map'), 'lime-dye': Item((351, 10) 'lime-dye'), 'diamond-hoe': Item((293, 0) 'diamond-hoe'), 'golden-apple': Item((322, 0) 'golden-apple'), 'chainmail-boots': Item((305, 0) 'chainmail-boots'), 'leather-helmet': Item((298, 0) 'leather-helmet'), 'wooden-shovel': Item((269, 0) 'wooden-shovel'), 'gold-axe': Item((286, 0) 'gold-axe'), 'wooden-pickaxe': Item((270, 0) 'wooden-pickaxe'), 391: Item((391, 0) ''), 'raw-fish': Item((349, 0) 'raw-fish'), 'cooked-chicken': Item((366, 0) 'cooked-chicken'), 'flint-and-steel': Item((259, 0) 'flint-and-steel'), 367: Item((367, 0) 'rotten-flesh'), 'melon-seeds': Item((362, 0) 'melon-seeds'), 'coal': Item((263, 0) 'coal'), 339: Item((339, 0) 'paper'), 'orange-dye': Item((351, 14) 'orange-dye'), 'red-dye': Item((351, 1) 'red-dye'), 'egg': Item((344, 0) 'egg'), 341: Item((341, 0) 'slimeball')}

	A dictionary of Item objects.

This dictionary can be indexed by slot number or block name.

	
bravo.blocks.parse_block(block)[source]

	Get the key for a given block/item.

	
bravo.blocks.unstackable = (268, 269, 270)

	List of fuel blocks and items maped to burn time

 Copyright 2010, Corbin Simpson, Derrick Dymock, & Justin Noah.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Bravo 2.0 documentation

 	Core

chunk – Chunk data structures

The chunk module holds the data structures required to track and update
block data in chunks.

	
class bravo.chunk.Chunk(x, z)[source]

	Bases: object

A chunk of blocks.

Chunks are large pieces of world geometry (block data). The blocks, light
maps, and associated metadata are stored in chunks. Chunks are
always measured 16xCHUNK_HEIGHTx16 and are aligned on 16x16 boundaries in
the xz-plane.

	Variables:	
	dirty (bool [http://docs.python.org/library/functions.html#bool]) – Whether this chunk needs to be flushed to disk.

	populated (bool [http://docs.python.org/library/functions.html#bool]) – Whether this chunk has had its initial block data
filled out.

	heightmap (array.array [http://docs.python.org/library/array.html#array.array]) – Tracks the tallest block in each xz-column.

	all_damaged (bool [http://docs.python.org/library/functions.html#bool]) – Flag for forcing the entire chunk to be
damaged. This is for efficiency; past a certain point, it is not
efficient to batch block updates or track damage. Heavily damaged
chunks have their damage represented as a complete resend of the
entire chunk.

	Parameters:	
	x (int [http://docs.python.org/library/functions.html#int]) – X coordinate in chunk coords

	z (int [http://docs.python.org/library/functions.html#int]) – Z coordinate in chunk coords

	
clear_damage()[source]

	Clear this chunk’s damage.

	
damage(coords)[source]

	Record damage on this chunk.

	
destroy(chunk, coords, *args, **kwargs)[source]

	Destroy the block at the given coordinates.

This may or may not set the block to be full of air; it uses the
block’s preferred replacement. For example, ice generally turns to
water when destroyed.

This is safe as a no-op; for example, destroying a block of air with
no metadata is not going to cause state changes.

	Parameters:	coords (tuple [http://docs.python.org/library/functions.html#tuple]) – coordinate triplet

	
dirtied = None

	Optional hook to be called when this chunk becomes dirty.

	
get_block(chunk, coords, *args, **kwargs)[source]

	Look up a block value.

	Parameters:	coords (tuple [http://docs.python.org/library/functions.html#tuple]) – coordinate triplet

	Return type:	int

	Returns:	int representing block type

	
get_damage_packet()[source]

	Make a packet representing the current damage on this chunk.

This method is not private, but some care should be taken with it,
since it wraps some fairly cryptic internal data structures.

If this chunk is currently undamaged, this method will return an empty
string, which should be safe to treat as a packet. Please check with
is_damaged() before doing this if you need to optimize this case.

To avoid extra overhead, this method should really be used in
conjunction with Factory.broadcast_for_chunk().

Do not forget to clear this chunk’s damage! Callers are responsible
for doing this.

>>> packet = chunk.get_damage_packet()
>>> factory.broadcast_for_chunk(packet, chunk.x, chunk.z)
>>> chunk.clear_damage()

	Return type:	str

	Returns:	String representation of the packet.

	
get_metadata(chunk, coords, *args, **kwargs)[source]

	Look up metadata.

	Parameters:	coords (tuple [http://docs.python.org/library/functions.html#tuple]) – coordinate triplet

	Return type:	int

	
get_skylight(chunk, coords, *args, **kwargs)[source]

	Look up skylight value.

	Parameters:	coords (tuple [http://docs.python.org/library/functions.html#tuple]) – coordinate triplet

	Return type:	int

	
height_at(x, z)[source]

	Get the height of an xz-column of blocks.

	Parameters:	
	x (int [http://docs.python.org/library/functions.html#int]) – X coordinate

	z (int [http://docs.python.org/library/functions.html#int]) – Z coordinate

	Return type:	int

	Returns:	The height of the given column of blocks.

	
is_damaged()[source]

	Determine whether any damage is pending on this chunk.

	Return type:	bool

	Returns:	True if any damage is pending on this chunk, False if not.

	
regenerate()[source]

	Regenerate all auxiliary tables.

	
regenerate_heightmap()[source]

	Regenerate the height map array.

The height map is merely the position of the tallest block in any
xz-column.

	
regenerate_skylight()[source]

	Regenerate the ambient light map.

Each block’s individual light comes from two sources. The ambient
light comes from the sky.

The height map must be valid for this method to produce valid results.

	
save_to_packet()[source]

	Generate a chunk packet.

	
sed(search, replace)[source]

	Execute a search and replace on all blocks in this chunk.

Named after the ubiquitous Unix tool. Does a semantic
s/search/replace/g on this chunk’s blocks.

	Parameters:	
	search (int [http://docs.python.org/library/functions.html#int]) – block to find

	replace (int [http://docs.python.org/library/functions.html#int]) – block to use as a replacement

	
set_block(chunk, coords, *args, **kwargs)[source]

	Update a block value.

	Parameters:	
	coords (tuple [http://docs.python.org/library/functions.html#tuple]) – coordinate triplet

	block (int [http://docs.python.org/library/functions.html#int]) – block type

	
set_metadata(chunk, coords, *args, **kwargs)[source]

	Update metadata.

	Parameters:	
	coords (tuple [http://docs.python.org/library/functions.html#tuple]) – coordinate triplet

	metadata (int [http://docs.python.org/library/functions.html#int]) –

	
set_skylight(chunk, coords, *args, **kwargs)[source]

	Update skylight value.

	Parameters:	
	coords (tuple [http://docs.python.org/library/functions.html#tuple]) – coordinate triplet

	metadata (int [http://docs.python.org/library/functions.html#int]) –

	
exception bravo.chunk.ChunkWarning[source]

	Bases: exceptions.Warning [http://docs.python.org/library/exceptions.html#exceptions.Warning]

Somebody did something inappropriate to this chunk, but it probably isn’t
lethal, so the chunk is issuing a warning instead of an exception.

	
bravo.chunk.check_bounds(f)[source]

	Decorate a function or method to have its first positional argument be
treated as an (x, y, z) tuple which must fit inside chunk boundaries of
16, CHUNK_HEIGHT, and 16, respectively.

A warning will be raised if the bounds check fails.

	
bravo.chunk.ci(x, y, z)[source]

	Turn an (x, y, z) tuple into a chunk index.

This is really a macro and not a function, but Python doesn’t know the
difference. Hopefully this is faster on PyPy than on CPython.

	
bravo.chunk.composite_glow(target, strength, x, y, z)[source]

	Composite a light source onto a lightmap.

The exact operation is not quite unlike an add.

	
bravo.chunk.iter_neighbors(coords)[source]

	Iterate over the chunk-local coordinates surrounding the given
coordinates.

All coordinates are chunk-local.

Coordinates which are not valid chunk-local coordinates will not be
generated.

	
bravo.chunk.make_glows()[source]

	Set up glow tables.

These tables provide glow maps for illuminated points.

	
bravo.chunk.neighboring_light(glow, block)[source]

	Calculate the amount of light that should be shone on a block.

glow is the brighest neighboring light. block is the slot of the
block being illuminated.

The return value is always a valid light value.

	
bravo.chunk.segment_array(a)[source]

	Chop up a chunk-sized array into sixteen components.

The chops are done in order to produce the smaller chunks preferred by
modern clients.

 Copyright 2010, Corbin Simpson, Derrick Dymock, & Justin Noah.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Bravo 2.0 documentation

 	Core

entity – Entities

The entity module contains entity classes.

	
class bravo.entity.Chest(*args, **kwargs)[source]

	Bases: bravo.entity.Tile

A tile that holds items.

	
class bravo.entity.Chuck(**kwargs)[source]

	Bases: bravo.entity.Mob

A cross between a duck and a chicken.

Create a mob.

This method calls super().

	
class bravo.entity.Cow(**kwargs)[source]

	Bases: bravo.entity.Mob

Large, four-legged milk containers.

Create a mob.

This method calls super().

	
class bravo.entity.Creeper(aura=False, **kwargs)[source]

	Bases: bravo.entity.Mob

A creeper.

Create a creeper.

This method calls super()

	
class bravo.entity.Entity(location=None, eid=0, **kwargs)[source]

	Bases: object

Class representing an entity.

Entities are simply dynamic in-game objects. Plain entities are not very
interesting.

Create an entity.

This method calls super().

	
class bravo.entity.Furnace(*args, **kwargs)[source]

	Bases: bravo.entity.Tile

A tile that converts items to other items, using specific items as fuel.

	
burn(ticks)[source]

	The main furnace loop.

	Parameters:	ticks (int [http://docs.python.org/library/functions.html#int]) – number of furnace iterations to perform

	
can_craft()[source]

	Determine whether this furnace is capable of outputting items.

Note that this is independent of whether the furnace is fueled.

	Returns:	bool

	
changed(factory, coords)[source]

	Called from outside by event handler to inform the tile
that the content was changed. If the furnace meet the requirements
the method starts burn process. The burn stops the
looping call when it’s out of fuel or no need to burn more.

We get furnace coords from outer side as the tile does not know
about own chunk. If self.chunk is implemented the parameter
can be removed and self.coords will be:

>>> self.coords = self.chunk.x, self.x, self.chunk.z, self.z, self.y

	Parameters:	
	factory (BravoFactory) – The factory

	coords (tuple [http://docs.python.org/library/functions.html#tuple]) – (bigx, smallx, bigz, smallz, y) - coords of this furnace

	
has_fuel()[source]

	Determine whether this furnace is fueled.

	Returns:	bool

	
class bravo.entity.Ghast(**kwargs)[source]

	Bases: bravo.entity.Mob

A very melancholy ghost.

Create a mob.

This method calls super().

	
class bravo.entity.GiantZombie(**kwargs)[source]

	Bases: bravo.entity.Mob

Like a regular zombie, but far larger.

Create a mob.

This method calls super().

	
class bravo.entity.Mob(**kwargs)[source]

	Bases: bravo.entity.Entity

A creature.

Create a mob.

This method calls super().

	
name = 'Mob'

	The name of this mob.

Names are used to identify mobs during serialization, just like for all
other entities.

This mob might not be serialized if this name is not overriden.

	
run()[source]

	Start this mob’s update loop.

	
save_to_packet()[source]

	Create a “mob” packet representing this entity.

	
update()[source]

	Update this mob’s location with respect to a factory.

	
update_metadata()[source]

	Overrideable hook for general metadata updates.

This method is necessary because metadata generally only needs to be
updated prior to certain events, not necessarily in response to
external events.

This hook will always be called prior to saving this mob’s data for
serialization or wire transfer.

	
class bravo.entity.MobSpawner(x, y, z)[source]

	Bases: bravo.entity.Tile

A tile that spawns mobs.

	
class bravo.entity.Music(x, y, z)[source]

	Bases: bravo.entity.Tile

A tile which produces a pitch when whacked.

	
class bravo.entity.Painting(face='+x', motive='', **kwargs)[source]

	Bases: bravo.entity.Entity

A painting on a wall.

Create a painting.

This method calls super().

	
save_to_packet()[source]

	Create a “painting” packet representing this entity.

	
class bravo.entity.Pickup(item=(0, 0), quantity=1, **kwargs)[source]

	Bases: bravo.entity.Entity

Class representing a dropped block or item.

For historical and sanity reasons, this class is called Pickup, even
though its entity name is “Item.”

Create a pickup.

This method calls super().

	
save_to_packet()[source]

	Create a “pickup” packet representing this entity.

	
class bravo.entity.Pig(saddle=False, **kwargs)[source]

	Bases: bravo.entity.Mob

A provider of bacon and piggyback rides.

Create a pig.

This method calls super().

	
class bravo.entity.Player(username='', **kwargs)[source]

	Bases: bravo.entity.Entity

A player entity.

Create a player.

This method calls super().

	
save_equipment_to_packet()[source]

	Creates packets that include the equipment of the player. Equipment
is the item the player holds and all 4 armor parts.

	
save_to_packet()[source]

	Create a “player” packet representing this entity.

	
class bravo.entity.Sheep(sheared=False, color=0, **kwargs)[source]

	Bases: bravo.entity.Mob

A woolly mob.

Create a sheep.

This method calls super().

	
class bravo.entity.Sign(*args, **kwargs)[source]

	Bases: bravo.entity.Tile

A tile that stores text.

	
class bravo.entity.Skeleton(**kwargs)[source]

	Bases: bravo.entity.Mob

An archer skeleton.

Create a mob.

This method calls super().

	
class bravo.entity.Slime(size=1, **kwargs)[source]

	Bases: bravo.entity.Mob

A gelatinous blob.

Create a slime.

This method calls super().

	
class bravo.entity.Spider(**kwargs)[source]

	Bases: bravo.entity.Mob

A spider.

Create a mob.

This method calls super().

	
class bravo.entity.Squid(**kwargs)[source]

	Bases: bravo.entity.Mob

An aquatic source of ink.

Create a mob.

This method calls super().

	
class bravo.entity.Tile(x, y, z)[source]

	Bases: object

An entity that is also a block.

Or, perhaps more correctly, a block that is also an entity.

	
class bravo.entity.Wolf(owner=None, angry=False, sitting=False, **kwargs)[source]

	Bases: bravo.entity.Mob

A wolf.

Create a wolf.

This method calls super().

	
class bravo.entity.Zombie(**kwargs)[source]

	Bases: bravo.entity.Mob

A zombie.

Create a mob.

This method calls super().

	
class bravo.entity.ZombiePigman(**kwargs)[source]

	Bases: bravo.entity.Mob

A zombie pigman.

Create a mob.

This method calls super().

 Copyright 2010, Corbin Simpson, Derrick Dymock, & Justin Noah.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Bravo 2.0 documentation

 	Core

furnace – Furnace Tile

The Furnace tile has method changed(factory, coords) where
coords is tuple (bigx, smallx, bigz, smallz, y) - coordinates of the
furnace which inventory was updated.

inform content of furnace was probably changed
d = factory.world.request_chunk(bigx, bigz)
@d.addCallback
def on_change(chunk):
 furnace = self.get_furnace_tile(chunk, (x, y, z))
 if furnace is not None:
 furnace.changed(factory, coords)

Furnace.changed() method checks if current furnace shall start to burn:
it must have source item, fuel and must have valid recipe. If it meets the
requirements Furnace schedules burn() method with LoopingCall
for every .5 second.

At every burn() call it:

	increases cooktime timer and checks if item shall be crafted on this iteration;

	decreases fuel counter and burns next fuel item if needed;

	if there is no need to burn next fuel item because crafted slot is full or source
slot is empty it stops the LoopingCall;

	sends progress bars updates to all players that have this furnace’s window opened.

 Copyright 2010, Corbin Simpson, Derrick Dymock, & Justin Noah.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Bravo 2.0 documentation

 	Core

ibravo – Interfaces

The ibravo module holds the interfaces required to implement plugins and
hooks.

Interface Bases

These are the base interface classes for Bravo. Plugin developers probably
will not inherit from these; they are used purely to express common plugin
functionality.

	
class bravo.ibravo.IBravoPlugin[source]

	Bases: zope.interface.Interface

Interface for plugins.

This interface stores common metadata used during plugin discovery.

	
class bravo.ibravo.ISortedPlugin[source]

	Bases: bravo.ibravo.IBravoPlugin

Parent interface for sorted plugins.

Sorted plugins have an innate and automatic ordering inside lists thanks
to the ability to advertise their dependencies.

Plugins

	
class bravo.ibravo.IAutomaton[source]

	Bases: bravo.ibravo.IBravoPlugin

An automaton.

Automatons are given blocks from chunks which interest them, and may do
processing on those blocks.

	
class bravo.ibravo.IChatCommand[source]

	Bases: bravo.ibravo.ICommand

Interface for chat commands.

Chat commands are invoked from the chat inside clients, so they are always
called by a specific client.

This interface is specifically designed to exist comfortably side-by-side
with IConsoleCommand.

	
class bravo.ibravo.IConsoleCommand[source]

	Bases: bravo.ibravo.ICommand

Interface for console commands.

Console commands are invoked from a console or some other location with
two defining attributes: Access restricted to superusers, and no user
issuing the command. As such, no access control list applies to them, but
they must be given usernames to operate on explicitly.

	
class bravo.ibravo.IRecipe[source]

	Bases: bravo.ibravo.IBravoPlugin

A description for creating materials from other materials.

	
class bravo.ibravo.ISeason[source]

	Bases: bravo.ibravo.IBravoPlugin

Seasons are transformational stages run during certain days to emulate an
environment.

	
class bravo.ibravo.ISerializer[source]

	Bases: bravo.ibravo.IBravoPlugin

Class that understands how to serialize several different kinds of objects
to and from disk-friendly formats.

Implementors of this interface are expected to provide a uniform
implementation of their serialization technique.

	
class bravo.ibravo.ITerrainGenerator[source]

	Bases: bravo.ibravo.ISortedPlugin

Interface for terrain generators.

	
class bravo.ibravo.IWorldResource[source]

	Bases: bravo.ibravo.IBravoPlugin, twisted.web.resource.IResource

Interface for a world specific web resource.

Hooks

	
class bravo.ibravo.IPreBuildHook[source]

	Bases: bravo.ibravo.ISortedPlugin

Hook for actions to be taken before a block is placed.

	
class bravo.ibravo.IPostBuildHook[source]

	Bases: bravo.ibravo.ISortedPlugin

Hook for actions to be taken after a block is placed.

	
class bravo.ibravo.IDigHook[source]

	Bases: bravo.ibravo.ISortedPlugin

Hook for actions to be taken after a block is dug up.

	
class bravo.ibravo.ISignHook[source]

	Bases: bravo.ibravo.ISortedPlugin

Hook for actions to be taken after a sign is updated.

This hook fires both on sign creation and sign editing.

	
class bravo.ibravo.IUseHook[source]

	Bases: bravo.ibravo.ISortedPlugin

Hook for actions to be taken when a player interacts with an entity.

Each plugin needs to specify a list of entity types it is interested in
in advance, and it will only be called for those.

 Copyright 2010, Corbin Simpson, Derrick Dymock, & Justin Noah.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Bravo 2.0 documentation

 	Core

infini – InfiniCraft

Protocols and factories for InfiniCraft.

Packets

	
bravo.infini.packets.InfiniPacket(name, identifier, subconstruct)[source]

	Common header structure for packets.

This is possibly not the best way to go about building these kinds of
things.

	
bravo.infini.packets.String(name)[source]

	UTF-8 length-prefixed string.

	
bravo.infini.packets.make_packet(packet, *args, **kwargs)[source]

	Constructs a packet bytestream from a packet header and payload.

The payload should be passed as keyword arguments. Additional containers
or dictionaries to be added to the payload may be passed positionally, as
well.

Protocols

Factories

	
class bravo.infini.factory.InfiniClientFactory(config, name)[source]

	Bases: twisted.internet.protocol.Factory

A Factory that serves as an InfiniCraft client.

	
class bravo.infini.factory.InfiniNodeFactory(config, name)[source]

	Bases: twisted.internet.protocol.Factory

A Factory that serves as an InfiniCraft node.

 Copyright 2010, Corbin Simpson, Derrick Dymock, & Justin Noah.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Bravo 2.0 documentation

 	Core

inventory – Inventories

The inventory module contains all kinds of windows and window parts
like inventory, crafting and storage slots.

Generally to create a window you must create a Window object (of specific class
derived from Window) and pass arguments like: window ID, player’s inventory,
slot’s or tile’s inventory, coordinates etc.

Generic construction (never use in your code :)

window = Window(id, Inventory(), Workbench(), ...)

Please note that player’s inventory window is a special case. It is created when
user logins and stays always opened. You probably will never have to create it.

def authenticated(self):
 BetaServerProtocol.authenticated(self)

 # Init player, and copy data into it.
 self.player = yield self.factory.world.load_player(self.username)
 ...
 # Init players' inventory window.
 self.inventory = InventoryWindow(self.player.inventory)
 ...

Every windows have own class. For instanse, to create a workbench window:

i = WorkbenchWindow(self.wid, self.player.inventory)

Furnace:

bigx, smallx, bigz, smallz, y = coords
furnace = self.chunks[x, y].tiles[(smallx, y, smallz)]
window = FurnaceWindow(self.wid, self.player.inventory, furnace.inventory, coords)

	
class bravo.inventory.Inventory[source]

	Bases: bravo.inventory.SerializableSlots

The class represents Player’s inventory

	
add(item, quantity)[source]

	Attempt to add an item to the inventory.

	Parameters:	item (tuple [http://docs.python.org/library/functions.html#tuple]) – a key representing the item

	Returns:	quantity of items that did not fit inventory

	
consume(item, index)[source]

	Attempt to remove a used holdable from the inventory.

A return value of False indicates that there were no holdables of
the given type and slot to consume.

	Parameters:	
	item (tuple [http://docs.python.org/library/functions.html#tuple]) – a key representing the type of the item

	slot (int [http://docs.python.org/library/functions.html#int]) – which slot was selected

	Returns:	whether the item was successfully removed

	
select_armor(index, alternate, shift, selected=None)[source]

	Handle a slot selection on an armor slot.

	Returns tuple:	(True/False, new selection)

	
class bravo.inventory.SerializableSlots[source]

	Bases: object

Base class for all slots configurations

	
class bravo.inventory.slots.Crafting[source]

	Bases: bravo.inventory.slots.SlotsSet

Base crafting class. Never shall be instantiated directly.

	
check_recipes()[source]

	See if the crafting table matches any recipes.

	Returns:	None

	
close(wid)[source]

	Clear crafting areas and return items to drop and packets to send to client

	
reduce_recipe()[source]

	Reduce a crafting table according to a recipe.

This function returns None; the crafting table is modified in-place.

This function assumes that the recipe already fits the crafting table
and will not do additional checks to verify this assumption.

	
select_crafted(index, alternate, shift, selected=None)[source]

	Handle a slot selection on a crafted output.

	Parameters:	
	index – index of the selection

	alternate – whether this was an alternate selection

	shift – whether this was a shifted selection

	selected – the current selection

	Returns:	a tuple of a bool indicating whether the selection was
valid, and the newly selected slot

	
class bravo.inventory.slots.LargeChestStorage(chest1, chest2)[source]

	Bases: bravo.inventory.slots.SlotsSet

LargeChest is a wrapper around 2 ChestStorages

	
class bravo.inventory.slots.SlotsSet[source]

	Bases: bravo.inventory.SerializableSlots

Base calss for different slot configurations except player’s inventory

	
class bravo.inventory.windows.InventoryWindow(inventory)[source]

	Bases: bravo.inventory.windows.Window

Special case of window - player’s inventory window

	
creative(slot, primary, secondary, quantity)[source]

	Process inventory changes made in creative mode

	
class bravo.inventory.windows.SharedWindow(wid, inventory, slots, coords)[source]

	Bases: bravo.inventory.windows.Window

Base class for all windows with shared containers (like chests, furnace and dispenser)

	Parameters:	
	wid (int [http://docs.python.org/library/functions.html#int]) – window ID

	inventory (Inventory) – player’s inventory object

	tile (Tile) – tile object

	coords (tuple [http://docs.python.org/library/functions.html#tuple]) – world coords of the tile (bigx, smallx, bigz, smallz, y)

	
packets_for_dirty(dirty_slots)[source]

	Generate update packets for dirty usually privided by another window (sic!)

	
class bravo.inventory.windows.Window(wid, inventory, slots)[source]

	Bases: bravo.inventory.SerializableSlots

Item manager

The Window covers all kinds of inventory and crafting windows,
ranging from user inventories to furnaces and workbenches.

The Window agregates player’s inventory and other crafting/storage slots
as building blocks of the window.

	Parameters:	
	wid (int [http://docs.python.org/library/functions.html#int]) – window ID

	inventory (Inventory) – player’s inventory object

	slots (SlotsSet) – other window slots

	
close()[source]

	Clear crafting areas and return items to drop and packets to send to client

	
container_for_slot(slot)[source]

	Retrieve the table and index for a given slot.

There is an isomorphism here which allows all of the tables of this
Window to be viewed as a single large table of slots.

	
load_from_packet(container)[source]

	Load data from a packet container.

	
select(slot, alternate=False, shift=False)[source]

	Handle a slot selection.

This method implements the basic public interface for interacting with
Inventory objects. It is directly equivalent to mouse clicks made
upon slots.

	Parameters:	
	slot (int [http://docs.python.org/library/functions.html#int]) – which slot was selected

	alternate (bool [http://docs.python.org/library/functions.html#bool]) – whether the selection is alternate; e.g., if it
was done with a right-click

	shift (bool [http://docs.python.org/library/functions.html#bool]) – whether the shift key is toogled

	
select_stack(container, index)[source]

	Handle stacking of items (Shift + RMB/LMB)

	
slot_for_container(table, index)[source]

	Retrieve slot number for given table and index.

 Copyright 2010, Corbin Simpson, Derrick Dymock, & Justin Noah.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Bravo 2.0 documentation

 	Core

location – Locations

The location module contains objects for tracking and analyzing locations.

	
class bravo.location.Location[source]

	Bases: object

The position and orientation of an entity.

	
classmethod at_block(x, y, z)[source]

	Pinpoint a location at a certain block.

This constructor is intended to aid in pinpointing locations at a
specific block rather than forcing users to do the pixel<->block maths
themselves. Admittedly, the maths in question aren’t hard, but there’s
no reason to avoid this encapsulation.

	
clamp()[source]

	Force this location to be sane.

Forces the position and orientation to be sane, then fixes up
location-specific things, like stance.

	Returns:	bool indicating whether this location had to be altered

	
distance(other)[source]

	Return the distance between this location and another location.

	
in_front_of(distance)[source]

	Return a Location a certain number of blocks in front of this
position.

The orientation of the returned location is identical to this
position’s orientation.

	Parameters:	distance (int [http://docs.python.org/library/functions.html#int]) – the number of blocks by which to offset this
position

	
save_to_packet()[source]

	Returns a position/look/grounded packet.

	
class bravo.location.Orientation[source]

	Bases: bravo.location.Orientation

The angles corresponding to the heading of an entity.

Theta and phi are very much like the theta and phi of spherical
coordinates, except that phi’s zero is perpendicular to the XZ-plane
rather than pointing straight up or straight down.

Orientation is stored in floating-point radians, for simplicity of
computation. Unfortunately, no wire protocol speaks radians, so several
conversion methods are provided for sanity and convenience.

The from_degs() and to_degs() methods provide integer degrees.
This form is called “yaw and pitch” by protocol documentation.

	
classmethod from_degs(yaw, pitch)[source]

	Create an Orientation from integer degrees.

	
to_degs()[source]

	Return this orientation as integer degrees.

	
to_fracs()[source]

	Return this orientation as fractions of a byte.

	
class bravo.location.Position[source]

	Bases: bravo.location.Position

The coordinates pointing to an entity.

Positions are always stored as integer absolute pixel coordinates.

	
distance(other)[source]

	Return the distance between this position and another, in absolute
pixels.

	
classmethod from_player(x, y, z)[source]

	Create a Position from floating-point block coordinates.

	
heading(other)[source]

	Return the heading from this position to another, in radians.

This is a wrapper for the common atan2() expression found in games,
meant to help encapsulate semantics and keep copy-paste errors from
happening.

	
to_block()[source]

	Return this position as block coordinates.

	
to_player()[source]

	Return this position as floating-point block coordinates.

 Copyright 2010, Corbin Simpson, Derrick Dymock, & Justin Noah.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Bravo 2.0 documentation

 	Core

plugin – Plugin loader

The plugin module implements a sophisticated, featureful plugin loader
with interface-based discovery.

	
bravo.plugin.add_plugin_edges(d)[source]

	Mirror edges to all plugins in a dictionary.

	
bravo.plugin.expand_names(plugins, names)[source]

	Given a list of names, expand wildcards and discard disabled names.

Used to implement * and - options in plugin lists.

	Parameters:	
	plugins (dict [http://docs.python.org/library/stdtypes.html#dict]) – plugins to use for expansion

	names (list [http://docs.python.org/library/functions.html#list]) – names to examine

	Returns:	a list of filtered plugin names

	
bravo.plugin.get_plugins(interface, package)[source]

	Lazily find objects in a package which implement a given interface.

This is a rewrite of Twisted’s twisted.plugin.getPlugins which
searches for implementations of interfaces rather than providers.

	Parameters:	
	interface (interface) – the interface to match against

	package (str [http://docs.python.org/library/functions.html#str]) – the name of the package to search

	
bravo.plugin.retrieve_named_plugins(interface, names, **kwargs)[source]

	Look up a list of plugins by name.

Plugins are returned in the same order as their names.

	Parameters:	
	interface (interface) – the interface to use

	names (list [http://docs.python.org/library/functions.html#list]) – plugins to find

	parameters (dict [http://docs.python.org/library/stdtypes.html#dict]) – parameters to pass into the plugins

	Returns:	a list of plugins

	Raises PluginException:

		no plugins could be found for the given interface

	
bravo.plugin.retrieve_plugins(interface, **kwargs)[source]

	Look up all plugins for a certain interface.

If the plugin cache is enabled, this function will not attempt to reload
plugins from disk or discover new plugins.

	Parameters:	
	interface (interface) – the interface to use

	parameters (dict [http://docs.python.org/library/stdtypes.html#dict]) – parameters to pass into the plugins

	Returns:	a dict of plugins, keyed by name

	Raises PluginException:

		no plugins could be found for the given interface

	
bravo.plugin.retrieve_sorted_plugins(interface, names, **kwargs)[source]

	Look up a list of plugins, sorted by interdependencies.

	Parameters:	parameters (dict [http://docs.python.org/library/stdtypes.html#dict]) – parameters to pass into the plugins

	
bravo.plugin.sort_plugins(plugins)[source]

	Make a sorted list of plugins by dependency.

If the list cannot be arranged into a DAG, an error will be raised. This
usually means that a cyclic dependency was found.

	Raises PluginException:

		cyclic dependency detected

	
bravo.plugin.verify_plugin(interface, plugin)[source]

	Plugin interface verification.

This function will call verifyObject() and validateInvariants() on
the plugins passed to it.

The primary purpose of this wrapper is to do logging, but it also permits
code to be slightly cleaner, easier to test, and callable from other
modules.

 Copyright 2010, Corbin Simpson, Derrick Dymock, & Justin Noah.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Bravo 2.0 documentation

 	Core

stdio – Console support

The stdio module provides a non-blocking, interactive console for
administration, diagnostics, and debugging of running servers.

	
class bravo.stdio.AMPGateway(host, port=25600)[source]

	Bases: object

Wrapper around the logical implementation of a console.

	
call(command, params)[source]

	Run a command.

This is the client-side implementation; it wraps a few things to
protect the console from raw logic and the server from builtin
commands.

	
connect()[source]

	Connect this gateway to a remote Bravo server.

Returns a Deferred that will fire when connected, or fail if the
connection cannot be established.

	
class bravo.stdio.BravoConsole(ag)[source]

	Bases: twisted.protocols.basic.LineReceiver

A console for things not quite as awesome as TTYs.

This console is extremely well-suited to Win32.

	
class bravo.stdio.BravoManhole(factory, *args, **kwargs)[source]

	Bases: twisted.conch.manhole.Manhole

A console for TTYs.

 Copyright 2010, Corbin Simpson, Derrick Dymock, & Justin Noah.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Bravo 2.0 documentation

 	Core

world – Worlds

	
class bravo.world.ChunkCache[source]

	Bases: object

A cache which holds references to all chunks which should be held in
memory.

This cache remembers chunks that were recently used, that are in permanent
residency, and so forth. Its exact caching algorithm is currently null.

When chunks dirty themselves, they are expected to notify the cache, which
will then schedule an eviction for the chunk.

	
exception bravo.world.ImpossibleCoordinates[source]

	Bases: exceptions.Exception [http://docs.python.org/library/exceptions.html#exceptions.Exception]

A coordinate could not ever be valid.

	
class bravo.world.World(config, name)[source]

	Bases: object

Object representing a world on disk.

Worlds are composed of levels and chunks, each of which corresponds to
exactly one file on disk. Worlds also contain saved player data.

	Parameters:	

	name : str

	The configuration key to use to look up configuration data.

	
async = False

	Whether this world is using multiprocessing methods to generate geometry.

	
connect()[source]

	Connect to the world.

	
destroy(coords, *args, **kwargs)[source]

	Destroy a block in an unknown chunk.

	Returns:	a Deferred that will fire on completion

	
dimension = 'earth'

	The world dimension. Valid values are earth, sky, and nether.

	
enable_cache(size)[source]

	Set the permanent cache size.

Changing the size of the cache sets off a series of events which will
empty or fill the cache to make it the proper size.

For reference, 3 is a large-enough size to completely satisfy the
Notchian client’s login demands. 10 is enough to completely fill the
Notchian client’s chunk buffer.

	Parameters:	size (int [http://docs.python.org/library/functions.html#int]) – The taxicab radius of the cache, in chunks

	Returns:	A Deferred which will fire when the cache has been

adjusted.

	
factory = None

	The factory managing this world.

Worlds do not need to be owned by a factory, but will not callback to
surrounding objects without an owner.

	
flush_chunk()[source]

	Flush a dirty chunk.

This method will always block when there are dirty chunks.

	
get_block(coords, *args, **kwargs)[source]

	Get a block from an unknown chunk.

	Returns:	a Deferred with the requested value

	
get_metadata(coords, *args, **kwargs)[source]

	Get a block’s metadata from an unknown chunk.

	Returns:	a Deferred with the requested value

	
level = Level(seed=0, spawn=(0, 0, 0), time=0)

	The initial level data.

	
load_player(username)[source]

	Retrieve player data.

	Returns:	a Deferred that will be fired with a Player

	
mark_dirty(coords, *args, **kwargs)[source]

	Mark an unknown chunk dirty.

	Returns:	a Deferred that will fire on completion

	
postprocess_chunk(chunk)[source]

	Do a series of final steps to bring a chunk into the world.

This method might be called multiple times on a chunk, but it should
not be harmful to do so.

	
request_chunk(*args, **kwargs)[source]

	Request a Chunk to be delivered later.

	Returns:	Deferred that will be called with the Chunk

	
save_chunk(chunk)[source]

	Write a chunk to the serializer.

Note that this method does nothing when the given chunk is not dirty
or saving is off!

	Returns:	A Deferred which will fire after the chunk has been

saved with the chunk.

	
save_off()[source]

	Disable saving to disk.

This is useful for accessing the world on disk without Bravo
interfering, for backing up the world.

	
save_on()[source]

	Enable saving to disk.

	
saving = True

	Whether objects belonging to this world may be written out to disk.

	
set_block(coords, *args, **kwargs)[source]

	Set a block in an unknown chunk.

	Returns:	a Deferred that will fire on completion

	
set_metadata(coords, *args, **kwargs)[source]

	Set a block’s metadata in an unknown chunk.

	Returns:	a Deferred that will fire on completion

	
start()[source]

	Start managing a world.

Connect to the world and turn on all of the timed actions which
continuously manage the world.

	
stop(*args, **kwargs)[source]

	Stop managing the world.

This can be a time-consuming, blocking operation, while the world’s
data is serialized.

Note to callers: If you want the world time to be accurate, don’t
forget to write it back before calling this method!

	Returns:	A Deferred that fires after the world has stopped.

	
sync_destroy(coords, *args, **kwargs)[source]

	Destroy a block in an unknown chunk.

	Returns:	None

	
sync_get_block(coords, *args, **kwargs)[source]

	Get a block from an unknown chunk.

	Returns:	the requested block

	
sync_get_metadata(coords, *args, **kwargs)[source]

	Get a block’s metadata from an unknown chunk.

	Returns:	the requested metadata

	
sync_mark_dirty(coords, *args, **kwargs)[source]

	Mark an unknown chunk dirty.

	Returns:	None

	
sync_request_chunk(coords, *args, **kwargs)[source]

	Get an unknown chunk.

	Returns:	the requested Chunk

	
sync_set_block(coords, *args, **kwargs)[source]

	Set a block in an unknown chunk.

	Returns:	None

	
sync_set_metadata(coords, *args, **kwargs)[source]

	Set a block’s metadata in an unknown chunk.

	Returns:	None

	
bravo.world.coords_to_chunk(f)[source]

	Automatically look up the chunk for the coordinates, and convert world
coordinates to chunk coordinates.

	
bravo.world.sync_coords_to_chunk(f)[source]

	Either get a chunk for the coordinates, or raise an exception.

 Copyright 2010, Corbin Simpson, Derrick Dymock, & Justin Noah.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Bravo 2.0 documentation

Auxiliary

Modules which do not contribute directly to the functionality of Bravo.

	simplex – Simplex noise generation

	utilities – Helper functions
	Automaton Helpers

	Chat Formatting

	Coordinate Handling

	Data Packing

	Decorators

	Geometry

	Scheduling

	Spatial Hashes

	Trigonometry

 Copyright 2010, Corbin Simpson, Derrick Dymock, & Justin Noah.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Bravo 2.0 documentation

 	Auxiliary

simplex – Simplex noise generation

	
bravo.simplex.dot2(u, v)[source]

	Dot product of two 2-dimensional vectors.

	
bravo.simplex.dot3(u, v)[source]

	Dot product of two 3-dimensional vectors.

	
bravo.simplex.octaves2(x, y, count)[source]

	Generate fractal octaves of noise.

Summing increasingly scaled amounts of noise with itself creates fractal
clouds of noise.

	Parameters:	
	x (int [http://docs.python.org/library/functions.html#int]) – X coordinate

	y (int [http://docs.python.org/library/functions.html#int]) – Y coordinate

	count (int [http://docs.python.org/library/functions.html#int]) – number of octaves

	Returns:	Scaled fractal noise

	
bravo.simplex.octaves3(x, y, z, count)[source]

	Generate fractal octaves of noise.

	Parameters:	
	x (int [http://docs.python.org/library/functions.html#int]) – X coordinate

	y (int [http://docs.python.org/library/functions.html#int]) – Y coordinate

	z (int [http://docs.python.org/library/functions.html#int]) – Z coordinate

	count (int [http://docs.python.org/library/functions.html#int]) – number of octaves

	Returns:	Scaled fractal noise

	
bravo.simplex.offset2(x, y, xoffset, yoffset, octaves=1)[source]

	Generate an offset noise difference field.

	Parameters:	
	x (int [http://docs.python.org/library/functions.html#int]) – X coordinate

	y (int [http://docs.python.org/library/functions.html#int]) – Y coordinate

	xoffset (int [http://docs.python.org/library/functions.html#int]) – X offset

	yoffset (int [http://docs.python.org/library/functions.html#int]) – Y offset

	Returns:	Difference of noises

	
bravo.simplex.reseed(seed)[source]

	Reseed the simplex gradient field.

	
bravo.simplex.set_seed(seed)[source]

	Set the current seed.

	
bravo.simplex.simplex2(x, y)[source]

	Generate simplex noise at the given coordinates.

This particular implementation has very high chaotic features at normal
resolution; zooming in by a factor of 16x to 256x is going to yield more
pleasing results for most applications.

The gradient field must be seeded prior to calling this function; call
reseed() first.

	Parameters:	
	x (int [http://docs.python.org/library/functions.html#int]) – X coordinate

	y (int [http://docs.python.org/library/functions.html#int]) – Y coordinate

	Returns:	simplex noise

	Raises Exception:

		the gradient field is not seeded

	
bravo.simplex.simplex3(x, y, z)[source]

	Generate simplex noise at the given coordinates.

This is a 3-dimensional flavor of simplex2(); all of the same caveats
apply.

The gradient field must be seeded prior to calling this function; call
reseed() first.

	Parameters:	
	x (int [http://docs.python.org/library/functions.html#int]) – X coordinate

	y (int [http://docs.python.org/library/functions.html#int]) – Y coordinate

	z (int [http://docs.python.org/library/functions.html#int]) – Z coordinate

	Returns:	simplex noise

	Raises Exception:

		the gradient field is not seeded or you broke the
function somehow

 Copyright 2010, Corbin Simpson, Derrick Dymock, & Justin Noah.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Bravo 2.0 documentation

 	Auxiliary

utilities – Helper functions

The utilities package is the standard home for shared functions which many
modules may use. The spirit of utilities is also to isolate sections of
critical code so that unit tests can be used to ensure a minimum of bugginess.

