

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Bravo 1.7 documentation

Bravo

Contents:

	FAQ
	Basics

	Configuring

	Errors

	Credits

	Features
	Standard features

	Extended features

	Plugins
	Authenticators

	Terrain generators

	Seasons

	Extending Bravo
	Asynchronous Ideas

	Exocet and You

	The Flexibility of Commands

	Differences
	Chunks

	Inventory

	Minecarts

	How to administer Bravo
	Configuration

	Plugin Data Files

	Web Service
	Configuration

	Philosophy
	Design Decisions

	Versioning

	Noise
	Probability

	Core
	blocks – Block descriptions

	chunk – Chunk data structures

	entity – Entities

	factories – Twisted factories

	ibravo – Interfaces

	location – Locations

	packets – Packet serializers

	plugin – Plugin loader

	protocols – Twisted protocols

	stdio – Console support

	world – Worlds

	Auxiliary
	simplex – Simplex noise generation

	utilities – Helper functions

	Tools
	Chunkbench

	Jsondump

	NBTdump

	Noiseview

	parser-cli

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2010, Corbin Simpson & Derrick Dymock.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	1.9

 	1.8.1

 	1.8

 	1.7.2

 	1.7.1

 	1.7

 	1.6.1

 	1.6

 	1.5

 	1.4

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Bravo 1.7 documentation

FAQ

Basics

	Why are you doing this? What’s wrong with the official Alpha server?

	Plenty. The biggest architectural mistake is the choice of dozens of threads
instead of NIO and an asynchronous event-driven model, but there are other
problems as well.

	Are you implying that the official Alpha server is bad?

	Yes. As previous versions of this FAQ have stated, Notch is a cool guy, but
the official server is bad.

	Are you going to make an open-source client? That would be awesome!

	The server is free, but the client is not. Accordingly, we are not pursuing
an open-source client at this time. If you want to play Alpha, you should pay
for it. There’s already enough Minecraft piracy going on; we don’t feel like
being part of the problem. That said, Bravo’s packet parser and networking
tools could be used in a client; the license permits it, after all.

	Where did the docs go?

	We contribute to the Minecraft Collective’s wiki at
http://mc.kev009.com/wiki/ now, since it allows us to share data faster. All
general Minecraft data goes to that wiki. Bravo-specific docs are shipped in
ReST form, and a processed Sphinx version is available online at
http://www.docs.bravoserver.org/.

	Why did you make design decision <X>?

	There’s an entire page dedicated to this in the documentation. Look at
docs/philosophy.rst or http://www.docs.bravoserver.org/philosophy.html.

	It doesn’t install? Okay, maybe it installed, but I’m having issues!

	On Freenode IRC (irc.freenode.net), #bravo is dedicated to Bravo development
and assistance, and #mcdevs is a more general channel for all custom
Minecraft development. You can generally get help from those channels. If you
think you have found a bug, you can directly report it on the Github issue
tracker as well.

Please, please, please read the installation instructions first, as well as
the comments in bravo.ini.example. I did not type them out so that they could
be ignored. :3

Configuring

	My world is snowy. I didn’t want this.

	In bravo.ini, change your seasons list to exclude winter. A possible
incantation might be the following:

seasons = *, -winter

Errors

I get lots of RuntimeErrors from Exocet while loading things like
bravo.parameters, xml.sax, and twisted.internet.

Those are harmless.

Exocet is very, very strict about imports, and in fact, it is stricter than
the standard importer. This means that Exocet will warn about modules which
try to do weird or tricky things during imports. The warnings might be
annoying, but they aren’t indicative of anything going wrong.

	I have an error involving construct!

	Install Construct.

	I have an error involving JSON!

	If you update to a newer Bravo, you won’t need JSON support.

	I have an error involving IRC/AMP/ListOf!

	Your Twisted is too old. You really do need Twisted 10.1 or newer.

	I have an error TypeError: an integer is required when starting Bravo!

	Is your Twisted 10.1 or older? This error could be caused by your Twisted not
being 10.2 or newer.

Credits

	Who are you guys, anyway?

	Corbin Simpson (MostAwesomeDude) is the main coder. Derrick Dymock (Ac-town)
is the visionary and provider of network traffic dumps. Ben Kero and Mark
Harris are the reluctant testers and bug-reporters. The Minecraft Coalition
has been an invaluable forum for discussion.

 Copyright 2010, Corbin Simpson & Derrick Dymock.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	1.9

 	1.8.1

 	1.8

 	1.7.2

 	1.7.1

 	1.7

 	1.6.1

 	1.6

 	1.5

 	1.4

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Bravo 1.7 documentation

Features

Bravo’s extensible design means that there are many different plugins and
features. Since most servers do not have an extensive or exhaustive list of
the various plugins that they include, one is provided here for Bravo.

Standard features

These features are found in official, Mojang-sponsored, unmodified servers.

Console

Bravo provides a small, plain console suitable for piping input and output, as
well as interactive sessions.

Login

Bravo supports the two login methods supported by the Mojang-sponsored client:
offline authentication and online authentication.

Geometry

Bravo understands how to manipulate and transfer geometry. In addition, Bravo
can read and write the NBT disk format.

Time

Bravo fully implements the in-game day and night. Bravo’s days are exactly 20
minutes long.

Entities

Bravo understands the concept of entities, and is able to track the following
kinds of entities:

	Players

	Pickups

	Tiles

Tiles

Bravo understands the following tiles:

	Chests

	Signs

Inventory

Bravo provides server-side inventory handling.

Physics

Bravo simulates physics, including the behaviors of sand, gravel, water, and
lava.

Extended features

Bravo provides many things not in other servers. While a strict comparison of
other open-source servers is impossible due to the speedy rate at which they
are changing, the features that separate Bravo from the Mojang-sponsored
server are listed here.

Console

Bravo ships with a fancy console which supports readline-like editing
features.

Time

Bravo implements an in-game year of 360 in-game days.

Plugins

Bravo supports several different types of plugins. For more information, see
Plugins.

 Copyright 2010, Corbin Simpson & Derrick Dymock.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	1.9

 	1.8.1

 	1.8

 	1.7.2

 	1.7.1

 	1.7

 	1.6.1

 	1.6

 	1.5

 	1.4

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Bravo 1.7 documentation

Plugins

Bravo is highly configurable and extensible. The plugins shipped with Bravo
are listed here, for convenience.

Authenticators

Offline

Offline authentication does no checking against the official minecraft.net
server, so it can be used when minecraft.net is down or the network is
unreachable for any reason. On the downside, it provides no actual security.

Online

Online authentication is the traditional authentication with minecraft.net.

Password

Password authentication is an experimental authentication scheme which
directly authenticates clients against a server without consulting
minecraft.net or any other central authority. However, it is not correctly
implemented in the Notchian client, and will not work with that client.

Terrain generators

The following terrain generators may be added to the generators setting
in your bravo.ini under the [world] section. The order in which
these appear in the list is not important.

Beaches

Generates simple beaches.

Beaches are areas of sand around bodies of water. This generator will form
beaches near all bodies of water regardless of size or composition; it
will form beaches at large seashores and frozen lakes. It will even place
beaches on one-block puddles.

Boring

Generates boring slabs of flat stone.

Grass

Grows grass on exposed dirt.

Caves

Carves caves and seams out of terrain.

Cliffs

Generates sheer cliffs.

Complex

Generates islands of stone and other ridiculous things.

Erosion

Erodes stone surfaces into dirt.

Float

Rips chunks out of the map, to create surreal chunks of floating land.

Safety

Generates terrain features essential for the safety of clients, such as the
indestructible bedrock at Y = 0.

Warning

Removing this generator will permit players to dig through the
bottom of the world.

Simplex

Generates organic-looking, continuously smooth terrain.

Saplings

Plants saplings at relatively silly places around the map.

Note

This generator only places saplings, and is not responsible for the
growth of trees over time. The trees automaton should be used for
ensuring that trees will grow.

Ore

Places ores and clay.

Watertable

Creates a flat water table half-way up the map (Y = 64).