Automaton Helpers

	
bravo.utilities.automatic.column_scan(automaton, chunk)[source]

	Utility function which provides a chunk scanner which only examines the
tallest blocks in the chunk. This can be useful for automatons which only
care about sunlit or elevated areas.

This method can be used directly in automaton classes to provide scan().

	
bravo.utilities.automatic.naive_scan(automaton, chunk)[source]

	Utility function which can be used to implement a naive, slow, but
thorough chunk scan for automatons.

This method is designed to be directly useable on automaton classes to
provide the scan() interface.

This function depends on implementation details of Chunk.

Chat Formatting

Colorizers.

	
bravo.utilities.chat.complete(sentence, possibilities)[source]

	Perform completion on a string using a list of possible strings.

Returns a single string containing all possibilities.

	
bravo.utilities.chat.sanitize_chat(s)[source]

	Verify that the given chat string is safe to send to Notchian recepients.

	
bravo.utilities.chat.username_alternatives(n)[source]

	Permute a username through several common alternative-finding algorithms.

Coordinate Handling

Utilities for coordinate handling and munging.

	
bravo.utilities.coords.CHUNK_HEIGHT = 256

	The total height of chunks.

	
bravo.utilities.coords.XZ = [(0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (0, 6), (0, 7), (0, 8), (0, 9), (0, 10), (0, 11), (0, 12), (0, 13), (0, 14), (0, 15), (1, 0), (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (1, 7), (1, 8), (1, 9), (1, 10), (1, 11), (1, 12), (1, 13), (1, 14), (1, 15), (2, 0), (2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6), (2, 7), (2, 8), (2, 9), (2, 10), (2, 11), (2, 12), (2, 13), (2, 14), (2, 15), (3, 0), (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6), (3, 7), (3, 8), (3, 9), (3, 10), (3, 11), (3, 12), (3, 13), (3, 14), (3, 15), (4, 0), (4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6), (4, 7), (4, 8), (4, 9), (4, 10), (4, 11), (4, 12), (4, 13), (4, 14), (4, 15), (5, 0), (5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6), (5, 7), (5, 8), (5, 9), (5, 10), (5, 11), (5, 12), (5, 13), (5, 14), (5, 15), (6, 0), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6), (6, 7), (6, 8), (6, 9), (6, 10), (6, 11), (6, 12), (6, 13), (6, 14), (6, 15), (7, 0), (7, 1), (7, 2), (7, 3), (7, 4), (7, 5), (7, 6), (7, 7), (7, 8), (7, 9), (7, 10), (7, 11), (7, 12), (7, 13), (7, 14), (7, 15), (8, 0), (8, 1), (8, 2), (8, 3), (8, 4), (8, 5), (8, 6), (8, 7), (8, 8), (8, 9), (8, 10), (8, 11), (8, 12), (8, 13), (8, 14), (8, 15), (9, 0), (9, 1), (9, 2), (9, 3), (9, 4), (9, 5), (9, 6), (9, 7), (9, 8), (9, 9), (9, 10), (9, 11), (9, 12), (9, 13), (9, 14), (9, 15), (10, 0), (10, 1), (10, 2), (10, 3), (10, 4), (10, 5), (10, 6), (10, 7), (10, 8), (10, 9), (10, 10), (10, 11), (10, 12), (10, 13), (10, 14), (10, 15), (11, 0), (11, 1), (11, 2), (11, 3), (11, 4), (11, 5), (11, 6), (11, 7), (11, 8), (11, 9), (11, 10), (11, 11), (11, 12), (11, 13), (11, 14), (11, 15), (12, 0), (12, 1), (12, 2), (12, 3), (12, 4), (12, 5), (12, 6), (12, 7), (12, 8), (12, 9), (12, 10), (12, 11), (12, 12), (12, 13), (12, 14), (12, 15), (13, 0), (13, 1), (13, 2), (13, 3), (13, 4), (13, 5), (13, 6), (13, 7), (13, 8), (13, 9), (13, 10), (13, 11), (13, 12), (13, 13), (13, 14), (13, 15), (14, 0), (14, 1), (14, 2), (14, 3), (14, 4), (14, 5), (14, 6), (14, 7), (14, 8), (14, 9), (14, 10), (14, 11), (14, 12), (14, 13), (14, 14), (14, 15), (15, 0), (15, 1), (15, 2), (15, 3), (15, 4), (15, 5), (15, 6), (15, 7), (15, 8), (15, 9), (15, 10), (15, 11), (15, 12), (15, 13), (15, 14), (15, 15)]

	The xz-coords for a chunk.

	
bravo.utilities.coords.adjust_coords_for_face(coords, face)[source]

	Adjust a set of coords according to a face.

The face is a standard string descriptor, such as “+x”.

The “noop” face is supported.

	
bravo.utilities.coords.iterchunk()[source]

	Yield an iterable of x, z, y coordinates for an entire chunk.

	
bravo.utilities.coords.itercube(x, y, z, r)[source]

	Yield an iterable of coordinates in a cube around a given block.

Coordinates with invalid Y values are discarded automatically.

	
bravo.utilities.coords.iterneighbors(x, y, z)[source]

	Yield an iterable of neighboring block coordinates.

The first item in the iterable is the original coordinates.

Coordinates with invalid Y values are discarded automatically.

	
bravo.utilities.coords.polar_round_vector(vector)[source]

	Rounds a vector towards zero

	
bravo.utilities.coords.split_coords(x, z)[source]

	Split a pair of coordinates into chunk and subchunk coordinates.

	Parameters:	
	x (int [http://docs.python.org/library/functions.html#int]) – the X coordinate

	z (int [http://docs.python.org/library/functions.html#int]) – the Z coordinate

	Returns:	a tuple of the X chunk, X subchunk, Z chunk, and Z subchunk

	
bravo.utilities.coords.taxicab2(x1, y1, x2, y2)[source]

	Return the taxicab distance between two blocks.

	
bravo.utilities.coords.taxicab3(x1, y1, z1, x2, y2, z2)[source]

	Return the taxicab distance between two blocks, in three dimensions.

Data Packing

More affectionately known as “bit-twiddling.”

	
bravo.utilities.bits.grouper(n, iterable, fillvalue=None)[source]

	grouper(3, ‘ABCDEFG’, ‘x’) –> ABC DEF Gxx

	
bravo.utilities.bits.pack_nibbles(a)[source]

	Pack pairs of nibbles into bytes.

Bytes are returned as characters.

	Parameters:	a (array [http://docs.python.org/library/array.html#module-array]) – nibbles to pack

	Returns:	packed nibbles as a string of bytes

	
bravo.utilities.bits.unpack_nibbles(l)[source]

	Unpack bytes into pairs of nibbles.

Nibbles are half-byte quantities. The nibbles unpacked by this function
are returned as unsigned numeric values.

>>> unpack_nibbles("a")
[6, 1]
>>> unpack_nibbles("nibbles")
[6, 14, 6, 9, 6, 2, 6, 2, 6, 12, 6, 5, 7, 3]

	Parameters:	l (list [http://docs.python.org/library/functions.html#list]) – bytes

	Returns:	list of nibbles

Decorators

General decorators for a variety of purposes.

	
bravo.utilities.decos.timed(f)[source]

	Print out timing statistics on a given callable.

Intended largely for debugging; keep this in the tree for profiling even
if it’s not currently wired up.

Geometry

Simple pixel graphics helpers.

	
bravo.utilities.geometry.gen_close_point(point1, point2)[source]

	Retrieve the first integer set of coordinates on the line from the first
point to the second point.

The set of coordinates corresponding to the first point will not be
retrieved.

	
bravo.utilities.geometry.gen_line_covered(point1, point2)[source]

	This is Bresenham’s algorithm with a little twist: all the blocks that
intersect with the line are yielded.

	
bravo.utilities.geometry.gen_line_simple(point1, point2)[source]

	An adaptation of Bresenham’s line algorithm in three dimensions.

This function returns an iterable of integer coordinates along the line
from the first point to the second point. No points are omitted.

Scheduling

	
class bravo.utilities.temporal.PendingEvent[source]

	Bases: object

An event which will happen at some point.

Structurally, this could be thought of as a poor man’s upside-down
DeferredList; it turns a single callback/errback into a broadcast which
fires many multiple Deferreds.

This code came from Epsilon and should go into Twisted at some point.

	
bravo.utilities.temporal.split_time(timestamp)[source]

	Turn an MC timestamp into hours and minutes.

The time is calculated by interpolating the MC clock over the standard
24-hour clock.

	Parameters:	timestamp (int [http://docs.python.org/library/functions.html#int]) – MC timestamp, in the range 0-24000

	Returns:	a tuple of hours and minutes on the 24-hour clock

	
bravo.utilities.temporal.timestamp_from_clock(clock)[source]

	Craft an int-sized timestamp from a clock.

More precisely, the size of the timestamp is 4 bytes, and the clock must
be an implementor of IReactorTime. twisted.internet.reactor and
twisted.internet.task.Clock are the primary suspects.

This function’s timestamps are millisecond-accurate.

Spatial Hashes

	
class bravo.utilities.spatial.Block2DSpatialDict[source]

	Bases: bravo.utilities.spatial.SpatialDict

Class for tracking blocks in the XZ-plane.

	
key_for_bucket(key)[source]

	Partition keys into chunk-sized buckets.

	
keys_near(key, radius)[source]

	Get all bucket keys “near” this key.

This method may return a generator.

	
class bravo.utilities.spatial.Block3DSpatialDict[source]

	Bases: bravo.utilities.spatial.SpatialDict

Class for tracking blocks in the XZ-plane.

	
key_for_bucket(key)[source]

	Partition keys into chunk-sized buckets.

	
keys_near(key, radius)[source]

	Get all bucket keys “near” this key.

This method may return a generator.

	
class bravo.utilities.spatial.SpatialDict[source]

	Bases: object, UserDict.DictMixin [http://docs.python.org/library/userdict.html#UserDict.DictMixin]

A spatial dictionary, for accelerating spatial lookups.

This particular class is a template for specific spatial dictionaries; in
order to make it work, subclass it and add key_for_bucket().

	
iteritemsnear(key, radius)[source]

	A version of iteritems() that filters based on the distance from a
given key.

The key does not need to actually be in the dictionary.

	
iterkeys()[source]

	Yield all the keys.

	
iterkeysnear(key, radius)[source]

	Yield all of the keys within a certain radius of this key.

	
itervaluesnear(key, radius)[source]

	Yield all of the values within a certain radius of this key.

	
keys()[source]

	Get a list of all keys in the dictionary.

Trigonometry

	
bravo.utilities.maths.circling(x, y, r)[source]

	Generate the points of the filled integral circle of the given radius
around the given coordinates.

	
bravo.utilities.maths.clamp(x, low, high)[source]

	Clamp or saturate a number to be no lower than a minimum and no higher
than a maximum.

Implemented as its own function simply because it’s so easy to mess up
when open-coded.

	
bravo.utilities.maths.dist(first, second)[source]

	Calculate the distance from one point to another.

	
bravo.utilities.maths.morton2(x, y)[source]

	Create a Morton number by interleaving the bits of two numbers.

This can be used to map 2D coordinates into the integers.

Inputs will be masked off to 16 bits, unsigned.

	
bravo.utilities.maths.rotated_cosine(x, y, theta, lambd)[source]

	Evaluate a rotated 3D sinusoidal wave at a given point, angle, and
wavelength.

The function used is:

[image: f(x, y) = -\cos((x \cos\theta - y \sin\theta) / \lambda) / 2 + 1]

This function has a handful of useful properties; it has a local minimum
at f(0, 0) and oscillates infinitely betwen 0 and 1.

	Parameters:	
	x (float [http://docs.python.org/library/functions.html#float]) – X coordinate

	y (float [http://docs.python.org/library/functions.html#float]) – Y coordinate

	theta (float [http://docs.python.org/library/functions.html#float]) – angle of rotation

	lambda (float [http://docs.python.org/library/functions.html#float]) – wavelength

	Returns:	float of f(x, y)

	
bravo.utilities.maths.sorted_by_distance(iterable, x, y)[source]

	Like sorted(), but by distance to the given coordinates.

 Copyright 2010, Corbin Simpson, Derrick Dymock, & Justin Noah.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Bravo 2.0 documentation

Tools

A handful of utilities are distributed with Bravo, in the tools directory.

Chunkbench

Chunkbench is a script that tests terrain generation speed.

Jsondump

Jsondump pretty-prints a JSON file.

NBTdump

NBTdump pretty-prints an NBT file.

Noiseview

Noiseview creates a picture of simplex noise, using Bravo’s builtin noise
generator.

parser-cli

parser-cli parses and pretty-prints raw Alpha packets.

 Copyright 2010, Corbin Simpson, Derrick Dymock, & Justin Noah.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	Bravo 2.0 documentation

 Python Module Index

 b

 			

 		
 b	

 	[image: -]
 	
 bravo	

 	
 	
 bravo.beta.factory	

 	
 	
 bravo.beta.packets	

 	
 	
 bravo.beta.protocol	

 	
 	
 bravo.blocks	

 	
 	
 bravo.chunk	

 	
 	
 bravo.entity	

 	
 	
 bravo.infini.factory	

 	
 	
 bravo.infini.packets	

 	
 	
 bravo.infini.protocol	

 	
 	
 bravo.inventory	

 	
 	
 bravo.inventory.slots	

 	
 	
 bravo.inventory.windows	

 	
 	
 bravo.location	

 	
 	
 bravo.plugin	

 	
 	
 bravo.simplex	

 	
 	
 bravo.stdio	

 	
 	
 bravo.utilities.automatic	

 	
 	
 bravo.utilities.bits	

 	
 	
 bravo.utilities.chat	

 	
 	
 bravo.utilities.coords	

 	
 	
 bravo.utilities.decos	

 	
 	
 bravo.utilities.geometry	

 	
 	
 bravo.utilities.maths	

 	
 	
 bravo.utilities.spatial	

 	
 	
 bravo.utilities.temporal	

 	
 	
 bravo.world	

 Copyright 2010, Corbin Simpson, Derrick Dymock, & Justin Noah.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	Bravo 2.0 documentation

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 | Z

A

 	

 	action() (bravo.beta.protocol.BetaServerProtocol method)

 	add() (bravo.inventory.Inventory method)

 	add_node() (bravo.beta.protocol.BetaProxyProtocol method)

 	add_plugin_edges() (in module bravo.plugin)

 	adjust_coords_for_face() (in module bravo.utilities.coords)

 	AMPGateway (class in bravo.stdio)

 	animate() (bravo.beta.protocol.BetaServerProtocol method)

 	armor_boots (in module bravo.blocks)

 	

 	armor_chestplates (in module bravo.blocks)

 	armor_helmets (in module bravo.blocks)

 	armor_leggings (in module bravo.blocks)

 	ascend() (bravo.beta.protocol.BetaServerProtocol method)

 	async (bravo.world.World attribute)

 	at_block() (bravo.location.Location class method)

 	authenticated() (bravo.beta.protocol.BetaServerProtocol method)

B

 	

 	BetaProxyProtocol (class in bravo.beta.protocol)

 	BetaServerProtocol (class in bravo.beta.protocol)

 	Block (class in bravo.blocks)

 	Block2DSpatialDict (class in bravo.utilities.spatial)

 	Block3DSpatialDict (class in bravo.utilities.spatial)

 	blocks (in module bravo.blocks)

 	bravo.beta.factory (module)

 	bravo.beta.packets (module)

 	bravo.beta.protocol (module)

 	bravo.blocks (module)

 	bravo.chunk (module)

 	bravo.entity (module)

 	bravo.infini.factory (module)

 	bravo.infini.packets (module)

 	bravo.infini.protocol (module)

 	bravo.inventory (module)

 	bravo.inventory.slots (module)

 	bravo.inventory.windows (module)

 	bravo.location (module)

 	bravo.plugin (module)

 	bravo.simplex (module)

 	

 	bravo.stdio (module)

 	bravo.utilities.automatic (module)

 	bravo.utilities.bits (module)

 	bravo.utilities.chat (module)

 	bravo.utilities.coords (module)

 	bravo.utilities.decos (module)

 	bravo.utilities.geometry (module)

 	bravo.utilities.maths (module)

 	bravo.utilities.spatial (module)

 	bravo.utilities.temporal (module)

 	bravo.world (module)

 	BravoConsole (class in bravo.stdio)

 	BravoFactory (class in bravo.beta.factory)

 	BravoManhole (class in bravo.stdio)

 	BravoProtocol (class in bravo.beta.protocol)

 	broadcast() (bravo.beta.factory.BravoFactory method)

 	broadcast_for_chunk() (bravo.beta.factory.BravoFactory method)

 	broadcast_for_others() (bravo.beta.factory.BravoFactory method)

 	build() (bravo.beta.protocol.BetaServerProtocol method)

 	

 	(bravo.beta.protocol.BravoProtocol method)

 	buildProtocol() (bravo.beta.factory.BravoFactory method)

 	burn() (bravo.entity.Furnace method)

C

 	

 	call() (bravo.stdio.AMPGateway method)

 	can_craft() (bravo.entity.Furnace method)

 	changed() (bravo.entity.Furnace method)

 	chat() (bravo.beta.factory.BravoFactory method)

 	

 	(bravo.beta.protocol.BetaServerProtocol method)

 	check_bounds() (in module bravo.chunk)

 	check_recipes() (bravo.inventory.slots.Crafting method)

 	Chest (class in bravo.entity)

 	Chuck (class in bravo.entity)

 	Chunk (class in bravo.chunk)

 	CHUNK_HEIGHT (in module bravo.utilities.coords)

 	ChunkCache (class in bravo.world)

 	ChunkWarning

 	ci() (in module bravo.chunk)

 	circling() (in module bravo.utilities.maths)

 	clamp() (bravo.location.Location method)

 	

 	(in module bravo.utilities.maths)

 	clear_damage() (bravo.chunk.Chunk method)

 	

 	client_settings() (bravo.beta.protocol.BetaServerProtocol method)

 	close() (bravo.inventory.slots.Crafting method)

 	

 	(bravo.inventory.windows.Window method)

 	column_scan() (in module bravo.utilities.automatic)

 	complete() (bravo.beta.protocol.BetaServerProtocol method)

 	

 	(bravo.beta.protocol.BravoProtocol method)

 	(in module bravo.utilities.chat)

 	composite_glow() (in module bravo.chunk)

 	connect() (bravo.stdio.AMPGateway method)

 	

 	(bravo.world.World method)

 	connectionLost() (bravo.beta.protocol.BravoProtocol method)

 	consume() (bravo.inventory.Inventory method)

 	container_for_slot() (bravo.inventory.windows.Window method)

 	coords_to_chunk() (in module bravo.world)

 	Cow (class in bravo.entity)

 	Crafting (class in bravo.inventory.slots)

 	create_entity() (bravo.beta.factory.BravoFactory method)

 	creative() (bravo.inventory.windows.InventoryWindow method)

 	Creeper (class in bravo.entity)

D

 	

 	damage() (bravo.chunk.Chunk method)

 	destroy() (bravo.chunk.Chunk method)

 	

 	(bravo.world.World method)

 	destroy_entity() (bravo.beta.factory.BravoFactory method)

 	digging() (bravo.beta.protocol.BetaServerProtocol method)

 	dimension (bravo.world.World attribute)

 	

 	dirtied (bravo.chunk.Chunk attribute)

 	dist() (in module bravo.utilities.maths)

 	distance() (bravo.location.Location method)

 	

 	(bravo.location.Position method)

 	dot2() (in module bravo.simplex)

 	dot3() (in module bravo.simplex)

E

 	

 	enable_cache() (bravo.world.World method)

 	enable_chunk() (bravo.beta.protocol.BravoProtocol method)

 	entities_near() (bravo.beta.protocol.BravoProtocol method)

 	Entity (class in bravo.entity)

 	

 	equip() (bravo.beta.protocol.BetaServerProtocol method)

 	error() (bravo.beta.protocol.BetaServerProtocol method)

 	expand_names() (in module bravo.plugin)

F

 	

 	face() (bravo.blocks.Block method)

 	factory (bravo.world.World attribute)

 	flush_all_chunks() (bravo.beta.factory.BravoFactory method)

 	flush_chunk() (bravo.beta.factory.BravoFactory method)

 	

 	(bravo.world.World method)

 	

 	from_degs() (bravo.location.Orientation class method)

 	from_player() (bravo.location.Position class method)

 	Furnace (class in bravo.entity)

G

 	

 	gen_close_point() (in module bravo.utilities.geometry)

 	gen_line_covered() (in module bravo.utilities.geometry)

 	gen_line_simple() (in module bravo.utilities.geometry)

 	get_block() (bravo.chunk.Chunk method)

 	

 	(bravo.world.World method)

 	get_damage_packet() (bravo.chunk.Chunk method)

 	get_metadata() (bravo.chunk.Chunk method)

 	

 	(bravo.world.World method)

 	get_plugins() (in module bravo.plugin)

 	

 	get_skylight() (bravo.chunk.Chunk method)

 	Ghast (class in bravo.entity)

 	GiantZombie (class in bravo.entity)

 	give() (bravo.beta.factory.BravoFactory method)

 	grounded() (bravo.beta.protocol.BetaServerProtocol method)

 	grouper() (in module bravo.utilities.bits)

H

 	

 	handshake() (bravo.beta.protocol.BetaServerProtocol method)

 	has_fuel() (bravo.entity.Furnace method)

 	

 	heading() (bravo.location.Position method)

 	height_at() (bravo.chunk.Chunk method)

I

 	

 	IAutomaton (class in bravo.ibravo)

 	IBravoPlugin (class in bravo.ibravo)

 	IChatCommand (class in bravo.ibravo)

 	IConsoleCommand (class in bravo.ibravo)

 	IDigHook (class in bravo.ibravo)

 	ImpossibleCoordinates

 	in_front_of() (bravo.location.Location method)

 	InfiniClientFactory (class in bravo.infini.factory)

 	InfiniNodeFactory (class in bravo.infini.factory)

 	InfiniPacket() (in module bravo.infini.packets)

 	Inventory (class in bravo.inventory)

 	InventoryWindow (class in bravo.inventory.windows)

 	IPacket() (in module bravo.beta.packets)

 	IPostBuildHook (class in bravo.ibravo)

 	IPreBuildHook (class in bravo.ibravo)

 	IRecipe (class in bravo.ibravo)

 	is_damaged() (bravo.chunk.Chunk method)

 	

 	ISeason (class in bravo.ibravo)

 	ISerializer (class in bravo.ibravo)

 	ISignHook (class in bravo.ibravo)

 	ISortedPlugin (class in bravo.ibravo)

 	Item (class in bravo.blocks)

 	items (in module bravo.blocks)

 	iter_neighbors() (in module bravo.chunk)

 	iterchunk() (in module bravo.utilities.coords)

 	itercube() (in module bravo.utilities.coords)

 	iteritemsnear() (bravo.utilities.spatial.SpatialDict method)

 	iterkeys() (bravo.utilities.spatial.SpatialDict method)

 	iterkeysnear() (bravo.utilities.spatial.SpatialDict method)

 	iterneighbors() (in module bravo.utilities.coords)

 	ITerrainGenerator (class in bravo.ibravo)

 	itervaluesnear() (bravo.utilities.spatial.SpatialDict method)

 	IUseHook (class in bravo.ibravo)

 	IWorldResource (class in bravo.ibravo)

K

 	

 	key_for_bucket() (bravo.utilities.spatial.Block2DSpatialDict method)

 	

 	(bravo.utilities.spatial.Block3DSpatialDict method)

 	keys() (bravo.utilities.spatial.SpatialDict method)

 	

 	keys_near() (bravo.utilities.spatial.Block2DSpatialDict method)

 	

 	(bravo.utilities.spatial.Block3DSpatialDict method)

 	KickedProtocol (class in bravo.beta.protocol)

L

 	

 	LargeChestStorage (class in bravo.inventory.slots)

 	level (bravo.world.World attribute)

 	load_from_packet() (bravo.inventory.windows.Window method)

 	

 	load_player() (bravo.world.World method)

 	Location (class in bravo.location)

 	location_packet() (bravo.beta.protocol.BetaServerProtocol method)

M

 	

 	make_error_packet() (in module bravo.beta.packets)

 	make_glows() (in module bravo.chunk)

 	make_packet() (in module bravo.beta.packets)

 	

 	(in module bravo.infini.packets)

 	mark_dirty() (bravo.world.World method)

 	Metadata (class in bravo.beta.packets)

 	

 	Mob (class in bravo.entity)

 	MobSpawner (class in bravo.entity)

 	morton2() (in module bravo.utilities.maths)

 	Music (class in bravo.entity)

N

 	

 	naive_scan() (in module bravo.utilities.automatic)

 	name (bravo.entity.Mob attribute)

 	

 	neighboring_light() (in module bravo.chunk)

O

 	

 	octaves2() (in module bravo.simplex)

 	octaves3() (in module bravo.simplex)

 	offset2() (in module bravo.simplex)

 	orientable() (bravo.blocks.Block method)

 	

 	Orientation (class in bravo.location)

 	orientation() (bravo.beta.protocol.BetaServerProtocol method)

 	

 	(bravo.blocks.Block method)

 	orientation_changed() (bravo.beta.protocol.BetaServerProtocol method)

P

 	

 	pack_nibbles() (in module bravo.utilities.bits)

 	packets_for_dirty() (bravo.inventory.windows.SharedWindow method)

 	Painting (class in bravo.entity)

 	parse_block() (in module bravo.blocks)

 	parse_packets() (in module bravo.beta.packets)

 	parse_packets_incrementally() (in module bravo.beta.packets)

 	PendingEvent (class in bravo.utilities.temporal)

 	Pickup (class in bravo.entity)

 	pickup() (bravo.beta.protocol.BetaServerProtocol method)

 	Pig (class in bravo.entity)

 	ping() (bravo.beta.protocol.BetaServerProtocol method)

 	

 	play_notes() (bravo.beta.protocol.BetaServerProtocol method)

 	Player (class in bravo.entity)

 	players_near() (bravo.beta.factory.BravoFactory method)

 	polar_round_vector() (in module bravo.utilities.coords)

 	poll() (bravo.beta.protocol.BetaServerProtocol method)

 	Position (class in bravo.location)

 	position() (bravo.beta.protocol.BetaServerProtocol method)

 	position_changed() (bravo.beta.protocol.BetaServerProtocol method)

 	postprocess_chunk() (bravo.world.World method)

 	pre_handshake() (bravo.beta.protocol.BetaServerProtocol method)

 	

 	(bravo.beta.protocol.BravoProtocol method)

 	protocol (bravo.beta.factory.BravoFactory attribute)

Q

 	

 	quit() (bravo.beta.protocol.BetaServerProtocol method)

R

 	

 	reduce_recipe() (bravo.inventory.slots.Crafting method)

 	regenerate() (bravo.chunk.Chunk method)

 	regenerate_heightmap() (bravo.chunk.Chunk method)

 	regenerate_skylight() (bravo.chunk.Chunk method)

 	register_entity() (bravo.beta.factory.BravoFactory method)

 	register_plugins() (bravo.beta.factory.BravoFactory method)

 	request_chunk() (bravo.world.World method)

 	reseed() (in module bravo.simplex)

 	

 	respawn() (bravo.beta.protocol.BetaServerProtocol method)

 	retrieve_named_plugins() (in module bravo.plugin)

 	retrieve_plugins() (in module bravo.plugin)

 	retrieve_sorted_plugins() (in module bravo.plugin)

 	rotated_cosine() (in module bravo.utilities.maths)

 	run() (bravo.entity.Mob method)

 	run_dig_hooks() (bravo.beta.protocol.BravoProtocol method)

S

 	

 	sanitize_chat() (in module bravo.utilities.chat)

 	save_chunk() (bravo.world.World method)

 	save_equipment_to_packet() (bravo.entity.Player method)

 	save_off() (bravo.world.World method)

 	save_on() (bravo.world.World method)

 	save_to_packet() (bravo.chunk.Chunk method)

 	

 	(bravo.entity.Mob method)

 	(bravo.entity.Painting method)

 	(bravo.entity.Pickup method)

 	(bravo.entity.Player method)

 	(bravo.location.Location method)

 	saving (bravo.world.World attribute)

 	scan_chunk() (bravo.beta.factory.BravoFactory method)

 	sed() (bravo.chunk.Chunk method)

 	segment_array() (in module bravo.chunk)

 	select() (bravo.inventory.windows.Window method)

 	select_armor() (bravo.inventory.Inventory method)

 	select_crafted() (bravo.inventory.slots.Crafting method)

 	select_stack() (bravo.inventory.windows.Window method)

 	send_chat() (bravo.beta.protocol.BetaServerProtocol method)

 	send_initial_chunk_and_location() (bravo.beta.protocol.BravoProtocol method)

 	SerializableSlots (class in bravo.inventory)

 	set_block() (bravo.chunk.Chunk method)

 	

 	(bravo.world.World method)

 	set_metadata() (bravo.chunk.Chunk method)

 	

 	(bravo.world.World method)

 	set_seed() (in module bravo.simplex)

 	set_skylight() (bravo.chunk.Chunk method)

 	set_username() (bravo.beta.factory.BravoFactory method)

 	settings_packet() (bravo.beta.protocol.BetaServerProtocol method)

 	

 	(bravo.beta.protocol.BravoProtocol method)

 	SharedWindow (class in bravo.inventory.windows)

 	Sheep (class in bravo.entity)

 	Sign (class in bravo.entity)

 	sign() (bravo.beta.protocol.BetaServerProtocol method)

 	

 	simple() (in module bravo.beta.packets)

 	simplex2() (in module bravo.simplex)

 	simplex3() (in module bravo.simplex)

 	Skeleton (class in bravo.entity)

 	Slime (class in bravo.entity)

 	slot_for_container() (bravo.inventory.windows.Window method)

 	SlotsSet (class in bravo.inventory.slots)

 	sort_plugins() (in module bravo.plugin)

 	sorted_by_distance() (in module bravo.utilities.maths)

 	SpatialDict (class in bravo.utilities.spatial)

 	Speed (in module bravo.beta.packets)

 	Spider (class in bravo.entity)

 	split_coords() (in module bravo.utilities.coords)

 	split_time() (in module bravo.utilities.temporal)

 	Squid (class in bravo.entity)

 	start() (bravo.world.World method)

 	stop() (bravo.world.World method)

 	stopFactory() (bravo.beta.factory.BravoFactory method)

 	String() (in module bravo.infini.packets)

 	sync_coords_to_chunk() (in module bravo.world)

 	sync_destroy() (bravo.world.World method)

 	sync_get_block() (bravo.world.World method)

 	sync_get_metadata() (bravo.world.World method)

 	sync_mark_dirty() (bravo.world.World method)

 	sync_request_chunk() (bravo.world.World method)

 	sync_set_block() (bravo.world.World method)

 	sync_set_metadata() (bravo.world.World method)

T

 	

 	taxicab2() (in module bravo.utilities.coords)

 	taxicab3() (in module bravo.utilities.coords)

 	teardown_protocol() (bravo.beta.factory.BravoFactory method)

 	Tile (class in bravo.entity)

 	timed() (in module bravo.utilities.decos)

 	timestamp_from_clock() (in module bravo.utilities.temporal)

 	

 	to_block() (bravo.location.Position method)

 	to_degs() (bravo.location.Orientation method)

 	to_fracs() (bravo.location.Orientation method)

 	to_player() (bravo.location.Position method)

 	type (bravo.beta.packets.Metadata attribute)

U

 	

 	unpack_nibbles() (in module bravo.utilities.bits)

 	unstackable (in module bravo.blocks)

 	update() (bravo.entity.Mob method)

 	update_location() (bravo.beta.protocol.BetaServerProtocol method)

 	update_metadata() (bravo.entity.Mob method)

 	

 	update_ping() (bravo.beta.protocol.BetaServerProtocol method)

 	update_season() (bravo.beta.factory.BravoFactory method)

 	update_time() (bravo.beta.factory.BravoFactory method)

 	use() (bravo.beta.protocol.BetaServerProtocol method)

 	

 	(bravo.beta.protocol.BravoProtocol method)

 	username_alternatives() (in module bravo.utilities.chat)

V

 	

 	value (bravo.beta.packets.Metadata attribute)

 	

 	verify_plugin() (in module bravo.plugin)

W

 	

 	wacknowledge() (bravo.beta.protocol.BetaServerProtocol method)

 	waction() (bravo.beta.protocol.BetaServerProtocol method)

 	wclose() (bravo.beta.protocol.BetaServerProtocol method)

 	wcreative() (bravo.beta.protocol.BetaServerProtocol method)

 	

 	(bravo.beta.protocol.BravoProtocol method)

 	

 	Window (class in bravo.inventory.windows)

 	Wolf (class in bravo.entity)

 	World (class in bravo.world)

 	write_packet() (bravo.beta.protocol.BetaServerProtocol method)

X

 	

 	XZ (in module bravo.utilities.coords)

Z

 	

 	Zombie (class in bravo.entity)

 	

 	ZombiePigman (class in bravo.entity)

 Copyright 2010, Corbin Simpson, Derrick Dymock, & Justin Noah.
 Created using Sphinx 1.2.2.

 _modules/bravo/utilities/automatic.html

 Navigation

 		
 index

 		
 modules |

 		Bravo 2.0 documentation »

 		Module code »

 Source code for bravo.utilities.automatic

from bravo.utilities.coords import XZ

[docs]def naive_scan(automaton, chunk):
 """
 Utility function which can be used to implement a naive, slow, but
 thorough chunk scan for automatons.

 This method is designed to be directly useable on automaton classes to
 provide the `scan()` interface.

 This function depends on implementation details of ``Chunk``.
 """

 acceptable = automaton.blocks

 for index, section in enumerate(chunk.sections):
 if section:
 for i, block in enumerate(section.blocks):
 if block in acceptable:
 coords = i & 0xf, (i >> 8) + index * 16, i >> 4 & 0xf
 automaton.feed(coords)

[docs]def column_scan(automaton, chunk):
 """
 Utility function which provides a chunk scanner which only examines the
 tallest blocks in the chunk. This can be useful for automatons which only
 care about sunlit or elevated areas.

 This method can be used directly in automaton classes to provide `scan()`.
 """

 acceptable = automaton.blocks

 for x, z in XZ:
 y = chunk.height_at(x, z)
 if chunk.get_block((x, y, z)) in acceptable:
 automaton.feed((x + chunk.x * 16, y, z + chunk.z * 16))

 © Copyright 2010, Corbin Simpson, Derrick Dymock, & Justin Noah.
 Created using Sphinx 1.2.2.

_modules/bravo/utilities/spatial.html

 Navigation

 		
 index

 		
 modules |

 		Bravo 2.0 documentation »

 		Module code »

 Source code for bravo.utilities.spatial

from collections import defaultdict
from itertools import product
from UserDict import DictMixin

from bravo.utilities.coords import taxicab2

[docs]class SpatialDict(object, DictMixin):
 """
 A spatial dictionary, for accelerating spatial lookups.

 This particular class is a template for specific spatial dictionaries; in
 order to make it work, subclass it and add ``key_for_bucket()``.
 """

 def __init__(self):
 self.buckets = defaultdict(dict)

 def __setitem__(self, key, value):
 """
 Add a key-value pair to the dictionary.

 :param tuple key: a tuple of (x, z) coordinates
 :param object value: an object
 """

 bucket_key = self.key_for_bucket(key)
 self.buckets[bucket_key][key] = value

 def __getitem__(self, key):
 """
 Retrieve a value, given a key.
 """

 bucket_key = self.key_for_bucket(key)
 return self.buckets[bucket_key][key]

 def __delitem__(self, key):
 """
 Remove a key and its corresponding value.
 """

 bucket_key = self.key_for_bucket(key)
 del self.buckets[bucket_key][key]

 if not self.buckets[bucket_key]:
 del self.buckets[bucket_key]

[docs] def iterkeys(self):
 """
 Yield all the keys.
 """

 for bucket in self.buckets.itervalues():
 for key in bucket.iterkeys():
 yield key

[docs] def keys(self):
 """
 Get a list of all keys in the dictionary.
 """

 return list(self.iterkeys())

[docs] def iteritemsnear(self, key, radius):
 """
 A version of ``iteritems()`` that filters based on the distance from a
 given key.

 The key does not need to actually be in the dictionary.
 """

 for coords in self.keys_near(key, radius):
 for target, value in self.buckets[coords].iteritems():
 if taxicab2(target[0], target[1], key[0], key[1]) <= radius:
 yield target, value

[docs] def iterkeysnear(self, key, radius):
 """
 Yield all of the keys within a certain radius of this key.
 """

 for k, v in self.iteritemsnear(key, radius):
 yield k

[docs] def itervaluesnear(self, key, radius):
 """
 Yield all of the values within a certain radius of this key.
 """

 for k, v in self.iteritemsnear(key, radius):
 yield v

[docs]class Block2DSpatialDict(SpatialDict):
 """
 Class for tracking blocks in the XZ-plane.
 """

[docs] def key_for_bucket(self, key):
 """
 Partition keys into chunk-sized buckets.
 """

 try:
 return int(key[0] // 16), int(key[1] // 16)
 except ValueError:
 return KeyError("Key %s isn't usable here!" % repr(key))

[docs] def keys_near(self, key, radius):
 """
 Get all bucket keys "near" this key.

 This method may return a generator.
 """

 minx, innerx = divmod(key[0], 16)
 minz, innerz = divmod(key[1], 16)
 minx = int(minx)
 minz = int(minz)

 # Adjust for range() purposes.
 maxx = minx + 1
 maxz = minz + 1

 # Adjust for leakiness.
 if innerx <= radius:
 minx -= 1
 if innerz <= radius:
 minz -= 1
 if innerx + radius >= 16:
 maxx += 1
 if innerz + radius >= 16:
 maxz += 1

 # Expand as needed.
 expand = int(radius // 16)
 minx -= expand
 minz -= expand
 maxx += expand
 maxz += expand

 return product(xrange(minx, maxx), xrange(minz, maxz))

[docs]class Block3DSpatialDict(SpatialDict):
 """
 Class for tracking blocks in the XZ-plane.
 """

[docs] def key_for_bucket(self, key):
 """
 Partition keys into chunk-sized buckets.
 """

 try:
 return int(key[0] // 16), int(key[1] // 16), int(key[2] // 16)
 except ValueError:
 return KeyError("Key %s isn't usable here!" % repr(key))

[docs] def keys_near(self, key, radius):
 """
 Get all bucket keys "near" this key.

 This method may return a generator.
 """

 minx, innerx = divmod(key[0], 16)
 miny, innery = divmod(key[1], 16)
 minz, innerz = divmod(key[2], 16)
 minx = int(minx)
 miny = int(miny)
 minz = int(minz)

 # Adjust for range() purposes.
 maxx = minx + 1
 maxy = miny + 1
 maxz = minz + 1

 # Adjust for leakiness.
 if innerx <= radius:
 minx -= 1
 if innery <= radius:
 miny -= 1
 if innerz <= radius:
 minz -= 1
 if innerx + radius >= 16:
 maxx += 1
 if innery + radius >= 16:
 maxy += 1
 if innerz + radius >= 16:
 maxz += 1

 # Expand as needed.
 expand = int(radius // 16)
 minx -= expand
 miny -= expand
 minz -= expand
 maxx += expand
 maxy += expand
 maxz += expand

 return product(
 xrange(minx, maxx),
 xrange(miny, maxy),
 xrange(minz, maxz))

 © Copyright 2010, Corbin Simpson, Derrick Dymock, & Justin Noah.
 Created using Sphinx 1.2.2.

_modules/bravo/utilities/maths.html

 Navigation

 		
 index

 		
 modules |

 		Bravo 2.0 documentation »

 		Module code »

 Source code for bravo.utilities.maths

from itertools import product
from math import cos, sin, sqrt

[docs]def dist(first, second):
 """
 Calculate the distance from one point to another.
 """

 return sqrt(sum((x - y) ** 2 for x, y in zip(first, second)))

[docs]def rotated_cosine(x, y, theta, lambd):
 r"""
 Evaluate a rotated 3D sinusoidal wave at a given point, angle, and
 wavelength.

 The function used is:

 .. math::

 f(x, y) = -\cos((x \cos\theta - y \sin\theta) / \lambda) / 2 + 1

 This function has a handful of useful properties; it has a local minimum
 at f(0, 0) and oscillates infinitely betwen 0 and 1.

 :param float x: X coordinate
 :param float y: Y coordinate
 :param float theta: angle of rotation
 :param float lambda: wavelength

 :returns: float of f(x, y)
 """

 return -cos((x * cos(theta) - y * sin(theta)) / lambd) / 2 + 1

[docs]def morton2(x, y):
 """
 Create a Morton number by interleaving the bits of two numbers.

 This can be used to map 2D coordinates into the integers.

 Inputs will be masked off to 16 bits, unsigned.
 """

 gx = x & 0xffff
 gy = y & 0xffff

 b = 0x00ff00ff, 0x0f0f0f0f, 0x33333333, 0x55555555
 s = 8, 4, 2, 1

 for i, j in zip(b, s):
 gx = (gx | (gx << j)) & i
 gy = (gy | (gy << j)) & i

 return gx | (gy << 1)

[docs]def clamp(x, low, high):
 """
 Clamp or saturate a number to be no lower than a minimum and no higher
 than a maximum.

 Implemented as its own function simply because it's so easy to mess up
 when open-coded.
 """

 return min(max(x, low), high)

[docs]def circling(x, y, r):
 """
 Generate the points of the filled integral circle of the given radius
 around the given coordinates.
 """

 l = []
 for i, j in product(range(-r, r + 1), repeat=2):
 if i ** 2 + j ** 2 <= r ** 2:
 l.append((x + i, y + j))
 return l

[docs]def sorted_by_distance(iterable, x, y):
 """
 Like ``sorted()``, but by distance to the given coordinates.
 """

 def key(t):
 return (t[0] - x) ** 2 + (t[1] - y) ** 2

 return sorted(iterable, key=key)

 © Copyright 2010, Corbin Simpson, Derrick Dymock, & Justin Noah.
 Created using Sphinx 1.2.2.

_modules/bravo/utilities/geometry.html

 Navigation

 		
 index

 		
 modules |

 		Bravo 2.0 documentation »

 		Module code »

 Source code for bravo.utilities.geometry

"""
Simple pixel graphics helpers.
"""

[docs]def gen_line_simple(point1, point2):
 """
 An adaptation of Bresenham's line algorithm in three dimensions.

 This function returns an iterable of integer coordinates along the line
 from the first point to the second point. No points are omitted.
 """

 # XXX should be done with ints instead of floats

 tx, ty, tz = point1.x, point1.y, point1.z # t is for temporary
 rx, ry, rz = int(tx), int(ty), int(tz) # r is for rounded
 ox, oy, oz = point2.x, point2.y, point2.z # o is for objective

 dx = ox - tx
 dy = oy - ty
 dz = oz - tz

 largest = float(max(abs(dx), abs(dy), abs(dz)))
 dx, dy, dz = dx / largest, dy / largest, dz / largest # We make a vector which maximum value is 1.0

 yield rx, ry, rz

 while abs(ox - tx) > 1 or abs(oy - ty) > 1 or abs(oz - tz) > 1:
 tx += dx
 ty += dy
 tz += dz
 yield int(tx), int(ty), int(tz)

 yield ox, oy, oz

class HurpPoint(object):

 def __init__(self, t):
 self.x, self.y, self.z = t

[docs]def gen_close_point(point1, point2):
 """
 Retrieve the first integer set of coordinates on the line from the first
 point to the second point.

 The set of coordinates corresponding to the first point will not be
 retrieved.
 """

 point1 = HurpPoint(point1)
 point2 = HurpPoint(point2)

 g = gen_line_simple(point1, point2)
 next(g)
 return next(g)

[docs]def gen_line_covered(point1, point2):
 """
 This is Bresenham's algorithm with a little twist: *all* the blocks that
 intersect with the line are yielded.
 """

 tx, ty, tz = point1.x, point1.y, point1.z # t is for temporary
 rx, ry, rz = int(tx), int(ty), int(tz) # r is for rounded
 ox, oy, oz = point2.x, point2.y, point2.z # o is for objective

 dx = ox - tx
 dy = oy - ty
 dz = oz - tz

 largest = float(max(abs(dx), abs(dy), abs(dz)))
 dx, dy, dz = dx / largest, dy / largest, dz / largest # We make a vector which maximum value is 1.0
 adx, ady, adz = abs(dx), abs(dy), abs(dz)

 px, py, pz = rx, ry, rz
 while abs(ox - tx) > 1 or abs(oy - ty) > 1 or abs(oz - tz) > 1:
 tx += dx
 ty += dy
 tz += dz
 if (ty < 0 and dy < 0) or (ty >= 127 and dy > 0):
 break
 rx, ry, rz = int(tx), int(ty), int(tz)

 yield rx, ry, rz

 # Send blocks that are in fact intersected by the line
 # but that bresenham skipped.
 if rx != px and adx != 1:
 yield px, ry, rz

 if ry != py and ady != 1:
 yield px, py, rz

 if rz != pz and adz != 1:
 yield px, ry, pz

 if ry != py and ady != 1:
 yield rx, py, rz

 if rz != pz and adz != 1:
 yield rx, py, pz

 if rz != pz and adz != 1:
 yield rx, ry, pz

 px, py, pz = rx, ry, rz

 © Copyright 2010, Corbin Simpson, Derrick Dymock, & Justin Noah.
 Created using Sphinx 1.2.2.

_modules/bravo/infini/packets.html

 Navigation

 		
 index

 		
 modules |

 		Bravo 2.0 documentation »

 		Module code »

 Source code for bravo.infini.packets

import functools

from construct import Struct, Container, Embed, MetaField
from construct import Switch, Const, Peek
from construct import OptionalGreedyRange
from construct import PascalString
from construct import UBInt8, UBInt16, UBInt32

DUMP_ALL_PACKETS = False

AlphaString = functools.partial(PascalString,
 length_field=UBInt16("length"),
 encoding="utf8")

[docs]def String(name):
 """
 UTF-8 length-prefixed string.
 """

 return PascalString(name, length_field=UBInt16("length"),
 encoding="utf-8")

[docs]def InfiniPacket(name, identifier, subconstruct):
 """
 Common header structure for packets.

 This is possibly not the best way to go about building these kinds of
 things.
 """

 header = Struct("header",
 # XXX Should this be Magic(chr(identifier))?
 Const(UBInt8("identifier"), identifier),
 UBInt8("flags"),
 UBInt32("length"),
)

 return Struct(name, header, subconstruct)

packets = {
 0: InfiniPacket("ping", 0x00,
 Struct("payload",
 UBInt16("uid"),
 UBInt32("timestamp"),
)
),
 255: InfiniPacket("disconnect", 0xff,
 Struct("payload",
 AlphaString("explanation"),
)
),
 "__default__": Struct("unknown",
 Struct("header",
 UBInt8("identifier"),
 UBInt8("flags"),
 UBInt32("length"),
),
 MetaField("data", lambda context: context["length"]),
),
}

packets_by_name = {
 "ping" : 0,
 "disconnect" : 255,
}

infinipacket_parser = Struct("parser",
 OptionalGreedyRange(
 Struct("packets",
 Peek(UBInt8("header")),
 Embed(Switch("packet", lambda context: context["header"],
 packets)),
),
),
 OptionalGreedyRange(
 UBInt8("leftovers"),
),
)

def parse_packets(bytestream):
 container = infinipacket_parser.parse(bytestream)

 l = [(i.header, i.payload) for i in container.packets]
 leftovers = "".join(chr(i) for i in container.leftovers)

 if DUMP_ALL_PACKETS:
 for packet in l:
 print "Parsed packet %d" % packet[0]
 print packet[1]

 return l, leftovers

[docs]def make_packet(packet, *args, **kwargs):
 """
 Constructs a packet bytestream from a packet header and payload.

 The payload should be passed as keyword arguments. Additional containers
 or dictionaries to be added to the payload may be passed positionally, as
 well.
 """

 if packet not in packets_by_name:
 print "Couldn't find packet name %s!" % packet
 return ""

 header = packets_by_name[packet]

 for arg in args:
 kwargs.update(dict(arg))
 payload = Container(**kwargs)

 if DUMP_ALL_PACKETS:
 print "Making packet %s (%d)" % (packet, header)
 print payload
 payload = packets[header].build(payload)
 return chr(header) + payload

 © Copyright 2010, Corbin Simpson, Derrick Dymock, & Justin Noah.
 Created using Sphinx 1.2.2.

_modules/bravo/infini/factory.html

 Navigation

 		
 index

 		
 modules |

 		Bravo 2.0 documentation »

 		Module code »

 Source code for bravo.infini.factory

from urllib import urlencode
from urlparse import urlunparse

from twisted.internet import reactor
from twisted.internet.protocol import Factory
from twisted.internet.task import LoopingCall
from twisted.python import log
from twisted.web.client import getPage

from bravo import version as bravo_version
from bravo.entity import Pickup, Player
from bravo.infini.protocol import InfiniClientProtocol, InfiniNodeProtocol

(STATE_UNAUTHENTICATED, STATE_CHALLENGED, STATE_AUTHENTICATED,
 STATE_LOCATED) = range(4)

entities_by_name = {
 "Player": Player,
 "Pickup": Pickup,
}

[docs]class InfiniClientFactory(Factory):
 """
 A ``Factory`` that serves as an InfiniCraft client.
 """

 protocol = InfiniClientProtocol

 def __init__(self, config, name):
 self.protocols = set()
 self.config = config

 log.msg("InfiniClient started")

 def buildProtocol(self, addr):
 log.msg("Starting connection to %s" % addr)

 return Factory.buildProtocol(self, addr)

[docs]class InfiniNodeFactory(Factory):
 """
 A ``Factory`` that serves as an InfiniCraft node.
 """

 protocol = InfiniNodeProtocol

 ready = False

 broadcast_loop = None

 def __init__(self, config, name):
 self.name = name
 self.port = self.config.getint("infininode %s" % name, "port")
 self.gateway = self.config.get("infininode %s" % name, "gateway")

 self.private_key = self.config.getdefault("infininode %s" % name,
 "private_key", None)

 self.broadcast_loop = LoopingCall(self.broadcast)
 self.broadcast_loop.start(220)

 def broadcast(self):
 args = urlencode({
 "max_clients": 10,
 "max_chunks": 256,
 "client_count": 0,
 "chunk_count": 0,
 "node_agent": "Bravo %s" % bravo_version,
 "port": self.port,
 "name": self.name,
 })

 if self.private_key:
 url = urlunparse(("http", self.gateway,
 "/broadcast/%s/" % self.private_key, None, args, None))
 else:
 url = urlunparse(("http", self.gateway, "/broadcast/", None, args,
 None))
 d = getPage(url)
 d.addCallback(self.online)
 d.addErrback(self.error)

 def broadcasted(self):
 self.ready = True

 def online(self, response):
 log.msg("Successfully said hi")
 log.msg("Response: %s" % response)

 if response == "Ok":
 # We're in business!
 reactor.callLater(0, self.broadcasted)
 elif response.startswith("Ok"):
 # New keypair?
 try:
 okay, public, private = response.split(":")
 self.public_key = public
 self.private_key = private
 self.save_keys()
 except ValueError:
 pass

 reactor.callLater(0, self.broadcasted)

 def save_keys(self):
 pass

 def error(self, reason):
 log.err("Couldn't talk to gateway %s" % self.gateway)
 log.err(reason)

 © Copyright 2010, Corbin Simpson, Derrick Dymock, & Justin Noah.
 Created using Sphinx 1.2.2.

_modules/bravo/utilities/chat.html

 Navigation

 		
 index

 		
 modules |

 		Bravo 2.0 documentation »

 		Module code »

 Source code for bravo.utilities.chat

vim: set fileencoding=utf8 :

"""
Colorizers.
"""

chat_colors = [
 u"§0", # black
 u"§1", # dark blue
 u"§2", # dark green
 u"§3", # dark cyan
 u"§4", # dark red
 u"§5", # dark magenta
 u"§6", # dark orange
 u"§7", # gray
 u"§8", # dark gray
 u"§9", # blue
 u"§a", # green
 u"§b", # cyan
 u"§c", # red
 u"§d", # magenta
 u"§e", # yellow
]

console_colors = {
 u"§0": "\x1b[1;30m", # black -> bold black
 u"§1": "\x1b[34m", # dark blue -> blue
 u"§2": "\x1b[32m", # dark green -> green
 u"§3": "\x1b[36m", # dark cyan -> cyan
 u"§4": "\x1b[31m", # dark red -> red
 u"§5": "\x1b[35m", # dark magenta -> magenta
 u"§6": "\x1b[33m", # dark orange -> yellow
 u"§7": "\x1b[1;37m", # gray -> bold white
 u"§8": "\x1b[37m", # dark gray -> white
 u"§9": "\x1b[1;34m", # blue -> bold blue
 u"§a": "\x1b[1;32m", # green -> bold green
 u"§b": "\x1b[1;36m", # cyan -> bold cyan
 u"§c": "\x1b[1;31m", # red -> bold red
 u"§d": "\x1b[1;35m", # magenta -> bold magenta
 u"§e": "\x1b[1;33m", # yellow -> bold yellow
}

def chat_name(s):
 return "%s%s%s" % (
 chat_colors[hash(s) % len(chat_colors)], s, u"§f"
)

def fancy_console_name(s):
 return "%s%s%s" % (
 console_colors[chat_colors[hash(s) % len(chat_colors)]],
 s,
 '\x1b[0m'
)

[docs]def sanitize_chat(s):
 """
 Verify that the given chat string is safe to send to Notchian recepients.
 """

 # Check for Notchian bug: Color controls can't be at the end of the
 # message.
 if len(s) > 1 and s[-2] == u"§":
 s = s[:-2]

 return s

[docs]def username_alternatives(n):
 """
 Permute a username through several common alternative-finding algorithms.
 """

 # First up: The Woll Smoth. This is largely for comedy, and also to
 # appease my Haskell/Erlang side.
 w = reduce(lambda x, y: unicode.replace(x, y, "o"), "aeiu", n)
 yield reduce(lambda x, y: unicode.replace(x, y, "O"), "AEIU", w)

 # Try prefixes and suffixes of ~, which a reliable source (kingnerd on
 # #mcdevs) tells me is not legal in registered nicks. *Somebody* will get
 # filtered by this.

 yield "~%s" % n
 yield "%s~" % n

 # And the IRC traditional underscore...

 yield "_%s" % n
 yield "%s_" % n

 # Now for some more inventive things. Say you have hundreds of "Player"s
 # running around; what do you do? Well, it's time for numbers.

 for i in range(100):
 yield "%s%d" % (n, i)

 # And that's it for now. If you really have this many players with the
 # same name, maybe you should announce "Stop logging on as
 # 'Sephiroth'" and see if they listen. >:3

[docs]def complete(sentence, possibilities):
 """
 Perform completion on a string using a list of possible strings.

 Returns a single string containing all possibilities.
 """

 words = sentence.split()
 tail = words[-1].lower()
 tails = [s + u" " for s in possibilities if s.lower().startswith(tail)]

 return u"\u0000".join(tails)

 © Copyright 2010, Corbin Simpson, Derrick Dymock, & Justin Noah.
 Created using Sphinx 1.2.2.

_modules/bravo/utilities/temporal.html

 Navigation

 		
 index

 		
 modules |

 		Bravo 2.0 documentation »

 		Module code »

 Source code for bravo.utilities.temporal

from twisted.internet.defer import Deferred
from twisted.python.failure import Failure

"""
Time-related utilities.
"""

[docs]class PendingEvent(object):
 """
 An event which will happen at some point.

 Structurally, this could be thought of as a poor man's upside-down
 DeferredList; it turns a single callback/errback into a broadcast which
 fires many multiple Deferreds.

 This code came from Epsilon and should go into Twisted at some point.
 """

 def __init__(self):
 self.listeners = []

 def deferred(self):
 d = Deferred()
 self.listeners.append(d)
 return d

 def callback(self, result):
 l = self.listeners
 self.listeners = []
 for d in l:
 d.callback(result)

 def errback(self, result=None):
 if result is None:
 result = Failure()
 l = self.listeners
 self.listeners = []
 for d in l:
 d.errback(result)

[docs]def split_time(timestamp):
 """
 Turn an MC timestamp into hours and minutes.

 The time is calculated by interpolating the MC clock over the standard
 24-hour clock.

 :param int timestamp: MC timestamp, in the range 0-24000
 :returns: a tuple of hours and minutes on the 24-hour clock
 """

 # 24000 ticks per day
 hours, minutes = divmod(timestamp, 1000)

 # 6:00 on a Christmas morning
 hours = (hours + 6) % 24
 minutes = minutes * 6 // 100

 return hours, minutes

[docs]def timestamp_from_clock(clock):
 """
 Craft an int-sized timestamp from a clock.

 More precisely, the size of the timestamp is 4 bytes, and the clock must
 be an implementor of IReactorTime. twisted.internet.reactor and
 twisted.internet.task.Clock are the primary suspects.

 This function's timestamps are millisecond-accurate.
 """

 return int(clock.seconds() * 1000) & 0xffffffff

 © Copyright 2010, Corbin Simpson, Derrick Dymock, & Justin Noah.
 Created using Sphinx 1.2.2.

search.html

 Navigation

 		
 index

 		
 modules |

 		Bravo 2.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2010, Corbin Simpson, Derrick Dymock, & Justin Noah.
 Created using Sphinx 1.2.2.

_images/math/da6830fe2e8587f4a820cc58179664c9842a4b42.png
cos((rcos —ysinf)/AN)/2+1

_static/comment.png

_static/minus.png

_static/plus.png

_static/comment-bright.png

_static/comment-close.png

_static/up.png

_static/file.png

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		Bravo 2.0 documentation »

 All modules for which code is available

		bravo.beta.factory

		bravo.beta.packets

		bravo.beta.protocol

		bravo.blocks

		bravo.chunk

		bravo.entity

		bravo.ibravo

		bravo.infini.factory

		bravo.infini.packets

		bravo.inventory

		bravo.inventory.slots

		bravo.inventory.windows

		bravo.location

		bravo.plugin

		bravo.simplex

		bravo.stdio

		bravo.utilities.automatic

		bravo.utilities.bits

		bravo.utilities.chat

		bravo.utilities.coords

		bravo.utilities.decos

		bravo.utilities.geometry

		bravo.utilities.maths

		bravo.utilities.spatial

		bravo.utilities.temporal

		bravo.world

 © Copyright 2010, Corbin Simpson, Derrick Dymock, & Justin Noah.
 Created using Sphinx 1.2.2.

_static/down.png

_static/ajax-loader.gif

_modules/bravo/world.html

 Navigation

 		
 index

 		
 modules |

 		Bravo 2.0 documentation »

 		Module code »

 Source code for bravo.world

from array import array
from functools import wraps
from itertools import imap, product
import random
import sys

from twisted.internet import reactor
from twisted.internet.defer import (inlineCallbacks, maybeDeferred,
 returnValue, succeed)
from twisted.internet.task import LoopingCall, coiterate
from twisted.python import log

from bravo.beta.structures import Level
from bravo.chunk import Chunk, CHUNK_HEIGHT
from bravo.entity import Player, Furnace
from bravo.errors import (ChunkNotLoaded, SerializerReadException,
 SerializerWriteException)
from bravo.ibravo import ISerializer
from bravo.plugin import retrieve_named_plugins
from bravo.utilities.coords import split_coords
from bravo.utilities.temporal import PendingEvent
from bravo.mobmanager import MobManager

[docs]class ChunkCache(object):
 """
 A cache which holds references to all chunks which should be held in
 memory.

 This cache remembers chunks that were recently used, that are in permanent
 residency, and so forth. Its exact caching algorithm is currently null.

 When chunks dirty themselves, they are expected to notify the cache, which
 will then schedule an eviction for the chunk.
 """

 def __init__(self):
 self._perm = {}
 self._dirty = {}

 def pin(self, chunk):
 self._perm[chunk.x, chunk.z] = chunk

 def unpin(self, chunk):
 del self._perm[chunk.x, chunk.z]

 def put(self, chunk):
 # XXX expand caching strategy
 pass

 def get(self, coords):
 if coords in self._perm:
 return self._perm[coords]
 # Returns None if not found!
 return self._dirty.get(coords)

 def cleaned(self, chunk):
 del self._dirty[chunk.x, chunk.z]

 def dirtied(self, chunk):
 self._dirty[chunk.x, chunk.z] = chunk

 def iterperm(self):
 return self._perm.itervalues()

 def iterdirty(self):
 return self._dirty.itervalues()

[docs]class ImpossibleCoordinates(Exception):
 """
 A coordinate could not ever be valid.
 """

[docs]def coords_to_chunk(f):
 """
 Automatically look up the chunk for the coordinates, and convert world
 coordinates to chunk coordinates.
 """

 @wraps(f)
 def decorated(self, coords, *args, **kwargs):
 x, y, z = coords

 # Fail early if Y is OOB.
 if not 0 <= y < CHUNK_HEIGHT:
 raise ImpossibleCoordinates("Y value %d is impossible" % y)

 bigx, smallx, bigz, smallz = split_coords(x, z)
 d = self.request_chunk(bigx, bigz)

 @d.addCallback
 def cb(chunk):
 return f(self, chunk, (smallx, y, smallz), *args, **kwargs)

 return d

 return decorated

[docs]def sync_coords_to_chunk(f):
 """
 Either get a chunk for the coordinates, or raise an exception.
 """

 @wraps(f)
 def decorated(self, coords, *args, **kwargs):
 x, y, z = coords

 # Fail early if Y is OOB.
 if not 0 <= y < CHUNK_HEIGHT:
 raise ImpossibleCoordinates("Y value %d is impossible" % y)

 bigx, smallx, bigz, smallz = split_coords(x, z)
 bigcoords = bigx, bigz

 chunk = self._cache.get(bigcoords)

 if chunk is None:
 raise ChunkNotLoaded("Chunk (%d, %d) isn't loaded" % bigcoords)

 return f(self, chunk, (smallx, y, smallz), *args, **kwargs)

 return decorated

[docs]class World(object):
 """
 Object representing a world on disk.

 Worlds are composed of levels and chunks, each of which corresponds to
 exactly one file on disk. Worlds also contain saved player data.
 """

 factory = None
 """
 The factory managing this world.

 Worlds do not need to be owned by a factory, but will not callback to
 surrounding objects without an owner.
 """

 _season = None
 """
 The current `ISeason`.
 """

 saving = True
 """
 Whether objects belonging to this world may be written out to disk.
 """

 async = False
 """
 Whether this world is using multiprocessing methods to generate geometry.
 """

 dimension = "earth"
 """
 The world dimension. Valid values are earth, sky, and nether.
 """

 level = Level(seed=0, spawn=(0, 0, 0), time=0)
 """
 The initial level data.
 """

 _cache = None
 """
 The chunk cache.
 """

 def __init__(self, config, name):
 """
 :Parameters:
 name : str
 The configuration key to use to look up configuration data.
 """

 self.config = config
 self.config_name = "world %s" % name

 self._pending_chunks = dict()

 @property
 def season(self):
 return self._season

 @season.setter
 def season(self, value):
 if self._season != value:
 self._season = value
 if self._cache is not None:
 # Issue 388: Apply the season to the permanent cache.
 # Use a list so that we don't end up with indefinite amounts
 # of work to do, and also so that we don't try to do work
 # while the permanent cache is changing size.
 coiterate(imap(value.transform, list(self._cache.iterperm())))

[docs] def connect(self):
 """
 Connect to the world.
 """

 world_url = self.config.get(self.config_name, "url")
 world_sf_name = self.config.get(self.config_name, "serializer")

 # Get the current serializer list, and attempt to connect our
 # serializer of choice to our resource.
 # This could fail. Each of these lines (well, only the first and
 # third) could raise a variety of exceptions. They should *all* be
 # fatal.
 serializers = retrieve_named_plugins(ISerializer, [world_sf_name])
 self.serializer = serializers[0]
 self.serializer.connect(world_url)

 log.msg("World connected on %s, using serializer %s" %
 (world_url, self.serializer.name))

[docs] def start(self):
 """
 Start managing a world.

 Connect to the world and turn on all of the timed actions which
 continuously manage the world.
 """

 self.connect()

 # Create our cache.
 self._cache = ChunkCache()

 # Pick a random number for the seed. Use the configured value if one
 # is present.
 seed = random.randint(0, sys.maxint)
 seed = self.config.getintdefault(self.config_name, "seed", seed)

 self.level = self.level._replace(seed=seed)

 # Check if we should offload chunk requests to ampoule.
 if self.config.getbooleandefault("bravo", "ampoule", False):
 try:
 import ampoule
 if ampoule:
 self.async = True
 except ImportError:
 pass

 log.msg("World is %s" %
 ("read-write" if self.saving else "read-only"))
 log.msg("Using Ampoule: %s" % self.async)

 # First, try loading the level, to see if there's any data out there
 # which we can use. If not, don't worry about it.
 d = maybeDeferred(self.serializer.load_level)

 @d.addCallback
 def cb(level):
 self.level = level
 log.msg("Loaded level data!")

 @d.addErrback
 def sre(failure):
 failure.trap(SerializerReadException)
 log.msg("Had issues loading level data, continuing anyway...")

 # And now save our level.
 if self.saving:
 self.serializer.save_level(self.level)

 # Start up the permanent cache.
 # has_option() is not exactly desirable, but it's appropriate here
 # because we don't want to take any action if the key is unset.
 if self.config.has_option(self.config_name, "perm_cache"):
 cache_level = self.config.getint(self.config_name, "perm_cache")
 self.enable_cache(cache_level)

 self.chunk_management_loop = LoopingCall(self.flush_chunk)
 self.chunk_management_loop.start(1)

 # XXX Put this in init or here?
 self.mob_manager = MobManager()
 # XXX Put this in the managers constructor?
 self.mob_manager.world = self

 @inlineCallbacks
[docs] def stop(self):
 """
 Stop managing the world.

 This can be a time-consuming, blocking operation, while the world's
 data is serialized.

 Note to callers: If you want the world time to be accurate, don't
 forget to write it back before calling this method!

 :returns: A ``Deferred`` that fires after the world has stopped.
 """

 self.chunk_management_loop.stop()

 # Flush all dirty chunks to disk. Don't bother cleaning them off.
 for chunk in self._cache.iterdirty():
 yield self.save_chunk(chunk)

 # Destroy the cache.
 self._cache = None

 # Save the level data.
 yield maybeDeferred(self.serializer.save_level, self.level)

[docs] def enable_cache(self, size):
 """
 Set the permanent cache size.

 Changing the size of the cache sets off a series of events which will
 empty or fill the cache to make it the proper size.

 For reference, 3 is a large-enough size to completely satisfy the
 Notchian client's login demands. 10 is enough to completely fill the
 Notchian client's chunk buffer.

 :param int size: The taxicab radius of the cache, in chunks

 :returns: A ``Deferred`` which will fire when the cache has been
 adjusted.
 """

 log.msg("Setting cache size to %d, please hold..." % size)

 assign = self._cache.pin

 def worker(x, z):
 log.msg("Adding %d, %d to cache..." % (x, z))
 return self.request_chunk(x, z).addCallback(assign)

 x = self.level.spawn[0] // 16
 z = self.level.spawn[2] // 16

 rx = xrange(x - size, x + size)
 rz = xrange(z - size, z + size)
 work = (worker(x, z) for x, z in product(rx, rz))

 d = coiterate(work)

 @d.addCallback
 def notify(none):
 log.msg("Cache size is now %d!" % size)

 return d

[docs] def flush_chunk(self):
 """
 Flush a dirty chunk.

 This method will always block when there are dirty chunks.
 """

 for chunk in self._cache.iterdirty():
 # Save a single chunk, and add a callback to remove it from the
 # cache when it's been cleaned.
 d = self.save_chunk(chunk)
 d.addCallback(self._cache.cleaned)
 break

[docs] def save_off(self):
 """
 Disable saving to disk.

 This is useful for accessing the world on disk without Bravo
 interfering, for backing up the world.
 """

 if not self.saving:
 return

 self.chunk_management_loop.stop()
 self.saving = False

[docs] def save_on(self):
 """
 Enable saving to disk.
 """

 if self.saving:
 return

 self.chunk_management_loop.start(1)
 self.saving = True

[docs] def postprocess_chunk(self, chunk):
 """
 Do a series of final steps to bring a chunk into the world.

 This method might be called multiple times on a chunk, but it should
 not be harmful to do so.
 """

 # Apply the current season to the chunk.
 if self.season:
 self.season.transform(chunk)

 # Since this chunk hasn't been given to any player yet, there's no
 # conceivable way that any meaningful damage has been accumulated;
 # anybody loading any part of this chunk will want the entire thing.
 # Thus, it should start out undamaged.
 chunk.clear_damage()

 # Skip some of the spendier scans if we have no factory; for example,
 # if we are generating chunks offline.
 if not self.factory:
 return chunk

 # XXX slightly icky, print statements are bad
 # Register the chunk's entities with our parent factory.
 for entity in chunk.entities:
 if hasattr(entity, 'loop'):
 print "Started mob!"
 self.mob_manager.start_mob(entity)
 else:
 print "I have no loop"
 self.factory.register_entity(entity)

 # XXX why is this for furnaces only? :T
 # Scan the chunk for burning furnaces
 for coords, tile in chunk.tiles.iteritems():
 # If the furnace was saved while burning ...
 if type(tile) == Furnace and tile.burntime != 0:
 x, y, z = coords
 coords = chunk.x, x, chunk.z, z, y
 # ... start it's burning loop
 reactor.callLater(2, tile.changed, self.factory, coords)

 # Return the chunk, in case we are in a Deferred chain.
 return chunk

 @inlineCallbacks
[docs] def request_chunk(self, x, z):
 """
 Request a ``Chunk`` to be delivered later.

 :returns: ``Deferred`` that will be called with the ``Chunk``
 """

 # First, try the cache.
 cached = self._cache.get((x, z))
 if cached is not None:
 returnValue(cached)

 # Is it pending?
 if (x, z) in self._pending_chunks:
 # Rig up another Deferred and wrap it up in a to-go box.
 retval = yield self._pending_chunks[x, z].deferred()
 returnValue(retval)

 # Create a new chunk object, since the cache turned up empty.
 try:
 chunk = yield maybeDeferred(self.serializer.load_chunk, x, z)
 except SerializerReadException:
 # Looks like the chunk wasn't already on disk. Guess we're gonna
 # need to keep going.
 chunk = Chunk(x, z)

 # Add in our magic dirtiness hook so that the cache can be aware of
 # chunks who have been...naughty.
 chunk.dirtied = self._cache.dirtied
 if chunk.dirty:
 # The chunk was already dirty!? Oh, naughty indeed!
 self._cache.dirtied(chunk)

 if chunk.populated:
 self._cache.put(chunk)
 self.postprocess_chunk(chunk)
 if self.factory:
 self.factory.scan_chunk(chunk)
 returnValue(chunk)

 if self.async:
 from ampoule import deferToAMPProcess
 from bravo.remote import MakeChunk

 generators = [plugin.name for plugin in self.pipeline]

 d = deferToAMPProcess(MakeChunk, x=x, z=z, seed=self.level.seed,
 generators=generators)

 # Get chunk data into our chunk object.
 def fill_chunk(kwargs):
 chunk.blocks = array("B")
 chunk.blocks.fromstring(kwargs["blocks"])
 chunk.heightmap = array("B")
 chunk.heightmap.fromstring(kwargs["heightmap"])
 chunk.metadata = array("B")
 chunk.metadata.fromstring(kwargs["metadata"])
 chunk.skylight = array("B")
 chunk.skylight.fromstring(kwargs["skylight"])
 chunk.blocklight = array("B")
 chunk.blocklight.fromstring(kwargs["blocklight"])
 return chunk
 d.addCallback(fill_chunk)
 else:
 # Populate the chunk the slow way. :c
 for stage in self.pipeline:
 stage.populate(chunk, self.level.seed)

 chunk.regenerate()
 d = succeed(chunk)

 # Set up our event and generate our return-value Deferred. It has to
 # be done early becaues PendingEvents only fire exactly once and it
 # might fire immediately in certain cases.
 pe = PendingEvent()
 # This one is for our return value.
 retval = pe.deferred()
 # This one is for scanning the chunk for automatons.
 if self.factory:
 pe.deferred().addCallback(self.factory.scan_chunk)
 self._pending_chunks[x, z] = pe

 def pp(chunk):
 chunk.populated = True
 chunk.dirty = True

 self.postprocess_chunk(chunk)

 self._cache.dirtied(chunk)
 del self._pending_chunks[x, z]

 return chunk

 # Set up callbacks.
 d.addCallback(pp)
 d.chainDeferred(pe)

 # Because multiple people might be attached to this callback, we're
 # going to do something magical here. We will yield a forked version
 # of our Deferred. This means that we will wait right here, for a
 # long, long time, before actually returning with the chunk, *but*,
 # when we actually finish, we'll be ready to return the chunk
 # immediately. Our caller cannot possibly care because they only see a
 # Deferred either way.
 retval = yield retval
 returnValue(retval)

[docs] def save_chunk(self, chunk):
 """
 Write a chunk to the serializer.

 Note that this method does nothing when the given chunk is not dirty
 or saving is off!

 :returns: A ``Deferred`` which will fire after the chunk has been
 saved with the chunk.
 """

 if not chunk.dirty or not self.saving:
 return succeed(chunk)

 d = maybeDeferred(self.serializer.save_chunk, chunk)

 @d.addCallback
 def cb(none):
 chunk.dirty = False
 return chunk

 @d.addErrback
 def eb(failure):
 failure.trap(SerializerWriteException)
 log.msg("Couldn't write %r" % chunk)

 return d

[docs] def load_player(self, username):
 """
 Retrieve player data.

 :returns: a ``Deferred`` that will be fired with a ``Player``
 """

 # Get the player, possibly.
 d = maybeDeferred(self.serializer.load_player, username)

 @d.addErrback
 def eb(failure):
 failure.trap(SerializerReadException)
 log.msg("Couldn't load player %r" % username)

 # Make a player.
 player = Player(username=username)
 player.location.x = self.level.spawn[0]
 player.location.y = self.level.spawn[1]
 player.location.stance = self.level.spawn[1]
 player.location.z = self.level.spawn[2]

 return player

 # This Deferred's good to go as-is.
 return d

 def save_player(self, username, player):
 if self.saving:
 self.serializer.save_player(player)

 # World-level geometry access.
 # These methods let external API users refrain from going through the
 # standard motions of looking up and loading chunk information.

 @coords_to_chunk
[docs] def get_block(self, chunk, coords):
 """
 Get a block from an unknown chunk.

 :returns: a ``Deferred`` with the requested value
 """

 return chunk.get_block(coords)

 @coords_to_chunk
[docs] def set_block(self, chunk, coords, value):
 """
 Set a block in an unknown chunk.

 :returns: a ``Deferred`` that will fire on completion
 """

 chunk.set_block(coords, value)

 @coords_to_chunk
[docs] def get_metadata(self, chunk, coords):
 """
 Get a block's metadata from an unknown chunk.

 :returns: a ``Deferred`` with the requested value
 """

 return chunk.get_metadata(coords)

 @coords_to_chunk
[docs] def set_metadata(self, chunk, coords, value):
 """
 Set a block's metadata in an unknown chunk.

 :returns: a ``Deferred`` that will fire on completion
 """

 chunk.set_metadata(coords, value)

 @coords_to_chunk
[docs] def destroy(self, chunk, coords):
 """
 Destroy a block in an unknown chunk.

 :returns: a ``Deferred`` that will fire on completion
 """

 chunk.destroy(coords)

 @coords_to_chunk
[docs] def mark_dirty(self, chunk, coords):
 """
 Mark an unknown chunk dirty.

 :returns: a ``Deferred`` that will fire on completion
 """

 chunk.dirty = True

 @sync_coords_to_chunk
[docs] def sync_get_block(self, chunk, coords):
 """
 Get a block from an unknown chunk.

 :returns: the requested block
 """

 return chunk.get_block(coords)

 @sync_coords_to_chunk
[docs] def sync_set_block(self, chunk, coords, value):
 """
 Set a block in an unknown chunk.

 :returns: None
 """

 chunk.set_block(coords, value)

 @sync_coords_to_chunk
[docs] def sync_get_metadata(self, chunk, coords):
 """
 Get a block's metadata from an unknown chunk.

 :returns: the requested metadata
 """

 return chunk.get_metadata(coords)

 @sync_coords_to_chunk
[docs] def sync_set_metadata(self, chunk, coords, value):
 """
 Set a block's metadata in an unknown chunk.

 :returns: None
 """

 chunk.set_metadata(coords, value)

 @sync_coords_to_chunk
[docs] def sync_destroy(self, chunk, coords):
 """
 Destroy a block in an unknown chunk.

 :returns: None
 """

 chunk.destroy(coords)

 @sync_coords_to_chunk
[docs] def sync_mark_dirty(self, chunk, coords):
 """
 Mark an unknown chunk dirty.

 :returns: None
 """

 chunk.dirty = True

 @sync_coords_to_chunk
[docs] def sync_request_chunk(self, chunk, coords):
 """
 Get an unknown chunk.

 :returns: the requested ``Chunk``
 """

 return chunk

 © Copyright 2010, Corbin Simpson, Derrick Dymock, & Justin Noah.
 Created using Sphinx 1.2.2.

_modules/bravo/stdio.html

 Navigation

 		
 index

 		
 modules |

 		Bravo 2.0 documentation »

 		Module code »

 Source code for bravo.stdio

vim: set fileencoding=utf8 :

import os
import sys

from twisted.conch.insults.insults import ServerProtocol
from twisted.conch.manhole import Manhole
from twisted.internet import reactor
from twisted.internet.defer import Deferred
from twisted.internet.protocol import ClientCreator
from twisted.internet.stdio import StandardIO
from twisted.internet.task import LoopingCall
from twisted.protocols.amp import AMP
from twisted.protocols.basic import LineReceiver

from bravo.amp import Version, Worlds, RunCommand
from bravo.utilities.chat import fancy_console_name

try:
 import termios
 import tty
 fancy_console = os.isatty(sys.__stdin__.fileno())
except ImportError:
 fancy_console = False

typeToColor = {
 'identifier': '\x1b[31m',
 'keyword': '\x1b[32m',
 'parameter': '\x1b[33m',
 'variable': '\x1b[1;33m',
 'string': '\x1b[35m',
 'number': '\x1b[36m',
 'op': '\x1b[37m'
}

normalColor = '\x1b[0m'

[docs]class AMPGateway(object):
 """
 Wrapper around the logical implementation of a console.
 """

 def __init__(self, host, port=25600):
 self.ready = False

 self.host = host
 self.port = port

 self.world = None

[docs] def connect(self):
 """
 Connect this gateway to a remote Bravo server.

 Returns a Deferred that will fire when connected, or fail if the
 connection cannot be established.
 """

 self.cc = ClientCreator(reactor, AMP)

 d = self.cc.connectTCP(self.host, self.port)
 d.addCallback(self.connected)

 return d

 def connected(self, p):
 self.remote = p

 self.sendLine("Successfully connected to server, getting version...")
 d = self.remote.callRemote(Version)
 d.addCallback(self.version)

 LoopingCall(self.world_loop).start(10)

 def world_loop(self):
 self.remote.callRemote(Worlds).addCallback(
 lambda d: setattr(self, "worlds", d["worlds"])
)

 def version(self, d):
 self.version = d["version"]

 self.sendLine("Connected to Bravo %s. Ready." % self.version)
 self.ready = True

[docs] def call(self, command, params):
 """
 Run a command.

 This is the client-side implementation; it wraps a few things to
 protect the console from raw logic and the server from builtin
 commands.
 """

 self.ready_deferred = Deferred()

 if self.ready:
 if command in ("exit", "quit"):
 # Quit.
 stop_console()
 reactor.stop()
 elif command == "worlds":
 # Print list of available worlds.
 self.sendLine("Worlds:")
 for world in self.worlds:
 self.sendLine(world)
 elif command == "select":
 # World selection.
 world = params[0]
 if world in self.worlds:
 self.world = world
 self.sendLine("Selected world %s" % world)
 else:
 self.sendLine("Couldn't find world %s" % world)
 else:
 # Remote command. Do we have a world?
 if self.world:
 try:
 d = self.remote.callRemote(RunCommand, world=self.world,
 command=command, parameters=params)
 d.addCallback(self.results)
 self.ready = False
 except:
 self.sendLine("Huh?")
 else:
 self.sendLine("No world selected.")

 if self.ready:
 self.ready_deferred.callback(None)
 return self.ready_deferred

 def results(self, d):
 for line in d["output"]:
 self.sendLine(line)
 self.ready = True
 reactor.callLater(0, self.ready_deferred.callback, None)

 def sendLine(self, line):
 if isinstance(line, unicode):
 line = line.encode("utf8")
 self.print_hook(line)

class BravoInterpreter(object):

 def __init__(self, handler, ag):
 self.handler = handler
 self.ag = ag

 self.ag.print_hook = self.print_hook

 def resetBuffer(self):
 pass

 def print_hook(self, line):
 # XXX
 #for user in self.factory.protocols:
 # printable = printable.replace(user, fancy_console_name(user))
 self.handler.addOutput("%s\n" % line)

 def push(self, line):
 """
 Handle a command.
 """

 line = line.strip()
 if line:
 params = line.split()
 command = params.pop(0).lower()
 self.ag.call(command, params)

 def lastColorizedLine(self, line):
 s = []
 for token in line.split():
 try:
 int(token)
 s.append(typeToColor["number"] + token)
 except ValueError:
 if token in self.commands:
 s.append(typeToColor["keyword"] + token)
 elif token in self.factory.protocols:
 s.append(fancy_console_name(token))
 else:
 s.append(normalColor + token)
 return normalColor + " ".join(s)

[docs]class BravoManhole(Manhole):
 """
 A console for TTYs.
 """

 ps = ("\x1b[1;37mBravo \x1b[0;37m>\x1b[0;0m ", "... ")

 def __init__(self, factory, *args, **kwargs):
 Manhole.__init__(self, *args, **kwargs)

 self.f = factory

 def connectionMade(self):
 Manhole.connectionMade(self)

 self.interpreter = BravoInterpreter(self, self.f)

 # Borrowed from ColoredManhole, this colorizes input.
 def characterReceived(self, ch, moreCharactersComing):
 if self.mode == 'insert':
 self.lineBuffer.insert(self.lineBufferIndex, ch)
 else:
 self.lineBuffer[self.lineBufferIndex:self.lineBufferIndex+1] = [ch]
 self.lineBufferIndex += 1

 if moreCharactersComing:
 # Skip it all, we'll get called with another character in like 2
 # femtoseconds.
 return

 if ch == ' ':
 # Don't bother to try to color whitespace
 self.terminal.write(ch)
 return

 source = ''.join(self.lineBuffer)

 # Try to write some junk
 try:
 coloredLine = self.interpreter.lastColorizedLine(source)
 except:
 # We couldn't do it. Strange. Oh well, just add the character.
 self.terminal.write(ch)
 else:
 # Success! Clear the source on this line.
 self.terminal.eraseLine()
 self.terminal.cursorBackward(len(self.lineBuffer) +
 len(self.ps[self.pn]) - 1)

 # And write a new, colorized one.
 self.terminal.write(self.ps[self.pn] + coloredLine)

 # And move the cursor to where it belongs
 n = len(self.lineBuffer) - self.lineBufferIndex
 if n:
 self.terminal.cursorBackward(n)

greeting = """
Welcome to Bravo!
This terminal has no fancy features.
"""
prompt = "Bravo > "

[docs]class BravoConsole(LineReceiver):
 """
 A console for things not quite as awesome as TTYs.