Seasons

Bravo’s years are 360 days long, with each day being 20 minutes long. For
those who would like seasons, the following seasons be added to the
seasons setting in your bravo.ini under the [world] section.

Winter

Causes water to freeze, and snow to be placed on certain block types. Winter
starts on the first day of the year.

Spring

Thaws frozen water and removes snow as that was placed during Winter. Spring
starts on the 90th day of the the year.

 Copyright 2010, Corbin Simpson & Derrick Dymock.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	1.9

 	1.8.1

 	1.8

 	1.7.2

 	1.7.1

 	1.7

 	1.6.1

 	1.6

 	1.5

 	1.4

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Bravo 1.7 documentation

Extending Bravo

Bravo is designed to be highly extensible. This document is a short guide to
the basics of writing extension code for Bravo.

Asynchronous Ideas

Bravo, being built on Twisted, has inherited most of the concepts of
asynchronous control flow from Twisted, and uses them liberally. Nearly every
plugin method is permitted to return a Deferred in place of their actual
return value.

Exocet and You

Bravo uses a library called Exocet to help it with plugin discovery. Exocet is
a remarkably powerful library which customizes the way imports are done.
Instead of importing plugins by name, or package, Exocet can be asked to
load a plugin. When Exocet loads plugins, all import statements in the
plugin are transformed to go through Exocet, so Exocet (and by extension,
Bravo) can modify what your plugins import.

So, what does this mean for you, the plugin author? Well, there are a few
things to keep in mind...

Blacklisting

Exocet can blacklist imports, preventing them from actually happening and
keeping your plugin from loading. Bravo uses this ability to blacklist a
smattering of standard library modules from plugins.

Some of these blacklisted modules are chosen for security reasons, while
others are chosen because they will cause slow or buggy behavior. If you think
you absolutely need one of these modules, consider carefully whether the
listed reason for it being on the blacklist is relevant and reasonable.

The following modules are blacklisted becuse they can be used to crash the
server:

	ctypes

The following modules are blacklisted because they can be used to examine the
internals of the server or bypass Exocet’s protections:

	gc

	imp

	inspect

The following modules are blacklisted because they conflict with, or are slow
compared to, Twisted’s own systems:

	asyncore

	multiprocessing

	socket

	subprocess

	thread

	threading

Parameters

Exocet supports parameterization of imports. Specifically, imports of modules
which don’t actually exist can be rewritten to provide faked, or
synthetic, modules. For an example, consider the following snippet of
code:

from bravo.parameters import example

This snippet brings the example name into the global namespace for the
module, obviously, but what might not be obvious is that bravo.parameters
doesn’t actually exist! It is a synthetic module created by the plugin loader.

A word of warning: If the plugin loader decides not to offer any parameters to
plugins, then your plugin will not load at that time. This is important
because it means that you probably should not try to do things like from
bravo import parameters. Import exactly the names you need to import; don’t
have imports which do nothing.

Of course, if you want to have a name available, but it is ultimately
optional, the following is legal and works fine:

try:
 from bravo.parameters import example
except ImportError:
 example = None

The following parameters might be available:

	factory: The factory owning this instance of the plugin.

The Flexibility of Commands

Bravo’s command interface is designed to feel like a regular class instead of
a specialized plugin, while still providing lots of flexibility to authors.
Let’s look at a simple plugin:

class Hello(object):
 """
 Say hello to the world.
 """

 implements(IChatCommand)

 def chat_command(self, username, parameters):
 greeting = "Hello, %s!" % username
 yield greeting

 name = "hello"
 aliases = tuple()
 usage = ""

This command is a simple greeter which merely echoes a salutation to its
caller. It is an IChatCommand, so it only works in the in-game chat, but
that should not be a problem, since there is an internal, invisible adaptation
from IChatCommand to IConsoleCommand. This means that chat commands
are also valid console commands, without any action on your part! Pretty cool,
huh?

So, how does this plugin actually work? Well, nearly every line of this plugin
is required. The first thing you’ll notice is that this plugin has a class
docstring. Docstrings on commands are required; the docstring is used to
provide help text. As with all chat commands, this plugin
implements(IChatCommand), which lets it be discovered as a command.

The plugin implements the required chat_command(username, parameters),
which will be called when a player uses the command. An interesting thing to
note is that this plugin yields its return value; commands may return any
iterable of lines, including a generator!

Finally, the plugin finishes with more required interface attributes: a name
which will be used to call the command, a (possibly empty) list of aliases
which can also be used to call the command, and a (possibly empty) usage
string.

 Copyright 2010, Corbin Simpson & Derrick Dymock.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	1.9

 	1.8.1

 	1.8

 	1.7.2

 	1.7.1

 	1.7

 	1.6.1

 	1.6

 	1.5

 	1.4

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Bravo 1.7 documentation

Differences

Bravo was written from the ground up and doesn’t inherit code from any other
Minecraft project. This means that it sometimes behaves very differently, in
subtle and obvious ways, from other servers.

The “Notchian” server is the server authored by Notch and distributed by
Mojang as a companion to the Mojang-sponsored client.

Chunks

The Notchian server maintains a floating pattern above players, centered on
the chunk the player is standing in. This pattern is always a square of
chunks, 21 chunks to a side. This results in a total of 441 chunks being
deployed to the client at any one time. All 441 chunks are deployed before the
client is permitted to interact with the world.

Bravo does something slightly different; while Bravo also has a floating
pattern above each of its players, the pattern is a circle with the same
diameter as the Notchian server’s square. This effectively results in a circle
of 315 chunks deployed to the client; a savings of nearly 30% in memory and
bandwidth for chunks. Additionally, only the 50 closest chunks are deployed
before the client is spawned and permitted to interact with the world.

Inventory

The Notchian viewpoint of items in the inventory is as a list of slots. Each
slot holds an item, identified by a single number, and can hold 1 to 64
instances of that item. Some items can be damaged. Some items are completely
different depending on their damage.

Bravo views item identifiers as a composite key of a primary and secondary
identifier. In this scheme, items with identical primary keys and different
secondary keys are properly segregated, and item damage is stored as the
secondary key, keeping items with differing amounts of damage from occupying
the same slot. This avoids an entire class of bugs, where items can be
stacked and unstacked to change the amount of damage on them, which have
historically plagued the Notchian codebase.

Minecarts

Bravo unlike the Notchian server, permits minecraft tracks to be placed on
glass.

 Copyright 2010, Corbin Simpson & Derrick Dymock.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	1.9

 	1.8.1

 	1.8

 	1.7.2

 	1.7.1

 	1.7

 	1.6.1

 	1.6

 	1.5

 	1.4

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Bravo 1.7 documentation

How to administer Bravo

While Bravo is not a massively complex piece of software on its own, the
plugins and features that are available in Bravo can be overwhelming and
daunting. This page is a short but comprehensive overview for new
administrators looking to set up and run Bravo instances.

Configuration

Bravo uses a single configuration file, bravo.ini, for all of its settings.
The file is in standard INI format. Note that this is not the extended INI
format of Windows 32-bit configuration settings, nor the format of PHP’s
configuration files. Specifically, bravo.ini is parsed and written using
Python’s ConfigParser [http://docs.python.org/library/configparser.html#ConfigParser.ConfigParser] class.

An example configuration file is provided as bravo.ini.example,
and is a good starting point for new configurations.

bravo.ini should live in one of three locations:

	/etc/bravo

	~/.bravo

	The working directory

All three locations will be checked, in that order, and more-recently-loaded
configurations will override configurations in previous directories. For
sanity purposes, it is highly encouraged to either use /etc/bravo
if running as root, or ~/.bravo if running as a normal user.

The configuration file is divided up into sections. Each section starts
with a name, like [section name], and only ends when another section
starts, or at the end of the file.

A note on lists

Bravo uses long lists of named plugins, and has special facilities for
handling them.

If an option takes a list of choices, then the choices should be
comma-separated. They may be on the same line, or multiple lines; spaces do
not matter much. (As an aside, spaces matter inside plugin names, but
Bravo’s plugin collection uses only underscores, not spaces, so this should
not matter. If it does, bug your plugin authors to fix their code.)