 This console is extremely well-suited to Win32.
 """

 delimiter = os.linesep

 def __init__(self, ag):
 self.ag = ag
 ag.print_hook = self.sendLine

 def connectionMade(self):
 self.transport.write(greeting)
 self.transport.write(prompt)

 def lineReceived(self, line):
 line = line.strip()
 if line:
 params = line.split()
 command = params.pop(0).lower()
 d = self.ag.call(command, params)
 d.addCallback(lambda chaff: self.transport.write(prompt))
 else:
 self.transport.write(prompt)

Cribbed from Twisted. This version doesn't try to start the reactor, or a
handful of other things. At some point, this may no longer even look like
Twisted code.

oldSettings = None

def start_console():
 ag = AMPGateway("localhost", 25600)
 ag.connect()

 if fancy_console:
 global oldSettings
 fd = sys.__stdin__.fileno()
 oldSettings = termios.tcgetattr(fd)
 tty.setraw(fd)
 p = ServerProtocol(BravoManhole, ag)
 else:
 p = BravoConsole(ag)

 StandardIO(p)
 return p

def stop_console():
 if fancy_console:
 fd = sys.__stdin__.fileno()
 termios.tcsetattr(fd, termios.TCSANOW, oldSettings)
 # Took me forever to figure it out. This adorable little gem is
 # the control sequence RIS, which resets ANSI-compatible terminals
 # to their initial state. In the process, of course, they nuke all
 # of the stuff on the screen.
 os.write(fd, "\r\x1bc\r")

 © Copyright 2010, Corbin Simpson, Derrick Dymock, & Justin Noah.
 Created using Sphinx 1.2.2.

_modules/bravo/entity.html

 Navigation

 		
 index

 		
 modules |

 		Bravo 2.0 documentation »

 		Module code »

 Source code for bravo.entity

from random import uniform

from twisted.internet.task import LoopingCall
from twisted.python import log

from bravo.inventory import Inventory
from bravo.inventory.slots import ChestStorage, FurnaceStorage
from bravo.location import Location
from bravo.beta.packets import make_packet, Speed, Slot
from bravo.utilities.geometry import gen_close_point
from bravo.utilities.maths import clamp
from bravo.utilities.furnace import (furnace_recipes, furnace_on_off,
 update_all_windows_slot, update_all_windows_progress)
from bravo.blocks import furnace_fuel, unstackable

[docs]class Entity(object):
 """
 Class representing an entity.

 Entities are simply dynamic in-game objects. Plain entities are not very
 interesting.
 """

 name = "Entity"

 def __init__(self, location=None, eid=0, **kwargs):
 """
 Create an entity.

 This method calls super().
 """

 super(Entity, self).__init__()

 self.eid = eid

 if location is None:
 self.location = Location()
 else:
 self.location = location

 def __repr__(self):
 return "%s(eid=%d, location=%s)" % (self.name, self.eid, self.location)

 __str__ = __repr__

[docs]class Player(Entity):
 """
 A player entity.
 """

 name = "Player"

 def __init__(self, username="", **kwargs):
 """
 Create a player.

 This method calls super().
 """

 super(Player, self).__init__(**kwargs)

 self.username = username
 self.inventory = Inventory()

 self.equipped = 0

 def __repr__(self):
 return ("%s(eid=%d, location=%s, username=%s)" %
 (self.name, self.eid, self.location, self.username))

 __str__ = __repr__

[docs] def save_to_packet(self):
 """
 Create a "player" packet representing this entity.
 """

 yaw, pitch = self.location.ori.to_fracs()
 x, y, z = self.location.pos

 item = self.inventory.holdables[self.equipped]
 if item is None:
 item = 0
 else:
 item = item[0]

 packet = make_packet("player", eid=self.eid, username=self.username,
 x=x, y=y, z=z, yaw=yaw, pitch=pitch, item=item,
 # http://www.wiki.vg/Entities#Objects
 metadata={
 0: ('byte', 0), # Flags
 1: ('short', 300), # Drowning counter
 8: ('int', 0), # Color of the bubbling effects
 })
 return packet

[docs] def save_equipment_to_packet(self):
 """
 Creates packets that include the equipment of the player. Equipment
 is the item the player holds and all 4 armor parts.
 """

 packet = ""
 slots = (self.inventory.holdables[self.equipped],
 self.inventory.armor[3], self.inventory.armor[2],
 self.inventory.armor[1], self.inventory.armor[0])

 for slot, item in enumerate(slots):
 if item is None:
 continue

 primary, secondary, count = item
 packet += make_packet("entity-equipment", eid=self.eid, slot=slot,
 primary=primary, secondary=secondary,
 count=1)
 return packet

[docs]class Painting(Entity):
 """
 A painting on a wall.
 """

 name = "Painting"

 def __init__(self, face="+x", motive="", **kwargs):
 """
 Create a painting.

 This method calls super().
 """

 super(Painting, self).__init__(**kwargs)

 self.face = face
 self.motive = motive

[docs] def save_to_packet(self):
 """
 Create a "painting" packet representing this entity.
 """

 x, y, z = self.location.pos

 return make_packet("painting", eid=self.eid, title=self.motive, x=x,
 y=y, z=z, face=self.face)

[docs]class Pickup(Entity):
 """
 Class representing a dropped block or item.

 For historical and sanity reasons, this class is called Pickup, even
 though its entity name is "Item."
 """

 name = "Item"

 def __init__(self, item=(0, 0), quantity=1, **kwargs):
 """
 Create a pickup.

 This method calls super().
 """

 super(Pickup, self).__init__(**kwargs)

 self.item = item
 self.quantity = quantity

[docs] def save_to_packet(self):
 """
 Create a "pickup" packet representing this entity.
 """

 x, y, z = self.location.pos

 packets = make_packet('object', eid=self.eid, type='item_stack',
 x=x, y=y, z=z, yaw=0, pitch=0, data=1,
 speed=Speed(0, 0, 0))

 packets += make_packet('metadata', eid=self.eid,
 # See http://www.wiki.vg/Entities#Objects
 metadata={
 0: ('byte', 0), # Flags
 1: ('short', 300), # Drowning counter
 10: ('slot', Slot.fromItem(self.item, self.quantity))
 })
 return packets

[docs]class Mob(Entity):
 """
 A creature.
 """

 name = "Mob"
 """
 The name of this mob.

 Names are used to identify mobs during serialization, just like for all
 other entities.

 This mob might not be serialized if this name is not overriden.
 """

 metadata = {0: ("byte", 0)}

 def __init__(self, **kwargs):
 """
 Create a mob.

 This method calls super().
 """

 self.loop = None
 super(Mob, self).__init__(**kwargs)
 self.manager = None

[docs] def update_metadata(self):
 """
 Overrideable hook for general metadata updates.

 This method is necessary because metadata generally only needs to be
 updated prior to certain events, not necessarily in response to
 external events.

 This hook will always be called prior to saving this mob's data for
 serialization or wire transfer.
 """

[docs] def run(self):
 """
 Start this mob's update loop.
 """

 # Save the current chunk coordinates of this mob. They will be used to
 # track which chunk this mob belongs to.
 self.chunk_coords = self.location.pos

 self.loop = LoopingCall(self.update)
 self.loop.start(.2)

[docs] def save_to_packet(self):
 """
 Create a "mob" packet representing this entity.
 """

 x, y, z = self.location.pos
 yaw, pitch = self.location.ori.to_fracs()

 # Update metadata from instance variables.
 self.update_metadata()

 return make_packet("mob", eid=self.eid, type=self.name, x=x, y=y, z=z,
 yaw=yaw, pitch=pitch, head_yaw=yaw, vx=0, vy=0, vz=0,
 metadata=self.metadata)

 def save_location_to_packet(self):
 x, y, z = self.location.pos
 yaw, pitch = self.location.ori.to_fracs()

 return make_packet("teleport", eid=self.eid, x=x, y=y, z=z, yaw=yaw,
 pitch=pitch)

[docs] def update(self):
 """
 Update this mob's location with respect to a factory.
 """

 # XXX Discuss appropriate style with MAD
 # XXX remarkably untested
 player = self.manager.closest_player(self.location.pos, 16)

 if player is None:
 vector = (uniform(-.4,.4),
 uniform(-.4,.4),
 uniform(-.4,.4))

 target = self.location.pos + vector
 else:
 target = player.location.pos

 self_pos = self.location.pos
 vector = gen_close_point(self_pos, target)

 vector = (
 clamp(vector[0], -0.4, 0.4),
 clamp(vector[1], -0.4, 0.4),
 clamp(vector[2], -0.4, 0.4),
)

 new_position = self.location.pos + vector

 new_theta = self.location.pos.heading(new_position)
 self.location.ori = self.location.ori._replace(theta=new_theta)

 # XXX explain these magic numbers please
 can_go = self.manager.check_block_collision(self.location.pos,
 (-10, 0, -10), (16, 32, 16))

 if can_go:
 self.slide = False
 self.location.pos = new_position

 self.manager.correct_origin_chunk(self)
 self.manager.broadcast(self.save_location_to_packet())
 else:
 self.slide = self.manager.slide_vector(vector)
 self.manager.broadcast(self.save_location_to_packet())

[docs]class Chuck(Mob):
 """
 A cross between a duck and a chicken.
 """

 name = "Chicken"
 offsetlist = ((.5, 0, .5),
 (-.5, 0, .5),
 (.5, 0, -.5),
 (-.5, 0, -.5))

[docs]class Cow(Mob):
 """
 Large, four-legged milk containers.
 """

 name = "Cow"

[docs]class Creeper(Mob):
 """
 A creeper.
 """

 name = "Creeper"

 def __init__(self, aura=False, **kwargs):
 """
 Create a creeper.

 This method calls super()
 """

 super(Creeper, self).__init__(**kwargs)

 self.aura = aura

 def update_metadata(self):
 self.metadata = {
 0: ("byte", 0),
 17: ("byte", int(self.aura)),
 }

[docs]class Ghast(Mob):
 """
 A very melancholy ghost.
 """

 name = "Ghast"

[docs]class GiantZombie(Mob):
 """
 Like a regular zombie, but far larger.
 """

 name = "GiantZombie"

[docs]class Pig(Mob):
 """
 A provider of bacon and piggyback rides.
 """

 name = "Pig"

 def __init__(self, saddle=False, **kwargs):
 """
 Create a pig.

 This method calls super().
 """

 super(Pig, self).__init__(**kwargs)

 self.saddle = saddle

 def update_metadata(self):
 self.metadata = {
 0: ("byte", 0),
 16: ("byte", int(self.saddle)),
 }

[docs]class ZombiePigman(Mob):
 """
 A zombie pigman.
 """

 name = "PigZombie"

[docs]class Sheep(Mob):
 """
 A woolly mob.
 """

 name = "Sheep"

 def __init__(self, sheared=False, color=0, **kwargs):
 """
 Create a sheep.

 This method calls super().
 """

 super(Sheep, self).__init__(**kwargs)

 self.sheared = sheared
 self.color = color

 def update_metadata(self):
 color = self.color
 if self.sheared:
 color |= 0x10

 self.metadata = {
 0: ("byte", 0),
 16: ("byte", color),
 }

[docs]class Skeleton(Mob):
 """
 An archer skeleton.
 """

 name = "Skeleton"

[docs]class Slime(Mob):
 """
 A gelatinous blob.
 """

 name = "Slime"

 def __init__(self, size=1, **kwargs):
 """
 Create a slime.

 This method calls super().
 """

 super(Slime, self).__init__(**kwargs)

 self.size = size

 def update_metadata(self):
 self.metadata = {
 0: ("byte", 0),
 16: ("byte", self.size),
 }

[docs]class Spider(Mob):
 """
 A spider.
 """

 name = "Spider"

[docs]class Squid(Mob):
 """
 An aquatic source of ink.
 """

 name = "Squid"

[docs]class Wolf(Mob):
 """
 A wolf.
 """

 name = "Wolf"

 def __init__(self, owner=None, angry=False, sitting=False, **kwargs):
 """
 Create a wolf.

 This method calls super().
 """

 super(Wolf, self).__init__(**kwargs)

 self.owner = owner
 self.angry = angry
 self.sitting = sitting

 def update_metadata(self):
 flags = 0
 if self.sitting:
 flags |= 0x1
 if self.angry:
 flags |= 0x2
 if self.owner:
 flags |= 0x4

 self.metadata = {
 0: ("byte", 0),
 16: ("byte", flags),
 }

[docs]class Zombie(Mob):
 """
 A zombie.
 """

 name = "Zombie"
 offsetlist = ((-.5,0,-.5), (-.5,0,.5), (.5,0,-.5), (.5,0,.5), (-.5,1,-.5), (-.5,1,.5), (.5,1,-.5), (.5,1,.5),)

entities = dict((entity.name, entity)
 for entity in (
 Chuck,
 Cow,
 Creeper,
 Ghast,
 GiantZombie,
 Painting,
 Pickup,
 Pig,
 Player,
 Sheep,
 Skeleton,
 Slime,
 Spider,
 Squid,
 Wolf,
 Zombie,
 ZombiePigman,
)
)

[docs]class Tile(object):
 """
 An entity that is also a block.

 Or, perhaps more correctly, a block that is also an entity.
 """

 name = "GenericTile"

 def __init__(self, x, y, z):
 self.x = x
 self.y = y
 self.z = z

 def load_from_packet(self, container):

 log.msg("%s doesn't know how to load from a packet!" % self.name)

 def save_to_packet(self):

 log.msg("%s doesn't know how to save to a packet!" % self.name)

 return ""

[docs]class Chest(Tile):
 """
 A tile that holds items.
 """

 name = "Chest"

 def __init__(self, *args, **kwargs):
 super(Chest, self).__init__(*args, **kwargs)

 self.inventory = ChestStorage()

[docs]class Furnace(Tile):
 """
 A tile that converts items to other items, using specific items as fuel.
 """

 name = "Furnace"

 burntime = 0
 cooktime = 0
 running = False

 def __init__(self, *args, **kwargs):
 super(Furnace, self).__init__(*args, **kwargs)

 self.inventory = FurnaceStorage()
 self.burning = LoopingCall.withCount(self.burn)

[docs] def changed(self, factory, coords):
 '''
 Called from outside by event handler to inform the tile
 that the content was changed. If the furnace meet the requirements
 the method starts ``burn`` process. The ``burn`` stops the
 looping call when it's out of fuel or no need to burn more.

 We get furnace coords from outer side as the tile does not know
 about own chunk. If self.chunk is implemented the parameter
 can be removed and self.coords will be:

 >>> self.coords = self.chunk.x, self.x, self.chunk.z, self.z, self.y

 :param `BravoFactory` factory: The factory
 :param tuple coords: (bigx, smallx, bigz, smallz, y) - coords of this furnace
 '''

 self.coords = coords
 self.factory = factory

 if not self.running:
 if self.burntime != 0:
 # This furnace was already burning, but not started. This
 # usually means that the furnace was serialized while burning.
 self.running = True
 self.burn_max = self.burntime
 self.burning.start(0.5)
 elif self.has_fuel() and self.can_craft():
 # This furnace could be burning, but isn't. Let's start it!
 self.burntime = 0
 self.cooktime = 0
 self.burning.start(0.5)

[docs] def burn(self, ticks):
 '''
 The main furnace loop.

 :param int ticks: number of furnace iterations to perform
 '''

 # Usually it's only one iteration but if something blocks the server
 # for long period we shall process skipped ticks.
 # Note: progress bars will lag anyway.
 if ticks > 1:
 log.msg("Lag detected; skipping %d furnace ticks" % (ticks - 1))

 for iteration in xrange(ticks):
 # Craft items, if we can craft them.
 if self.can_craft():
 self.cooktime += 1

 # Notchian time is ~9.25-9.50 sec.
 if self.cooktime == 20:
 # Looks like things were successfully crafted.
 source = self.inventory.crafting[0]
 product = furnace_recipes[source.primary]
 self.inventory.crafting[0] = source.decrement()

 if self.inventory.crafted[0] is None:
 self.inventory.crafted[0] = product
 else:
 item = self.inventory.crafted[0]
 self.inventory.crafted[0] = item.increment(product.quantity)

 update_all_windows_slot(self.factory, self.coords, 0, self.inventory.crafting[0])
 update_all_windows_slot(self.factory, self.coords, 2, self.inventory.crafted[0])
 self.cooktime = 0
 else:
 self.cooktime = 0

 # Consume fuel, if applicable.
 if self.burntime == 0:
 if self.has_fuel() and self.can_craft():
 # We have fuel and stuff to craft, so burn a bit of fuel
 # and craft some stuff.
 fuel = self.inventory.fuel[0]
 self.burntime = self.burn_max = furnace_fuel[fuel.primary]
 self.inventory.fuel[0] = fuel.decrement()

 if not self.running:
 self.running = True
 furnace_on_off(self.factory, self.coords, True)

 update_all_windows_slot(self.factory, self.coords, 1, self.inventory.fuel[0])
 else:
 # We're finished burning. Turn ourselves off.
 self.burning.stop()
 self.running = False
 furnace_on_off(self.factory, self.coords, False)

 # Reset the cooking time, just because.
 self.cooktime = 0
 update_all_windows_progress(self.factory, self.coords, 0, 0)
 return

 self.burntime -= 1

 # Update progress bars for the window.
 # XXX magic numbers
 cook_progress = 185 * self.cooktime / 19
 burn_progress = 250 * self.burntime / self.burn_max
 update_all_windows_progress(self.factory, self.coords, 0, cook_progress)
 update_all_windows_progress(self.factory, self.coords, 1, burn_progress)

[docs] def has_fuel(self):
 '''
 Determine whether this furnace is fueled.

 :returns: bool
 '''

 return (self.inventory.fuel[0] is not None and
 self.inventory.fuel[0].primary in furnace_fuel)

[docs] def can_craft(self):
 '''
 Determine whether this furnace is capable of outputting items.

 Note that this is independent of whether the furnace is fueled.

 :returns: bool
 '''

 crafting = self.inventory.crafting[0]
 crafted = self.inventory.crafted[0]

 # Nothing to craft?
 if crafting is None:
 return False

 # No matching recipe?
 if crafting.primary not in furnace_recipes:
 return False

 # Something to craft and no current output? This is a success
 # condition.
 if crafted is None:
 return True

 # Unstackable output?
 if crafted.primary in unstackable:
 return False

 recipe = furnace_recipes[crafting.primary]

 # Recipe doesn't match current output?
 if recipe[0] != crafted.primary:
 return False

 # Crafting would overflow current output?
 if crafted.quantity + recipe.quantity > 64:
 return False

 # By default, yes, you can craft.
 return True

[docs]class MobSpawner(Tile):
 """
 A tile that spawns mobs.
 """

 name = "MobSpawner"

[docs]class Music(Tile):
 """
 A tile which produces a pitch when whacked.
 """

 name = "Music"

[docs]class Sign(Tile):
 """
 A tile that stores text.
 """

 name = "Sign"

 def __init__(self, *args, **kwargs):
 super(Sign, self).__init__(*args, **kwargs)

 self.text1 = ""
 self.text2 = ""
 self.text3 = ""
 self.text4 = ""

 def load_from_packet(self, container):
 self.x = container.x
 self.y = container.y
 self.z = container.z

 self.text1 = container.line1
 self.text2 = container.line2
 self.text3 = container.line3
 self.text4 = container.line4

 def save_to_packet(self):
 packet = make_packet("sign", x=self.x, y=self.y, z=self.z,
 line1=self.text1, line2=self.text2, line3=self.text3,
 line4=self.text4)
 return packet

tiles = dict((tile.name, tile)
 for tile in (
 Chest,
 Furnace,
 MobSpawner,
 Music,
 Sign,
)
)

 © Copyright 2010, Corbin Simpson, Derrick Dymock, & Justin Noah.
 Created using Sphinx 1.2.2.

_modules/bravo/chunk.html

 Navigation

 		
 index

 		
 modules |

 		Bravo 2.0 documentation »

 		Module code »

 Source code for bravo.chunk

from array import array
from functools import wraps
from itertools import product
from struct import pack
from warnings import warn

from bravo.blocks import blocks, glowing_blocks
from bravo.beta.packets import make_packet
from bravo.geometry.section import Section
from bravo.utilities.bits import pack_nibbles
from bravo.utilities.coords import CHUNK_HEIGHT, XZ, iterchunk
from bravo.utilities.maths import clamp

[docs]class ChunkWarning(Warning):
 """
 Somebody did something inappropriate to this chunk, but it probably isn't
 lethal, so the chunk is issuing a warning instead of an exception.
 """

[docs]def check_bounds(f):
 """
 Decorate a function or method to have its first positional argument be
 treated as an (x, y, z) tuple which must fit inside chunk boundaries of
 16, CHUNK_HEIGHT, and 16, respectively.

 A warning will be raised if the bounds check fails.
 """

 @wraps(f)
 def deco(chunk, coords, *args, **kwargs):
 x, y, z = coords

 # Coordinates were out-of-bounds; warn and run away.
 if not (0 <= x < 16 and 0 <= z < 16 and 0 <= y < CHUNK_HEIGHT):
 warn("Coordinates %s are OOB in %s() of %s, ignoring call"
 % (coords, f.func_name, chunk), ChunkWarning, stacklevel=2)
 # A concession towards where this decorator will be used. The
 # value is likely to be discarded either way, but if the value is
 # used, we shouldn't horribly die because of None/0 mismatch.
 return 0

 return f(chunk, coords, *args, **kwargs)

 return deco

[docs]def ci(x, y, z):
 """
 Turn an (x, y, z) tuple into a chunk index.

 This is really a macro and not a function, but Python doesn't know the
 difference. Hopefully this is faster on PyPy than on CPython.
 """

 return (x * 16 + z) * CHUNK_HEIGHT + y

[docs]def segment_array(a):
 """
 Chop up a chunk-sized array into sixteen components.

 The chops are done in order to produce the smaller chunks preferred by
 modern clients.
 """

 l = [array(a.typecode) for chaff in range(16)]
 index = 0

 for i in range(0, len(a), 16):
 l[index].extend(a[i:i + 16])
 index = (index + 1) % 16

 return l

[docs]def make_glows():
 """
 Set up glow tables.

 These tables provide glow maps for illuminated points.
 """

 glow = [None] * 16
 for i in range(16):
 dim = 2 * i + 1
 glow[i] = array("b", [0] * (dim**3))
 for x, y, z in product(xrange(dim), repeat=3):
 distance = abs(x - i) + abs(y - i) + abs(z - i)
 glow[i][(x * dim + y) * dim + z] = i + 1 - distance
 glow[i] = array("B", [clamp(x, 0, 15) for x in glow[i]])
 return glow

glow = make_glows()

[docs]def composite_glow(target, strength, x, y, z):
 """
 Composite a light source onto a lightmap.

 The exact operation is not quite unlike an add.
 """

 ambient = glow[strength]

 xbound, zbound, ybound = 16, CHUNK_HEIGHT, 16

 sx = x - strength
 sy = y - strength
 sz = z - strength

 ex = x + strength
 ey = y + strength
 ez = z + strength

 si, sj, sk = 0, 0, 0
 ei, ej, ek = strength * 2, strength * 2, strength * 2

 if sx < 0:
 sx, si = 0, -sx

 if sy < 0:
 sy, sj = 0, -sy

 if sz < 0:
 sz, sk = 0, -sz

 if ex > xbound:
 ex, ei = xbound, ei - ex + xbound

 if ey > ybound:
 ey, ej = ybound, ej - ey + ybound

 if ez > zbound:
 ez, ek = zbound, ek - ez + zbound

 adim = 2 * strength + 1

 # Composite! Apologies for the loops.
 for (tx, ax) in zip(range(sx, ex), range(si, ei)):
 for (tz, az) in zip(range(sz, ez), range(sk, ek)):
 for (ty, ay) in zip(range(sy, ey), range(sj, ej)):
 ambient_index = (ax * adim + az) * adim + ay
 target[ci(tx, ty, tz)] += ambient[ambient_index]

[docs]def iter_neighbors(coords):
 """
 Iterate over the chunk-local coordinates surrounding the given
 coordinates.

 All coordinates are chunk-local.

 Coordinates which are not valid chunk-local coordinates will not be
 generated.
 """

 x, z, y = coords

 for dx, dz, dy in (
 (1, 0, 0),
 (-1, 0, 0),
 (0, 1, 0),
 (0, -1, 0),
 (0, 0, 1),
 (0, 0, -1)):
 nx = x + dx
 nz = z + dz
 ny = y + dy

 if not (0 <= nx < 16 and
 0 <= nz < 16 and
 0 <= ny < CHUNK_HEIGHT):
 continue

 yield nx, nz, ny

[docs]def neighboring_light(glow, block):
 """
 Calculate the amount of light that should be shone on a block.

 ``glow`` is the brighest neighboring light. ``block`` is the slot of the
 block being illuminated.

 The return value is always a valid light value.
 """

 return clamp(glow - blocks[block].dim, 0, 15)

[docs]class Chunk(object):
 """
 A chunk of blocks.

 Chunks are large pieces of world geometry (block data). The blocks, light
 maps, and associated metadata are stored in chunks. Chunks are
 always measured 16xCHUNK_HEIGHTx16 and are aligned on 16x16 boundaries in
 the xz-plane.

 :cvar bool dirty: Whether this chunk needs to be flushed to disk.
 :cvar bool populated: Whether this chunk has had its initial block data
 filled out.
 """

 all_damaged = False
 populated = False

 dirtied = None
 """
 Optional hook to be called when this chunk becomes dirty.
 """

 _dirty = True
 """
 Internal flag describing whether the chunk is dirty. Don't touch directly;
 use the ``dirty`` property instead.
 """

 def __init__(self, x, z):
 """
 :param int x: X coordinate in chunk coords
 :param int z: Z coordinate in chunk coords

 :ivar array.array heightmap: Tracks the tallest block in each xz-column.
 :ivar bool all_damaged: Flag for forcing the entire chunk to be
 damaged. This is for efficiency; past a certain point, it is not
 efficient to batch block updates or track damage. Heavily damaged
 chunks have their damage represented as a complete resend of the
 entire chunk.
 """

 self.x = int(x)
 self.z = int(z)

 self.heightmap = array("B", [0] * (16 * 16))
 self.blocklight = array("B", [0] * (16 * 16 * CHUNK_HEIGHT))

 self.sections = [Section() for i in range(16)]

 self.entities = set()
 self.tiles = {}

 self.damaged = set()

 def __repr__(self):
 return "Chunk(%d, %d)" % (self.x, self.z)

 __str__ = __repr__

 @property
 def dirty(self):
 return self._dirty

 @dirty.setter
 def dirty(self, value):
 if value and not self._dirty:
 # Notify whoever cares.
 if self.dirtied is not None:
 self.dirtied(self)
 self._dirty = value

[docs] def regenerate_heightmap(self):
 """
 Regenerate the height map array.

 The height map is merely the position of the tallest block in any
 xz-column.
 """

 for x in range(16):
 for z in range(16):
 column = x * 16 + z
 for y in range(255, -1, -1):
 if self.get_block((x, y, z)):
 break

 self.heightmap[column] = y

 def regenerate_blocklight(self):
 lightmap = array("L", [0] * (16 * 16 * CHUNK_HEIGHT))

 for x, z, y in iterchunk():
 block = self.get_block((x, y, z))
 if block in glowing_blocks:
 composite_glow(lightmap, glowing_blocks[block], x, y, z)

 self.blocklight = array("B", [clamp(x, 0, 15) for x in lightmap])

[docs] def regenerate_skylight(self):
 """
 Regenerate the ambient light map.

 Each block's individual light comes from two sources. The ambient
 light comes from the sky.

 The height map must be valid for this method to produce valid results.
 """

 # Create an array of skylights, and a mask of dimming blocks.
 lights = [0xf] * (16 * 16)
 mask = [0x0] * (16 * 16)

 # For each y-level, we're going to update the mask, apply it to the
 # lights, apply the lights to the section, and then blur the lights
 # and move downwards. Since empty sections are full of air, and air
 # doesn't ever dim, ignoring empty sections should be a correct way
 # to speed things up. Another optimization is that the process ends
 # early if the entire slice of lights is dark.
 for section in reversed(self.sections):
 if not section:
 continue

 for y in range(15, -1, -1):
 # Early-out if there's no more light left.
 if not any(lights):
 break

 # Update the mask.
 for x, z in XZ:
 offset = x * 16 + z
 block = section.get_block((x, y, z))
 mask[offset] = blocks[block].dim

 # Apply the mask to the lights.
 for i, dim in enumerate(mask):
 # Keep it positive.
 lights[i] = max(0, lights[i] - dim)

 # Apply the lights to the section.
 for x, z in XZ:
 offset = x * 16 + z
 section.set_skylight((x, y, z), lights[offset])

 # XXX blur the lights

 # And continue moving downward.

[docs] def regenerate(self):
 """
 Regenerate all auxiliary tables.
 """

 self.regenerate_heightmap()
 self.regenerate_blocklight()
 self.regenerate_skylight()

 self.dirty = True

[docs] def damage(self, coords):
 """
 Record damage on this chunk.
 """

 if self.all_damaged:
 return

 x, y, z = coords

 self.damaged.add(coords)

 # The number 176 represents the threshold at which it is cheaper to
 # resend the entire chunk instead of individual blocks.
 if len(self.damaged) > 176:
 self.all_damaged = True
 self.damaged.clear()

[docs] def is_damaged(self):
 """
 Determine whether any damage is pending on this chunk.

 :rtype: bool
 :returns: True if any damage is pending on this chunk, False if not.
 """

 return self.all_damaged or bool(self.damaged)

[docs] def get_damage_packet(self):
 """
 Make a packet representing the current damage on this chunk.

 This method is not private, but some care should be taken with it,
 since it wraps some fairly cryptic internal data structures.

 If this chunk is currently undamaged, this method will return an empty
 string, which should be safe to treat as a packet. Please check with
 `is_damaged()` before doing this if you need to optimize this case.

 To avoid extra overhead, this method should really be used in
 conjunction with `Factory.broadcast_for_chunk()`.

 Do not forget to clear this chunk's damage! Callers are responsible
 for doing this.

 >>> packet = chunk.get_damage_packet()
 >>> factory.broadcast_for_chunk(packet, chunk.x, chunk.z)
 >>> chunk.clear_damage()

 :rtype: str
 :returns: String representation of the packet.
 """

 if self.all_damaged:
 # Resend the entire chunk!
 return self.save_to_packet()
 elif not self.damaged:
 # Send nothing at all; we don't even have a scratch on us.
 return ""
 elif len(self.damaged) == 1:
 # Use a single block update packet. Find the first (only) set bit
 # in the damaged array, and use it as an index.
 coords = next(iter(self.damaged))

 block = self.get_block(coords)
 metadata = self.get_metadata(coords)

 x, y, z = coords

 return make_packet("block",
 x=x + self.x * 16,
 y=y,
 z=z + self.z * 16,
 type=block,
 meta=metadata)
 else:
 # Use a batch update.
 records = []

 for coords in self.damaged:
 block = self.get_block(coords)
 metadata = self.get_metadata(coords)

 x, y, z = coords

 record = x << 28 | z << 24 | y << 16 | block << 4 | metadata
 records.append(record)

 data = "".join(pack(">I", record) for record in records)

 return make_packet("batch", x=self.x, z=self.z,
 count=len(records), data=data)

[docs] def clear_damage(self):
 """
 Clear this chunk's damage.
 """

 self.damaged.clear()
 self.all_damaged = False

[docs] def save_to_packet(self):
 """
 Generate a chunk packet.
 """

 mask = 0
 packed = []

 ls = segment_array(self.blocklight)

 for i, section in enumerate(self.sections):
 if any(section.blocks):
 mask |= 1 << i
 packed.append(section.blocks.tostring())

 for i, section in enumerate(self.sections):
 if mask & 1 << i:
 packed.append(pack_nibbles(section.metadata))

 for i, l in enumerate(ls):
 if mask & 1 << i:
 packed.append(pack_nibbles(l))

 for i, section in enumerate(self.sections):
 if mask & 1 << i:
 packed.append(pack_nibbles(section.skylight))

 # Fake the biome data.
 packed.append("\x00" * 256)

 packet = make_packet("chunk", x=self.x, z=self.z, continuous=True,
 primary=mask, add=0x0, data="".join(packed))
 return packet

 @check_bounds
[docs] def get_block(self, coords):
 """
 Look up a block value.

 :param tuple coords: coordinate triplet
 :rtype: int
 :returns: int representing block type
 """

 x, y, z = coords
 index, y = divmod(y, 16)

 return self.sections[index].get_block((x, y, z))

 @check_bounds
[docs] def set_block(self, coords, block):
 """
 Update a block value.

 :param tuple coords: coordinate triplet
 :param int block: block type
 """

 x, y, z = coords
 index, section_y = divmod(y, 16)

 column = x * 16 + z

 if self.get_block(coords) != block:
 self.sections[index].set_block((x, section_y, z), block)

 if not self.populated:
 return

 # Regenerate heightmap at this coordinate.
 if block:
 self.heightmap[column] = max(self.heightmap[column], y)
 else:
 # If we replace the highest block with air, we need to go
 # through all blocks below it to find the new top block.
 height = self.heightmap[column]
 if y == height:
 for y in range(height, -1, -1):
 if self.get_block((x, y, z)):
 break
 self.heightmap[column] = y

 # Do the blocklight at this coordinate, if appropriate.
 if block in glowing_blocks:
 composite_glow(self.blocklight, glowing_blocks[block],
 x, y, z)
 bl = [clamp(light, 0, 15) for light in self.blocklight]
 self.blocklight = array("B", bl)

 # And the skylight.
 glow = max(self.get_skylight((nx, ny, nz))
 for nx, nz, ny in iter_neighbors((x, z, y)))
 self.set_skylight((x, y, z), neighboring_light(glow, block))

 self.dirty = True
 self.damage(coords)

 @check_bounds
[docs] def get_metadata(self, coords):
 """
 Look up metadata.

 :param tuple coords: coordinate triplet
 :rtype: int
 """

 x, y, z = coords
 index, y = divmod(y, 16)

 return self.sections[index].get_metadata((x, y, z))

 @check_bounds
[docs] def set_metadata(self, coords, metadata):
 """
 Update metadata.

 :param tuple coords: coordinate triplet
 :param int metadata:
 """

 if self.get_metadata(coords) != metadata:
 x, y, z = coords
 index, y = divmod(y, 16)

 self.sections[index].set_metadata((x, y, z), metadata)

 self.dirty = True
 self.damage(coords)

 @check_bounds
[docs] def get_skylight(self, coords):
 """
 Look up skylight value.

 :param tuple coords: coordinate triplet
 :rtype: int
 """

 x, y, z = coords
 index, y = divmod(y, 16)

 return self.sections[index].get_skylight((x, y, z))

 @check_bounds
[docs] def set_skylight(self, coords, value):
 """
 Update skylight value.

 :param tuple coords: coordinate triplet
 :param int metadata:
 """

 if self.get_metadata(coords) != value:
 x, y, z = coords
 index, y = divmod(y, 16)

 self.sections[index].set_skylight((x, y, z), value)

 @check_bounds
[docs] def destroy(self, coords):
 """
 Destroy the block at the given coordinates.

 This may or may not set the block to be full of air; it uses the
 block's preferred replacement. For example, ice generally turns to
 water when destroyed.

 This is safe as a no-op; for example, destroying a block of air with
 no metadata is not going to cause state changes.

 :param tuple coords: coordinate triplet
 """

 block = blocks[self.get_block(coords)]
 self.set_block(coords, block.replace)
 self.set_metadata(coords, 0)

[docs] def height_at(self, x, z):
 """
 Get the height of an xz-column of blocks.

 :param int x: X coordinate
 :param int z: Z coordinate
 :rtype: int
 :returns: The height of the given column of blocks.
 """

 return self.heightmap[x * 16 + z]

[docs] def sed(self, search, replace):
 """
 Execute a search and replace on all blocks in this chunk.

 Named after the ubiquitous Unix tool. Does a semantic
 s/search/replace/g on this chunk's blocks.

 :param int search: block to find
 :param int replace: block to use as a replacement
 """

 for section in self.sections:
 for i, block in enumerate(section.blocks):
 if block == search:
 section.blocks[i] = replace
 self.all_damaged = True
 self.dirty = True

 © Copyright 2010, Corbin Simpson, Derrick Dymock, & Justin Noah.
 Created using Sphinx 1.2.2.

_modules/bravo/inventory.html

 Navigation

 		
 index

 		
 modules |

 		Bravo 2.0 documentation »

 		Module code »

 Source code for bravo.inventory

from itertools import chain

from bravo import blocks
from bravo.beta.structures import Slot

[docs]class SerializableSlots(object):
 '''
 Base class for all slots configurations
 '''

 def __len__(self):
 return self.metalength

 @property
 def metalength(self):
 return sum(map(len, self.metalist))

 def load_from_list(self, l):
 if len(l) < self.metalength:
 # XXX why will it break everything? :T
 raise AttributeError # otherwise it will break everything
 for target in self.metalist:
 if target:
 target[:], l = l[:len(target)], l[len(target):]

 def save_to_list(self):
 return [i for i in chain(*self.metalist)]

[docs]class Inventory(SerializableSlots):
 '''
 The class represents Player's inventory
 '''

 def __init__(self):
 self.armor = [None] * 4
 self.crafting = [None] * 27
 self.storage = [None] * 27
 self.holdables = [None] * 9
 self.dummy = [None] * 64 # represents gap in serialized structure

[docs] def add(self, item, quantity):
 """
 Attempt to add an item to the inventory.

 :param tuple item: a key representing the item
 :returns: quantity of items that did not fit inventory
 """

 # Try to stack first
 for stash in (self.holdables, self.storage):
 for i, slot in enumerate(stash):
 if slot is not None and slot.holds(item) and slot.quantity < 64 \
 and slot.primary not in blocks.unstackable:
 count = slot.quantity + quantity
 if count > 64:
 count, quantity = 64, count - 64
 else:
 quantity = 0
 stash[i] = slot.replace(quantity=count)
 if quantity == 0:
 return 0

 # try to find empty space
 for stash in (self.holdables, self.storage):
 for i, slot in enumerate(stash):
 if slot is None:
 # XXX bug; might overflow a slot!
 stash[i] = Slot(item[0], item[1], quantity)
 return 0

 return quantity

[docs] def consume(self, item, index):
 """
 Attempt to remove a used holdable from the inventory.

 A return value of ``False`` indicates that there were no holdables of
 the given type and slot to consume.

 :param tuple item: a key representing the type of the item
 :param int slot: which slot was selected
 :returns: whether the item was successfully removed
 """

 slot = self.holdables[index]

 # Can't really remove things from an empty slot...
 if slot is None:
 return False

 if slot.holds(item):
 self.holdables[index] = slot.decrement()
 return True

 return False

[docs] def select_armor(self, index, alternate, shift, selected = None):
 """
 Handle a slot selection on an armor slot.

 :returns tuple: (True/False, new selection)
 """

 # Special case for armor slots.
 allowed_items_per_slot = {
 0: blocks.armor_helmets, 1: blocks.armor_chestplates,
 2: blocks.armor_leggings, 3: blocks.armor_boots
 }

 allowed_items = allowed_items_per_slot[index]

 if selected is not None:
 sslot = selected
 if sslot.primary not in allowed_items:
 return (False, selected)

 if self.armor[index] is None:
 # Put one armor piece into the slot, decrement the amount
 # in the selection.
 self.armor[index] = sslot.replace(quantity=1)
 selected = sslot.decrement()
 else:
 # If both slot and selection are the same item, do nothing.
 # If not, the quantity needs to be 1, because only one item
 # fits into the slot, and exchanging slot and selection is not
 # possible otherwise.
 if not self.armor[index].holds(sslot) and sslot.quantity == 1:
 selected, self.armor[index] = self.armor[index], selected
 else:
 return (False, selected)
 else:
 if self.armor[index] is None:
 # Slot and selection are empty, do nothing.
 return (False, selected)
 else:
 # Move item in the slot into the selection.
 selected = self.armor[index]
 self.armor[index] = None

 # Yeah, okay, success.
 return (True, selected)

 #
 # The methods below are for serialization purposes only.
 #

 @property
 def metalist(self):
 # this one is used for serialization
 return [self.holdables, self.storage, self.dummy, self.armor]

 def load_from_list(self, l):
 SerializableSlots.load_from_list(self, l)
 # reverse armor slots (notchian)
 self.armor.reverse()

 def save_to_list(self):
 # reverse armor (notchian)
 self.armor.reverse()
 # generate the list
 l = SerializableSlots.save_to_list(self)
 # restore armor
 self.armor.reverse()

 return l

 © Copyright 2010, Corbin Simpson, Derrick Dymock, & Justin Noah.
 Created using Sphinx 1.2.2.