Additionally, to simplify plugin naming, many plugin configuration options
support wildcards. Currently, the “*” wildcard is supported. A “*”
anywhere in an option list will be internally expanded to all of the
available choices for that option.

The special notation “-” before a name will forcibly remove that name from a
list.

Putting everything together, an example set of configurations might look like
this:

some_option = first, second, third
some_newline_option = first, second,
 third, fourth
some_wildcard_option = *
some_picky_option = *, -fifth
another_picky_option = -fifth, -sixth, *

General settings

These settings apply to all of Bravo. This section is named [bravo].

	fancy_console

	Whether to enable the fancy console in standalone mode. This setting will
be overridden if the fancy console cannot be set up; e.g. on Win32
systems.

	ampoule

	Whether asynchronous chunk generators will be used. This can result in
massive improvements to Bravo’s latency and responsiveness, and defaults
to enabled. This setting will be overridden if Ampoule cannot be found.

World settings

These settings only apply to a specific world. Worlds are created by starting
the section of the configuration with “world”; an example world section might
start with [world example].

	port

	Which port to run on. Must be a number between 0 and 65535. Note that
ports below 1024 are typically privileged and cannot be bound by non-root
users.

	host

	The hostname to bind to. Defaults to no hostname, which is usually correct
for most people. If you don’t know what this is, you don’t need it.

	url

	The path to the folder to use for loading and saving world data. Must be a
valid URL.

	authenticator

	Which authentication plugin to use.

	serializer

	Which serializer to use for saving worlds. Currently, the “alpha” and
“beta” serializers are provided for MC Alpha and MC Beta compatibility,
respectively.

	build_hooks

	Which build hooks to enable. This is a list of plugins; see above.

	dig_hooks

	Which dig hooks to enable. This is a list of plugins.

	generators

	Which Terrain generators to use. This is a list of plugins.

	seasons

	Which Seasons to enable. This, too, is a list of plugins.

Automatons

Automatons marked with (Beta) provide Beta compatibility and should probably
be enabled.

	lava: Enable physics for placed lava springs. (Beta)

	trees: Turn planted saplings into trees. (Beta)

	water: Enable physics for placed water springs. (Beta)

Build hooks

Hooks marked with (Beta) provide Beta compatibility and should probably be
enabled.

	alpha_sand_gravel: Make sand and gravel fall as if affected by gravity.
(Beta)

	bravo_snow: Make snow fall as if affected by gravity.

	build: Enable placement of blocks from inventory onto the terrain.
(Beta)

	build_snow: Adjust things built on top of snow to replace the snow.
(Beta)

	redstone: Enable physics for placed redstone. (Beta)

	tile: Register tiles. Required for signs, furnaces, chests, etc. (Beta)

	tracks: Align minecart tracks. (Beta)

Dig hooks

	alpha_sand_gravel: Make sand and gravel fall as if affected by gravity.
(Beta)

	alpha_snow: Destroy snow when it is dug or otherwise disturbed. (Beta)

	bravo_snow: Make snow fall as if affected by gravity.

	give: Spawn pickups for blocks and items destroyed by digging. (Beta)

	lava: Enable physics for lava. (Beta)

	redstone: Enable physics for redstone. (Beta)

	torch: Destroy torches that are not attached to walls or floors. (Beta)

	tracks: Align minecart tracks. (Beta)

	water: Enable physics for water. (Beta)

Seasons

	winter: Freeze ice and cover everything in snow.

	spring: Thaw water and melt snow.

Plugin Data Files

Plugins have a standardized per-world storage. Only a few of the plugins that
ship with Bravo use this storage. Each plugin has complete autonomy over its
data files, but the file name varies depending on the serializer used to store
the world. For example, when using the Alpha and Beta world serializers, the
file name is <plugin>.dat, where <plugin> is the name of the plugin.

Bravo worlds have per-world IP ban lists. The IP ban lists are stored under
the plugin name “banned_ips”, with one IP address per line.

Warps and homes are stored in hey0 CSV format, in “warps” and “homes”.

 Copyright 2010, Corbin Simpson & Derrick Dymock.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	1.9

 	1.8.1

 	1.8

 	1.7.2

 	1.7.1

 	1.7

 	1.6.1

 	1.6

 	1.5

 	1.4

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Bravo 1.7 documentation

Web Service

Bravo comes with a simple web service which can be used to monitor the status
of your server.

Configuration

Only one web service can be defined; it uses the configuration key [web]
and has only one parameter, port, specifying the port on which to listen.
An example configuration snippet might look like this:

[web]
port = 8080

 Copyright 2010, Corbin Simpson & Derrick Dymock.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	1.9

 	1.8.1

 	1.8

 	1.7.2

 	1.7.1

 	1.7

 	1.6.1

 	1.6

 	1.5

 	1.4

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Bravo 1.7 documentation

Philosophy

Design Decisions

A design decision is a core component of building a large piece of
software. Roughly stated, it is a choice to use a certain language, library,
or methodology when constructing software. Design decisions can be
metaphysical, and affect other design decisions. This is merely a way of
talking formally and reasonably about choices made in producing Bravo.

This section is largely dedicated to members of the community that have
decided that things in Bravo are done incorrectly. While we agree with the need
of the community to constructively criticize itself, some things are not worth
debating again.

Python

Python is occasionally seen as slow compared to statically typed languages.
Some benchmarks certainly are very unflattering to Python, but we feel that
there are several advantages to Python which are too important to sacrifice:

	Rapid prototyping

	Algorithmic simplicity

	Simple types

	Twisted

Additionally, with the advent of PyPy [http://pypy.org/], the question of whether a full-fledged
Python application is too slow for consumer hardware is rapidly fading.

No Extension Modules

There are several good reasons to not ship “extension modules,” pieces of code
written in Fortran, C, or C++ which are compiled and dynamically linked
against the CPython extension API. Some of them are:

	Portability

	Python and C have different scopes of portability, and the scope of the C API
for Python is limited practically to CPython. Each module we depend on
externally has the potential to reduce the number of platforms we can
support.

	Maintainability

	C is not maintainable on the same scale as Python, even with (and, some would
argue, especially with) the extremely structured syntax required to interface
with the C API for Python. Cython is maintainable, but does not solve the
other problems.

	Dependencies

	Somebody has to provide binary versions of the modules for all the people
without compilers. Practically, this does mean that Win32 users need to have
binaries provided for them, as long as our thin veneer of Win32 compatibility
holds up.

	Forward-compatibility

	Frankly, extension modules are forever incompatible with the spirit of PyPy,
and require, at bare minimum, a recompile and prayer before they’ll
cooperate. This is another hurdle to jump over in the ongoing quest to make
PyPy a supported Python interpreter for the entire package.

Frankly, most extension modules aren’t worth this trouble. Extension modules
which are well-tested, ubiquitous, and actively maintained, are generally
going to be favored more than extensions which break, are hard to obtain or
compile, or are derelict.

At the moment, the only extension modules required are in the numpy package,
which has benefits far outweighing the above complaints.

I am expressly vetoing noise. In addition to the above complaints, its API
doesn’t even provide an equivalent to the pure-Python code in Bravo’s core
which it would supposedly supplant.

Twisted

Apparently, in this day and age, people are still of the opinion that Twisted [http://twistedmatrix.com/]
is too big and not necessary for speedy, relatively bug-free networking.
Nothing written here will convince these people; so, instead, I offer this
promise: If anybody contributes a patch which makes Bravo not depend on
Twisted, does not degrade its performance measureably, and does not break any
part of Bravo, then I will acknowledge and apply it.

No Threads

Threads are evil. They are not an effective concurrency model in most cases.
Tests done with offloading various parts of Bravo’s CPU-bound tasks to threads
have shown that threads are a liability in most cases, enforcing locking
overhead while providing little to no actual benefit in terms of speed and
latency.

However, as a concession to the CPU-centric nature of geometry generation,
Bravo will offload all geometry generation to separate processes when Ampoule
is available and enabled in its configuration file, which does yield massive
improvements to server interactivity.

Extreme Extensibility

Bravo is remarkably extensible. Pieces of functionality that are considered
essential or “core” are treated as plugins and dynamically loaded on server
startup. Actual services are dynamically started and stopped as needed.
Bravo’s core does not even provide Minecraft services by default.

The reason for this extreme plugin approach is that Bravo was designed to be
easily totally convertible; in theory, a proper set of configuration files and
external plugins can completely change Bravo’s behavior.

Versioning

Bravo’s version numbers are not very complex. Here’s a quick breakdown.

Major version numbers indicate the core structure of Bravo. A major version
bump probably means that lots of modules changed names, or that something
significant was added. In practice, this probably means that an entirely new
set of protocols was added. (The next major version bump will probably be for
InfiniCraft support.)

Minor version numbers are for changes to interfaces or any other change which
means that external code relying on Bravo’s API will have to be updated.

Patchlevel version numbers aren’t currently used, but probably will signify
that the release is a bugfix-only release with no significant change in
functionality.

The hope of all of this is that, given a series of releases with the same
major and minor, plugins do not have to be changed.

 Copyright 2010, Corbin Simpson & Derrick Dymock.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	1.9

 	1.8.1

 	1.8

 	1.7.2

 	1.7.1

 	1.7

 	1.6.1

 	1.6

 	1.5

 	1.4

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Bravo 1.7 documentation

Noise

Bravo, like all Minecraft terrain generators, relies heavily on randomness to
generate its terrain. In order to understand some of the design decisions in
the terrain generator, it is required to understand noise and its various
properties.

Probability

Noise’s probability distribution is not even, equal, or normal. It is
symmetric about 0, meaning that the absolute value of noise has all of the
same relative probabilities as the entire range of noise.

When binned into a histogram with 100 bins, a few bins become very large.

	Bin
	Probability

	0.00
	2.6150%

	0.49
	2.2262%

	0.59
	1.8274%

	0.43
	1.8248%

	0.42
	1.7888%

	0.58
	1.5939%

	0.48
	1.5194%

	0.41
	1.5118%

	0.18
	1.4715%

	0.24
	1.4366%

	0.54
	1.4072%

	0.22
	1.3825%

	0.50
	1.3786%

	0.44
	1.3696%

	0.26
	1.3680%

 Copyright 2010, Corbin Simpson & Derrick Dymock.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	1.9

 	1.8.1

 	1.8

 	1.7.2

 	1.7.1

 	1.7

 	1.6.1

 	1.6

 	1.5

 	1.4

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Bravo 1.7 documentation

Core

These modules comprise the core functionality of Bravo.

	blocks – Block descriptions

	chunk – Chunk data structures

	entity – Entities

	factories – Twisted factories
	MineCraft Beta factories

	InfiniCraft factories

	ibravo – Interfaces
	Interface Bases

	Plugins

	Hooks

	location – Locations

	packets – Packet serializers

	plugin – Plugin loader

	protocols – Twisted protocols
	MineCraft Beta protocols

	InfiniCraft protocols

	stdio – Console support

	world – Worlds

 Copyright 2010, Corbin Simpson & Derrick Dymock.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	1.9

 	1.8.1

 	1.8

 	1.7.2

 	1.7.1

 	1.7

 	1.6.1

 	1.6

 	1.5

 	1.4

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Bravo 1.7 documentation

 	Core

blocks – Block descriptions

The blocks module contains descriptions of blocks.

	
class bravo.blocks.Block(slot, name, secondary=0, drop=None, replace=0, ratio=1, quantity=1, dim=16, breakable=True, orientation=None)[source]

	Bases: object

A model for a block.

There are lots of rule and properties specific to different types of
blocks. This class encapsulates those properties in a singleton-style
interface, allowing many blocks to be referenced in one location.

The basic idea of this class is to provide some centralized data and
information about blocks, in order to abstract away as many special cases
as possible. In general, if several blocks all have some special behavior,
then it may be worthwhile to store data describing that behavior on this
class rather than special-casing it in multiple places.

	Parameters:	
	slot (int [http://docs.python.org/library/functions.html#int]) – The index of this block. Must be globally unique.

	name (str [http://docs.python.org/library/functions.html#str]) – A common name for this block.

	secondary (int [http://docs.python.org/library/functions.html#int]) – The metadata/damage/secondary attribute for this
block. Defaults to zero.

	drop (int [http://docs.python.org/library/functions.html#int]) – The type of block that should be dropped when an
instance of this block is destroyed. Defaults to the slot value, to
drop instances of this same type of block. To indicate that this
block does not drop anything, set to air.

	replace (int [http://docs.python.org/library/functions.html#int]) – The type of block to place in the map when
instances of this block are destroyed. Defaults to air.

	ratio (float [http://docs.python.org/library/functions.html#float]) – The probability of this block dropping a block
on destruction.

	quantity (int [http://docs.python.org/library/functions.html#int]) – The number of blocks dropped when this block
is destroyed.

	dim (int [http://docs.python.org/library/functions.html#int]) – How much light dims when passing through this kind
of block. Defaults to 16 = opaque block.

	breakable (bool [http://docs.python.org/library/functions.html#bool]) – Whether this block is diggable, breakable,
bombable, explodeable, etc. Only a few blocks actually genuinely
cannot be broken, so the default is True.

	orientation (tuple [http://docs.python.org/library/functions.html#tuple]) – The orientation data for a block. See
orientable() for an explanation. The data should be in standard
face order.

	
orientable()[source]

	Whether this block can be oriented.

Orientable blocks are positioned according to the face on which they
are built. They may not be buildable on all faces. Blocks are only
orientable if their metadata can be used to directly and uniquely
determine the face against which they were built.

Ladders are orientable, signposts are not.

	Return type:	bool

	Returns:	True if this block can be oriented, False if not.

	
orientation(face)[source]

	Retrieve the metadata for a certain orientation, or None if this block
cannot be built against the given face.

This method only returns valid data for orientable blocks; check
orientable() first.

	
class bravo.blocks.Item(slot, name, secondary=0)[source]

	Bases: object

An item.

	
bravo.blocks.armor_boots = (301, 305, 309, 313, 317)

	List of slots of boots.

	
bravo.blocks.armor_chestplates = (299, 303, 307, 311, 315)

	List of slots of chestplates.

Note that slot 303 (chainmail chestplate) is a chestplate, even though it is
not normally obtainable.

	
bravo.blocks.armor_helmets = (86, 298, 302, 306, 310, 314)

	List of slots of helmets.

Note that slot 86 (pumpkin) is a helmet.

	
bravo.blocks.armor_leggings = (300, 304, 308, 312, 316)

	List of slots of leggings.