_modules/bravo/plugin.html

 Navigation

 		
 index

 		
 modules |

 		Bravo 2.0 documentation »

 		Module code »

 Source code for bravo.plugin

"""
The ``plugin`` module implements a sophisticated, featureful plugin loader
with interface-based discovery.
"""

from twisted.python import log
from twisted.python.modules import getModule

from zope.interface.exceptions import BrokenImplementation
from zope.interface.exceptions import BrokenMethodImplementation
from zope.interface.verify import verifyObject

from bravo.errors import PluginException
from bravo.ibravo import InvariantException, ISortedPlugin

[docs]def sort_plugins(plugins):
 """
 Make a sorted list of plugins by dependency.

 If the list cannot be arranged into a DAG, an error will be raised. This
 usually means that a cyclic dependency was found.

 :raises PluginException: cyclic dependency detected
 """

 l = []
 d = dict((plugin.name, plugin) for plugin in plugins)

 def visit(plugin):
 if plugin not in l:
 for name in plugin.before:
 if name in d:
 visit(d[name])
 l.append(plugin)

 for plugin in plugins:
 if not any(name in d for name in plugin.after):
 visit(plugin)

 return l

[docs]def add_plugin_edges(d):
 """
 Mirror edges to all plugins in a dictionary.
 """

 for plugin in d.itervalues():
 plugin.after = set(plugin.after)
 plugin.before = set(plugin.before)

 for name, plugin in d.iteritems():
 for edge in list(plugin.before):
 if edge in d:
 d[edge].after.add(name)
 else:
 plugin.before.discard(edge)
 for edge in list(plugin.after):
 if edge in d:
 d[edge].before.add(name)
 else:
 plugin.after.discard(edge)

 return d

[docs]def expand_names(plugins, names):
 """
 Given a list of names, expand wildcards and discard disabled names.

 Used to implement * and - options in plugin lists.

 :param dict plugins: plugins to use for expansion
 :param list names: names to examine

 :returns: a list of filtered plugin names
 """

 wildcard = False
 exceptions = set()
 expanded = set()

 # Partition the list into exceptions and non-exceptions, finding the
 # wildcard(s) along the way.
 for name in names:
 if name == "*":
 wildcard = True
 elif name.startswith("-"):
 exceptions.add(name[1:])
 else:
 expanded.add(name)

 if wildcard:
 # Add all of the plugin names to the expanded name list.
 expanded.update(plugins.keys())

 # Remove excepted names from the expanded list.
 names = list(expanded - exceptions)

 return names

[docs]def verify_plugin(interface, plugin):
 """
 Plugin interface verification.

 This function will call ``verifyObject()`` and ``validateInvariants()`` on
 the plugins passed to it.

 The primary purpose of this wrapper is to do logging, but it also permits
 code to be slightly cleaner, easier to test, and callable from other
 modules.
 """

 converted = interface(plugin, None)
 if converted is None:
 raise PluginException("Couldn't convert %s to %s" % (plugin,
 interface))

 try:
 verifyObject(interface, converted)
 interface.validateInvariants(converted)
 log.msg(" (^^) Plugin: %s" % converted.name)
 except BrokenImplementation, bi:
 if hasattr(plugin, "name"):
 log.msg(" (~~) Plugin %s is missing attribute %r!" %
 (plugin.name, bi.name))
 else:
 log.msg(" (>&) Plugin %s is unnamed and useless!" % plugin)
 except BrokenMethodImplementation, bmi:
 log.msg(" (Oo) Plugin %s has a broken %s()!" % (plugin.name,
 bmi.method))
 log.msg(bmi)
 except InvariantException, ie:
 log.msg(" (>&) Plugin %s failed validation!" % plugin.name)
 log.msg(ie)
 else:
 return plugin

 raise PluginException("Plugin failed verification")

__cache = {}

[docs]def get_plugins(interface, package):
 """
 Lazily find objects in a package which implement a given interface.

 This is a rewrite of Twisted's ``twisted.plugin.getPlugins`` which
 searches for implementations of interfaces rather than providers.

 :param interface interface: the interface to match against
 :param str package: the name of the package to search
 """

 # This stack will let us iteratively recurse into packages during the
 # module search.
 stack = [getModule(package)]

 # While there are packages left to search...
 while stack:
 # For each package/module in the package...
 for pm in stack.pop().iterModules():
 # If it's a package, append it to the list of packages to search.
 if pm.isPackage():
 stack.append(pm)

 try:
 # Load the module.
 m = pm.load()

 # Make a good attempt to iterate through the module's
 # contents, and see what matches our interface.
 for obj in vars(m).itervalues():
 try:
 if interface.implementedBy(obj):
 yield obj
 except TypeError:
 # z.i raises this for things which couldn't possibly
 # be implementations.
 pass
 except AttributeError:
 # z.i leaks this one. Fuckers.
 pass
 except ImportError, ie:
 log.msg(ie)
 except SyntaxError, se:
 log.msg(se)

[docs]def retrieve_plugins(interface, **kwargs):
 """
 Look up all plugins for a certain interface.

 If the plugin cache is enabled, this function will not attempt to reload
 plugins from disk or discover new plugins.

 :param interface interface: the interface to use
 :param dict parameters: parameters to pass into the plugins

 :returns: a dict of plugins, keyed by name
 :raises PluginException: no plugins could be found for the given interface
 """

 log.msg("Discovering %s..." % interface)
 d = {}
 for p in get_plugins(interface, "bravo.plugins"):
 try:
 obj = p(**kwargs)
 verified = verify_plugin(interface, obj)
 d[p.name] = verified
 except PluginException:
 pass
 except TypeError:
 # The object that we found probably didn't like the kwargs that we
 # passed in. Oh well!
 pass

 if issubclass(interface, ISortedPlugin):
 # Sortable plugins need their edges mirrored.
 d = add_plugin_edges(d)

 return d

[docs]def retrieve_named_plugins(interface, names, **kwargs):
 """
 Look up a list of plugins by name.

 Plugins are returned in the same order as their names.

 :param interface interface: the interface to use
 :param list names: plugins to find
 :param dict parameters: parameters to pass into the plugins

 :returns: a list of plugins
 :raises PluginException: no plugins could be found for the given interface
 """

 d = retrieve_plugins(interface, **kwargs)

 # Handle wildcards and options.
 names = expand_names(d, names)

 try:
 return [d[name] for name in names]
 except KeyError, e:
 msg = """Couldn't find plugin %s for interface %s!
 Candidates were: %r
 """ % (e.args[0], interface.__name__, sorted(d.keys()))
 raise PluginException(msg)

[docs]def retrieve_sorted_plugins(interface, names, **kwargs):
 """
 Look up a list of plugins, sorted by interdependencies.

 :param dict parameters: parameters to pass into the plugins
 """

 l = retrieve_named_plugins(interface, names, **kwargs)
 try:
 return sort_plugins(l)
 except KeyError, e:
 msg = """Couldn't find plugin %s for interface %s when sorting!
 Candidates were: %r
 """ % (e.args[0], interface.__name__, sorted(p.name for p in l))
 raise PluginException(msg)

 © Copyright 2010, Corbin Simpson, Derrick Dymock, & Justin Noah.
 Created using Sphinx 1.2.2.

_modules/bravo/simplex.html

 Navigation

 		
 index

 		
 modules |

 		Bravo 2.0 documentation »

 		Module code »

 Source code for bravo.simplex

from __future__ import division

import math
from itertools import chain, izip, permutations
from random import Random

SIZE = 2**10

edges2 = list(
 set(
 chain(
 permutations((0, 1, 1), 3),
 permutations((0, 1, -1), 3),
 permutations((0, -1, -1), 3),
)
)
)
edges2.sort()

edges3 = list(
 set(
 chain(
 permutations((0, 1, 1, 1), 4),
 permutations((0, 1, 1, -1), 4),
 permutations((0, 1, -1, -1), 4),
 permutations((0, -1, -1, -1), 4),
)
)
)
edges3.sort()

[docs]def dot2(u, v):
 """
 Dot product of two 2-dimensional vectors.
 """
 return u[0] * v[0] + u[1] * v[1]

[docs]def dot3(u, v):
 """
 Dot product of two 3-dimensional vectors.
 """
 return u[0] * v[0] + u[1] * v[1] + u[2] * v[2]

[docs]def reseed(seed):
 """
 Reseed the simplex gradient field.
 """

 if seed in fields:
 return

 p = range(SIZE)
 r = Random()
 r.seed(seed)
 r.shuffle(p)
 p *= 2
 fields[seed] = p

[docs]def set_seed(seed):
 """
 Set the current seed.
 """

 global current_seed

 reseed(seed)

 current_seed = seed

fields = dict()

current_seed = None

f2 = 0.5 * (math.sqrt(3) - 1)
g2 = (3 - math.sqrt(3)) / 6

[docs]def simplex2(x, y):
 """
 Generate simplex noise at the given coordinates.

 This particular implementation has very high chaotic features at normal
 resolution; zooming in by a factor of 16x to 256x is going to yield more
 pleasing results for most applications.

 The gradient field must be seeded prior to calling this function; call
 ``reseed()`` first.

 :param int x: X coordinate
 :param int y: Y coordinate

 :returns: simplex noise
 :raises Exception: the gradient field is not seeded
 """

 if current_seed is None:
 raise Exception("The gradient field is unseeded!")

 p = fields[current_seed]

 # Set up our scalers and arrays.
 coords = [None] * 3
 gradients = [None] * 3

 s = (x + y) * f2
 i = math.floor(x + s)
 j = math.floor(y + s)
 t = (i + j) * g2
 x -= i - t
 y -= j - t

 # Clamp to the size of the simplex array.
 i = int(i) % SIZE
 j = int(j) % SIZE

 # Look up coordinates and gradients for each contributing point in the
 # simplex space.
 coords[0] = x, y
 gradients[0] = p[i + p[j]]
 if x > y:
 coords[1] = x - 1 + g2, y + g2
 gradients[1] = p[i + 1 + p[j]]
 else:
 coords[1] = x + g2, y - 1 + g2
 gradients[1] = p[i + p[j + 1]]
 coords[2] = x - 1 + 2 * g2, y - 1 + 2 * g2
 gradients[2] = p[i + 1 + p[j + 1]]

 # Do our summation.
 n = 0
 for coord, gradient in izip(coords, gradients):
 t = 0.5 - coord[0] * coord[0] - coord[1] * coord[1]
 if t > 0:
 n += t**4 * dot2(edges2[gradient % 12], coord)

 # Where's this scaling factor come from?
 return n * 70

[docs]def simplex3(x, y, z):
 """
 Generate simplex noise at the given coordinates.

 This is a 3-dimensional flavor of ``simplex2()``; all of the same caveats
 apply.

 The gradient field must be seeded prior to calling this function; call
 ``reseed()`` first.

 :param int x: X coordinate
 :param int y: Y coordinate
 :param int z: Z coordinate

 :returns: simplex noise
 :raises Exception: the gradient field is not seeded or you broke the
 function somehow
 """

 if current_seed is None:
 raise Exception("The gradient field is unseeded!")

 p = fields[current_seed]

 f = 1 / 3
 g = 1 / 6
 coords = [None] * 4
 gradients = [None] * 4

 s = (x + y + z) * f
 i = math.floor(x + s)
 j = math.floor(y + s)
 k = math.floor(z + s)
 t = (i + j + k) * g
 x -= i - t
 y -= j - t
 z -= k - t

 i = int(i) % SIZE
 j = int(j) % SIZE
 k = int(k) % SIZE

 # Do the coord and gradient lookups. Unrolled for speed and clarity.
 # These should be + 2 * g, but instead we do + f because we already have
 # it calculated. (2g == 2/6 == 1/3 == f)
 coords[0] = x, y, z
 gradients[0] = p[i + p[j + p[k]]]
 if x >= y >= z:
 coords[1] = x - 1 + g, y + g, z + g
 coords[2] = x - 1 + f, y - 1 + f, z + f

 gradients[1] = p[i + 1 + p[j + p[k]]]
 gradients[2] = p[i + 1 + p[j + 1 + p[k]]]
 elif x >= z >= y:
 coords[1] = x - 1 + g, y + g, z + g
 coords[2] = x - 1 + f, y + f, z - 1 + f

 gradients[1] = p[i + 1 + p[j + p[k]]]
 gradients[2] = p[i + 1 + p[j + p[k + 1]]]
 elif z >= x >= y:
 coords[1] = x + g, y + g, z - 1 + g
 coords[2] = x - 1 + f, y + f, z - 1 + f

 gradients[1] = p[i + p[j + p[k + 1]]]
 gradients[2] = p[i + 1 + p[j + p[k + 1]]]
 elif z >= y >= x:
 coords[1] = x + g, y + g, z - 1 + g
 coords[2] = x + f, y - 1 + f, z - 1 + f

 gradients[1] = p[i + p[j + p[k + 1]]]
 gradients[2] = p[i + p[j + 1 + p[k + 1]]]
 elif y >= z >= x:
 coords[1] = x + g, y - 1 + g, z + g
 coords[2] = x + f, y - 1 + f, z - 1 + f

 gradients[1] = p[i + p[j + 1 + p[k]]]
 gradients[2] = p[i + p[j + 1 + p[k + 1]]]
 elif y >= x >= z:
 coords[1] = x + g, y - 1 + g, z + g
 coords[2] = x - 1 + f, y - 1 + f, z + f

 gradients[1] = p[i + p[j + 1 + p[k]]]
 gradients[2] = p[i + 1 + p[j + 1 + p[k]]]
 else:
 raise Exception("You broke maths. Good work.")

 coords[3] = x - 1 + 0.5, y - 1 + 0.5, z - 1 + 0.5
 gradients[3] = p[i + 1 + p[j + 1 + p[k + 1]]]

 n = 0
 for coord, gradient in izip(coords, gradients):
 t = (0.6 - coord[0] * coord[0] - coord[1] * coord[1] - coord[2] *
 coord[2])
 if t > 0:
 n += t**4 * dot3(edges2[gradient % 12], coord)

 # Where's this scaling factor come from?
 return n * 32

def simplex(*args):
 if len(args) == 2:
 return simplex2(*args)
 if len(args) == 3:
 return simplex3(*args)
 else:
 raise Exception("Don't know how to do %dD noise!" % len(args))

[docs]def octaves2(x, y, count):
 """
 Generate fractal octaves of noise.

 Summing increasingly scaled amounts of noise with itself creates fractal
 clouds of noise.

 :param int x: X coordinate
 :param int y: Y coordinate
 :param int count: number of octaves

 :returns: Scaled fractal noise
 """

 sigma = 0
 divisor = 1
 while count:
 sigma += simplex2(x * divisor, y * divisor) / divisor
 divisor *= 2
 count -= 1
 return sigma

[docs]def octaves3(x, y, z, count):
 """
 Generate fractal octaves of noise.

 :param int x: X coordinate
 :param int y: Y coordinate
 :param int z: Z coordinate
 :param int count: number of octaves

 :returns: Scaled fractal noise
 """

 sigma = 0
 divisor = 1
 while count:
 sigma += simplex3(x * divisor, y * divisor, z * divisor) / divisor
 divisor *= 2
 count -= 1
 return sigma

[docs]def offset2(x, y, xoffset, yoffset, octaves=1):
 """
 Generate an offset noise difference field.

 :param int x: X coordinate
 :param int y: Y coordinate
 :param int xoffset: X offset
 :param int yoffset: Y offset

 :returns: Difference of noises
 """

 return (octaves2(x, y, octaves) -
 octaves2(x + xoffset, y + yoffset, octaves) + 1) * 0.5

 © Copyright 2010, Corbin Simpson, Derrick Dymock, & Justin Noah.
 Created using Sphinx 1.2.2.

_modules/bravo/ibravo.html

 Navigation

 		
 index

 		
 modules |

 		Bravo 2.0 documentation »

 		Module code »

 Source code for bravo.ibravo

from twisted.python.components import registerAdapter
from twisted.web.resource import IResource
from zope.interface import implements, invariant, Attribute, Interface

from bravo.errors import InvariantException

[docs]class IBravoPlugin(Interface):
 """
 Interface for plugins.

 This interface stores common metadata used during plugin discovery.
 """

 name = Attribute("""
 The name of the plugin.

 This name is used to reference the plugin in configurations, and also
 to uniquely index the plugin.
 """)

def sorted_invariant(s):
 intersection = set(s.before) & set(s.after)
 if intersection:
 raise InvariantException("Plugin wants to come before and after %r" %
 intersection)

[docs]class ISortedPlugin(IBravoPlugin):
 """
 Parent interface for sorted plugins.

 Sorted plugins have an innate and automatic ordering inside lists thanks
 to the ability to advertise their dependencies.
 """

 invariant(sorted_invariant)

 before = Attribute("""
 Plugins which must come before this plugin in the pipeline.

 Should be a tuple, list, or some other iterable.
 """)

 after = Attribute("""
 Plugins which must come after this plugin in the pipeline.

 Should be a tuple, list, or some other iterable.
 """)

[docs]class ITerrainGenerator(ISortedPlugin):
 """
 Interface for terrain generators.
 """

 def populate(chunk, seed):
 """
 Given a chunk and a seed value, populate the chunk with terrain.

 This function should assume that it runs as part of a pipeline, and
 that the chunk may already be partially or totally populated.
 """

def command_invariant(c):
 if c.__doc__ is None:
 raise InvariantException("Command has no documentation")

class ICommand(IBravoPlugin):
 """
 A command.

 Commands must be documented, as an invariant. The documentation for a
 command will be displayed for clients upon request, via internal help
 commands.
 """

 invariant(command_invariant)

 aliases = Attribute("""
 Additional keywords which may be used to alias this command.
 """)

 usage = Attribute("""
 String explaining how to use this command.
 """)

[docs]class IChatCommand(ICommand):
 """
 Interface for chat commands.

 Chat commands are invoked from the chat inside clients, so they are always
 called by a specific client.

 This interface is specifically designed to exist comfortably side-by-side
 with `IConsoleCommand`.
 """

 def chat_command(username, parameters):
 """
 Handle a command from the chat interface.

 :param str username: username of player
 :param list parameters: additional parameters passed to the command

 :returns: a generator object or other iterable yielding lines
 """

[docs]class IConsoleCommand(ICommand):
 """
 Interface for console commands.

 Console commands are invoked from a console or some other location with
 two defining attributes: Access restricted to superusers, and no user
 issuing the command. As such, no access control list applies to them, but
 they must be given usernames to operate on explicitly.
 """

 def console_command(parameters):
 """
 Handle a command.

 :param list parameters: additional parameters passed to the command

 :returns: a generator object or other iterable yielding lines
 """

class ChatToConsole(object):
 """
 Adapt a chat command to be used on the console.

 This largely consists of passing the username correctly.
 """

 implements(IConsoleCommand)

 def __init__(self, chatcommand):
 self.chatcommand = chatcommand

 self.aliases = self.chatcommand.aliases
 self.info = self.chatcommand.info
 self.name = self.chatcommand.name
 self.usage = "<username> %s" % self.chatcommand.usage

 def console_command(self, parameters):
 if IConsoleCommand.providedBy(self.chatcommand):
 return self.chatcommand.console_command(parameters)
 else:
 username = parameters.pop(0) if parameters else ""
 return self.chatcommand.chat_command(username, parameters)

registerAdapter(ChatToConsole, IChatCommand, IConsoleCommand)

[docs]class IRecipe(IBravoPlugin):
 """
 A description for creating materials from other materials.
 """

 def matches(table, stride):
 """
 Determine whether a given crafting table matches this recipe.

 ``table`` is a list of slots.
 ``stride`` is the stride of the table.

 :returns: bool
 """

 def reduce(table, stride):
 """
 Remove items from a given crafting table corresponding to a single
 match of this recipe. The table is modified in-place.

 This method is meant to be used to subtract items from a crafting
 table following a successful recipe match.

 This method may assume that this recipe ``matches()`` the table.

 ``table`` is a list of slots.
 ``stride`` is the stride of the table.
 """

 provides = Attribute("""
 Tuple representing the yield of this recipe.

 This tuple must be of the format (slot, count).
 """)

[docs]class ISeason(IBravoPlugin):
 """
 Seasons are transformational stages run during certain days to emulate an
 environment.
 """

 def transform(chunk):
 """
 Apply the season to the given chunk.
 """

 day = Attribute("""
 Day of the year on which to switch to this season.
 """)

[docs]class ISerializer(IBravoPlugin):
 """
 Class that understands how to serialize several different kinds of objects
 to and from disk-friendly formats.

 Implementors of this interface are expected to provide a uniform
 implementation of their serialization technique.
 """

 def connect(url):
 """
 Connect this serializer to a serialization resource, as defined in
 ``url``.

 Bravo uses URLs to specify all serialization resources. While there is
 no strict enforcement of the identifier being a URL, most popular
 database libraries can understand URL-based resources, and thus it is
 a useful *de facto* standard. If a URL is not passed, or the URL is
 invalid, this method may raise an exception.
 """

 def save_chunk(chunk):
 """
 Save a chunk.

 May return a ``Deferred`` that will fire on completion.
 """

 def load_chunk(x, z):
 """
 Load a chunk. The chunk must exist.

 May return a ``Deferred`` that will fire on completion.

 :raises: SerializerReadException if the chunk doesn't exist
 """

 def save_level(level):
 """
 Save a level.

 May return a ``Deferred`` that will fire on completion.
 """

 def load_level():
 """
 Load a level. The level must exist.

 May return a ``Deferred`` that will fire on completion.

 :raises: SerializerReadException if the level doesn't exist
 """

 def save_player(player):
 """
 Save a player.

 May return a ``Deferred`` that will fire on completion.
 """

 def load_player(username):
 """
 Load a player. The player must exist.

 May return a ``Deferred`` that will fire on completion.

 :raises: SerializerReadException if the player doesn't exist
 """

 def save_plugin_data(name, value):
 """
 Save plugin-specific data. The data must be a bytestring.

 May return a ``Deferred`` that will fire on completion.
 """

 def load_plugin_data(name):
 """
 Load plugin-specific data. If no data is found, an empty bytestring
 will be returned.

 May return a ``Deferred`` that will fire on completion.
 """

Hooks

class IWindowOpenHook(ISortedPlugin):
 """
 Hook for actions to be taken on container open
 """

 def open_hook(player, container, block):
 """
 The ``player`` is a Player's protocol
 The ``container`` is a 0x64 message
 The ``block`` is a block we trying to open
 :returns: ``Deffered`` with None or window object
 """
 pass

class IWindowClickHook(ISortedPlugin):
 """
 Hook for actions to be taken on window clicks
 """

 def click_hook(player, container):
 """
 The ``player`` a Player's protocol
 The ``container`` is a 0x66 message
 :returns: True if you processed the action and TRANSACTION must be ok
 You probably will never return True here.
 """
 pass

class IWindowCloseHook(ISortedPlugin):
 """
 Hook for actions to be taken on window clicks
 """

 def close_hook(player, container):
 """
 The ``player`` a Player's protocol
 The ``container`` is a 0x65 message
 """
 pass

[docs]class IPreBuildHook(ISortedPlugin):
 """
 Hook for actions to be taken before a block is placed.
 """

 def pre_build_hook(player, builddata):
 """
 Do things.

 The ``player`` is a ``Player`` entity and can be modified as needed.

 The ``builddata`` tuple has all of the useful things. It stores a
 ``Block`` that will be placed, as well as the block coordinates and
 face of the place where the block will be built.

 ``builddata`` needs to be passed to the next hook in sequence, but it
 can be modified in passing in order to modify the way blocks are
 placed.

 Any access to chunks must be done through the factory. To get the
 current factory, import it from ``bravo.parameters``:

 >>> from bravo.parameters import factory

 First variable in the return value indicates whether processing
 of building should continue after this hook runs. Use it to halt build
 hook processing, if needed.

 Third variable in the return value indicates whether building process
 shall be canceled. Use it to completele stop the process.

 For sanity purposes, build hooks may return a ``Deferred`` which will
 fire with their return values, but are not obligated to do so.

 A trivial do-nothing build hook looks like the following:

 >>> def pre_build_hook(self, player, builddata):
 ... return True, builddata, False

 To make life more pleasant when returning deferred values, use
 ``inlineCallbacks``, which many of the standard build hooks use:

 >>> @inlineCallbacks
 ... def pre_build_hook(self, player, builddata):
 ... returnValue((True, builddata, False))

 This form makes it much easier to deal with asynchronous operations on
 the factory and world.

 :param ``Player`` player: player entity doing the building
 :param namedtuple builddata: permanent building location and data

 :returns: ``Deferred`` with tuple of build data and whether subsequent
 hooks will run
 """

[docs]class IPostBuildHook(ISortedPlugin):
 """
 Hook for actions to be taken after a block is placed.
 """

 def post_build_hook(player, coords, block):
 """
 Do things.

 The coordinates for the given block have already been pre-adjusted.
 """

class IPreDigHook(ISortedPlugin):
 """
 Hook for actions to be taken as dig started.
 """
 def pre_dig_hook(player, coords, block):
 """
 The ``player`` a Player's protocol
 The ``coords`` is block coords - x, y, z
 The ``block`` is a block we going to dig
 :returns: True to cancel the dig action.
 """

[docs]class IDigHook(ISortedPlugin):
 """
 Hook for actions to be taken after a block is dug up.
 """

 def dig_hook(chunk, x, y, z, block):
 """
 Do things.

 :param `Chunk` chunk: digging location
 :param int x: X coordinate
 :param int y: Y coordinate
 :param int z: Z coordinate
 :param `Block` block: dug block
 """

[docs]class ISignHook(ISortedPlugin):
 """
 Hook for actions to be taken after a sign is updated.

 This hook fires both on sign creation and sign editing.
 """

 def sign_hook(chunk, x, y, z, text, new):
 """
 Do things.

 :param `Chunk` chunk: digging location
 :param int x: X coordinate
 :param int y: Y coordinate
 :param int z: Z coordinate
 :param list text: list of lines of text
 :param bool new: whether this sign is newly placed
 """

[docs]class IUseHook(ISortedPlugin):
 """
 Hook for actions to be taken when a player interacts with an entity.

 Each plugin needs to specify a list of entity types it is interested in
 in advance, and it will only be called for those.
 """

 def use_hook(player, target, alternate):
 """
 Do things.

 :param `Player` player: player
 :param `Entity` target: target of the interaction
 :param bool alternate: whether the player right-clicked the target
 """

 targets = Attribute("""
 List of entity names this plugin wants to be called for.
 """)

[docs]class IAutomaton(IBravoPlugin):
 """
 An automaton.

 Automatons are given blocks from chunks which interest them, and may do
 processing on those blocks.
 """

 blocks = Attribute("""
 List of blocks which this automaton is interested in.
 """)

 def feed(coordinates):
 """
 Provide this automaton with block coordinates to handle later.
 """

 def scan(chunk):
 """
 Provide this automaton with an entire chunk which this automaton may
 handle as it pleases.

 A utility scanner which will simply `feed()` this automaton is in
 bravo.utilities.automatic.
 """

 def start():
 """
 Run the automaton.
 """

 def stop():
 """
 Stop the automaton.

 After this method is called, the automaton should not continue
 processing data; it needs to stop immediately.
 """

[docs]class IWorldResource(IBravoPlugin, IResource):
 """
 Interface for a world specific web resource.
 """

class IWindow(Interface):
 """
 An openable window.

 ``IWindow`` generalizes the single-purpose dedicated windows used
 primarily by blocks which have storage and/or timers associated with them.
 A window is an object which has some slots which can hold items and
 blocks, and is receptive to a general protocol which alters those slots in
 a structured fashion. However, windows do not know about player
 inventories, and cannot perform wire-protocol-specific actions.

 This interface is the answer to several questions:
 * How can we write code for workbenches and chests without having to
 duplicate inventory management code?
 * How can combination locks or other highly-customized windows be
 designed?
 * Is it possible to abstract away the low-level details of mouse
 actions and instead discuss semantic movement of items through an
 inventory's various slots and between window panes?
 * Can windows have background processes happening which result in
 periodic changes to their viewers?

 Damage tracking might need to be event-driven.
 """

 slots = Attribute("""
 A mapping of slot numbers to slot data.
 """)

 def open():
 """
 Open a window.

 :returns: The identifier of the window, the title of the window, and
 the number of slots in the window.
 """

 def close():
 """
 Close a window.
 """

 def altered(slot, old, new):
 """
 Notify the window that a slot's data should be changed.

 Both the old and new slots are provided.
 """

 def damaged():
 """
 Retrieve the damaged slot numbers.

 :returns: A sequence of slot numbers.
 """

 def undamage():
 """
 Forget about damage.
 """

 © Copyright 2010, Corbin Simpson, Derrick Dymock, & Justin Noah.
 Created using Sphinx 1.2.2.

_static/up-pressed.png

_static/down-pressed.png

_modules/bravo/blocks.html

 Navigation

 		
 index

 		
 modules |

 		Bravo 2.0 documentation »

 		Module code »

 Source code for bravo.blocks

from __future__ import division

faces = ("-y", "+y", "-z", "+z", "-x", "+x")

[docs]class Block(object):
 """
 A model for a block.

 There are lots of rules and properties specific to different types of
 blocks. This class encapsulates those properties in a singleton-style
 interface, allowing many blocks to be referenced in one location.

 The basic idea of this class is to provide some centralized data and
 information about blocks, in order to abstract away as many special cases
 as possible. In general, if several blocks all have some special behavior,
 then it may be worthwhile to store data describing that behavior on this
 class rather than special-casing it in multiple places.
 """

 __slots__ = (
 "_f_dict",
 "_o_dict",
 "breakable",
 "dim",
 "drop",
 "key",
 "name",
 "quantity",
 "ratio",
 "replace",
 "slot",
 "vanishes",
)

 def __init__(self, slot, name, secondary=0, drop=None, replace=0, ratio=1,
 quantity=1, dim=16, breakable=True, orientation=None, vanishes=False):
 """
 :param int slot: The index of this block. Must be globally unique.
 :param str name: A common name for this block.
 :param int secondary: The metadata/damage/secondary attribute for this
 block. Defaults to zero.
 :param tuple drop: The type of block that should be dropped when an
 instance of this block is destroyed. Defaults to the block value,
 to drop instances of this same type of block. To indicate that
 this block does not drop anything, set to air (0, 0).
 :param int replace: The type of block to place in the map when
 instances of this block are destroyed. Defaults to air.
 :param float ratio: The probability of this block dropping a block
 on destruction.
 :param int quantity: The number of blocks dropped when this block
 is destroyed.
 :param int dim: How much light dims when passing through this kind
 of block. Defaults to 16 = opaque block.
 :param bool breakable: Whether this block is diggable, breakable,
 bombable, explodeable, etc. Only a few blocks actually genuinely
 cannot be broken, so the default is True.
 :param tuple orientation: The orientation data for a block. See
 :meth:`orientable` for an explanation. The data should be in standard
 face order.
 :param bool vanishes: Whether this block vanishes, or is replaced by,
 another block when built upon.
 """

 self.slot = slot
 self.name = name

 self.key = (self.slot, secondary)

 if drop is None:
 self.drop = self.key
 else:
 self.drop = drop

 self.replace = replace
 self.ratio = ratio
 self.quantity = quantity
 self.dim = dim
 self.breakable = breakable
 self.vanishes = vanishes

 if orientation:
 self._o_dict = dict(zip(faces, orientation))
 self._f_dict = dict(zip(orientation, faces))
 else:
 self._o_dict = self._f_dict = {}

 def __str__(self):
 """
 Fairly verbose explanation of what this block is capable of.
 """

 attributes = []
 if not self.breakable:
 attributes.append("unbreakable")
 if self.dim == 0:
 attributes.append("transparent")
 elif self.dim < 16:
 attributes.append("translucent (%d)" % self.dim)
 if self.replace:
 attributes.append("becomes %d" % self.replace)
 if self.ratio != 1 or self.quantity > 1 or self.drop != self.key:
 attributes.append("drops %r (key %r, rate %2.2f%%)" %
 (self.quantity, self.drop, self.ratio * 100))
 if attributes:
 attributes = ": %s" % ", ".join(attributes)
 else:
 attributes = ""

 return "Block(%r %r%s)" % (self.key, self.name, attributes)

 __repr__ = __str__

[docs] def orientable(self):
 """
 Whether this block can be oriented.

 Orientable blocks are positioned according to the face on which they
 are built. They may not be buildable on all faces. Blocks are only
 orientable if their metadata can be used to directly and uniquely
 determine the face against which they were built.

 Ladders are orientable, signposts are not.

 :rtype: bool
 :returns: True if this block can be oriented, False if not.
 """

 return bool(self._o_dict)

[docs] def face(self, metadata):
 """
 Retrieve the face for given metadata corresponding to an orientation,
 or None if the metadata is invalid for this block.

 This method only returns valid data for orientable blocks; check
 :meth:`orientable` first.
 """

 return self._f_dict.get(metadata)

[docs] def orientation(self, face):
 """
 Retrieve the metadata for a certain orientation, or None if this block
 cannot be built against the given face.

 This method only returns valid data for orientable blocks; check
 :meth:`orientable` first.
 """

 return self._o_dict.get(face)

[docs]class Item(object):
 """
 An item.
 """

 __slots__ = (
 "key",
 "name",
 "slot",
)

 def __init__(self, slot, name, secondary=0):

 self.slot = slot
 self.name = name

 self.key = (self.slot, secondary)

 def __str__(self):
 return "Item(%r %r)" % (self.key, self.name)

 __repr__ = __str__

block_names = [
 "air", # 0x0
 "stone",
 "grass",
 "dirt",
 "cobblestone",
 "wood",
 "sapling",
 "bedrock",
 "water",
 "spring",
 "lava",
 "lava-spring",
 "sand",
 "gravel",
 "gold-ore",
 "iron-ore",
 "coal-ore", # 0x10
 "log",
 "leaves",
 "sponge",
 "glass",
 "lapis-lazuli-ore",
 "lapis-lazuli-block",
 "dispenser",
 "sandstone",
 "note-block",
 "bed-block",
 "powered-rail",
 "detector-rail",
 "sticky-piston",
 "spider-web",
 "tall-grass",
 "shrub", # 0x20
 "piston",
 "",
 "wool",
 "",
 "flower",
 "rose",
 "brown-mushroom",
 "red-mushroom",
 "gold",
 "iron",
 "double-stone-slab",
 "single-stone-slab",
 "brick",
 "tnt",
 "bookshelf",
 "mossy-cobblestone", # 0x30
 "obsidian",
 "torch",
 "fire",
 "mob-spawner",
 "wooden-stairs",
 "chest",
 "redstone-wire",
 "diamond-ore",
 "diamond-block",
 "workbench",
 "crops",
 "soil",
 "furnace",
 "burning-furnace",
 "signpost",
 "wooden-door-block", # 0x40
 "ladder",
 "tracks",
 "stone-stairs",
 "wall-sign",
 "lever",
 "stone-plate",
 "iron-door-block",
 "wooden-plate",
 "redstone-ore",
 "glowing-redstone-ore",
 "redstone-torch-off",
 "redstone-torch",
 "stone-button",
 "snow",
 "ice",
 "snow-block", # 0x50
 "cactus",
 "clay",
 "reed",
 "jukebox",
 "fence",
 "pumpkin",
 "brimstone",
 "slow-sand",
 "lightstone",
 "portal",
 "jack-o-lantern",
 "cake-block",
 "redstone-repeater-off",
 "redstone-repeater-on",
 "locked-chest",
 "trapdoor", # 0x60
 "hidden-silverfish",
 "stone-brick",
 "huge-brown-mushroom",
 "huge-red-mushroom",
 "iron-bars",
 "glass-pane",
 "melon",
 "pumpkin-stem",
 "melon-stem",
 "vine",
 "fence-gate",
 "brick-stairs",
 "stone-brick-stairs",
 "mycelium",
 "lily-pad",
 "nether-brick", # 0x70
 "nether-brick-fence",
 "nether-brick-stairs",
 "nether-wart-block", # 0x73
 "",
 "",
 "",
 "",
 "",
 "",
 "",
 "",
 "",
 "double-wooden-slab",
 "single-wooden-slab",
 "",
 "", # 0x80
 "emerald-ore",
 "",
 "",
 "",
 "emerald-block", # 0x85
 "",
 "",
 "",
 "",
 "beacon", # 0x8a
]

item_names = [
 "iron-shovel", # 0x100
 "iron-pickaxe",
 "iron-axe",
 "flint-and-steel",
 "apple",
 "bow",
 "arrow",
 "coal",
 "diamond",
 "iron-ingot",
 "gold-ingot",
 "iron-sword",
 "wooden-sword",
 "wooden-shovel",
 "wooden-pickaxe",
 "wooden-axe",
 "stone-sword", # 0x110
 "stone-shovel",
 "stone-pickaxe",
 "stone-axe",
 "diamond-sword",
 "diamond-shovel",
 "diamond-pickaxe",
 "diamond-axe",
 "stick",
 "bowl",
 "mushroom-soup",
 "gold-sword",
 "gold-shovel",
 "gold-pickaxe",
 "gold-axe",
 "string",
 "feather", # 0x120
 "sulphur",
 "wooden-hoe",
 "stone-hoe",
 "iron-hoe",
 "diamond-hoe",
 "gold-hoe",
 "seeds",
 "wheat",
 "bread",
 "leather-helmet",
 "leather-chestplate",
 "leather-leggings",
 "leather-boots",
 "chainmail-helmet",
 "chainmail-chestplate",
 "chainmail-leggings", # 0x130
 "chainmail-boots",
 "iron-helmet",
 "iron-chestplate",
 "iron-leggings",
 "iron-boots",
 "diamond-helmet",
 "diamond-chestplate",
 "diamond-leggings",
 "diamond-boots",
 "gold-helmet",
 "gold-chestplate",
 "gold-leggings",
 "gold-boots",
 "flint",
 "raw-porkchop",
 "cooked-porkchop", # 0x140
 "paintings",
 "golden-apple",
 "sign",
 "wooden-door",
 "bucket",
 "water-bucket",
 "lava-bucket",
 "mine-cart",
 "saddle",
 "iron-door",
 "redstone",
 "snowball",
 "boat",
 "leather",
 "milk",
 "clay-brick", # 0x150
 "clay-balls",
 "sugar-cane",
 "paper",
 "book",
 "slimeball",
 "storage-minecart",
 "powered-minecart",
 "egg",
 "compass",
 "fishing-rod",
 "clock",
 "glowstone-dust",
 "raw-fish",
 "cooked-fish",
 "dye",
 "bone", # 0x160
 "sugar",
 "cake",
 "bed",
 "redstone-repeater",
 "cookie",
 "map",
 "shears",
 "melon-slice",
 "pumpkin-seeds",
 "melon-seeds",
 "raw-beef",
 "steak",
 "raw-chicken",
 "cooked-chicken",
 "rotten-flesh",
 "ender-pearl", # 0x170
 "blaze-rod",
 "ghast-tear",
 "gold-nugget",
 "nether-wart",
 "potions",
 "glass-bottle",
 "spider-eye",
 "fermented-spider-eye",
 "blaze-powder",
 "magma-cream", # 0x17a
 "",
 "",
 "",
 "",
 "spawn-egg", # 0x17f
 "", # 0x180
 "",
 "",
 "",
 "emerald", #0x184
 "",
 "",
 "",
 "",
 "",
 "",
 "",
 "",
 "",
 "",
 "nether-star", # 0x18f
]

special_item_names = [
 "gold-music-disc",
 "green-music-disc",
 "blocks-music-disc",
 "chirp-music-disc",
 "far-music-disc"
]

dye_names = [
 "ink-sac",
 "red-dye",
 "green-dye",
 "cocoa-beans",
 "lapis-lazuli",
 "purple-dye",
 "cyan-dye",
 "light-gray-dye",
 "gray-dye",
 "pink-dye",
 "lime-dye",
 "yellow-dye",
 "light-blue-dye",
 "magenta-dye",
 "orange-dye",
 "bone-meal",
]

wool_names = [
 "white-wool",
 "orange-wool",
 "magenta-wool",
 "light-blue-wool",
 "yellow-wool",
 "lime-wool",
 "pink-wool",
 "gray-wool",
 "light-gray-wool",
 "cyan-wool",
 "purple-wool",
 "blue-wool",
 "brown-wool",
 "dark-green-wool",
 "red-wool",
 "black-wool",
]

sapling_names = [
 "normal-sapling",
 "pine-sapling",
 "birch-sapling",
 "jungle-sapling",
]

log_names = [
 "normal-log",
 "pine-log",
 "birch-log",
 "jungle-log",
]

leaf_names = [
 "normal-leaf",
 "pine-leaf",
 "birch-leaf",
 "jungle-leaf",
]

coal_names = [
 "normal-coal",
 "charcoal",
]

step_names = [
 "single-stone-slab",
 "single-sandstone-slab",
 "single-wooden-slab",
 "single-cobblestone-slab",
]

drops = {}

Block -> block drops.
If the drop block is zero, then it drops nothing.
drops[1] = (4, 0) # Stone -> Cobblestone
drops[2] = (3, 0) # Grass -> Dirt
drops[20] = (0, 0) # Glass
drops[52] = (0, 0) # Mob spawner
drops[60] = (3, 0) # Soil -> Dirt
drops[62] = (61, 0) # Burning Furnace -> Furnace
drops[78] = (0, 0) # Snow

Block -> item drops.
drops[16] = (263, 0) # Coal Ore Block -> Coal
drops[56] = (264, 0) # Diamond Ore Block -> Diamond
drops[63] = (323, 0) # Sign Post -> Sign Item
drops[68] = (323, 0) # Wall Sign -> Sign Item
drops[83] = (338, 0) # Reed -> Reed Item
drops[89] = (348, 0) # Lightstone -> Lightstone Dust
drops[93] = (356, 0) # Redstone Repeater, on -> Redstone Repeater
drops[94] = (356, 0) # Redstone Repeater, off -> Redstone Repeater
drops[97] = (0, 0) # Hidden Silverfish
drops[110] = (3, 0) # Mycelium -> Dirt
drops[111] = (0, 0) # Lily Pad
drops[115] = (372, 0) # Nether Wart BLock -> Nether Wart

unbreakables = set()

unbreakables.add(0) # Air
unbreakables.add(7) # Bedrock
unbreakables.add(10) # Lava
unbreakables.add(11) # Lava spring

When one of these is targeted and a block is placed, these are replaced
softblocks = set()
softblocks.add(30) # Cobweb
softblocks.add(31) # Tall grass
softblocks.add(70) # Snow
softblocks.add(106) # Vines

dims = {}

dims[0] = 0 # Air
dims[6] = 0 # Sapling
dims[10] = 0 # Lava
dims[11] = 0 # Lava spring
dims[20] = 0 # Glass
dims[26] = 0 # Bed
dims[37] = 0 # Yellow Flowers
dims[38] = 0 # Red Flowers
dims[39] = 0 # Brown Mushrooms
dims[40] = 0 # Red Mushrooms
dims[44] = 0 # Single Step
dims[51] = 0 # Fire
dims[52] = 0 # Mob spawner
dims[53] = 0 # Wooden stairs
dims[55] = 0 # Redstone (Wire)
dims[59] = 0 # Crops
dims[60] = 0 # Soil
dims[63] = 0 # Sign
dims[64] = 0 # Wood door
dims[66] = 0 # Rails
dims[67] = 0 # Stone stairs
dims[68] = 0 # Sign (on wall)
dims[69] = 0 # Lever
dims[70] = 0 # Stone Pressure Plate
dims[71] = 0 # Iron door
dims[72] = 0 # Wood Pressure Plate
dims[78] = 0 # Snow
dims[81] = 0 # Cactus
dims[83] = 0 # Sugar Cane
dims[85] = 0 # Fence
dims[90] = 0 # Portal
dims[92] = 0 # Cake
dims[93] = 0 # redstone-repeater-off
dims[94] = 0 # redstone-repeater-on

blocks = {}
"""
A dictionary of ``Block`` objects.