	
bravo.blocks.blocks = {0: Block((0, 0) 'air': unbreakable, transparent), 1: Block((1, 0) 'stone': drops 1 slot 4 rate 100.00%), 2: Block((2, 0) 'grass': drops 1 slot 3 rate 100.00%), 3: Block((3, 0) 'dirt'), 4: Block((4, 0) 'cobblestone'), 5: Block((5, 0) 'wood'), 6: Block((6, 2) 'birch-sapling': transparent), 7: Block((7, 0) 'bedrock': unbreakable), 8: Block((8, 0) 'water': unbreakable, translucent (3)), 9: Block((9, 0) 'spring': unbreakable, translucent (3)), 10: Block((10, 0) 'lava': unbreakable, transparent), 11: Block((11, 0) 'lava-spring': unbreakable, transparent), 12: Block((12, 0) 'sand'), 13: Block((13, 0) 'gravel': drops 1 slot 318 rate 10.00%), 14: Block((14, 0) 'gold-ore'), 15: Block((15, 0) 'iron-ore'), 16: Block((16, 0) 'coal-ore': drops 1 slot 263 rate 100.00%), 17: Block((17, 2) 'birch-log'), 18: Block((18, 2) 'birch-leave': translucent (1), drops 1 slot 6 rate 100.00%), 19: Block((19, 0) 'sponge'), 20: Block((20, 0) 'glass': transparent, drops 1 slot 0 rate 100.00%), 21: Block((21, 0) 'lapis-lazuli-ore'), 22: Block((22, 0) 'lapis-lazuli'), 23: Block((23, 0) 'dispenser'), 24: Block((24, 0) 'sandstone'), 25: Block((25, 0) 'note-block'), 26: Block((26, 0) 'bed': transparent, drops 1 slot 355 rate 100.00%), 'redstone-ore': Block((73, 0) 'redstone-ore': drops 5 slot 331 rate 100.00%), 28: Block((28, 0) 'detector-rail'), 30: Block((30, 0) 'spider-web'), 31: Block((31, 0) 'tall-grass'), 32: Block((32, 0) 'shrub'), 35: Block((35, 15) 'black-wool'), 37: Block((37, 0) 'flower': transparent), 38: Block((38, 0) 'rose': transparent), 39: Block((39, 0) 'brown-mushroom': transparent), 40: Block((40, 0) 'red-mushroom': transparent), 'rose': Block((38, 0) 'rose': transparent), 42: Block((42, 0) 'iron'), 43: Block((43, 0) 'double-step'), 44: Block((44, 3) 'cobblestone-step': transparent), 45: Block((45, 0) 'brick'), 46: Block((46, 0) 'tnt'), 47: Block((47, 0) 'bookshelf'), 48: Block((48, 0) 'mossy-cobblestone'), 49: Block((49, 0) 'obsidian'), 50: Block((50, 0) 'torch': transparent), 'wood': Block((5, 0) 'wood'), 52: Block((52, 0) 'mob-spawner': transparent, drops 1 slot 0 rate 100.00%), 53: Block((53, 0) 'wooden-stairs': transparent), 54: Block((54, 0) 'chest'), 55: Block((55, 0) 'redstone-wire': transparent), 56: Block((56, 0) 'diamond-ore': drops 1 slot 264 rate 100.00%), 57: Block((57, 0) 'diamond'), 58: Block((58, 0) 'workbench'), 'gravel': Block((13, 0) 'gravel': drops 1 slot 318 rate 10.00%), 'spider-web': Block((30, 0) 'spider-web'), 61: Block((61, 0) 'furnace'), 62: Block((62, 0) 'burning-furnace': drops 1 slot 61 rate 100.00%), 63: Block((63, 0) 'signpost': transparent, drops 1 slot 323 rate 100.00%), 64: Block((64, 0) 'wooden-door': transparent, drops 1 slot 324 rate 100.00%), 65: Block((65, 0) 'ladder': transparent), 66: Block((66, 0) 'tracks': transparent), 'sapling': Block((6, 0) 'sapling': transparent), 68: Block((68, 0) 'wall-sign': transparent, drops 1 slot 323 rate 100.00%), 69: Block((69, 0) 'lever': transparent), 70: Block((70, 0) 'stone-plate': transparent), 71: Block((71, 0) 'iron-door': transparent, drops 1 slot 330 rate 100.00%), 72: Block((72, 0) 'wooden-plate': transparent), 73: Block((73, 0) 'redstone-ore': drops 5 slot 331 rate 100.00%), 74: Block((74, 0) 'glowing-redstone-ore': drops 5 slot 331 rate 100.00%), 75: Block((75, 0) 'redstone-torch-off': transparent), 76: Block((76, 0) 'redstone-torch': transparent), 77: Block((77, 0) 'stone-button': transparent), 78: Block((78, 0) 'snow': transparent, drops 1 slot 0 rate 100.00%), 79: Block((79, 0) 'ice': translucent (3), becomes 9, drops 1 slot 0 rate 100.00%), 80: Block((80, 0) 'snow-block'), 81: Block((81, 0) 'cactus': transparent), 82: Block((82, 0) 'clay': drops 4 slot 337 rate 100.00%), 83: Block((83, 0) 'sugar-cane': transparent, drops 1 slot 338 rate 100.00%), 84: Block((84, 0) 'jukebox'), 'iron-ore': Block((15, 0) 'iron-ore'), 86: Block((86, 0) 'pumpkin'), 87: Block((87, 0) 'brimstone'), 88: Block((88, 0) 'slow-sand'), 89: Block((89, 0) 'lightstone': drops 1 slot 348 rate 100.00%), 90: Block((90, 0) 'portal': transparent), 91: Block((91, 0) 'jack-o-lantern'), 92: Block((92, 0) 'cake': transparent), 93: Block((93, 0) 'redstone-repeater-off': transparent, drops 1 slot 356 rate 100.00%), 94: Block((94, 0) 'redstone-repeater-on': transparent, drops 1 slot 356 rate 100.00%), 95: Block((95, 0) 'locked-chest'), 96: Block((96, 0) 'trapdoor'), 'white-wool': Block((35, 0) 'white-wool'), 'iron-door': Block((71, 0) 'iron-door': transparent, drops 1 slot 330 rate 100.00%), 'crops': Block((59, 0) 'crops': transparent), 'diamond': Block((57, 0) 'diamond'), 'orange-wool': Block((35, 1) 'orange-wool'), 'diamond-ore': Block((56, 0) 'diamond-ore': drops 1 slot 264 rate 100.00%), 'glowing-redstone-ore': Block((74, 0) 'glowing-redstone-ore': drops 5 slot 331 rate 100.00%), 'tall-grass': Block((31, 0) 'tall-grass'), 'sand': Block((12, 0) 'sand'), 'clay': Block((82, 0) 'clay': drops 4 slot 337 rate 100.00%), 'lever': Block((69, 0) 'lever': transparent), 'double-step': Block((43, 0) 'double-step'), 'workbench': Block((58, 0) 'workbench'), 'fence': Block((85, 0) 'fence': transparent), 'dark-green-wool': Block((35, 13) 'dark-green-wool'), 'spring': Block((9, 0) 'spring': unbreakable, translucent (3)), 'torch': Block((50, 0) 'torch': transparent), 'sponge': Block((19, 0) 'sponge'), 'redstone-repeater-off': Block((93, 0) 'redstone-repeater-off': transparent, drops 1 slot 356 rate 100.00%), 'cactus': Block((81, 0) 'cactus': transparent), 'brown-mushroom': Block((39, 0) 'brown-mushroom': transparent), 27: Block((27, 0) 'powered-rail'), 'shrub': Block((32, 0) 'shrub'), 'birch-log': Block((17, 2) 'birch-log'), 'blue-wool': Block((35, 11) 'blue-wool'), 'ice': Block((79, 0) 'ice': translucent (3), becomes 9, drops 1 slot 0 rate 100.00%), 'lightstone': Block((89, 0) 'lightstone': drops 1 slot 348 rate 100.00%), 'stone-step': Block((44, 0) 'stone-step': transparent), 'dirt': Block((3, 0) 'dirt'), 'pumpkin': Block((86, 0) 'pumpkin'), 'red-wool': Block((35, 14) 'red-wool'), 'water': Block((8, 0) 'water': unbreakable, translucent (3)), 'cake': Block((92, 0) 'cake': transparent), 'step': Block((44, 0) 'step': transparent), 'stone': Block((1, 0) 'stone': drops 1 slot 4 rate 100.00%), 'brown-wool': Block((35, 12) 'brown-wool'), 'leaves': Block((18, 0) 'leaves': translucent (1), drops 1 slot 6 rate 11.11%), 'normal-leave': Block((18, 0) 'normal-leave': translucent (1), drops 1 slot 6 rate 100.00%), 'cyan-wool': Block((35, 9) 'cyan-wool'), 'tracks': Block((66, 0) 'tracks': transparent), 59: Block((59, 0) 'crops': transparent), 41: Block((41, 0) 'gold'), 'wooden-stairs': Block((53, 0) 'wooden-stairs': transparent), 'powered-rail': Block((27, 0) 'powered-rail'), 'jukebox': Block((84, 0) 'jukebox'), 'sugar-cane': Block((83, 0) 'sugar-cane': transparent, drops 1 slot 338 rate 100.00%), 'detector-rail': Block((28, 0) 'detector-rail'), 'normal-sapling': Block((6, 0) 'normal-sapling': transparent), 'stone-stairs': Block((67, 0) 'stone-stairs': transparent), 'pine-log': Block((17, 1) 'pine-log'), 'brimstone': Block((87, 0) 'brimstone'), 'log': Block((17, 0) 'log'), 'snow-block': Block((80, 0) 'snow-block'), 'trapdoor': Block((96, 0) 'trapdoor'), 'lava-spring': Block((11, 0) 'lava-spring': unbreakable, transparent), 'red-mushroom': Block((40, 0) 'red-mushroom': transparent), 'light-blue-wool': Block((35, 3) 'light-blue-wool'), 51: Block((51, 0) 'fire': transparent), 'bedrock': Block((7, 0) 'bedrock': unbreakable), 'pine-sapling': Block((6, 1) 'pine-sapling': transparent), 'brick': Block((45, 0) 'brick'), 'mossy-cobblestone': Block((48, 0) 'mossy-cobblestone'), 'fire': Block((51, 0) 'fire': transparent), 'signpost': Block((63, 0) 'signpost': transparent, drops 1 slot 323 rate 100.00%), 'glass': Block((20, 0) 'glass': transparent, drops 1 slot 0 rate 100.00%), 'light-green-wool': Block((35, 5) 'light-green-wool'), 'bookshelf': Block((47, 0) 'bookshelf'), 'gold': Block((41, 0) 'gold'), 'wall-sign': Block((68, 0) 'wall-sign': transparent, drops 1 slot 323 rate 100.00%), 'normal-log': Block((17, 0) 'normal-log'), 'pine-leave': Block((18, 1) 'pine-leave': translucent (1), drops 1 slot 6 rate 100.00%), 'tnt': Block((46, 0) 'tnt'), 'wool': Block((35, 0) 'wool'), 'birch-sapling': Block((6, 2) 'birch-sapling': transparent), 60: Block((60, 0) 'soil': transparent, drops 1 slot 3 rate 100.00%), 'jack-o-lantern': Block((91, 0) 'jack-o-lantern'), 'wooden-plate': Block((72, 0) 'wooden-plate': transparent), 'bed': Block((26, 0) 'bed': transparent, drops 1 slot 355 rate 100.00%), 'air': Block((0, 0) 'air': unbreakable, transparent), 'lapis-lazuli': Block((22, 0) 'lapis-lazuli'), 'iron': Block((42, 0) 'iron'), 'dispenser': Block((23, 0) 'dispenser'), 'grass': Block((2, 0) 'grass': drops 1 slot 3 rate 100.00%), 'redstone-wire': Block((55, 0) 'redstone-wire': transparent), 'black-wool': Block((35, 15) 'black-wool'), 'cobblestone-step': Block((44, 3) 'cobblestone-step': transparent), 'gold-ore': Block((14, 0) 'gold-ore'), 'yellow-wool': Block((35, 4) 'yellow-wool'), 'stone-button': Block((77, 0) 'stone-button': transparent), 'soil': Block((60, 0) 'soil': transparent, drops 1 slot 3 rate 100.00%), 'locked-chest': Block((95, 0) 'locked-chest'), 'redstone-torch': Block((76, 0) 'redstone-torch': transparent), 'light-gray-wool': Block((35, 8) 'light-gray-wool'), 'purple-wool': Block((35, 10) 'purple-wool'), 'coal-ore': Block((16, 0) 'coal-ore': drops 1 slot 263 rate 100.00%), 'magenta-wool': Block((35, 2) 'magenta-wool'), 'sandstone': Block((24, 0) 'sandstone'), 'snow': Block((78, 0) 'snow': transparent, drops 1 slot 0 rate 100.00%), 'lava': Block((10, 0) 'lava': unbreakable, transparent), 'chest': Block((54, 0) 'chest'), 'gray-wool': Block((35, 7) 'gray-wool'), 'birch-leave': Block((18, 2) 'birch-leave': translucent (1), drops 1 slot 6 rate 100.00%), 'furnace': Block((61, 0) 'furnace'), 'wooden-step': Block((44, 2) 'wooden-step': transparent), 'pink-wool': Block((35, 6) 'pink-wool'), 'ladder': Block((65, 0) 'ladder': transparent), 'stone-plate': Block((70, 0) 'stone-plate': transparent), 'cobblestone': Block((4, 0) 'cobblestone'), 'flower': Block((37, 0) 'flower': transparent), 'portal': Block((90, 0) 'portal': transparent), 'slow-sand': Block((88, 0) 'slow-sand'), 'lapis-lazuli-ore': Block((21, 0) 'lapis-lazuli-ore'), 'note-block': Block((25, 0) 'note-block'), 'redstone-repeater-on': Block((94, 0) 'redstone-repeater-on': transparent, drops 1 slot 356 rate 100.00%), 67: Block((67, 0) 'stone-stairs': transparent), 'wooden-door': Block((64, 0) 'wooden-door': transparent, drops 1 slot 324 rate 100.00%), 'mob-spawner': Block((52, 0) 'mob-spawner': transparent, drops 1 slot 0 rate 100.00%), 'redstone-torch-off': Block((75, 0) 'redstone-torch-off': transparent), 'sandstone-step': Block((44, 1) 'sandstone-step': transparent), 'obsidian': Block((49, 0) 'obsidian'), 'burning-furnace': Block((62, 0) 'burning-furnace': drops 1 slot 61 rate 100.00%), 85: Block((85, 0) 'fence': transparent)}