This dictionary can be indexed by slot number or block name.
"""

def _add_block(block):
 blocks[block.slot] = block
 blocks[block.name] = block

Special blocks. Please remember to comment *what* makes the block special;
most of us don't have all blocks memorized yet.

Water (both kinds) is unbreakable, and dims by 3.
_add_block(Block(8, "water", breakable=False, dim=3))
_add_block(Block(9, "spring", breakable=False, dim=3))
Gravel drops flint, with 1 in 10 odds.
_add_block(Block(13, "gravel", drop=(318, 0), ratio=1 / 10))
Leaves drop saplings, with 1 in 9 odds, and dims by 1.
_add_block(Block(18, "leaves", drop=(6, 0), ratio=1 / 9, dim=1))
Lapis lazuli ore drops 6 lapis lazuli items.
_add_block(Block(21, "lapis-lazuli-ore", drop=(351, 4), quantity=6))
Beds are orientable and drops Bed Item
_add_block(Block(26, "bed-block", drop=(355, 0),
 orientation=(None, None, 2, 0, 1, 3)))
Torches are orientable and don't dim.
_add_block(Block(50, "torch", orientation=(None, 5, 4, 3, 2, 1), dim=0))
Chests are orientable.
_add_block(Block(54, "chest", orientation=(None, None, 2, 3, 4, 5)))
Furnaces are orientable.
_add_block(Block(61, "furnace", orientation=(None, None, 2, 3, 4, 5)))
Wooden Door is orientable and drops Wooden Door item
_add_block(Block(64, "wooden-door-block", drop=(324, 0),
 orientation=(None, None, 1, 3, 0, 2)))
Ladders are orientable and don't dim.
_add_block(Block(65, "ladder", orientation=(None, None, 2, 3, 4, 5), dim=0))
Levers are orientable and don't dim. Additionally, levers have special hax
to be orientable two different ways.
_add_block(Block(69, "lever", orientation=(None, 5, 4, 3, 2, 1), dim=0))
blocks["lever"]._f_dict.update(
 {13: "+y", 12: "-z", 11: "+z", 10: "-x", 9: "+x"})
Iron Door is orientable and drops Iron Door item
_add_block(Block(71, "iron-door-block", drop=(330, 0),
 orientation=(None, None, 1, 3, 0, 2)))
Redstone ore drops 5 redstone dusts.
_add_block(Block(73, "redstone-ore", drop=(331, 0), quantity=5))
_add_block(Block(74, "glowing-redstone-ore", drop=(331, 0), quantity=5))
Redstone torches are orientable and don't dim.
_add_block(Block(75, "redstone-torch-off", orientation=(None, 5, 4, 3, 2, 1), dim=0))
_add_block(Block(76, "redstone-torch", orientation=(None, 5, 4, 3, 2, 1), dim=0))
Stone buttons are orientable and don't dim.
_add_block(Block(77, "stone-button", orientation=(None, None, 1, 2, 3, 4), dim=0))
Snow vanishes upon build.
_add_block(Block(78, "snow", vanishes=True))
Ice drops nothing, is replaced by springs, and dims by 3.
_add_block(Block(79, "ice", drop=(0, 0), replace=9, dim=3))
Clay drops 4 clay balls.
_add_block(Block(82, "clay", drop=(337, 0), quantity=4))
Trapdoor is orientable
_add_block(Block(96, "trapdoor", orientation=(None, None, 0, 1, 2, 3)))
Giant brown mushrooms drop brown mushrooms.
_add_block(Block(99, "huge-brown-mushroom", drop=(39, 0), quantity=2))
Giant red mushrooms drop red mushrooms.
_add_block(Block(100, "huge-red-mushroom", drop=(40, 0), quantity=2))
Pumpkin stems drop pumpkin seeds.
_add_block(Block(104, "pumpkin-stem", drop=(361, 0), quantity=3))
Melon stems drop melon seeds.
_add_block(Block(105, "melon-stem", drop=(362, 0), quantity=3))

for block in blocks.values():
 blocks[block.name] = block
 blocks[block.slot] = block

items = {}
"""
A dictionary of ``Item`` objects.

This dictionary can be indexed by slot number or block name.
"""

for i, name in enumerate(block_names):
 if not name or name in blocks:
 continue

 kwargs = {}
 if i in drops:
 kwargs["drop"] = drops[i]
 if i in unbreakables:
 kwargs["breakable"] = False
 if i in dims:
 kwargs["dim"] = dims[i]

 b = Block(i, name, **kwargs)
 _add_block(b)

for i, name in enumerate(item_names):
 kwargs = {}
 i += 0x100
 item = Item(i, name, **kwargs)
 items[i] = item
 items[name] = item

for i, name in enumerate(special_item_names):
 kwargs = {}
 i += 0x8D0
 item = Item(i, name, **kwargs)
 items[i] = item
 items[name] = item

_secondary_items = {
 items["coal"]: coal_names,
 items["dye"]: dye_names,
}

for base_item, names in _secondary_items.iteritems():
 for i, name in enumerate(names):
 kwargs = {}
 item = Item(base_item.slot, name, i, **kwargs)
 items[name] = item

_secondary_blocks = {
 blocks["leaves"]: leaf_names,
 blocks["log"]: log_names,
 blocks["sapling"]: sapling_names,
 blocks["single-stone-slab"]: step_names,
 blocks["wool"]: wool_names,
}

for base_block, names in _secondary_blocks.iteritems():
 for i, name in enumerate(names):
 kwargs = {}
 kwargs["drop"] = base_block.drop
 kwargs["breakable"] = base_block.breakable
 kwargs["dim"] = base_block.dim

 block = Block(base_block.slot, name, i, **kwargs)
 _add_block(block)

glowing_blocks = {
 blocks["torch"].slot: 14,
 blocks["lightstone"].slot: 15,
 blocks["jack-o-lantern"].slot: 15,
 blocks["fire"].slot: 15,
 blocks["lava"].slot: 15,
 blocks["lava-spring"].slot: 15,
 blocks["locked-chest"].slot: 15,
 blocks["burning-furnace"].slot: 13,
 blocks["portal"].slot: 11,
 blocks["glowing-redstone-ore"].slot: 9,
 blocks["redstone-repeater-on"].slot: 9,
 blocks["redstone-torch"].slot: 7,
 blocks["brown-mushroom"].slot: 1,
}

armor_helmets = (86, 298, 302, 306, 310, 314)
"""
List of slots of helmets.

Note that slot 86 (pumpkin) is a helmet.
"""

armor_chestplates = (299, 303, 307, 311, 315)
"""
List of slots of chestplates.

Note that slot 303 (chainmail chestplate) is a chestplate, even though it is
not normally obtainable.
"""

armor_leggings = (300, 304, 308, 312, 316)
"""
List of slots of leggings.
"""

armor_boots = (301, 305, 309, 313, 317)
"""
List of slots of boots.
"""

"""
List of unstackable items
"""
unstackable = (
 items["wooden-sword"].slot,
 items["wooden-shovel"].slot,
 items["wooden-pickaxe"].slot,
 # TODO: update the list
)

"""
List of fuel blocks and items maped to burn time
"""
furnace_fuel = {
 items["stick"].slot: 10, # 5s
 blocks["sapling"].slot: 10, # 5s
 blocks["wood"].slot: 30, # 15s
 blocks["fence"].slot: 30, # 15s
 blocks["wooden-stairs"].slot: 30, # 15s
 blocks["trapdoor"].slot: 30, # 15s
 blocks["log"].slot: 30, # 15s
 blocks["workbench"].slot: 30, # 15s
 blocks["bookshelf"].slot: 30, # 15s
 blocks["chest"].slot: 30, # 15s
 blocks["locked-chest"].slot: 30, # 15s
 blocks["jukebox"].slot: 30, # 15s
 blocks["note-block"].slot: 30, # 15s
 items["coal"].slot: 160, # 80s
 items["lava-bucket"].slot: 2000 # 1000s
}

[docs]def parse_block(block):
 """
 Get the key for a given block/item.
 """

 try:
 if block.startswith("0x") and (
 (int(block, 16) in blocks) or (int(block, 16) in items)):
 return (int(block, 16), 0)
 elif (int(block) in blocks) or (int(block) in items):
 return (int(block), 0)
 else:
 raise Exception("Couldn't find block id %s!" % block)
 except ValueError:
 if block in blocks:
 return blocks[block].key
 elif block in items:
 return items[block].key
 else:
 raise Exception("Couldn't parse block %s!" % block)

 © Copyright 2010, Corbin Simpson, Derrick Dymock, & Justin Noah.
 Created using Sphinx 1.2.2.

_modules/bravo/beta/protocol.html

 Navigation

 		
 index

 		
 modules |

 		Bravo 2.0 documentation »

 		Module code »

 Source code for bravo.beta.protocol

vim: set fileencoding=utf8 :

from itertools import product, chain
import json
from time import time
from urlparse import urlunparse

from twisted.internet import reactor
from twisted.internet.defer import (DeferredList, inlineCallbacks,
 maybeDeferred, succeed)
from twisted.internet.protocol import Protocol, connectionDone
from twisted.internet.task import cooperate, deferLater, LoopingCall
from twisted.internet.task import TaskDone, TaskFailed
from twisted.protocols.policies import TimeoutMixin
from twisted.python import log
from twisted.web.client import getPage

from bravo import version
from bravo.beta.structures import BuildData, Settings
from bravo.blocks import blocks, items
from bravo.chunk import CHUNK_HEIGHT
from bravo.entity import Sign
from bravo.errors import BetaClientError, BuildError
from bravo.ibravo import (IChatCommand, IPreBuildHook, IPostBuildHook,
 IWindowOpenHook, IWindowClickHook, IWindowCloseHook,
 IPreDigHook, IDigHook, ISignHook, IUseHook)
from bravo.infini.factory import InfiniClientFactory
from bravo.inventory.windows import InventoryWindow
from bravo.location import Location, Orientation, Position
from bravo.motd import get_motd
from bravo.beta.packets import parse_packets, make_packet, make_error_packet
from bravo.plugin import retrieve_plugins
from bravo.policy.dig import dig_policies
from bravo.utilities.coords import adjust_coords_for_face, split_coords
from bravo.utilities.chat import complete, username_alternatives
from bravo.utilities.maths import circling, clamp, sorted_by_distance
from bravo.utilities.temporal import timestamp_from_clock

States of the protocol.
(STATE_UNAUTHENTICATED, STATE_AUTHENTICATED, STATE_LOCATED) = range(3)

SUPPORTED_PROTOCOL = 78

[docs]class BetaServerProtocol(object, Protocol, TimeoutMixin):
 """
 The Minecraft Alpha/Beta server protocol.

 This class is mostly designed to be a skeleton for featureful clients. It
 tries hard to not step on the toes of potential subclasses.
 """

 excess = ""
 packet = None

 state = STATE_UNAUTHENTICATED

 buf = ""
 parser = None
 handler = None

 player = None
 username = None
 settings = Settings()
 motd = "Bravo Generic Beta Server"

 _health = 20
 _latency = 0

 def __init__(self):
 self.chunks = dict()
 self.windows = {}
 self.wid = 1

 self.location = Location()

 self.handlers = {
 0x00: self.ping,
 0x02: self.handshake,
 0x03: self.chat,
 0x07: self.use,
 0x09: self.respawn,
 0x0a: self.grounded,
 0x0b: self.position,
 0x0c: self.orientation,
 0x0d: self.location_packet,
 0x0e: self.digging,
 0x0f: self.build,
 0x10: self.equip,
 0x12: self.animate,
 0x13: self.action,
 0x15: self.pickup,
 0x65: self.wclose,
 0x66: self.waction,
 0x6a: self.wacknowledge,
 0x6b: self.wcreative,
 0x82: self.sign,
 0xca: self.client_settings,
 0xcb: self.complete,
 0xcc: self.settings_packet,
 0xfe: self.poll,
 0xff: self.quit,
 }

 self._ping_loop = LoopingCall(self.update_ping)

 self.setTimeout(30)

 # Low-level packet handlers
 # Try not to hook these if possible, since they offer no convenient
 # abstractions or protections.

[docs] def ping(self, container):
 """
 Hook for ping packets.

 By default, this hook will examine the timestamps on incoming pings,
 and use them to estimate the current latency of the connected client.
 """

 now = timestamp_from_clock(reactor)
 then = container.pid

 self.latency = now - then

[docs] def handshake(self, container):
 """
 Hook for handshake packets.

 Override this to customize how logins are handled. By default, this
 method will only confirm that the negotiated wire protocol is the
 correct version, copy data out of the packet and onto the protocol,
 and then run the ``authenticated`` callback.

 This method will call the ``pre_handshake`` method hook prior to
 logging in the client.
 """

 self.username = container.username

 if container.protocol < SUPPORTED_PROTOCOL:
 # Kick old clients.
 self.error("This server doesn't support your ancient client.")
 return
 elif container.protocol > SUPPORTED_PROTOCOL:
 # Kick new clients.
 self.error("This server doesn't support your newfangled client.")
 return

 log.msg("Handshaking with client, protocol version %d" %
 container.protocol)

 if not self.pre_handshake():
 log.msg("Pre-handshake hook failed; kicking client")
 self.error("You failed the pre-handshake hook.")
 return

 players = min(self.factory.limitConnections, 20)

 self.write_packet("login", eid=self.eid, leveltype="default",
 mode=self.factory.mode,
 dimension=self.factory.world.dimension,
 difficulty="peaceful", unused=0, maxplayers=players)

 self.authenticated()

[docs] def pre_handshake(self):
 """
 Whether this client should be logged in.
 """

 return True

[docs] def chat(self, container):
 """
 Hook for chat packets.
 """

[docs] def use(self, container):
 """
 Hook for use packets.
 """

[docs] def respawn(self, container):
 """
 Hook for respawn packets.
 """

[docs] def grounded(self, container):
 """
 Hook for grounded packets.
 """

 self.location.grounded = bool(container.grounded)

[docs] def position(self, container):
 """
 Hook for position packets.
 """

 # Refuse to handle any new position information while we are
 # relocating. Clients mess this up frequently, and it's fairly racy,
 # so don't consider this to be exceptional. Just ignore this one
 # packet and continue.
 if self.state != STATE_LOCATED:
 return

 self.grounded(container.grounded)

 old_position = self.location.pos
 position = Position.from_player(container.position.x,
 container.position.y, container.position.z)
 altered = False

 dx, dy, dz = old_position - position
 if any(abs(d) >= 64 for d in (dx, dy, dz)):
 # Whoa, slow down there, cowboy. You're moving too fast. We're
 # gonna ignore this position change completely, because it's
 # either bogus or ignoring a recent teleport.
 altered = True
 else:
 self.location.pos = position
 self.location.stance = container.position.stance

 # Santitize location. This handles safety boundaries, illegal stance,
 # etc.
 altered = self.location.clamp() or altered

 # If, for any reason, our opinion on where the client should be
 # located is different than theirs, force them to conform to our point
 # of view.
 if altered:
 log.msg("Not updating bogus position!")
 self.update_location()

 # If our position actually changed, fire the position change hook.
 if old_position != position:
 self.position_changed()

[docs] def orientation(self, container):
 """
 Hook for orientation packets.
 """

 self.grounded(container.grounded)

 old_orientation = self.location.ori
 orientation = Orientation.from_degs(container.orientation.rotation,
 container.orientation.pitch)
 self.location.ori = orientation

 if old_orientation != orientation:
 self.orientation_changed()

[docs] def location_packet(self, container):
 """
 Hook for location packets.
 """

 self.position(container)
 self.orientation(container)

[docs] def digging(self, container):
 """
 Hook for digging packets.
 """

[docs] def build(self, container):
 """
 Hook for build packets.
 """

[docs] def equip(self, container):
 """
 Hook for equip packets.
 """

[docs] def pickup(self, container):
 """
 Hook for pickup packets.
 """

[docs] def animate(self, container):
 """
 Hook for animate packets.
 """

[docs] def action(self, container):
 """
 Hook for action packets.
 """

[docs] def wclose(self, container):
 """
 Hook for wclose packets.
 """

[docs] def waction(self, container):
 """
 Hook for waction packets.
 """

[docs] def wacknowledge(self, container):
 """
 Hook for wacknowledge packets.
 """

[docs] def wcreative(self, container):
 """
 Hook for creative inventory action packets.
 """

[docs] def sign(self, container):
 """
 Hook for sign packets.
 """

[docs] def client_settings(self, container):
 """
 Hook for interaction setting packets.
 """

 self.settings.update_interaction(container)

[docs] def complete(self, container):
 """
 Hook for tab-completion packets.
 """

[docs] def settings_packet(self, container):
 """
 Hook for presentation setting packets.
 """

 self.settings.update_presentation(container)

[docs] def poll(self, container):
 """
 Hook for poll packets.

 By default, queries the parent factory for some data, and replays it
 in a specific format to the requester. The connection is then closed
 at both ends. This functionality is used by Beta 1.8 clients to poll
 servers for status.
 """

 log.msg("Poll data: %r" % container.data)

 players = unicode(len(self.factory.protocols))
 max_players = unicode(self.factory.limitConnections or 1000000)

 data = [
 u"§1",
 unicode(SUPPORTED_PROTOCOL),
 u"Bravo %s" % version,
 self.motd,
 players,
 max_players,
]

 response = u"\u0000".join(data)
 self.error(response)

[docs] def quit(self, container):
 """
 Hook for quit packets.

 By default, merely logs the quit message and drops the connection.

 Even if the connection is not dropped, it will be lost anyway since
 the client will close the connection. It's better to explicitly let it
 go here than to have zombie protocols.
 """

 log.msg("Client is quitting: %s" % container.message)
 self.transport.loseConnection()

 # Twisted-level data handlers and methods
 # Please don't override these needlessly, as they are pretty solid and
 # shouldn't need to be touched.

 def dataReceived(self, data):
 self.buf += data

 packets, self.buf = parse_packets(self.buf)

 if packets:
 self.resetTimeout()

 for header, payload in packets:
 if header in self.handlers:
 d = maybeDeferred(self.handlers[header], payload)

 @d.addErrback
 def eb(failure):
 log.err("Error while handling packet 0x%.2x" % header)
 log.err(failure)
 return None
 else:
 log.err("Didn't handle parseable packet 0x%.2x!" % header)
 log.err(payload)

 def connectionLost(self, reason=connectionDone):
 if self._ping_loop.running:
 self._ping_loop.stop()

 def timeoutConnection(self):
 self.error("Connection timed out")

 # State-change callbacks
 # Feel free to override these, but call them at some point.

[docs] def authenticated(self):
 """
 Called when the client has successfully authenticated with the server.
 """

 self.state = STATE_AUTHENTICATED

 self._ping_loop.start(30)

 # Event callbacks
 # These are meant to be overriden.

[docs] def orientation_changed(self):
 """
 Called when the client moves.

 This callback is only for orientation, not position.
 """

 pass

[docs] def position_changed(self):
 """
 Called when the client moves.

 This callback is only for position, not orientation.
 """

 pass

 # Convenience methods for consolidating code and expressing intent. I
 # hear that these are occasionally useful. If a method in this section can
 # be used, then *PLEASE* use it; not using it is the same as open-coding
 # whatever you're doing, and only hurts in the long run.

[docs] def write_packet(self, header, **payload):
 """
 Send a packet to the client.
 """

 self.transport.write(make_packet(header, **payload))

[docs] def update_ping(self):
 """
 Send a keepalive to the client.
 """

 timestamp = timestamp_from_clock(reactor)
 self.write_packet("ping", pid=timestamp)

[docs] def update_location(self):
 """
 Send this client's location to the client.

 Also let other clients know where this client is.
 """

 # Don't bother trying to update things if the position's not yet
 # synchronized. We could end up jettisoning them into the void.
 if self.state != STATE_LOCATED:
 return

 x, y, z = self.location.pos
 yaw, pitch = self.location.ori.to_fracs()

 # Inform everybody of our new location.
 packet = make_packet("teleport", eid=self.player.eid, x=x, y=y, z=z,
 yaw=yaw, pitch=pitch)
 self.factory.broadcast_for_others(packet, self)

 # Inform ourselves of our new location.
 packet = self.location.save_to_packet()
 self.transport.write(packet)

[docs] def ascend(self, count):
 """
 Ascend to the next XZ-plane.

 ``count`` is the number of ascensions to perform, and may be zero in
 order to force this player to not be standing inside a block.

 :returns: bool of whether the ascension was successful

 This client must be located for this method to have any effect.
 """

 if self.state != STATE_LOCATED:
 return False

 x, y, z = self.location.pos.to_block()

 bigx, smallx, bigz, smallz = split_coords(x, z)

 chunk = self.chunks[bigx, bigz]
 column = [chunk.get_block((smallx, i, smallz))
 for i in range(CHUNK_HEIGHT)]

 # Special case: Ascend at most once, if the current spot isn't good.
 if count == 0:
 if (not column[y]) or column[y + 1] or column[y + 2]:
 # Yeah, we're gonna need to move.
 count += 1
 else:
 # Nope, we're fine where we are.
 return True

 for i in xrange(y, 255):
 # Find the next spot above us which has a platform and two empty
 # blocks of air.
 if column[i] and (not column[i + 1]) and not column[i + 2]:
 count -= 1
 if not count:
 break
 else:
 return False

 self.location.pos = self.location.pos._replace(y=i * 32)
 return True

[docs] def error(self, message):
 """
 Error out.

 This method sends ``message`` to the client as a descriptive error
 message, then closes the connection.
 """

 log.msg("Error: %r" % message)
 self.transport.write(make_error_packet(message))
 self.transport.loseConnection()

[docs] def play_notes(self, notes):
 """
 Play some music.

 Send a sequence of notes to the player. ``notes`` is a finite iterable
 of pairs of instruments and pitches.

 There is no way to time notes; if staggered playback is desired (and
 it usually is!), then ``play_notes()`` should be called repeatedly at
 the appropriate times.

 This method turns the block beneath the player into a note block,
 plays the requested notes through it, then turns it back into the
 original block, all without actually modifying the chunk.
 """

 x, y, z = self.location.pos.to_block()

 if y:
 y -= 1

 bigx, smallx, bigz, smallz = split_coords(x, z)

 if (bigx, bigz) not in self.chunks:
 return

 block = self.chunks[bigx, bigz].get_block((smallx, y, smallz))
 meta = self.chunks[bigx, bigz].get_metadata((smallx, y, smallz))

 self.write_packet("block", x=x, y=y, z=z,
 type=blocks["note-block"].slot, meta=0)

 for instrument, pitch in notes:
 self.write_packet("note", x=x, y=y, z=z, pitch=pitch,
 instrument=instrument)

 self.write_packet("block", x=x, y=y, z=z, type=block, meta=meta)

[docs] def send_chat(self, message):
 """
 Send a chat message back to the client.
 """

 data = json.dumps({"text": message})
 self.write_packet("chat", message=data)

 # Automatic properties. Assigning to them causes the client to be notified
 # of changes.

 @property
 def health(self):
 return self._health

 @health.setter
 def health(self, value):
 if not 0 <= value <= 20:
 raise BetaClientError("Invalid health value %d" % value)

 if self._health != value:
 self.write_packet("health", hp=value, fp=0, saturation=0)
 self._health = value

 @property
 def latency(self):
 return self._latency

 @latency.setter
 def latency(self, value):
 # Clamp the value to not exceed the boundaries of the packet. This is
 # necessary even though, in theory, a ping this high is bad news.
 value = clamp(value, 0, 65535)

 # Check to see if this is a new value, and if so, alert everybody.
 if self._latency != value:
 packet = make_packet("players", name=self.username, online=True,
 ping=value)
 self.factory.broadcast(packet)
 self._latency = value

[docs]class KickedProtocol(BetaServerProtocol):
 """
 A very simple Beta protocol that helps enforce IP bans, Max Connections,
 and Max Connections Per IP.

 This protocol disconnects people as soon as they connect, with a helpful
 message.
 """

 def __init__(self, reason=None):
 BetaServerProtocol.__init__(self)
 if reason:
 self.reason = reason
 else:
 self.reason = (
 "This server doesn't like you very much."
 " I don't like you very much either.")

 def connectionMade(self):
 self.error("%s" % self.reason)

[docs]class BetaProxyProtocol(BetaServerProtocol):
 """
 A ``BetaServerProtocol`` that proxies for an InfiniCraft client.
 """

 gateway = "server.wiki.vg"

 def handshake(self, container):
 self.write_packet("handshake", username="-")

 def login(self, container):
 self.username = container.username

 self.write_packet("login", protocol=0, username="", seed=0,
 dimension="earth")

 url = urlunparse(("http", self.gateway, "/node/0/0/", None, None,
 None))
 d = getPage(url)
 d.addCallback(self.start_proxy)

 def start_proxy(self, response):
 log.msg("Response: %s" % response)
 log.msg("Starting proxy...")
 address, port = response.split(":")
 self.add_node(address, int(port))

[docs] def add_node(self, address, port):
 """
 Add a new node to this client.
 """

 from twisted.internet.endpoints import TCP4ClientEndpoint

 log.msg("Adding node %s:%d" % (address, port))

 endpoint = TCP4ClientEndpoint(reactor, address, port, 5)

 self.node_factory = InfiniClientFactory()
 d = endpoint.connect(self.node_factory)
 d.addCallback(self.node_connected)
 d.addErrback(self.node_connect_error)

 def node_connected(self, protocol):
 log.msg("Connected new node!")

 def node_connect_error(self, reason):
 log.err("Couldn't connect node!")
 log.err(reason)

[docs]class BravoProtocol(BetaServerProtocol):
 """
 A ``BetaServerProtocol`` suitable for serving MC worlds to clients.

 This protocol really does need to be hooked up with a ``BravoFactory`` or
 something very much like it.
 """

 chunk_tasks = None

 time_loop = None

 eid = 0

 last_dig = None

 def __init__(self, config, name):
 BetaServerProtocol.__init__(self)

 self.config = config
 self.config_name = "world %s" % name

 # Retrieve the MOTD. Only needs to be done once.
 self.motd = self.config.getdefault(self.config_name, "motd",
 "BravoServer")

 def register_hooks(self):
 log.msg("Registering client hooks...")
 plugin_types = {
 "open_hooks": IWindowOpenHook,
 "click_hooks": IWindowClickHook,
 "close_hooks": IWindowCloseHook,
 "pre_build_hooks": IPreBuildHook,
 "post_build_hooks": IPostBuildHook,
 "pre_dig_hooks": IPreDigHook,
 "dig_hooks": IDigHook,
 "sign_hooks": ISignHook,
 "use_hooks": IUseHook,
 }

 for t in plugin_types:
 setattr(self, t, getattr(self.factory, t))

 log.msg("Registering policies...")
 if self.factory.mode == "creative":
 self.dig_policy = dig_policies["speedy"]
 else:
 self.dig_policy = dig_policies["notchy"]

 log.msg("Registered client plugin hooks!")

[docs] def pre_handshake(self):
 """
 Set up username and get going.
 """
 if self.username in self.factory.protocols:
 # This username's already taken; find a new one.
 for name in username_alternatives(self.username):
 if name not in self.factory.protocols:
 self.username = name
 break
 else:
 self.error("Your username is already taken.")
 return False

 return True

 @inlineCallbacks
 def authenticated(self):
 BetaServerProtocol.authenticated(self)

 # Init player, and copy data into it.
 self.player = yield self.factory.world.load_player(self.username)
 self.player.eid = self.eid
 self.location = self.player.location
 # Init players' inventory window.
 self.inventory = InventoryWindow(self.player.inventory)

 # *Now* we are in our factory's list of protocols. Be aware.
 self.factory.protocols[self.username] = self

 # Announce our presence.
 self.factory.chat("%s is joining the game..." % self.username)
 packet = make_packet("players", name=self.username, online=True,
 ping=0)
 self.factory.broadcast(packet)

 # Craft our avatar and send it to already-connected other players.
 packet = make_packet("create", eid=self.player.eid)
 packet += self.player.save_to_packet()
 self.factory.broadcast_for_others(packet, self)

 # And of course spawn all of those players' avatars in our client as
 # well.
 for protocol in self.factory.protocols.itervalues():
 # Skip over ourselves; otherwise, the client tweaks out and
 # usually either dies or locks up.
 if protocol is self:
 continue

 self.write_packet("create", eid=protocol.player.eid)
 packet = protocol.player.save_to_packet()
 packet += protocol.player.save_equipment_to_packet()
 self.transport.write(packet)

 # Send spawn and inventory.
 spawn = self.factory.world.level.spawn
 packet = make_packet("spawn", x=spawn[0], y=spawn[1], z=spawn[2])
 packet += self.inventory.save_to_packet()
 self.transport.write(packet)

 # TODO: Send Abilities (0xca)
 # TODO: Update Health (0x08)
 # TODO: Update Experience (0x2b)

 # Send weather.
 self.transport.write(self.factory.vane.make_packet())

 self.send_initial_chunk_and_location()

 self.time_loop = LoopingCall(self.update_time)
 self.time_loop.start(10)

 def orientation_changed(self):
 # Bang your head!
 yaw, pitch = self.location.ori.to_fracs()
 packet = make_packet("entity-orientation", eid=self.player.eid,
 yaw=yaw, pitch=pitch)
 self.factory.broadcast_for_others(packet, self)

 def position_changed(self):
 # Send chunks.
 self.update_chunks()

 for entity in self.entities_near(2):
 if entity.name != "Item":
 continue

 left = self.player.inventory.add(entity.item, entity.quantity)
 if left != entity.quantity:
 if left != 0:
 # partial collect
 entity.quantity = left
 else:
 packet = make_packet("collect", eid=entity.eid,
 destination=self.player.eid)
 packet += make_packet("destroy", count=1, eid=[entity.eid])
 self.factory.broadcast(packet)
 self.factory.destroy_entity(entity)

 packet = self.inventory.save_to_packet()
 self.transport.write(packet)

[docs] def entities_near(self, radius):
 """
 Obtain the entities within a radius of this player.

 Radius is measured in blocks.
 """

 chunk_radius = int(radius // 16 + 1)
 chunkx, chunkz = self.location.pos.to_chunk()

 minx = chunkx - chunk_radius
 maxx = chunkx + chunk_radius + 1
 minz = chunkz - chunk_radius
 maxz = chunkz + chunk_radius + 1

 for x, z in product(xrange(minx, maxx), xrange(minz, maxz)):
 if (x, z) not in self.chunks:
 continue
 chunk = self.chunks[x, z]

 yieldables = [entity for entity in chunk.entities
 if self.location.distance(entity.location) <= (radius * 32)]
 for i in yieldables:
 yield i

 def chat(self, container):
 # data = json.loads(container.data)
 log.msg("Chat! %r" % container.data)
 if container.message.startswith("/"):
 commands = retrieve_plugins(IChatCommand, factory=self.factory)
 # Register aliases.
 for plugin in commands.values():
 for alias in plugin.aliases:
 commands[alias] = plugin

 params = container.message[1:].split(" ")
 command = params.pop(0).lower()

 if command and command in commands:
 def cb(iterable):
 for line in iterable:
 self.send_chat(line)

 def eb(error):
 self.send_chat("Error: %s" % error.getErrorMessage())

 d = maybeDeferred(commands[command].chat_command,
 self.username, params)
 d.addCallback(cb)
 d.addErrback(eb)
 else:
 self.send_chat("Unknown command: %s" % command)
 else:
 # Send the message up to the factory to be chatified.
 message = "<%s> %s" % (self.username, container.message)
 self.factory.chat(message)

[docs] def use(self, container):
 """
 For each entity in proximity (4 blocks), check if it is the target
 of this packet and call all hooks that stated interested in this
 type.
 """
 nearby_players = self.factory.players_near(self.player, 4)
 for entity in chain(self.entities_near(4), nearby_players):
 if entity.eid == container.target:
 for hook in self.use_hooks[entity.name]:
 hook.use_hook(self.factory, self.player, entity,
 container.button == 0)
 break

 @inlineCallbacks
 def digging(self, container):
 if container.x == -1 and container.z == -1 and container.y == 255:
 # Lala-land dig packet. Discard it for now.
 return

 # Player drops currently holding item/block.
 if (container.state == "dropped" and container.face == "-y" and
 container.x == 0 and container.y == 0 and container.z == 0):
 i = self.player.inventory
 holding = i.holdables[self.player.equipped]
 if holding:
 primary, secondary, count = holding
 if i.consume((primary, secondary), self.player.equipped):
 dest = self.location.in_front_of(2)
 coords = dest.pos._replace(y=dest.pos.y + 1)
 self.factory.give(coords, (primary, secondary), 1)

 # Re-send inventory.
 packet = self.inventory.save_to_packet()
 self.transport.write(packet)

 # If no items in this slot are left, this player isn't
 # holding an item anymore.
 if i.holdables[self.player.equipped] is None:
 packet = make_packet("entity-equipment",
 eid=self.player.eid,
 slot=0,
 primary=65535,
 count=1,
 secondary=0
)
 self.factory.broadcast_for_others(packet, self)
 return

 if container.state == "shooting":
 self.shoot_arrow()
 return

 bigx, smallx, bigz, smallz = split_coords(container.x, container.z)
 coords = smallx, container.y, smallz

 try:
 chunk = self.chunks[bigx, bigz]
 except KeyError:
 self.error("Couldn't dig in chunk (%d, %d)!" % (bigx, bigz))
 return

 block = chunk.get_block((smallx, container.y, smallz))

 if container.state == "started":
 # Run pre dig hooks
 for hook in self.pre_dig_hooks:
 cancel = yield maybeDeferred(hook.pre_dig_hook, self.player,
 (container.x, container.y, container.z), block)
 if cancel:
 return

 tool = self.player.inventory.holdables[self.player.equipped]
 # Check to see whether we should break this block.
 if self.dig_policy.is_1ko(block, tool):
 self.run_dig_hooks(chunk, coords, blocks[block])
 else:
 # Set up a timer for breaking the block later.
 dtime = time() + self.dig_policy.dig_time(block, tool)
 self.last_dig = coords, block, dtime
 elif container.state == "stopped":
 # The client thinks it has broken a block. We shall see.
 if not self.last_dig:
 return

 oldcoords, oldblock, dtime = self.last_dig
 if oldcoords != coords or oldblock != block:
 # Nope!
 self.last_dig = None
 return

 dtime -= time()

 # When enough time has elapsed, run the dig hooks.
 d = deferLater(reactor, max(dtime, 0), self.run_dig_hooks, chunk,
 coords, blocks[block])
 d.addCallback(lambda none: setattr(self, "last_dig", None))

[docs] def run_dig_hooks(self, chunk, coords, block):
 """
 Destroy a block and run the post-destroy dig hooks.
 """

 x, y, z = coords

 if block.breakable:
 chunk.destroy(coords)

 l = []
 for hook in self.dig_hooks:
 l.append(maybeDeferred(hook.dig_hook, chunk, x, y, z, block))

 dl = DeferredList(l)
 dl.addCallback(lambda none: self.factory.flush_chunk(chunk))

 @inlineCallbacks
[docs] def build(self, container):
 """
 Handle a build packet.

 Several things must happen. First, the packet's contents need to be
 examined to ensure that the packet is valid. A check is done to see if
 the packet is opening a windowed object. If not, then a build is
 run.
 """

 # Is the target within our purview? We don't do a very strict
 # containment check, but we *do* require that the chunk be loaded.
 bigx, smallx, bigz, smallz = split_coords(container.x, container.z)
 try:
 chunk = self.chunks[bigx, bigz]
 except KeyError:
 self.error("Couldn't select in chunk (%d, %d)!" % (bigx, bigz))
 return

 target = blocks[chunk.get_block((smallx, container.y, smallz))]

 # Attempt to open a window.
 from bravo.policy.windows import window_for_block
 window = window_for_block(target)
 if window is not None:
 # We have a window!
 self.windows[self.wid] = window
 identifier, title, slots = window.open()
 self.write_packet("window-open", wid=self.wid, type=identifier,
 title=title, slots=slots)
 self.wid += 1
 return

 # Try to open it first
 for hook in self.open_hooks:
 window = yield maybeDeferred(hook.open_hook, self, container,
 chunk.get_block((smallx, container.y, smallz)))
 if window:
 self.write_packet("window-open", wid=window.wid,
 type=window.identifier, title=window.title,
 slots=window.slots_num)
 packet = window.save_to_packet()
 self.transport.write(packet)
 # window opened
 return

 # Ignore clients that think -1 is placeable.
 if container.primary == -1:
 return

 # Special case when face is "noop": Update the status of the currently
 # held block rather than placing a new block.
 if container.face == "noop":
 return

 # If the target block is vanishable, then adjust our aim accordingly.
 if target.vanishes:
 container.face = "+y"
 container.y -= 1

 if container.primary in blocks:
 block = blocks[container.primary]
 elif container.primary in items:
 block = items[container.primary]
 else:
 log.err("Ignoring request to place unknown block 0x%x" %
 container.primary)
 return

 # Run pre-build hooks. These hooks are able to interrupt the build
 # process.
 builddata = BuildData(block, 0x0, container.x, container.y,
 container.z, container.face)

 for hook in self.pre_build_hooks:
 cont, builddata, cancel = yield maybeDeferred(hook.pre_build_hook,
 self.player, builddata)
 if cancel:
 # Flush damaged chunks.
 for chunk in self.chunks.itervalues():
 self.factory.flush_chunk(chunk)
 return
 if not cont:
 break

 # Run the build.
 try:
 yield maybeDeferred(self.run_build, builddata)
 except BuildError:
 return

 newblock = builddata.block.slot
 coords = adjust_coords_for_face(
 (builddata.x, builddata.y, builddata.z), builddata.face)

 # Run post-build hooks. These are merely callbacks which cannot
 # interfere with the build process, largely because the build process
 # already happened.
 for hook in self.post_build_hooks:
 yield maybeDeferred(hook.post_build_hook, self.player, coords,
 builddata.block)

 # Feed automatons.
 for automaton in self.factory.automatons:
 if newblock in automaton.blocks:
 automaton.feed(coords)

 # Re-send inventory.
 # XXX this could be optimized if/when inventories track damage.
 packet = self.inventory.save_to_packet()
 self.transport.write(packet)

 # Flush damaged chunks.
 for chunk in self.chunks.itervalues():
 self.factory.flush_chunk(chunk)

 def run_build(self, builddata):
 block, metadata, x, y, z, face = builddata

 # Don't place items as blocks.
 if block.slot not in blocks:
 raise BuildError("Couldn't build item %r as block" % block)

 # Check for orientable blocks.
 if not metadata and block.orientable():
 metadata = block.orientation(face)
 if metadata is None:
 # Oh, I guess we can't even place the block on this face.
 raise BuildError("Couldn't orient block %r on face %s" %
 (block, face))

 # Make sure we can remove it from the inventory first.
 if not self.player.inventory.consume((block.slot, 0),
 self.player.equipped):
 # Okay, first one was a bust; maybe we can consume the related
 # block for dropping instead?
 if not self.player.inventory.consume(block.drop,
 self.player.equipped):
 raise BuildError("Couldn't consume %r from inventory" % block)

 # Offset coords according to face.
 x, y, z = adjust_coords_for_face((x, y, z), face)

 # Set the block and data.
 dl = [self.factory.world.set_block((x, y, z), block.slot)]
 if metadata:
 dl.append(self.factory.world.set_metadata((x, y, z), metadata))

 return DeferredList(dl)

 def equip(self, container):
 self.player.equipped = container.slot

 # Inform everyone about the item the player is holding now.
 item = self.player.inventory.holdables[self.player.equipped]
 if item is None:
 # Empty slot. Use signed short -1.
 primary, secondary = -1, 0
 else:
 primary, secondary, count = item

 packet = make_packet("entity-equipment",
 eid=self.player.eid,
 slot=0,
 primary=primary,
 count=1,
 secondary=secondary
)
 self.factory.broadcast_for_others(packet, self)

 def pickup(self, container):
 self.factory.give((container.x, container.y, container.z),
 (container.primary, container.secondary), container.count)

 def animate(self, container):
 # Broadcast the animation of the entity to everyone else. Only swing
 # arm is send by notchian clients.
 packet = make_packet("animate",
 eid=self.player.eid,
 animation=container.animation
)
 self.factory.broadcast_for_others(packet, self)

 def wclose(self, container):
 wid = container.wid
 if wid == 0:
 # WID 0 is reserved for the client inventory.
 pass
 elif wid in self.windows:
 w = self.windows.pop(wid)
 w.close()
 else:
 self.error("WID %d doesn't exist." % wid)

 def waction(self, container):
 wid = container.wid
 if wid in self.windows:
 w = self.windows[wid]
 result = w.action(container.slot, container.button,
 container.token, container.shift,
 container.primary)
 self.write_packet("window-token", wid=wid, token=container.token,
 acknowledged=result)
 else:
 self.error("WID %d doesn't exist." % wid)

[docs] def wcreative(self, container):
 """
 A slot was altered in creative mode.
 """

 # XXX Sometimes the container doesn't contain all of this information.
 # What then?
 applied = self.inventory.creative(container.slot, container.primary,
 container.secondary, container.count)
 if applied:
 # Inform other players about changes to this player's equipment.
 equipped_slot = self.player.equipped + 36
 if container.slot == equipped_slot:
 packet = make_packet("entity-equipment",
 eid=self.player.eid,
 # XXX why 0? why not the actual slot?
 slot=0,
 primary=container.primary,
 count=1,
 secondary=container.secondary,
)
 self.factory.broadcast_for_others(packet, self)

 def shoot_arrow(self):
 # TODO 1. Create arrow entity: arrow = Arrow(self.factory, self.player)
 # 2. Register within the factory: self.factory.register_entity(arrow)
 # 3. Run it: arrow.run()
 pass

 def sign(self, container):
 bigx, smallx, bigz, smallz = split_coords(container.x, container.z)

 try:
 chunk = self.chunks[bigx, bigz]
 except KeyError:
 self.error("Couldn't handle sign in chunk (%d, %d)!" % (bigx, bigz))
 return

 if (smallx, container.y, smallz) in chunk.tiles:
 new = False
 s = chunk.tiles[smallx, container.y, smallz]
 else:
 new = True
 s = Sign(smallx, container.y, smallz)
 chunk.tiles[smallx, container.y, smallz] = s

 s.text1 = container.line1
 s.text2 = container.line2
 s.text3 = container.line3
 s.text4 = container.line4

 chunk.dirty = True

 # The best part of a sign isn't making one, it's showing everybody
 # else on the server that you did.
 packet = make_packet("sign", container)
 self.factory.broadcast_for_chunk(packet, bigx, bigz)

 # Run sign hooks.
 for hook in self.sign_hooks:
 hook.sign_hook(self.factory, chunk, container.x, container.y,
 container.z, [s.text1, s.text2, s.text3, s.text4], new)

[docs] def complete(self, container):
 """
 Attempt to tab-complete user names.
 """

 needle = container.autocomplete
 usernames = self.factory.protocols.keys()

 results = complete(needle, usernames)

 self.write_packet("tab", autocomplete=results)

[docs] def settings_packet(self, container):
 """
 Acknowledge a change of settings and update chunk distance.
 """

 super(BravoProtocol, self).settings_packet(container)
 self.update_chunks()

 def disable_chunk(self, x, z):
 key = x, z

 log.msg("Disabling chunk %d, %d" % key)

 if key not in self.chunks:
 log.msg("...But the chunk wasn't loaded!")
 return

 # Remove the chunk from cache.
 chunk = self.chunks.pop(key)

 eids = [e.eid for e in chunk.entities]

 self.write_packet("destroy", count=len(eids), eid=eids)

 # Clear chunk data on the client.
 self.write_packet("chunk", x=x, z=z, continuous=False, primary=0x0,
 add=0x0, data="")

[docs] def enable_chunk(self, x, z):
 """
 Request a chunk.