	A dictionary of Block objects.

This dictionary can be indexed by slot number or block name.

	
bravo.blocks.items = {'wooden-door': Item((324, 0) 'wooden-door'), 'compass': Item((345, 0) 'compass'), 'chainmail-leggings': Item((304, 0) 'chainmail-leggings'), 'paper': Item((339, 0) 'paper'), 'cooked-porkchop': Item((320, 0) 'cooked-porkchop'), 261: Item((261, 0) 'bow'), 'sugar-cane': Item((338, 0) 'sugar-cane'), 'slimeball': Item((341, 0) 'slimeball'), 'purple-dye': Item((351, 5) 'purple-dye'), 'chainmail-helmet': Item((302, 0) 'chainmail-helmet'), 348: Item((348, 0) 'glowstone-dust'), 'diamond-chestplate': Item((311, 0) 'diamond-chestplate'), 349: Item((349, 0) 'raw-fish'), 'wooden-sword': Item((268, 0) 'wooden-sword'), 'string': Item((287, 0) 'string'), 'pink-dye': Item((351, 9) 'pink-dye'), 346: Item((346, 0) 'fishing-rod'), 'snowball': Item((332, 0) 'snowball'), 'flint': Item((318, 0) 'flint'), 'iron-helmet': Item((306, 0) 'iron-helmet'), 'dye': Item((351, 0) 'dye'), 'magenta-dye': Item((351, 13) 'magenta-dye'), 'diamond-pickaxe': Item((278, 0) 'diamond-pickaxe'), 'bread': Item((297, 0) 'bread'), 'iron-boots': Item((309, 0) 'iron-boots'), 'leather-chestplate': Item((299, 0) 'leather-chestplate'), 'iron-door': Item((330, 0) 'iron-door'), 'diamond-shovel': Item((277, 0) 'diamond-shovel'), 'raw-porkchop': Item((319, 0) 'raw-porkchop'), 'leather': Item((334, 0) 'leather'), 'gold-chestplate': Item((315, 0) 'gold-chestplate'), 'gold-sword': Item((283, 0) 'gold-sword'), 'charcoal': Item((263, 1) 'charcoal'), 'green-music-disc': Item((2257, 0) 'green-music-disc'), 'arrow': Item((262, 0) 'arrow'), 'iron-chestplate': Item((307, 0) 'iron-chestplate'), 'water-bucket': Item((326, 0) 'water-bucket'), 'iron-pickaxe': Item((257, 0) 'iron-pickaxe'), 'cooked-fish': Item((350, 0) 'cooked-fish'), 'bone': Item((352, 0) 'bone'), 'diamond-leggings': Item((312, 0) 'diamond-leggings'), 'mine-cart': Item((328, 0) 'mine-cart'), 'leather-leggings': Item((300, 0) 'leather-leggings'), 'bone-meal': Item((351, 15) 'bone-meal'), 'ink-sac': Item((351, 0) 'ink-sac'), 'sign': Item((323, 0) 'sign'), 'diamond-axe': Item((279, 0) 'diamond-axe'), 'storage-minecart': Item((342, 0) 'storage-minecart'), 'redstone': Item((331, 0) 'redstone'), 'stone-sword': Item((272, 0) 'stone-sword'), 'wooden-axe': Item((271, 0) 'wooden-axe'), 'stone-axe': Item((275, 0) 'stone-axe'), 'paintings': Item((321, 0) 'paintings'), 'clock': Item((347, 0) 'clock'), 'milk': Item((335, 0) 'milk'), 'gold-boots': Item((317, 0) 'gold-boots'), 'clay-brick': Item((336, 0) 'clay-brick'), 'boat': Item((333, 0) 'boat'), 'gold-music-disc': Item((2256, 0) 'gold-music-disc'), 'diamond-sword': Item((276, 0) 'diamond-sword'), 'redstone-repeater': Item((356, 0) 'redstone-repeater'), 'stone-hoe': Item((291, 0) 'stone-hoe'), 'wheat': Item((296, 0) 'wheat'), 'light-blue-dye': Item((351, 12) 'light-blue-dye'), 'powered-minecart': Item((343, 0) 'powered-minecart'), 'cocoa-beans': Item((351, 3) 'cocoa-beans'), 2256: Item((2256, 0) 'gold-music-disc'), 2257: Item((2257, 0) 'green-music-disc'), 'cookie': Item((357, 0) 'cookie'), 'green-dye': Item((351, 2) 'green-dye'), 314: Item((314, 0) 'gold-helmet'), 'diamond-boots': Item((313, 0) 'diamond-boots'), 'leather-boots': Item((301, 0) 'leather-boots'), 'gold-helmet': Item((314, 0) 'gold-helmet'), 'bow': Item((261, 0) 'bow'), 'gray-dye': Item((351, 8) 'gray-dye'), 'clay-balls': Item((337, 0) 'clay-balls'), 'seeds': Item((295, 0) 'seeds'), 'yellow-dye': Item((351, 11) 'yellow-dye'), 'fishing-rod': Item((346, 0) 'fishing-rod'), 256: Item((256, 0) 'iron-shovel'), 257: Item((257, 0) 'iron-pickaxe'), 258: Item((258, 0) 'iron-axe'), 259: Item((259, 0) 'flint-and-steel'), 260: Item((260, 0) 'apple'), 'apple': Item((260, 0) 'apple'), 262: Item((262, 0) 'arrow'), 263: Item((263, 0) 'coal'), 264: Item((264, 0) 'diamond'), 265: Item((265, 0) 'iron-ingot'), 266: Item((266, 0) 'gold-ingot'), 267: Item((267, 0) 'iron-sword'), 268: Item((268, 0) 'wooden-sword'), 269: Item((269, 0) 'wooden-shovel'), 270: Item((270, 0) 'wooden-pickaxe'), 271: Item((271, 0) 'wooden-axe'), 272: Item((272, 0) 'stone-sword'), 273: Item((273, 0) 'stone-shovel'), 274: Item((274, 0) 'stone-pickaxe'), 275: Item((275, 0) 'stone-axe'), 276: Item((276, 0) 'diamond-sword'), 277: Item((277, 0) 'diamond-shovel'), 278: Item((278, 0) 'diamond-pickaxe'), 279: Item((279, 0) 'diamond-axe'), 280: Item((280, 0) 'stick'), 281: Item((281, 0) 'bowl'), 282: Item((282, 0) 'mushroom-soup'), 283: Item((283, 0) 'gold-sword'), 284: Item((284, 0) 'gold-shovel'), 285: Item((285, 0) 'gold-pickaxe'), 286: Item((286, 0) 'gold-axe'), 287: Item((287, 0) 'string'), 288: Item((288, 0) 'feather'), 289: Item((289, 0) 'sulphur'), 290: Item((290, 0) 'wooden-hoe'), 291: Item((291, 0) 'stone-hoe'), 292: Item((292, 0) 'iron-hoe'), 293: Item((293, 0) 'diamond-hoe'), 294: Item((294, 0) 'gold-hoe'), 295: Item((295, 0) 'seeds'), 296: Item((296, 0) 'wheat'), 297: Item((297, 0) 'bread'), 298: Item((298, 0) 'leather-helmet'), 299: Item((299, 0) 'leather-chestplate'), 300: Item((300, 0) 'leather-leggings'), 301: Item((301, 0) 'leather-boots'), 302: Item((302, 0) 'chainmail-helmet'), 303: Item((303, 0) 'chainmail-chestplate'), 304: Item((304, 0) 'chainmail-leggings'), 305: Item((305, 0) 'chainmail-boots'), 306: Item((306, 0) 'iron-helmet'), 307: Item((307, 0) 'iron-chestplate'), 308: Item((308, 0) 'iron-leggings'), 309: Item((309, 0) 'iron-boots'), 310: Item((310, 0) 'diamond-helmet'), 311: Item((311, 0) 'diamond-chestplate'), 312: Item((312, 0) 'diamond-leggings'), 313: Item((313, 0) 'diamond-boots'), 'feather': Item((288, 0) 'feather'), 315: Item((315, 0) 'gold-chestplate'), 'diamond-helmet': Item((310, 0) 'diamond-helmet'), 317: Item((317, 0) 'gold-boots'), 'gold-ingot': Item((266, 0) 'gold-ingot'), 319: Item((319, 0) 'raw-porkchop'), 320: Item((320, 0) 'cooked-porkchop'), 321: Item((321, 0) 'paintings'), 322: Item((322, 0) 'golden-apple'), 'diamond': Item((264, 0) 'diamond'), 324: Item((324, 0) 'wooden-door'), 325: Item((325, 0) 'bucket'), 326: Item((326, 0) 'water-bucket'), 327: Item((327, 0) 'lava-bucket'), 328: Item((328, 0) 'mine-cart'), 329: Item((329, 0) 'saddle'), 330: Item((330, 0) 'iron-door'), 331: Item((331, 0) 'redstone'), 332: Item((332, 0) 'snowball'), 'iron-leggings': Item((308, 0) 'iron-leggings'), 334: Item((334, 0) 'leather'), 335: Item((335, 0) 'milk'), 336: Item((336, 0) 'clay-brick'), 337: Item((337, 0) 'clay-balls'), 338: Item((338, 0) 'sugar-cane'), 318: Item((318, 0) 'flint'), 340: Item((340, 0) 'book'), 'stick': Item((280, 0) 'stick'), 342: Item((342, 0) 'storage-minecart'), 343: Item((343, 0) 'powered-minecart'), 344: Item((344, 0) 'egg'), 345: Item((345, 0) 'compass'), 'sulphur': Item((289, 0) 'sulphur'), 347: Item((347, 0) 'clock'), 'lava-bucket': Item((327, 0) 'lava-bucket'), 'gold-shovel': Item((284, 0) 'gold-shovel'), 350: Item((350, 0) 'cooked-fish'), 351: Item((351, 0) 'dye'), 352: Item((352, 0) 'bone'), 353: Item((353, 0) 'sugar'), 354: Item((354, 0) 'cake'), 355: Item((355, 0) 'bed'), 356: Item((356, 0) 'redstone-repeater'), 357: Item((357, 0) 'cookie'), 316: Item((316, 0) 'gold-leggings'), 'saddle': Item((329, 0) 'saddle'), 'bucket': Item((325, 0) 'bucket'), 'bed': Item((355, 0) 'bed'), 333: Item((333, 0) 'boat'), 'lapis-lazuli': Item((351, 4) 'lapis-lazuli'), 'iron-axe': Item((258, 0) 'iron-axe'), 'cake': Item((354, 0) 'cake'), 'stone-pickaxe': Item((274, 0) 'stone-pickaxe'), 'iron-hoe': Item((292, 0) 'iron-hoe'), 'wooden-hoe': Item((290, 0) 'wooden-hoe'), 'gold-pickaxe': Item((285, 0) 'gold-pickaxe'), 'iron-ingot': Item((265, 0) 'iron-ingot'), 'gold-hoe': Item((294, 0) 'gold-hoe'), 323: Item((323, 0) 'sign'), 'chainmail-chestplate': Item((303, 0) 'chainmail-chestplate'), 'cyan-dye': Item((351, 6) 'cyan-dye'), 'mushroom-soup': Item((282, 0) 'mushroom-soup'), 'stone-shovel': Item((273, 0) 'stone-shovel'), 'light-gray-dye': Item((351, 7) 'light-gray-dye'), 'glowstone-dust': Item((348, 0) 'glowstone-dust'), 'sugar': Item((353, 0) 'sugar'), 'bowl': Item((281, 0) 'bowl'), 'iron-shovel': Item((256, 0) 'iron-shovel'), 'normal-coal': Item((263, 0) 'normal-coal'), 'gold-leggings': Item((316, 0) 'gold-leggings'), 'book': Item((340, 0) 'book'), 'iron-sword': Item((267, 0) 'iron-sword'), 'lime-dye': Item((351, 10) 'lime-dye'), 'diamond-hoe': Item((293, 0) 'diamond-hoe'), 'golden-apple': Item((322, 0) 'golden-apple'), 'chainmail-boots': Item((305, 0) 'chainmail-boots'), 'leather-helmet': Item((298, 0) 'leather-helmet'), 'wooden-shovel': Item((269, 0) 'wooden-shovel'), 'gold-axe': Item((286, 0) 'gold-axe'), 'wooden-pickaxe': Item((270, 0) 'wooden-pickaxe'), 'raw-fish': Item((349, 0) 'raw-fish'), 'flint-and-steel': Item((259, 0) 'flint-and-steel'), 'coal': Item((263, 0) 'coal'), 339: Item((339, 0) 'paper'), 'orange-dye': Item((351, 14) 'orange-dye'), 'red-dye': Item((351, 1) 'red-dye'), 'egg': Item((344, 0) 'egg'), 341: Item((341, 0) 'slimeball')}