 This function will asynchronously obtain the chunk, and send it on the
 wire.

 :returns: `Deferred` that will be fired when the chunk is obtained,
 with no arguments
 """

 log.msg("Enabling chunk %d, %d" % (x, z))

 if (x, z) in self.chunks:
 log.msg("...But the chunk was already loaded!")
 return succeed(None)

 d = self.factory.world.request_chunk(x, z)

 @d.addCallback
 def cb(chunk):
 self.chunks[x, z] = chunk
 return chunk
 d.addCallback(self.send_chunk)

 return d

 def send_chunk(self, chunk):
 log.msg("Sending chunk %d, %d" % (chunk.x, chunk.z))

 packet = chunk.save_to_packet()
 self.transport.write(packet)

 for entity in chunk.entities:
 packet = entity.save_to_packet()
 self.transport.write(packet)

 for entity in chunk.tiles.itervalues():
 if entity.name == "Sign":
 packet = entity.save_to_packet()
 self.transport.write(packet)

[docs] def send_initial_chunk_and_location(self):
 """
 Send the initial chunks and location.

 This method sends more than one chunk; since Beta 1.2, it must send
 nearly fifty chunks before the location can be safely sent.
 """

 # Disable located hooks. We'll re-enable them at the end.
 self.state = STATE_AUTHENTICATED

 log.msg("Initial, position %d, %d, %d" % self.location.pos)
 x, y, z = self.location.pos.to_block()
 bigx, smallx, bigz, smallz = split_coords(x, z)

 # Send the chunk that the player will stand on. The other chunks are
 # not so important. There *used* to be a bug, circa Beta 1.2, that
 # required lots of surrounding geometry to be present, but that's been
 # fixed.
 d = self.enable_chunk(bigx, bigz)

 # What to do if we can't load a given chunk? Just kick 'em.
 d.addErrback(lambda fail: self.error("Couldn't load a chunk... :c"))

 # Don't dare send more chunks beyond the initial one until we've
 # spawned. Once we've spawned, set our status to LOCATED and then
 # update_location() will work.
 @d.addCallback
 def located(none):
 self.state = STATE_LOCATED
 # Ensure that we're above-ground.
 self.ascend(0)
 d.addCallback(lambda none: self.update_location())
 d.addCallback(lambda none: self.position_changed())

 # Send the MOTD.
 if self.motd:
 @d.addCallback
 def motd(none):
 self.send_chat(self.motd.replace("<tagline>", get_motd()))

 # Finally, start the secondary chunk loop.
 d.addCallback(lambda none: self.update_chunks())

 def update_chunks(self):
 # Don't send chunks unless we're located.
 if self.state != STATE_LOCATED:
 return

 x, z = self.location.pos.to_chunk()

 # These numbers come from a couple spots, including minecraftwiki, but
 # I verified them experimentally using torches and pillars to mark
 # distances on each setting. ~ C.
 distances = {
 "tiny": 2,
 "short": 4,
 "far": 16,
 }

 radius = distances.get(self.settings.distance, 8)

 new = set(circling(x, z, radius))
 old = set(self.chunks.iterkeys())
 added = new - old
 discarded = old - new

 # Perhaps some explanation is in order.
 # The cooperate() function iterates over the iterable it is fed,
 # without tying up the reactor, by yielding after each iteration. The
 # inner part of the generator expression generates all of the chunks
 # around the currently needed chunk, and it sorts them by distance to
 # the current chunk. The end result is that we load chunks one-by-one,
 # nearest to furthest, without stalling other clients.
 if self.chunk_tasks:
 for task in self.chunk_tasks:
 try:
 task.stop()
 except (TaskDone, TaskFailed):
 pass

 to_enable = sorted_by_distance(added, x, z)

 self.chunk_tasks = [
 cooperate(self.enable_chunk(i, j) for i, j in to_enable),
 cooperate(self.disable_chunk(i, j) for i, j in discarded),
]

 def update_time(self):
 time = int(self.factory.time)
 self.write_packet("time", timestamp=time, time=time % 24000)

[docs] def connectionLost(self, reason=connectionDone):
 """
 Cleanup after a lost connection.

 Most of the time, these connections are lost cleanly; we don't have
 any cleanup to do in the unclean case since clients don't have any
 kind of pending state which must be recovered.

 Remember, the connection can be lost before identification and
 authentication, so ``self.username`` and ``self.player`` can be None.
 """

 if self.username and self.player:
 self.factory.world.save_player(self.username, self.player)

 if self.player:
 self.factory.destroy_entity(self.player)
 packet = make_packet("destroy", count=1, eid=[self.player.eid])
 self.factory.broadcast(packet)

 if self.username:
 packet = make_packet("players", name=self.username, online=False,
 ping=0)
 self.factory.broadcast(packet)
 self.factory.chat("%s has left the game." % self.username)

 self.factory.teardown_protocol(self)

 # We are now torn down. After this point, there will be no more
 # factory stuff, just our own personal stuff.
 del self.factory

 if self.time_loop:
 self.time_loop.stop()

 if self.chunk_tasks:
 for task in self.chunk_tasks:
 try:
 task.stop()
 except (TaskDone, TaskFailed):
 pass

 © Copyright 2010, Corbin Simpson, Derrick Dymock, & Justin Noah.
 Created using Sphinx 1.2.2.

_modules/bravo/location.html

 Navigation

 		
 index

 		
 modules |

 		Bravo 2.0 documentation »

 		Module code »

 Source code for bravo.location

from __future__ import division

from collections import namedtuple
from copy import copy
from math import atan2, cos, degrees, radians, pi, sin, sqrt
import operator

from construct import Container

from bravo.beta.packets import make_packet

def _combinator(op):
 def f(self, other):
 return self._replace(x=op(self.x, other.x), y=op(self.y, other.y),
 z=op(self.z, other.z))
 return f

[docs]class Position(namedtuple("Position", "x, y, z")):
 """
 The coordinates pointing to an entity.

 Positions are *always* stored as integer absolute pixel coordinates.
 """

 __add__ = _combinator(operator.add)
 __sub__ = _combinator(operator.sub)
 __mul__ = _combinator(operator.mul)
 __div__ = _combinator(operator.div)

 @classmethod
[docs] def from_player(cls, x, y, z):
 """
 Create a ``Position`` from floating-point block coordinates.
 """

 return cls(int(x * 32), int(y * 32), int(z * 32))

[docs] def to_player(self):
 """
 Return this position as floating-point block coordinates.
 """

 return self.x / 32, self.y / 32, self.z / 32

[docs] def to_block(self):
 """
 Return this position as block coordinates.
 """

 return int(self.x // 32), int(self.y // 32), int(self.z // 32)

 def to_chunk(self):
 return int(self.x // 32 // 16), int(self.z // 32 // 16)

[docs] def distance(self, other):
 """
 Return the distance between this position and another, in absolute
 pixels.
 """

 dx = (self.x - other.x)**2
 dy = (self.y - other.y)**2
 dz = (self.z - other.z)**2
 return int(sqrt(dx + dy + dz))

[docs] def heading(self, other):
 """
 Return the heading from this position to another, in radians.

 This is a wrapper for the common atan2() expression found in games,
 meant to help encapsulate semantics and keep copy-paste errors from
 happening.
 """

 theta = atan2(self.z - other.z, self.x - other.x) + pi / 2
 if theta < 0:
 theta += pi * 2
 return theta

[docs]class Orientation(namedtuple("Orientation", "theta, phi")):
 """
 The angles corresponding to the heading of an entity.

 Theta and phi are very much like the theta and phi of spherical
 coordinates, except that phi's zero is perpendicular to the XZ-plane
 rather than pointing straight up or straight down.

 Orientation is stored in floating-point radians, for simplicity of
 computation. Unfortunately, no wire protocol speaks radians, so several
 conversion methods are provided for sanity and convenience.

 The ``from_degs()`` and ``to_degs()`` methods provide integer degrees.
 This form is called "yaw and pitch" by protocol documentation.
 """

 @classmethod
[docs] def from_degs(cls, yaw, pitch):
 """
 Create an ``Orientation`` from integer degrees.
 """

 return cls(radians(yaw) % (pi * 2), radians(pitch))

[docs] def to_degs(self):
 """
 Return this orientation as integer degrees.
 """

 return int(round(degrees(self.theta))), int(round(degrees(self.phi)))

[docs] def to_fracs(self):
 """
 Return this orientation as fractions of a byte.
 """

 yaw = int(self.theta * 255 / (2 * pi)) % 256
 pitch = int(self.phi * 255 / (2 * pi)) % 256
 return yaw, pitch

[docs]class Location(object):
 """
 The position and orientation of an entity.
 """

 def __init__(self):
 # Position in pixels.
 self.pos = Position(0, 0, 0)

 # Start with a relatively sane stance.
 self.stance = 1.0

 # Orientation, in radians.
 self.ori = Orientation(0.0, 0.0)

 # Whether we are in the air.
 self.grounded = False

 @classmethod
[docs] def at_block(cls, x, y, z):
 """
 Pinpoint a location at a certain block.

 This constructor is intended to aid in pinpointing locations at a
 specific block rather than forcing users to do the pixel<->block maths
 themselves. Admittedly, the maths in question aren't hard, but there's
 no reason to avoid this encapsulation.
 """

 location = cls()
 location.pos = Position(x * 32, y * 32, z * 32)
 return location

 def __repr__(self):
 return "<Location(%s, (%d, %d (+%.6f), %d), (%.2f, %.2f))>" % (
 "grounded" if self.grounded else "midair", self.pos.x, self.pos.y,
 self.stance - self.pos.y, self.pos.z, self.ori.theta,
 self.ori.phi)

 __str__ = __repr__

[docs] def clamp(self):
 """
 Force this location to be sane.

 Forces the position and orientation to be sane, then fixes up
 location-specific things, like stance.

 :returns: bool indicating whether this location had to be altered
 """

 clamped = False

 y = self.pos.y

 # Clamp Y. We take precautions here and forbid things to go up past
 # the top of the world; this tend to strand entities up in the sky
 # where they cannot get down. We also forbid entities from falling
 # past bedrock.
 # TODO: Fix me, I'm broken
 # XXX how am I broken?
 if not (32 * 1) <= y:
 y = max(y, 32 * 1)
 self.pos = self.pos._replace(y=y)
 clamped = True

 # Stance is the current jumping position, plus a small offset of
 # around 0.1. In the Alpha server, it must between 0.1 and 1.65, or
 # the anti-grounded code kicks the client. In the Beta server, though,
 # the clamp is different. Experimentally, the stance can range from
 # 1.5 (crouching) to 2.4 (jumping). At this point, we enforce some
 # sanity on our client, and force the stance to a reasonable value.
 fy = y / 32
 if not 1.5 < (self.stance - fy) < 2.4:
 # Standard standing stance is 1.62.
 self.stance = fy + 1.62
 clamped = True

 return clamped

[docs] def save_to_packet(self):
 """
 Returns a position/look/grounded packet.
 """

 # Get our position.
 x, y, z = self.pos.to_player()

 # Grab orientation.
 yaw, pitch = self.ori.to_degs()

 # Note: When this packet is sent from the server, the 'y' and 'stance' fields are swapped.
 position = Container(x=x, y=self.stance, z=z, stance=y)
 orientation = Container(rotation=yaw, pitch=pitch)
 grounded = Container(grounded=self.grounded)

 packet = make_packet("location", position=position,
 orientation=orientation, grounded=grounded)

 return packet

[docs] def distance(self, other):
 """
 Return the distance between this location and another location.
 """

 return self.pos.distance(other.pos)

[docs] def in_front_of(self, distance):
 """
 Return a ``Location`` a certain number of blocks in front of this
 position.

 The orientation of the returned location is identical to this
 position's orientation.

 :param int distance: the number of blocks by which to offset this
 position
 """

 other = copy(self)
 distance *= 32

 # Do some trig to put the other location a few blocks ahead of the
 # player in the direction they are facing. Note that all three
 # coordinates are "misnamed;" the unit circle actually starts at (0,
 # 1) and goes *backwards* towards (-1, 0).
 x = int(self.pos.x - distance * sin(self.ori.theta))
 z = int(self.pos.z + distance * cos(self.ori.theta))

 other.pos = other.pos._replace(x=x, z=z)

 return other

 © Copyright 2010, Corbin Simpson, Derrick Dymock, & Justin Noah.
 Created using Sphinx 1.2.2.

_modules/bravo/inventory/windows.html

 Navigation

 		
 index

 		
 modules |

 		Bravo 2.0 documentation »

 		Module code »

 		bravo.inventory »

 Source code for bravo.inventory.windows

from itertools import chain, izip
from construct import Container

from bravo import blocks
from bravo.beta.packets import make_packet
from bravo.beta.structures import Slot
from bravo.inventory import SerializableSlots
from bravo.inventory.slots import Crafting, Workbench, LargeChestStorage

[docs]class Window(SerializableSlots):
 """
 Item manager

 The ``Window`` covers all kinds of inventory and crafting windows,
 ranging from user inventories to furnaces and workbenches.

 The ``Window`` agregates player's inventory and other crafting/storage slots
 as building blocks of the window.

 :param int wid: window ID
 :param Inventory inventory: player's inventory object
 :param SlotsSet slots: other window slots
 """

 def __init__(self, wid, inventory, slots):
 self.inventory = inventory
 self.slots = slots
 self.wid = wid
 self.selected = None
 self.coords = None

 # NOTE: The property must be defined in every final class
 # of certain window. Never use generic one. This can lead to
 # awfull bugs.
 #@property
 #def metalist(self):
 # m = [self.slots.crafted, self.slots.crafting,
 # self.slots.fuel, self.slots.storage]
 # m += [self.inventory.storage, self.inventory.holdables]
 # return m

 @property
 def slots_num(self):
 return self.slots.slots_num

 @property
 def identifier(self):
 return self.slots.identifier

 @property
 def title(self):
 return self.slots.title

[docs] def container_for_slot(self, slot):
 """
 Retrieve the table and index for a given slot.

 There is an isomorphism here which allows all of the tables of this
 ``Window`` to be viewed as a single large table of slots.
 """

 for l in self.metalist:
 if not len(l):
 continue
 if slot < len(l):
 return l, slot
 slot -= len(l)

[docs] def slot_for_container(self, table, index):
 """
 Retrieve slot number for given table and index.
 """

 i = 0
 for t in self.metalist:
 l = len(t)
 if t is table:
 if l == 0 or l <= index:
 return -1
 else:
 i += index
 return i
 else:
 i += l
 return -1

[docs] def load_from_packet(self, container):
 """
 Load data from a packet container.
 """

 items = [None] * self.metalength

 for i, item in enumerate(container.items):
 if item.id < 0:
 items[i] = None
 else:
 items[i] = Slot(item.id, item.damage, item.count)

 self.load_from_list(items)

 def save_to_packet(self):
 l = []
 for item in chain(*self.metalist):
 if item is None:
 l.append(Container(primary=-1))
 else:
 l.append(Container(primary=item.primary,
 secondary=item.secondary, count=item.quantity))

 packet = make_packet("inventory", wid=self.wid, length=len(l), items=l)
 return packet

[docs] def select_stack(self, container, index):
 """
 Handle stacking of items (Shift + RMB/LMB)
 """

 item = container[index]
 if item is None:
 return False

 loop_over = enumerate # default enumerator - from start to end
 # same as enumerate() but in reverse order
 reverse_enumerate = lambda l: izip(xrange(len(l)-1, -1, -1), reversed(l))

 if container is self.slots.crafting or container is self.slots.fuel:
 targets = self.inventory.storage, self.inventory.holdables
 elif container is self.slots.crafted or container is self.slots.storage:
 targets = self.inventory.holdables, self.inventory.storage
 # in this case notchian client enumerates from the end. o_O
 loop_over = reverse_enumerate
 elif container is self.inventory.storage:
 if self.slots.storage:
 targets = self.slots.storage,
 else:
 targets = self.inventory.holdables,
 elif container is self.inventory.holdables:
 if self.slots.storage:
 targets = self.slots.storage,
 else:
 targets = self.inventory.storage,
 else:
 return False

 initial_quantity = item_quantity = item.quantity

 # find same item to stack
 for stash in targets:
 for i, slot in loop_over(stash):
 if slot is not None and slot.holds(item) and slot.quantity < 64 \
 and slot.primary not in blocks.unstackable:
 count = slot.quantity + item_quantity
 if count > 64:
 count, item_quantity = 64, count - 64
 else:
 item_quantity = 0
 stash[i] = slot.replace(quantity=count)
 container[index] = item.replace(quantity=item_quantity)
 self.mark_dirty(stash, i)
 self.mark_dirty(container, index)
 if item_quantity == 0:
 container[index] = None
 return True

 # find empty space to move
 for stash in targets:
 for i, slot in loop_over(stash):
 if slot is None:
 # XXX bug; might overflow a slot!
 stash[i] = item.replace(quantity=item_quantity)
 container[index] = None
 self.mark_dirty(stash, i)
 self.mark_dirty(container, index)
 return True

 return initial_quantity != item_quantity

[docs] def select(self, slot, alternate=False, shift=False):
 """
 Handle a slot selection.

 This method implements the basic public interface for interacting with
 ``Inventory`` objects. It is directly equivalent to mouse clicks made
 upon slots.

 :param int slot: which slot was selected
 :param bool alternate: whether the selection is alternate; e.g., if it
 was done with a right-click
 :param bool shift: whether the shift key is toogled
 """

 # Look up the container and offset.
 # If, for any reason, our slot is out-of-bounds, then
 # container_for_slot will return None. In that case, catch the error
 # and return False.
 try:
 l, index = self.container_for_slot(slot)
 except TypeError:
 return False

 if l is self.inventory.armor:
 result, self.selected = self.inventory.select_armor(index,
 alternate, shift, self.selected)
 return result
 elif l is self.slots.crafted:
 if shift: # shift-click on crafted slot
 # Notchian client works this way: you lose items
 # that was not moved to inventory. So, it's not a bug.
 if (self.select_stack(self.slots.crafted, 0)):
 # As select_stack() call took items from crafted[0]
 # we must update the recipe to generate new item there
 self.slots.update_crafted()
 # and now we emulate taking of the items
 result, temp = self.slots.select_crafted(0, alternate, True, None)
 else:
 result = False
 else:
 result, self.selected = self.slots.select_crafted(index,
 alternate, shift, self.selected)
 return result
 elif shift:
 return self.select_stack(l, index)
 elif self.selected is not None and l[index] is not None:
 sslot = self.selected
 islot = l[index]
 if islot.holds(sslot) and islot.primary not in blocks.unstackable:
 # both contain the same item
 if alternate:
 if islot.quantity < 64:
 l[index] = islot.increment()
 self.selected = sslot.decrement()
 self.mark_dirty(l, index)
 else:
 if sslot.quantity + islot.quantity <= 64:
 # Sum of items fits in one slot, so this is easy.
 l[index] = islot.increment(sslot.quantity)
 self.selected = None
 else:
 # fill up slot to 64, move left overs to selection
 # valid for left and right mouse click
 l[index] = islot.replace(quantity=64)
 self.selected = sslot.replace(
 quantity=sslot.quantity + islot.quantity - 64)
 self.mark_dirty(l, index)
 else:
 # Default case: just swap
 # valid for left and right mouse click
 self.selected, l[index] = l[index], self.selected
 self.mark_dirty(l, index)
 else:
 if alternate:
 if self.selected is not None:
 sslot = self.selected
 l[index] = sslot.replace(quantity=1)
 self.selected = sslot.decrement()
 self.mark_dirty(l, index)
 elif l[index] is None:
 # Right click on empty inventory slot does nothing
 return False
 else:
 # Logically, l[index] is not None, but self.selected is.
 islot = l[index]
 scount = islot.quantity // 2
 scount, lcount = islot.quantity - scount, scount
 l[index] = islot.replace(quantity=lcount)
 self.selected = islot.replace(quantity=scount)
 self.mark_dirty(l, index)
 else:
 # Default case: just swap.
 self.selected, l[index] = l[index], self.selected
 self.mark_dirty(l, index)

 # At this point, we've already finished touching our selection; this
 # is just a state update.
 if l is self.slots.crafting:
 self.slots.update_crafted()

 return True

[docs] def close(self):
 '''
 Clear crafting areas and return items to drop and packets to send to client
 '''
 items = []
 packets = ""

 # slots on close action
 it, pk = self.slots.close(self.wid)
 items += it
 packets += pk

 # drop 'item on cursor'
 items += self.drop_selected()

 return items, packets

 def drop_selected(self, alternate=False):
 items = []
 if self.selected is not None:
 if alternate: # drop one item
 i = Slot(self.selected.primary, self.selected.secondary, 1)
 items.append(i)
 self.selected = self.selected.decrement()
 else: # drop all
 items.append(self.selected)
 self.selected = None
 return items

 def mark_dirty(self, table, index):
 # override later in SharedWindow
 pass

 def packets_for_dirty(self, a):
 # override later in SharedWindow
 return ""

[docs]class InventoryWindow(Window):
 '''
 Special case of window - player's inventory window
 '''

 def __init__(self, inventory):
 Window.__init__(self, 0, inventory, Crafting())

 @property
 def slots_num(self):
 # Actually it doesn't matter. Client never notifies when it opens inventory
 return 5

 @property
 def identifier(self):
 # Actually it doesn't matter. Client never notifies when it opens inventory
 return "inventory"

 @property
 def title(self):
 # Actually it doesn't matter. Client never notifies when it opens inventory
 return "Inventory"

 @property
 def metalist(self):
 m = [self.slots.crafted, self.slots.crafting]
 m += [self.inventory.armor, self.inventory.storage, self.inventory.holdables]
 return m

[docs] def creative(self, slot, primary, secondary, quantity):
 ''' Process inventory changes made in creative mode
 '''
 try:
 container, index = self.container_for_slot(slot)
 except TypeError:
 return False

 # Current notchian implementation has only holdable slots.
 # Prevent changes in other slots.
 if container is self.inventory.holdables:
 container[index] = Slot(primary, secondary, quantity)
 return True
 else:
 return False

class WorkbenchWindow(Window):

 def __init__(self, wid, inventory):
 Window.__init__(self, wid, inventory, Workbench())

 @property
 def metalist(self):
 # Window.metalist will work fine as well,
 # but this verion works a little bit faster
 m = [self.slots.crafted, self.slots.crafting]
 m += [self.inventory.storage, self.inventory.holdables]
 return m

[docs]class SharedWindow(Window):
 """
 Base class for all windows with shared containers (like chests, furnace and dispenser)
 """
 def __init__(self, wid, inventory, slots, coords):
 """
 :param int wid: window ID
 :param Inventory inventory: player's inventory object
 :param Tile tile: tile object
 :param tuple coords: world coords of the tile (bigx, smallx, bigz, smallz, y)
 """
 Window.__init__(self, wid, inventory, slots)
 self.coords = coords
 self.dirty_slots = {} # { slot : value, ... }

 def mark_dirty(self, table, index):
 # player's inventory are not shareable slots, skip it
 if table in self.slots.metalist:
 slot = self.slot_for_container(table, index)
 self.dirty_slots[slot] = table[index]

[docs] def packets_for_dirty(self, dirty_slots):
 """
 Generate update packets for dirty usually privided by another window (sic!)
 """
 packets = ""
 for slot, item in dirty_slots.iteritems():
 if item is None:
 packets += make_packet("window-slot", wid=self.wid, slot=slot, primary=-1)
 else:
 packets += make_packet("window-slot", wid=self.wid, slot=slot,
 primary=item.primary, secondary=item.secondary,
 count=item.quantity)
 return packets

class ChestWindow(SharedWindow):
 @property
 def metalist(self):
 m = [self.slots.storage, self.inventory.storage, self.inventory.holdables]
 return m

class LargeChestWindow(SharedWindow):

 def __init__(self, wid, inventory, chest1, chest2, coords):
 chests_storage = LargeChestStorage(chest1.storage, chest2.storage)
 SharedWindow.__init__(self, wid, inventory, chests_storage, coords)

 @property
 def metalist(self):
 m = [self.slots.storage, self.inventory.storage, self.inventory.holdables]
 return m

class FurnaceWindow(SharedWindow):

 @property
 def metalist(self):
 m = [self.slots.crafting, self.slots.fuel, self.slots.crafted]
 m += [self.inventory.storage, self.inventory.holdables]
 return m

 © Copyright 2010, Corbin Simpson, Derrick Dymock, & Justin Noah.
 Created using Sphinx 1.2.2.

_modules/bravo/inventory/slots.html

 Navigation

 		
 index

 		
 modules |

 		Bravo 2.0 documentation »

 		Module code »

 		bravo.inventory »

 Source code for bravo.inventory.slots

from bravo.beta.packets import make_packet
from bravo.beta.structures import Slot
from bravo.inventory import SerializableSlots
from bravo.policy.recipes.ingredients import all_ingredients
from bravo.policy.recipes.blueprints import all_blueprints

all_recipes = all_ingredients + all_blueprints

XXX I am completely undocumented and untested; is this any way to go through
life? Test and document me!
class comblist(object):
 def __init__(self, a, b):
 self.l = a, b
 self.offset = len(a)
 self.length = sum(map(len,self.l))

 def __len__(self):
 return self.length

 def __getitem__(self, key):
 if key < self.offset:
 return self.l[0][key]
 key -= self.offset
 if key < self.length:
 return self.l[1][key]
 raise IndexError

 def __setitem__(self, key, value):
 if key < 0:
 raise IndexError
 if key < self.offset:
 self.l[0][key] = value
 return
 key -= self.offset
 if key < self.length:
 self.l[1][key] = value
 return
 raise IndexError

[docs]class SlotsSet(SerializableSlots):
 '''
 Base calss for different slot configurations except player's inventory
 '''

 crafting = 0 # crafting slots (inventory, workbench, furnace)
 fuel = 0 # furnace
 storage = 0 # chest
 crafting_stride = 0

 def __init__(self):

 if self.crafting:
 self.crafting = [None] * self.crafting
 self.crafted = [None]
 else:
 self.crafting = self.crafted = []

 if self.fuel:
 self.fuel = [None]
 else:
 self.fuel = []

 if self.storage:
 self.storage = [None] * self.storage
 else:
 self.storage = []
 self.dummy = [None] * 36 # represents gap in serialized structure:
 # storage (27) + holdables(9) from player's
 # inventory (notchian)

 @property
 def metalist(self):
 return [self.crafted, self.crafting, self.fuel, self.storage, self.dummy]

 def update_crafted(self):
 # override me
 pass

 def close(self, wid):
 # override me, see description in Crafting
 return [], ""

[docs]class Crafting(SlotsSet):
 '''
 Base crafting class. Never shall be instantiated directly.
 '''

 crafting = 4
 crafting_stride = 2

 def __init__(self):
 SlotsSet.__init__(self)
 self.recipe = None

 def update_crafted(self):
 self.check_recipes()
 if self.recipe is None:
 self.crafted[0] = None
 else:
 provides = self.recipe.provides
 self.crafted[0] = Slot(provides[0][0], provides[0][1], provides[1])

[docs] def select_crafted(self, index, alternate, shift, selected = None):
 """
 Handle a slot selection on a crafted output.

 :param index: index of the selection
 :param alternate: whether this was an alternate selection
 :param shift: whether this was a shifted selection
 :param selected: the current selection

 :returns: a tuple of a bool indicating whether the selection was
 valid, and the newly selected slot
 """

 if self.recipe and self.crafted[0]:
 if selected is None:
 selected = self.crafted[0]
 self.crafted[0] = None
 else:
 sslot = selected
 if sslot.holds(self.recipe.provides[0]):
 selected = sslot.increment(self.recipe.provides[1])
 else:
 # Mismatch; don't allow it.
 return (False, selected)

 self.reduce_recipe()
 self.update_crafted()
 return (True, selected)
 else:
 # Forbid placing things in the crafted slot.
 return (False, selected)

[docs] def check_recipes(self):
 """
 See if the crafting table matches any recipes.

 :returns: None
 """

 self.recipe = None

 for recipe in all_recipes:
 if recipe.matches(self.crafting, self.crafting_stride):
 self.recipe = recipe

[docs] def reduce_recipe(self):
 """
 Reduce a crafting table according to a recipe.

 This function returns None; the crafting table is modified in-place.

 This function assumes that the recipe already fits the crafting table
 and will not do additional checks to verify this assumption.
 """

 self.recipe.reduce(self.crafting, self.crafting_stride)

[docs] def close(self, wid):
 '''
 Clear crafting areas and return items to drop and packets to send to client
 '''
 items = []
 packets = ""

 # process crafting area
 for i, itm in enumerate(self.crafting):
 if itm is not None:
 items.append(itm)
 self.crafting[i] = None
 packets += make_packet("window-slot", wid=wid,
 slot=i+1, primary=-1)
 self.crafted[0] = None

 return items, packets

class Workbench(Crafting):

 crafting = 9
 crafting_stride = 3
 title = "Workbench"
 identifier = "workbench"
 slots_num = 9

class ChestStorage(SlotsSet):

 storage = 27
 identifier = "chest"
 title = "Chest"
 slots_num = 27

 def __init__(self):
 SlotsSet.__init__(self)
 self.title = "Chest"

[docs]class LargeChestStorage(SlotsSet):
 """
 LargeChest is a wrapper around 2 ChestStorages
 """

 identifier = "chest"
 title = "LargeChest"
 slots_num = 54

 def __init__(self, chest1, chest2):
 SlotsSet.__init__(self)
 # NOTE: chest1 and chest2 are ChestStorage.storages
 self.storage = comblist(chest1, chest2)

 @property
 def metalist(self):
 return [self.storage]

class FurnaceStorage(SlotsSet):

 #TODO: Make sure notchian furnace have following slots order:
 # 0 - crafted, 1 - crafting, 2 - fuel
 # Override SlotsSet.metalist() property if not.

 crafting = 1
 fuel = 1
 title = "Furnace"
 identifier = "furnace"
 slots_num = 3

 def select_crafted(self, index, alternate, shift, selected = None):
 """
 Handle a slot selection on a crafted output.
 Returns: (True/False, new selection)
 """

 if self.crafted[0]:
 if selected is None:
 selected = self.crafted[0]
 self.crafted[0] = None
 else:
 sslot = selected
 if sslot.holds(self.crafted[0]):
 selected = sslot.increment(self.crafted[0].quantity)
 self.crafted[0] = None
 else:
 # Mismatch; don't allow it.
 return (False, selected)

 return (True, selected)
 else:
 # Forbid placing things in the crafted slot.
 return (False, selected)

 #@property
 #def metalist(self):
 # return [self.crafting, self.fuel, self.crafted]

 © Copyright 2010, Corbin Simpson, Derrick Dymock, & Justin Noah.
 Created using Sphinx 1.2.2.

_modules/bravo/beta/packets.html

 Navigation

 		
 index

 		
 modules |

 		Bravo 2.0 documentation »

 		Module code »

 Source code for bravo.beta.packets

from collections import namedtuple

from construct import Struct, Container, Embed, Enum, MetaField
from construct import MetaArray, If, Switch, Const, Peek, Magic
from construct import OptionalGreedyRange, RepeatUntil
from construct import Flag, PascalString, Adapter
from construct import UBInt8, UBInt16, UBInt32, UBInt64
from construct import SBInt8, SBInt16, SBInt32
from construct import BFloat32, BFloat64
from construct import BitStruct, BitField
from construct import StringAdapter, LengthValueAdapter, Sequence
from construct import ConstructError

[docs]def IPacket(object):
 """
 Interface for packets.
 """

 def parse(buf, offset):
 """
 Parse a packet out of the given buffer, starting at the given offset.

 If the parse is successful, returns a tuple of the parsed packet and
 the next packet offset in the buffer.

 If the parse fails due to insufficient data, returns a tuple of None
 and the amount of data required before the parse can be retried.

 Exceptions may be raised if the parser finds invalid data.
 """

[docs]def simple(name, fmt, *args):
 """
 Make a customized namedtuple representing a simple, primitive packet.
 """

 from struct import Struct

 s = Struct(fmt)

 @classmethod
 def parse(cls, buf, offset):
 if len(buf) >= s.size + offset:
 unpacked = s.unpack_from(buf, offset)
 return cls(*unpacked), s.size + offset
 else:
 return None, s.size - len(buf)

 def build(self):
 return s.pack(*self)

 methods = {
 "parse": parse,
 "build": build,
 }

 return type(name, (namedtuple(name, *args),), methods)

DUMP_ALL_PACKETS = False

Strings.
This one is a UCS2 string, which effectively decodes single writeChar()
invocations. We need to import the encoding for it first, though.
from bravo.encodings import ucs2
from codecs import register
register(ucs2)

class DoubleAdapter(LengthValueAdapter):

 def _encode(self, obj, context):
 return len(obj) / 2, obj

def AlphaString(name):
 return StringAdapter(
 DoubleAdapter(
 Sequence(name,
 UBInt16("length"),
 MetaField("data", lambda ctx: ctx["length"] * 2),
)
),
 encoding="ucs2",
)

Boolean converter.
def Bool(*args, **kwargs):
 return Flag(*args, default=True, **kwargs)

Flying, position, and orientation, reused in several places.
grounded = Struct("grounded", UBInt8("grounded"))
position = Struct("position",
 BFloat64("x"),
 BFloat64("y"),
 BFloat64("stance"),
 BFloat64("z")
)
orientation = Struct("orientation", BFloat32("rotation"), BFloat32("pitch"))

TODO: this must be replaced with 'slot' (see below)
Notchian item packing (slot data)
items = Struct("items",
 SBInt16("primary"),
 If(lambda context: context["primary"] >= 0,
 Embed(Struct("item_information",
 UBInt8("count"),
 UBInt16("secondary"),
 Magic("\xff\xff"),
)),
),
)

Speed = namedtuple('speed', 'x y z')

class Slot(object):
 def __init__(self, item_id=-1, count=1, damage=0, nbt=None):
 self.item_id = item_id
 self.count = count
 self.damage = damage
 # TODO: Implement packing/unpacking of gzipped NBT data
 self.nbt = nbt

 @classmethod
 def fromItem(cls, item, count):
 return cls(item[0], count, item[1])

 @property
 def is_empty(self):
 return self.item_id == -1

 def __len__(self):
 return 0 if self.nbt is None else len(self.nbt)

 def __repr__(self):
 from bravo.blocks import items
 if self.is_empty:
 return 'Slot()'
 elif len(self):
 return 'Slot(%s, count=%d, damage=%d, +nbt:%dB)' % (
 str(items[self.item_id]), self.count, self.damage, len(self)
)
 else:
 return 'Slot(%s, count=%d, damage=%d)' % (
 str(items[self.item_id]), self.count, self.damage
)

 def __eq__(self, other):
 return (self.item_id == other.item_id and
 self.count == other.count and
 self.damage == self.damage and
 self.nbt == self.nbt)

class SlotAdapter(Adapter):

 def _decode(self, obj, context):
 if obj.item_id == -1:
 s = Slot(obj.item_id)
 else:
 s = Slot(obj.item_id, obj.count, obj.damage, obj.nbt)
 return s

 def _encode(self, obj, context):
 if not isinstance(obj, Slot):
 raise ConstructError('Slot object expected')
 if obj.is_empty:
 return Container(item_id=-1)
 else:
 return Container(item_id=obj.item_id, count=obj.count, damage=obj.damage,
 nbt_len=len(obj) if len(obj) else -1, nbt=obj.nbt)

slot = SlotAdapter(
 Struct("slot",
 SBInt16("item_id"),
 If(lambda context: context["item_id"] >= 0,
 Embed(Struct("item_information",
 UBInt8("count"),
 UBInt16("damage"),
 SBInt16("nbt_len"),
 If(lambda context: context["nbt_len"] >= 0,
 MetaField("nbt", lambda ctx: ctx["nbt_len"])
)
)),
)
)
)

Metadata = namedtuple("Metadata", "type value")
metadata_types = ["byte", "short", "int", "float", "string", "slot", "coords"]

Metadata adaptor.
class MetadataAdapter(Adapter):

 def _decode(self, obj, context):
 d = {}
 for m in obj.data:
 d[m.id.key] = Metadata(metadata_types[m.id.type], m.value)
 return d

 def _encode(self, obj, context):
 c = Container(data=[], terminator=None)
 for k, v in obj.iteritems():
 t, value = v
 d = Container(
 id=Container(type=metadata_types.index(t), key=k),
 value=value,
 peeked=None)
 c.data.append(d)
 if c.data:
 c.data[-1].peeked = 127
 else:
 c.data.append(Container(id=Container(first=0, second=0), value=0,
 peeked=127))
 return c

Metadata inner container.
metadata_switch = {
 0: UBInt8("value"),
 1: UBInt16("value"),
 2: UBInt32("value"),
 3: BFloat32("value"),
 4: AlphaString("value"),
 5: slot,
 6: Struct("coords",
 UBInt32("x"),
 UBInt32("y"),
 UBInt32("z"),
),
}

Metadata subconstruct.
metadata = MetadataAdapter(
 Struct("metadata",
 RepeatUntil(lambda obj, context: obj["peeked"] == 0x7f,
 Struct("data",
 BitStruct("id",
 BitField("type", 3),
 BitField("key", 5),
),
 Switch("value", lambda context: context["id"]["type"],
 metadata_switch),
 Peek(UBInt8("peeked")),
),
),
 Const(UBInt8("terminator"), 0x7f),
),
)

Build faces, used during dig and build.
faces = {
 "noop": -1,
 "-y": 0,
 "+y": 1,
 "-z": 2,
 "+z": 3,
 "-x": 4,
 "+x": 5,
}
face = Enum(SBInt8("face"), **faces)

World dimension.
dimensions = {
 "earth": 0,
 "sky": 1,
 "nether": 255,
}
dimension = Enum(UBInt8("dimension"), **dimensions)

Difficulty levels
difficulties = {
 "peaceful": 0,
 "easy": 1,
 "normal": 2,
 "hard": 3,
}
difficulty = Enum(UBInt8("difficulty"), **difficulties)

modes = {
 "survival": 0,
 "creative": 1,
 "adventure": 2,
}
mode = Enum(UBInt8("mode"), **modes)

Possible effects.
XXX these names aren't really canonized yet
effect = Enum(UBInt8("effect"),
 move_fast=1,
 move_slow=2,
 dig_fast=3,
 dig_slow=4,
 damage_boost=5,
 heal=6,
 harm=7,
 jump=8,
 confusion=9,
 regenerate=10,
 resistance=11,
 fire_resistance=12,
 water_resistance=13,
 invisibility=14,
 blindness=15,
 night_vision=16,
 hunger=17,
 weakness=18,
 poison=19,
 wither=20,
)

The actual packet list.
packets = {
 0x00: Struct("ping",
 UBInt32("pid"),
),
 0x01: Struct("login",
 # Player Entity ID (random number generated by the server)
 UBInt32("eid"),
 # default, flat, largeBiomes
 AlphaString("leveltype"),
 mode,
 dimension,
 difficulty,
 UBInt8("unused"),
 UBInt8("maxplayers"),
),
 0x02: Struct("handshake",
 UBInt8("protocol"),
 AlphaString("username"),
 AlphaString("host"),
 UBInt32("port"),
),
 0x03: Struct("chat",
 AlphaString("data"),
),
 0x04: Struct("time",
 # Total Ticks
 UBInt64("timestamp"),
 # Time of day
 UBInt64("time"),
),
 0x05: Struct("entity-equipment",
 UBInt32("eid"),
 UBInt16("slot"),
 Embed(items),
),
 0x06: Struct("spawn",
 SBInt32("x"),
 SBInt32("y"),
 SBInt32("z"),
),
 0x07: Struct("use",
 UBInt32("eid"),
 UBInt32("target"),
 UBInt8("button"),
),
 0x08: Struct("health",
 BFloat32("hp"),
 UBInt16("fp"),
 BFloat32("saturation"),
),
 0x09: Struct("respawn",
 dimension,
 difficulty,
 mode,
 UBInt16("height"),
 AlphaString("leveltype"),
),
 0x0a: grounded,
 0x0b: Struct("position",
 position,
 grounded
),
 0x0c: Struct("orientation",
 orientation,
 grounded
),
 # TODO: Differ between client and server 'position'
 0x0d: Struct("location",
 position,
 orientation,
 grounded
),
 0x0e: Struct("digging",
 Enum(UBInt8("state"),
 started=0,
 cancelled=1,
 stopped=2,
 checked=3,
 dropped=4,
 # Also eating
 shooting=5,
),
 SBInt32("x"),
 UBInt8("y"),
 SBInt32("z"),
 face,
),
 0x0f: Struct("build",
 SBInt32("x"),
 UBInt8("y"),
 SBInt32("z"),
 face,
 Embed(items),
 UBInt8("cursorx"),
 UBInt8("cursory"),
 UBInt8("cursorz"),
),
 # Hold Item Change
 0x10: Struct("equip",
 # Only 0-8
 UBInt16("slot"),
),
 0x11: Struct("bed",
 UBInt32("eid"),
 UBInt8("unknown"),
 SBInt32("x"),
 UBInt8("y"),
 SBInt32("z"),
),
 0x12: Struct("animate",
 UBInt32("eid"),
 Enum(UBInt8("animation"),
 noop=0,
 arm=1,
 hit=2,
 leave_bed=3,
 eat=5,
 unknown=102,
 crouch=104,
 uncrouch=105,
),
),
 0x13: Struct("action",
 UBInt32("eid"),
 Enum(UBInt8("action"),
 crouch=1,
 uncrouch=2,
 leave_bed=3,
 start_sprint=4,
 stop_sprint=5,
),
 UBInt32("unknown"),
),
 0x14: Struct("player",
 UBInt32("eid"),
 AlphaString("username"),
 SBInt32("x"),
 SBInt32("y"),
 SBInt32("z"),
 UBInt8("yaw"),
 UBInt8("pitch"),
 # 0 For none, unlike other packets
 # -1 crashes clients
 SBInt16("item"),
 metadata,
),
 0x16: Struct("collect",
 UBInt32("eid"),
 UBInt32("destination"),
),
 # Object/Vehicle
 0x17: Struct("object", # XXX: was 'vehicle'!
 UBInt32("eid"),
 Enum(UBInt8("type"), # See http://wiki.vg/Entities#Objects
 boat=1,
 item_stack=2,
 minecart=10,
 storage_cart=11,
 powered_cart=12,
 tnt=50,
 ender_crystal=51,
 arrow=60,
 snowball=61,
 egg=62,
 thrown_enderpearl=65,
 wither_skull=66,
 falling_block=70,
 frames=71,
 ender_eye=72,
 thrown_potion=73,
 dragon_egg=74,
 thrown_xp_bottle=75,
 fishing_float=90,
),
 SBInt32("x"),
 SBInt32("y"),
 SBInt32("z"),
 UBInt8("pitch"),
 UBInt8("yaw"),
 SBInt32("data"), # See http://www.wiki.vg/Object_Data
 If(lambda context: context["data"] != 0,
 Struct("speed",
 SBInt16("x"),
 SBInt16("y"),
 SBInt16("z"),
)
),
),
 0x18: Struct("mob",
 UBInt32("eid"),
 Enum(UBInt8("type"), **{
 "Creeper": 50,
 "Skeleton": 51,
 "Spider": 52,
 "GiantZombie": 53,
 "Zombie": 54,
 "Slime": 55,
 "Ghast": 56,
 "ZombiePig": 57,
 "Enderman": 58,
 "CaveSpider": 59,
 "Silverfish": 60,
 "Blaze": 61,
 "MagmaCube": 62,
 "EnderDragon": 63,
 "Wither": 64,
 "Bat": 65,
 "Witch": 66,
 "Pig": 90,
 "Sheep": 91,
 "Cow": 92,
 "Chicken": 93,
 "Squid": 94,
 "Wolf": 95,
 "Mooshroom": 96,
 "Snowman": 97,
 "Ocelot": 98,
 "IronGolem": 99,
 "Villager": 120
 }),
 SBInt32("x"),
 SBInt32("y"),
 SBInt32("z"),
 SBInt8("yaw"),
 SBInt8("pitch"),
 SBInt8("head_yaw"),
 SBInt16("vx"),
 SBInt16("vy"),
 SBInt16("vz"),
 metadata,
),
 0x19: Struct("painting",
 UBInt32("eid"),
 AlphaString("title"),
 SBInt32("x"),
 SBInt32("y"),
 SBInt32("z"),
 face,
),
 0x1a: Struct("experience",
 UBInt32("eid"),
 SBInt32("x"),
 SBInt32("y"),
 SBInt32("z"),
 UBInt16("quantity"),
),
 0x1b: Struct("steer",
 BFloat32("first"),
 BFloat32("second"),
 Bool("third"),
 Bool("fourth"),
),
 0x1c: Struct("velocity",
 UBInt32("eid"),
 SBInt16("dx"),
 SBInt16("dy"),
 SBInt16("dz"),
),
 0x1d: Struct("destroy",
 UBInt8("count"),
 MetaArray(lambda context: context["count"], UBInt32("eid")),
),
 0x1e: Struct("create",
 UBInt32("eid"),
),
 0x1f: Struct("entity-position",
 UBInt32("eid"),
 SBInt8("dx"),
 SBInt8("dy"),
 SBInt8("dz")
),
 0x20: Struct("entity-orientation",
 UBInt32("eid"),
 UBInt8("yaw"),
 UBInt8("pitch")
),
 0x21: Struct("entity-location",
 UBInt32("eid"),
 SBInt8("dx"),
 SBInt8("dy"),
 SBInt8("dz"),
 UBInt8("yaw"),
 UBInt8("pitch")
),
 0x22: Struct("teleport",
 UBInt32("eid"),
 SBInt32("x"),
 SBInt32("y"),
 SBInt32("z"),
 UBInt8("yaw"),
 UBInt8("pitch"),
),
 0x23: Struct("entity-head",
 UBInt32("eid"),
 UBInt8("yaw"),
),
 0x26: Struct("status",
 UBInt32("eid"),
 Enum(UBInt8("status"),
 damaged=2,
 killed=3,
 taming=6,
 tamed=7,
 drying=8,
 eating=9,
 sheep_eat=10,
 golem_rose=11,
 heart_particle=12,
 angry_particle=13,
 happy_particle=14,
 magic_particle=15,
 shaking=16,
 firework=17,
),
),
 0x27: Struct("attach",
 UBInt32("eid"),
 # XXX -1 for detatching
 UBInt32("vid"),
 UBInt8("unknown"),
),
 0x28: Struct("metadata",
 UBInt32("eid"),
 metadata,
),
 0x29: Struct("effect",
 UBInt32("eid"),
 effect,
 UBInt8("amount"),
 UBInt16("duration"),
),
 0x2a: Struct("uneffect",
 UBInt32("eid"),
 effect,
),
 0x2b: Struct("levelup",
 BFloat32("current"),
 UBInt16("level"),
 UBInt16("total"),
),
 # XXX 0x2c, server to client, needs to be implemented, needs special
 # UUID-packing techniques
 0x33: Struct("chunk",
 SBInt32("x"),
 SBInt32("z"),
 Bool("continuous"),
 UBInt16("primary"),
 UBInt16("add"),
 PascalString("data", length_field=UBInt32("length"), encoding="zlib"),
),
 0x34: Struct("batch",
 SBInt32("x"),
 SBInt32("z"),
 UBInt16("count"),
 PascalString("data", length_field=UBInt32("length")),
),
 0x35: Struct("block",
 SBInt32("x"),
 UBInt8("y"),
 SBInt32("z"),
 UBInt16("type"),
 UBInt8("meta"),
),
 # XXX This covers general tile actions, not just note blocks.
 # TODO: Needs work
 0x36: Struct("block-action",
 SBInt32("x"),
 SBInt16("y"),
 SBInt32("z"),
 UBInt8("byte1"),
 UBInt8("byte2"),
 UBInt16("blockid"),
),
 0x37: Struct("block-break-anim",
 UBInt32("eid"),
 UBInt32("x"),
 UBInt32("y"),
 UBInt32("z"),
 UBInt8("stage"),
),
 # XXX Server -> Client. Use 0x33 instead.
 0x38: Struct("bulk-chunk",
 UBInt16("count"),
 UBInt32("length"),
 UBInt8("sky_light"),
 MetaField("data", lambda ctx: ctx["length"]),
 MetaArray(lambda context: context["count"],
 Struct("metadata",
 UBInt32("chunk_x"),
 UBInt32("chunk_z"),
 UBInt16("bitmap_primary"),
 UBInt16("bitmap_secondary"),
)
)
),
 # TODO: Needs work?
 0x3c: Struct("explosion",
 BFloat64("x"),
 BFloat64("y"),
 BFloat64("z"),
 BFloat32("radius"),
 UBInt32("count"),
 MetaField("blocks", lambda context: context["count"] * 3),
 BFloat32("motionx"),
 BFloat32("motiony"),
 BFloat32("motionz"),
),
 0x3d: Struct("sound",
 Enum(UBInt32("sid"),
 click2=1000,
 click1=1001,
 bow_fire=1002,
 door_toggle=1003,
 extinguish=1004,
 record_play=1005,
 charge=1007,
 fireball=1008,
 zombie_wood=1010,
 zombie_metal=1011,
 zombie_break=1012,
 wither=1013,
 smoke=2000,
 block_break=2001,
 splash_potion=2002,
 ender_eye=2003,
 blaze=2004,
),
 SBInt32("x"),
 UBInt8("y"),
 SBInt32("z"),
 UBInt32("data"),
 Bool("volume-mod"),
),
 0x3e: Struct("named-sound",
 AlphaString("name"),
 UBInt32("x"),
 UBInt32("y"),
 UBInt32("z"),
 BFloat32("volume"),
 UBInt8("pitch"),
),
 0x3f: Struct("particle",
 AlphaString("name"),
 BFloat32("x"),
 BFloat32("y"),
 BFloat32("z"),
 BFloat32("x_offset"),
 BFloat32("y_offset"),
 BFloat32("z_offset"),
 BFloat32("speed"),
 UBInt32("count"),
),
 0x46: Struct("state",
 Enum(UBInt8("state"),
 bad_bed=0,
 start_rain=1,
 stop_rain=2,
 mode_change=3,
 run_credits=4,
),
 mode,
),
 0x47: Struct("thunderbolt",
 UBInt32("eid"),
 UBInt8("gid"),
 SBInt32("x"),
 SBInt32("y"),
 SBInt32("z"),
),
 0x64: Struct("window-open",
 UBInt8("wid"),
 Enum(UBInt8("type"),
 chest=0,
 workbench=1,
 furnace=2,
 dispenser=3,
 enchatment_table=4,
 brewing_stand=5,
 npc_trade=6,
 beacon=7,
 anvil=8,
 hopper=9,
),
 AlphaString("title"),
 UBInt8("slots"),
 UBInt8("use_title"),
 # XXX iff type == 0xb (currently unknown) write an extra secret int
 # here. WTF?
),
 0x65: Struct("window-close",
 UBInt8("wid"),
),
 0x66: Struct("window-action",
 UBInt8("wid"),
 UBInt16("slot"),
 UBInt8("button"),
 UBInt16("token"),
 UBInt8("shift"), # TODO: rename to 'mode'
 Embed(items),
),
 0x67: Struct("window-slot",
 UBInt8("wid"),
 UBInt16("slot"),
 Embed(items),
),
 0x68: Struct("inventory",
 UBInt8("wid"),
 UBInt16("length"),
 MetaArray(lambda context: context["length"], items),
),
 0x69: Struct("window-progress",
 UBInt8("wid"),
 UBInt16("bar"),
 UBInt16("progress"),
),
 0x6a: Struct("window-token",
 UBInt8("wid"),
 UBInt16("token"),
 Bool("acknowledged"),
),
 0x6b: Struct("window-creative",
 UBInt16("slot"),
 Embed(items),
),
 0x6c: Struct("enchant",
 UBInt8("wid"),
 UBInt8("enchantment"),
),
 0x82: Struct("sign",
 SBInt32("x"),
 UBInt16("y"),
 SBInt32("z"),
 AlphaString("line1"),
 AlphaString("line2"),
 AlphaString("line3"),
 AlphaString("line4"),
),
 0x83: Struct("map",
 UBInt16("type"),
 UBInt16("itemid"),
 PascalString("data", length_field=UBInt16("length")),
),
 0x84: Struct("tile-update",
 SBInt32("x"),
 UBInt16("y"),
 SBInt32("z"),
 UBInt8("action"),
 PascalString("nbt_data", length_field=UBInt16("length")), # gzipped
),
 0x85: Struct("0x85",
 UBInt8("first"),
 UBInt32("second"),
 UBInt32("third"),
 UBInt32("fourth"),
),
 0xc8: Struct("statistics",
 UBInt32("sid"), # XXX I should be an Enum!
 UBInt32("count"),
),
 0xc9: Struct("players",
 AlphaString("name"),
 Bool("online"),
 UBInt16("ping"),
),
 0xca: Struct("abilities",
 UBInt8("flags"),
 BFloat32("fly-speed"),
 BFloat32("walk-speed"),
),
 0xcb: Struct("tab",
 AlphaString("autocomplete"),
),
 0xcc: Struct("settings",
 AlphaString("locale"),
 UBInt8("distance"),
 UBInt8("chat"),
 difficulty,
 Bool("cape"),
),
 0xcd: Struct("statuses",
 UBInt8("payload")
),
 0xce: Struct("score_item",
 AlphaString("name"),
 AlphaString("value"),
 Enum(UBInt8("action"),
 create=0,
 remove=1,
 update=2,
),
),
 0xcf: Struct("score_update",
 AlphaString("item_name"),
 UBInt8("remove"),
 If(lambda context: context["remove"] == 0,
 Embed(Struct("information",
 AlphaString("score_name"),
 UBInt32("value"),
))
),
),
 0xd0: Struct("score_display",
 Enum(UBInt8("position"),
 as_list=0,
 sidebar=1,
 below_name=2,
),
 AlphaString("score_name"),
),
 0xd1: Struct("teams",
 AlphaString("name"),
 Enum(UBInt8("mode"),
 team_created=0,
 team_removed=1,
 team_updates=2,
 players_added=3,
 players_removed=4,
),
 If(lambda context: context["mode"] in ("team_created", "team_updated"),
 Embed(Struct("team_info",
 AlphaString("team_name"),
 AlphaString("team_prefix"),
 AlphaString("team_suffix"),
 Enum(UBInt8("friendly_fire"),
 off=0,
 on=1,
 invisibles=2,
),
))
),
 If(lambda context: context["mode"] in ("team_created", "players_added", "players_removed"),
 Embed(Struct("players_info",
 UBInt16("count"),
 MetaArray(lambda context: context["count"], AlphaString("player_names")),
))
),
),
 0xfa: Struct("plugin-message",
 AlphaString("channel"),
 PascalString("data", length_field=UBInt16("length")),
),
 0xfc: Struct("key-response",
 PascalString("key", length_field=UBInt16("key-len")),
 PascalString("token", length_field=UBInt16("token-len")),
),
 0xfd: Struct("key-request",
 AlphaString("server"),
 PascalString("key", length_field=UBInt16("key-len")),
 PascalString("token", length_field=UBInt16("token-len")),
),
 0xfe: Struct("poll",
 Magic("\x01" # Poll packet constant
 "\xfa" # Followed by a plugin message
 "\x00\x0b" # Length of plugin channel name
 + u"MC|PingHost".encode("ucs2") # Plugin channel name
),
 PascalString("data", length_field=UBInt16("length")),
),
 # TODO: rename to 'kick'
 0xff: Struct("error", AlphaString("message")),
}

packet_stream = Struct("packet_stream",
 OptionalGreedyRange(
 Struct("full_packet",
 UBInt8("header"),
 Switch("payload", lambda context: context["header"], packets),
),
),
 OptionalGreedyRange(
 UBInt8("leftovers"),
),
)

[docs]def parse_packets(bytestream):
 """
 Opportunistically parse out as many packets as possible from a raw
 bytestream.

 Returns a tuple containing a list of unpacked packet containers, and any
 leftover unparseable bytes.
 """

 container = packet_stream.parse(bytestream)

 l = [(i.header, i.payload) for i in container.full_packet]
 leftovers = "".join(chr(i) for i in container.leftovers)

 if DUMP_ALL_PACKETS:
 for header, payload in l:
 print "Parsed packet 0x%.2x" % header
 print payload

 return l, leftovers

incremental_packet_stream = Struct("incremental_packet_stream",
 Struct("full_packet",
 UBInt8("header"),
 Switch("payload", lambda context: context["header"], packets),
),
 OptionalGreedyRange(
 UBInt8("leftovers"),
),
)

[docs]def parse_packets_incrementally(bytestream):
 """
 Parse out packets one-by-one, yielding a tuple of packet header and packet
 payload.

 This function returns a generator.

 This function will yield all valid packets in the bytestream up to the
 first invalid packet.

 :returns: a generator yielding tuples of headers and payloads
 """

 while bytestream:
 parsed = incremental_packet_stream.parse(bytestream)
 header = parsed.full_packet.header
 payload = parsed.full_packet.payload
 bytestream = "".join(chr(i) for i in parsed.leftovers)

 yield header, payload

packets_by_name = dict((v.name, k) for (k, v) in packets.iteritems())

[docs]def make_packet(packet, *args, **kwargs):
 """
 Constructs a packet bytestream from a packet header and payload.

 The payload should be passed as keyword arguments. Additional containers
 or dictionaries to be added to the payload may be passed positionally, as
 well.
 """

 if packet not in packets_by_name:
 print "Couldn't find packet name %s!" % packet
 return ""

 header = packets_by_name[packet]

 for arg in args:
 kwargs.update(dict(arg))
 container = Container(**kwargs)

 if DUMP_ALL_PACKETS:
 print "Making packet <%s> (0x%.2x)" % (packet, header)
 print container
 payload = packets[header].build(container)
 return chr(header) + payload

[docs]def make_error_packet(message):
 """
 Convenience method to generate an error packet bytestream.
 """

 return make_packet("error", message=message)

 © Copyright 2010, Corbin Simpson, Derrick Dymock, & Justin Noah.
 Created using Sphinx 1.2.2.

_modules/bravo/beta/factory.html

 Navigation

 		
 index

 		
 modules |

 		Bravo 2.0 documentation »

 		Module code »

 Source code for bravo.beta.factory

from collections import defaultdict
from itertools import product
import json

from twisted.internet import reactor
from twisted.internet.interfaces import IPushProducer
from twisted.internet.protocol import Factory
from twisted.internet.task import LoopingCall
from twisted.python import log
from zope.interface import implements

from bravo.beta.packets import make_packet
from bravo.beta.protocol import BravoProtocol, KickedProtocol
from bravo.entity import entities
from bravo.ibravo import (ISortedPlugin, IAutomaton, ITerrainGenerator,
 IUseHook, ISignHook, IPreDigHook, IDigHook,
 IPreBuildHook, IPostBuildHook, IWindowOpenHook,
 IWindowClickHook, IWindowCloseHook)
from bravo.location import Location
from bravo.plugin import retrieve_named_plugins, retrieve_sorted_plugins
from bravo.policy.packs import packs as available_packs
from bravo.policy.seasons import Spring, Winter
from bravo.utilities.chat import chat_name, sanitize_chat
from bravo.weather import WeatherVane
from bravo.world import World

(STATE_UNAUTHENTICATED, STATE_CHALLENGED, STATE_AUTHENTICATED,
 STATE_LOCATED) = range(4)

circle = [(i, j)
 for i, j in product(xrange(-5, 5), xrange(-5, 5))
 if i**2 + j**2 <= 25
]

[docs]class BravoFactory(Factory):
 """
 A ``Factory`` that creates ``BravoProtocol`` objects when connected to.
 """

 implements(IPushProducer)

 protocol = BravoProtocol

 timestamp = None
 time = 0
 day = 0
 eid = 1

 interfaces = []

 def __init__(self, config, name):
 """
 Create a factory and world.

 ``name`` is the string used to look up factory-specific settings from
 the configuration.

 :param str name: internal name of this factory
 """

 self.name = name
 self.config = config
 self.config_name = "world %s" % name

 self.world = World(self.config, self.name)
 self.world.factory = self

 self.protocols = dict()
 self.connectedIPs = defaultdict(int)

 self.mode = self.config.get(self.config_name, "mode")
 if self.mode not in ("creative", "survival"):
 raise Exception("Unsupported mode %s" % self.mode)

 self.limitConnections = self.config.getintdefault(self.config_name,
 "limitConnections",
 0)
 self.limitPerIP = self.config.getintdefault(self.config_name,
 "limitPerIP", 0)

 self.vane = WeatherVane(self)

 def startFactory(self):
 log.msg("Initializing factory for world '%s'..." % self.name)

 # Get our plugins set up.
 self.register_plugins()

 log.msg("Starting world...")
 self.world.start()

 log.msg("Starting timekeeping...")
 self.timestamp = reactor.seconds()
 self.time = self.world.level.time
 self.update_season()
 self.time_loop = LoopingCall(self.update_time)
 self.time_loop.start(2)

 log.msg("Starting entity updates...")

 # Start automatons.
 for automaton in self.automatons:
 automaton.start()

 self.chat_consumers = set()

 log.msg("Factory successfully initialized for world '%s'!" % self.name)

[docs] def stopFactory(self):
 """
 Called before factory stops listening on ports. Used to perform
 shutdown tasks.
 """

 log.msg("Shutting down world...")

 # Stop automatons. Technically, they may not actually halt until their
 # next iteration, but that is close enough for us, probably.
 # Automatons are contracted to not access the world after stop() is
 # called.
 for automaton in self.automatons:
 automaton.stop()

 # Evict plugins as soon as possible. Can't be done before stopping
 # automatons.
 self.unregister_plugins()

 self.time_loop.stop()

 # Write back current world time. This must be done before stopping the
 # world.
 self.world.time = self.time

 # And now stop the world.
 self.world.stop()

 log.msg("World data saved!")

[docs] def buildProtocol(self, addr):
 """
 Create a protocol.

 This overriden method provides early player entity registration, as a
 solution to the username/entity race that occurs on login.
 """

 banned = self.world.serializer.load_plugin_data("banned_ips")

 # Do IP bans first.
 for ip in banned.split():
 if addr.host == ip:
 # Use KickedProtocol with extreme prejudice.
 log.msg("Kicking banned IP %s" % addr.host)
 p = KickedProtocol("Sorry, but your IP address is banned.")
 p.factory = self
 return p

 # We are ignoring values less that 1, but making sure not to go over
 # the connection limit.
 if (self.limitConnections
 and len(self.protocols) >= self.limitConnections):
 log.msg("Reached maximum players, turning %s away." % addr.host)
 p = KickedProtocol("The player limit has already been reached."
 " Please try again later.")
 p.factory = self
 return p

 # Do our connection-per-IP check.
 if (self.limitPerIP and
 self.connectedIPs[addr.host] >= self.limitPerIP):
 log.msg("At maximum connections for %s already, dropping." % addr.host)
 p = KickedProtocol("There are too many players connected from this IP.")
 p.factory = self
 return p
 else:
 self.connectedIPs[addr.host] += 1

 # If the player wasn't kicked, let's continue!
 log.msg("Starting connection for %s" % addr)
 p = self.protocol(self.config, self.name)
 p.host = addr.host
 p.factory = self

 self.register_entity(p)

 # Copy our hooks to the protocol.
 p.register_hooks()

 return p

[docs] def teardown_protocol(self, protocol):
 """
 Do internal bookkeeping on behalf of a protocol which has been
 disconnected.

 Did you know that "bookkeeping" is one of the few words in English
 which has three pairs of double letters in a row?
 """

 username = protocol.username
 host = protocol.host

 if username in self.protocols:
 del self.protocols[username]

 self.connectedIPs[host] -= 1

[docs] def set_username(self, protocol, username):
 """
 Attempt to set a new username for a protocol.

 :returns: whether the username was changed
 """

 # If the username's already taken, refuse it.
 if username in self.protocols:
 return False

 if protocol.username in self.protocols:
 # This protocol's known under another name, so remove it.
 del self.protocols[protocol.username]

 # Set the username.
 self.protocols[username] = protocol
 protocol.username = username

 return True

[docs] def register_plugins(self):
 """
 Setup plugin hooks.
 """

 log.msg("Registering client plugin hooks...")

 plugin_types = {
 "automatons": IAutomaton,
 "generators": ITerrainGenerator,
 "open_hooks": IWindowOpenHook,
 "click_hooks": IWindowClickHook,
 "close_hooks": IWindowCloseHook,
 "pre_build_hooks": IPreBuildHook,
 "post_build_hooks": IPostBuildHook,
 "pre_dig_hooks": IPreDigHook,
 "dig_hooks": IDigHook,
 "sign_hooks": ISignHook,
 "use_hooks": IUseHook,
 }

 packs = self.config.getlistdefault(self.config_name, "packs", [])
 try:
 packs = [available_packs[pack] for pack in packs]
 except KeyError, e:
 raise Exception("Couldn't find plugin pack %s" % e.args)

 for t, interface in plugin_types.iteritems():
 l = self.config.getlistdefault(self.config_name, t, [])

 # Grab extra plugins from the pack. Order doesn't really matter
 # since the plugin loader sorts things anyway.
 for pack in packs:
 if t in pack:
 l += pack[t]

 # Hax. :T
 if t == "generators":
 plugins = retrieve_sorted_plugins(interface, l)
 elif issubclass(interface, ISortedPlugin):
 plugins = retrieve_sorted_plugins(interface, l, factory=self)
 else:
 plugins = retrieve_named_plugins(interface, l, factory=self)
 log.msg("Using %s: %s" % (t.replace("_", " "),
 ", ".join(plugin.name for plugin in plugins)))
 setattr(self, t, plugins)

 # Deal with seasons.
 seasons = self.config.getlistdefault(self.config_name, "seasons", [])
 for pack in packs:
 if "seasons" in pack:
 seasons += pack["seasons"]
 self.seasons = []
 if "spring" in seasons:
 self.seasons.append(Spring())
 if "winter" in seasons:
 self.seasons.append(Winter())

 # Assign generators to the world pipeline.
 self.world.pipeline = self.generators

 # Use hooks have special funkiness.
 uh = self.use_hooks
 self.use_hooks = defaultdict(list)
 for plugin in uh:
 for target in plugin.targets:
 self.use_hooks[target].append(plugin)

 def unregister_plugins(self):
 log.msg("Unregistering client plugin hooks...")

 for name in [
 "automatons",
 "generators",
 "open_hooks",
 "click_hooks",
 "close_hooks",
 "pre_build_hooks",
 "post_build_hooks",
 "pre_dig_hooks",
 "dig_hooks",
 "sign_hooks",
 "use_hooks",
]:
 delattr(self, name)

[docs] def create_entity(self, x, y, z, name, **kwargs):
 """
 Spawn an entirely new entity at the specified block coordinates.

 Handles entity registration as well as instantiation.
 """

 bigx = x // 16
 bigz = z // 16

 location = Location.at_block(x, y, z)
 entity = entities[name](eid=0, location=location, **kwargs)

 self.register_entity(entity)

 d = self.world.request_chunk(bigx, bigz)

 @d.addCallback
 def cb(chunk):
 chunk.entities.add(entity)
 log.msg("Created entity %s" % entity)
 # XXX Maybe just send the entity object to the manager instead of
 # the following?
 if hasattr(entity,'loop'):
 self.world.mob_manager.start_mob(entity)

 return entity

[docs] def register_entity(self, entity):
 """
 Registers an entity with this factory.

 Registration is perhaps too fancy of a name; this method merely makes
 sure that the entity has a unique and usable entity ID. In particular,
 this method does *not* make the entity attached to the world, or
 advertise its existence.
 """

 if not entity.eid:
 self.eid += 1
 entity.eid = self.eid

 log.msg("Registered entity %s" % entity)

[docs] def destroy_entity(self, entity):
 """
 Destroy an entity.

 The factory doesn't have to know about entities, but it is a good
 place to put this logic.
 """

 bigx, bigz = entity.location.pos.to_chunk()

 d = self.world.request_chunk(bigx, bigz)

 @d.addCallback
 def cb(chunk):
 chunk.entities.discard(entity)
 chunk.dirty = True
 log.msg("Destroyed entity %s" % entity)

[docs] def update_time(self):
 """
 Update the in-game timer.

 The timer goes from 0 to 24000, both of which are high noon. The clock
 increments by 20 every second. Days are 20 minutes long.

 The day clock is incremented every in-game day, which is every 20
 minutes. The day clock goes from 0 to 360, which works out to a reset
 once every 5 days. This is a Babylonian in-game year.
 """

 t = reactor.seconds()
 self.time += 20 * (t - self.timestamp)
 self.timestamp = t

 days, self.time = divmod(self.time, 24000)

 if days:
 self.day += days
 self.day %= 360
 self.update_season()

 def broadcast_time(self):
 packet = make_packet("time", timestamp=int(self.time))
 self.broadcast(packet)

[docs] def update_season(self):
 """
 Update the world's season.
 """

 all_seasons = sorted(self.seasons, key=lambda s: s.day)

 # Get all the seasons that we have past the start date of this year.
 # We are looking for the season which is closest to our current day,
 # without going over; I call this the Price-is-Right style of season
 # handling. :3
 past_seasons = [s for s in all_seasons if s.day <= self.day]
 if past_seasons:
 # The most recent one is the one we are in
 self.world.season = past_seasons[-1]
 elif all_seasons:
 # We haven't past any seasons yet this year, so grab the last one
 # from 'last year'
 self.world.season = all_seasons[-1]
 else:
 # No seasons enabled.
 self.world.season = None

[docs] def chat(self, message):
 """
 Relay chat messages.

 Chat messages are sent to all connected clients, as well as to anybody
 consuming this factory.
 """

 for consumer in self.chat_consumers:
 consumer.write((self, message))

 # Prepare the message for chat packeting.
 for user in self.protocols:
 message = message.replace(user, chat_name(user))
 message = sanitize_chat(message)

 log.msg("Chat: %s" % message.encode("utf8"))

 data = json.dumps({"text": message})

 packet = make_packet("chat", data=data)
 self.broadcast(packet)

[docs] def broadcast(self, packet):
 """
 Broadcast a packet to all connected players.
 """

 for player in self.protocols.itervalues():
 player.transport.write(packet)

[docs] def broadcast_for_others(self, packet, protocol):
 """
 Broadcast a packet to all players except the originating player.

 Useful for certain packets like player entity spawns which should
 never be reflexive.
 """

 for player in self.protocols.itervalues():
 if player is not protocol:
 player.transport.write(packet)

[docs] def broadcast_for_chunk(self, packet, x, z):
 """
 Broadcast a packet to all players that have a certain chunk loaded.

 `x` and `z` are chunk coordinates, not block coordinates.
 """

 for player in self.protocols.itervalues():
 if (x, z) in player.chunks:
 player.transport.write(packet)

[docs] def scan_chunk(self, chunk):
 """
 Tell automatons about this chunk.
 """

 # It's possible for there to be no automatons; this usually means that
 # the factory is shutting down. We should be permissive and handle
 # this case correctly.
 if hasattr(self, "automatons"):
 for automaton in self.automatons:
 automaton.scan(chunk)

[docs] def flush_chunk(self, chunk):
 """
 Flush a damaged chunk to all players that have it loaded.
 """

 if chunk.is_damaged():
 packet = chunk.get_damage_packet()
 for player in self.protocols.itervalues():
 if (chunk.x, chunk.z) in player.chunks:
 player.transport.write(packet)
 chunk.clear_damage()

[docs] def flush_all_chunks(self):
 """
 Flush any damage anywhere in this world to all players.

 This is a sledgehammer which should be used sparingly at best, and is
 only well-suited to plugins which touch multiple chunks at once.

 In other words, if I catch you using this in your plugin needlessly,
 I'm gonna have a chat with you.
 """

 for chunk in self.world._cache.iterdirty():
 self.flush_chunk(chunk)

[docs] def give(self, coords, block, quantity):
 """
 Spawn a pickup at the specified coordinates.

 The coordinates need to be in pixels, not blocks.

 If the size of the stack is too big, multiple stacks will be dropped.

 :param tuple coords: coordinates, in pixels
 :param tuple block: key of block or item to drop
 :param int quantity: number of blocks to drop in the stack
 """

 x, y, z = coords

 while quantity > 0:
 entity = self.create_entity(x // 32, y // 32, z // 32, "Item",
 item=block, quantity=min(quantity, 64))

 packet = entity.save_to_packet()
 packet += make_packet("create", eid=entity.eid)
 self.broadcast(packet)

 quantity -= 64

[docs] def players_near(self, player, radius):
 """
 Obtain other players within a radius of a given player.

 Radius is measured in blocks.
 """

 radius *= 32

 for p in self.protocols.itervalues():
 if p.player == player:
 continue

 distance = player.location.distance(p.location)
 if distance <= radius:
 yield p.player

 def pauseProducing(self):
 pass

 def resumeProducing(self):
 pass

 def stopProducing(self):
 pass

 © Copyright 2010, Corbin Simpson, Derrick Dymock, & Justin Noah.
 Created using Sphinx 1.2.2.

_modules/bravo/utilities/coords.html

 Navigation

 		
 index

 		
 modules |

 		Bravo 2.0 documentation »

 		Module code »

 Source code for bravo.utilities.coords

"""
Utilities for coordinate handling and munging.
"""

from itertools import product
from math import floor, ceil

CHUNK_HEIGHT = 256
"""
The total height of chunks.
"""

[docs]def polar_round_vector(vector):
 """
 Rounds a vector towards zero
 """
 if vector[0] >= 0:
 calculated_x = floor(vector[0])
 else:
 calculated_x = ceil(vector[0])

 if vector[1] >= 0:
 calculated_y = floor(vector[1])
 else:
 calculated_y = ceil(vector[1])

 if vector[2] >= 0:
 calculated_z = floor(vector[2])
 else:
 calculated_z = ceil(vector[2])

 return calculated_x, calculated_y, calculated_z

[docs]def split_coords(x, z):
 """
 Split a pair of coordinates into chunk and subchunk coordinates.

 :param int x: the X coordinate
 :param int z: the Z coordinate

 :returns: a tuple of the X chunk, X subchunk, Z chunk, and Z subchunk
 """

 first, second = divmod(int(x), 16)
 third, fourth = divmod(int(z), 16)

 return first, second, third, fourth

[docs]def taxicab2(x1, y1, x2, y2):
 """
 Return the taxicab distance between two blocks.
 """

 return abs(x1 - x2) + abs(y1 - y2)

[docs]def taxicab3(x1, y1, z1, x2, y2, z2):
 """
 Return the taxicab distance between two blocks, in three dimensions.
 """

 return abs(x1 - x2) + abs(y1 - y2) + abs(z1 - z2)

[docs]def adjust_coords_for_face(coords, face):
 """
 Adjust a set of coords according to a face.

 The face is a standard string descriptor, such as "+x".

 The "noop" face is supported.
 """

 x, y, z = coords

 if face == "-x":
 x -= 1
 elif face == "+x":
 x += 1
 elif face == "-y":
 y -= 1
 elif face == "+y":
 y += 1
 elif face == "-z":
 z -= 1
 elif face == "+z":
 z += 1

 return x, y, z

XZ = list(product(range(16), repeat=2))
"""
The xz-coords for a chunk.
"""

[docs]def iterchunk():
 """
 Yield an iterable of x, z, y coordinates for an entire chunk.
 """

 return product(range(16), range(16), range(256))

[docs]def iterneighbors(x, y, z):
 """
 Yield an iterable of neighboring block coordinates.

 The first item in the iterable is the original coordinates.

 Coordinates with invalid Y values are discarded automatically.
 """

 for (dx, dy, dz) in (
 (0, 0, 0),
 (0, 0, 1),
 (0, 0, -1),
 (0, 1, 0),
 (0, -1, 0),
 (1, 0, 0),
 (-1, 0, 0)):
 if 0 <= y + dy < CHUNK_HEIGHT:
 yield x + dx, y + dy, z + dz

[docs]def itercube(x, y, z, r):
 """
 Yield an iterable of coordinates in a cube around a given block.

 Coordinates with invalid Y values are discarded automatically.
 """

 bx = x - r
 tx = x + r + 1
 by = max(y - r, 0)
 ty = min(y + r + 1, CHUNK_HEIGHT)
 bz = z - r
 tz = z + r + 1

 return product(xrange(bx, tx), xrange(by, ty), xrange(bz, tz))

 © Copyright 2010, Corbin Simpson, Derrick Dymock, & Justin Noah.
 Created using Sphinx 1.2.2.

_modules/bravo/utilities/decos.html

 Navigation

 		
 index

 		
 modules |

 		Bravo 2.0 documentation »

 		Module code »

 Source code for bravo.utilities.decos

from functools import wraps
from time import time

"""
Decorators.
"""

timers = {}

[docs]def timed(f):
 """
 Print out timing statistics on a given callable.

 Intended largely for debugging; keep this in the tree for profiling even
 if it's not currently wired up.
 """

 timers[f] = (0, 0)

 @wraps(f)
 def deco(*args, **kwargs):
 before = time()
 retval = f(*args, **kwargs)
 after = time()
 count, average = timers[f]
 # MMA
 average = (9 * average + after - before) / 10
 count += 1
 if not count % 10:
 print "Average time for %s: %dms" % (f, average * 1000)
 timers[f] = (count, average)
 return retval
 return deco

 © Copyright 2010, Corbin Simpson, Derrick Dymock, & Justin Noah.
 Created using Sphinx 1.2.2.

_modules/bravo/utilities/bits.html

 Navigation

 		
 index

 		
 modules |

 		Bravo 2.0 documentation »

 		Module code »

 Source code for bravo.utilities.bits

from array import array
from itertools import izip_longest

[docs]def grouper(n, iterable, fillvalue=None):
 "grouper(3, 'ABCDEFG', 'x') --> ABC DEF Gxx"
 args = [iter(iterable)] * n
 return izip_longest(fillvalue=fillvalue, *args)

"""
Bit-twiddling devices.
"""

[docs]def unpack_nibbles(l):
 """
 Unpack bytes into pairs of nibbles.

 Nibbles are half-byte quantities. The nibbles unpacked by this function
 are returned as unsigned numeric values.

 >>> unpack_nibbles("a")
 [6, 1]
 >>> unpack_nibbles("nibbles")
 [6, 14, 6, 9, 6, 2, 6, 2, 6, 12, 6, 5, 7, 3]

 :param list l: bytes

 :returns: list of nibbles
 """

 data = array("B")
 for d in l:
 i = ord(d)
 data.append(i & 0xf)
 data.append(i >> 4)
 return data

[docs]def pack_nibbles(a):
 """
 Pack pairs of nibbles into bytes.

 Bytes are returned as characters.

 :param `array` a: nibbles to pack

 :returns: packed nibbles as a string of bytes
 """

 packed = array("B",
 (((y & 0xf) << 4) | (x & 0xf) for x, y in grouper(2, a)))
 return packed.tostring()

 © Copyright 2010, Corbin Simpson, Derrick Dymock, & Justin Noah.
 Created using Sphinx 1.2.2.