	A dictionary of Item objects.

This dictionary can be indexed by slot number or block name.

	
bravo.blocks.parse_block(block)[source]

	Get the key for a given block/item.

 Copyright 2010, Corbin Simpson & Derrick Dymock.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	1.9

 	1.8.1

 	1.8

 	1.7.2

 	1.7.1

 	1.7

 	1.6.1

 	1.6

 	1.5

 	1.4

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Bravo 1.7 documentation

 	Core

chunk – Chunk data structures

The chunk module holds the data structures required to track and update
block data in chunks.

 Copyright 2010, Corbin Simpson & Derrick Dymock.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	1.9

 	1.8.1

 	1.8

 	1.7.2

 	1.7.1

 	1.7

 	1.6.1

 	1.6

 	1.5

 	1.4

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Bravo 1.7 documentation

 	Core

entity – Entities

The entity module contains entity classes.

 Copyright 2010, Corbin Simpson & Derrick Dymock.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	1.9

 	1.8.1

 	1.8

 	1.7.2

 	1.7.1

 	1.7

 	1.6.1

 	1.6

 	1.5

 	1.4

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Bravo 1.7 documentation

 	Core

factories – Twisted factories

The factories package hosts factories for various protocols.

MineCraft Beta factories

InfiniCraft factories

 Copyright 2010, Corbin Simpson & Derrick Dymock.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	1.9

 	1.8.1

 	1.8

 	1.7.2

 	1.7.1

 	1.7

 	1.6.1

 	1.6

 	1.5

 	1.4

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Bravo 1.7 documentation

 	Core

ibravo – Interfaces

The ibravo module holds the interfaces required to implement plugins and
hooks.

Interface Bases

These are the base interface classes for Bravo. Plugin developers probably
will not inherit from these; they are used purely to express common plugin
functionality.

Plugins

Hooks

 Copyright 2010, Corbin Simpson & Derrick Dymock.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	1.9

 	1.8.1

 	1.8

 	1.7.2

 	1.7.1

 	1.7

 	1.6.1

 	1.6

 	1.5

 	1.4

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Bravo 1.7 documentation

 	Core

location – Locations

The location module contains objects for tracking and analyzing locations.

	
class bravo.location.Location[source]

	Bases: object

The position and orientation of an entity.

	
distance(other)[source]

	Return the distance between this location and another location.

Distance is measured in blocks.

	
in_front_of(distance)[source]

	Return a Location a certain number of blocks in front of this
position.

The orientation of the returned location is undefined.

	Parameters:	distance (int [http://docs.python.org/library/functions.html#int]) – the number of blocks by which to offset this
position

	
save_to_packet()[source]

	Returns a position/look/grounded packet.

 Copyright 2010, Corbin Simpson & Derrick Dymock.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	1.9

 	1.8.1

 	1.8

 	1.7.2

 	1.7.1

 	1.7

 	1.6.1

 	1.6

 	1.5

 	1.4

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Bravo 1.7 documentation

 	Core

packets – Packet serializers

The packets module contains descriptions for all packets in the wire
protocol, as well as several utility functions for encoding data to and
decoding data from packets.

 Copyright 2010, Corbin Simpson & Derrick Dymock.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	1.9

 	1.8.1

 	1.8

 	1.7.2

 	1.7.1

 	1.7

 	1.6.1

 	1.6

 	1.5

 	1.4

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Bravo 1.7 documentation

 	Core

plugin – Plugin loader

 Copyright 2010, Corbin Simpson & Derrick Dymock.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	1.9

 	1.8.1

 	1.8

 	1.7.2

 	1.7.1

 	1.7

 	1.6.1

 	1.6

 	1.5

 	1.4

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Bravo 1.7 documentation

 	Core

protocols – Twisted protocols

The protocols package hosts protocol classes for various wire protocols.

MineCraft Beta protocols

InfiniCraft protocols

 Copyright 2010, Corbin Simpson & Derrick Dymock.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	1.9

 	1.8.1

 	1.8

 	1.7.2

 	1.7.1

 	1.7

 	1.6.1

 	1.6

 	1.5

 	1.4

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Bravo 1.7 documentation

 	Core

stdio – Console support

The stdio module provides a non-blocking, interactive console for
administration, diagnostics, and debugging of running servers.

 Copyright 2010, Corbin Simpson & Derrick Dymock.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	1.9

 	1.8.1

 	1.8

 	1.7.2

 	1.7.1

 	1.7

 	1.6.1

 	1.6

 	1.5

 	1.4

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Bravo 1.7 documentation

 	Core

world – Worlds

 Copyright 2010, Corbin Simpson & Derrick Dymock.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	1.9

 	1.8.1

 	1.8

 	1.7.2

 	1.7.1

 	1.7

 	1.6.1

 	1.6

 	1.5

 	1.4

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Bravo 1.7 documentation

Auxiliary

Modules which do not contribute directly to the functionality of Bravo.

	simplex – Simplex noise generation

	utilities – Helper functions
	Coordinate Handling

	Data Packing

	Trigonometry

 Copyright 2010, Corbin Simpson & Derrick Dymock.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	1.9

 	1.8.1

 	1.8

 	1.7.2

 	1.7.1

 	1.7

 	1.6.1

 	1.6

 	1.5

 	1.4

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Bravo 1.7 documentation

 	Auxiliary

simplex – Simplex noise generation

	
bravo.simplex.dot2(u, v)[source]

	Dot product of two 2-dimensional vectors.

	
bravo.simplex.dot3(u, v)[source]

	Dot product of two 3-dimensional vectors.

	
bravo.simplex.octaves2(x, y, count)[source]

	Generate fractal octaves of noise.

Summing increasingly scaled amounts of noise with itself creates fractal
clouds of noise.

	Parameters:	
	x (int [http://docs.python.org/library/functions.html#int]) – X coordinate

	y (int [http://docs.python.org/library/functions.html#int]) – Y coordinate

	count (int [http://docs.python.org/library/functions.html#int]) – number of octaves

	Returns:	Scaled fractal noise

	
bravo.simplex.octaves3(x, y, z, count)[source]

	Generate fractal octaves of noise.

	Parameters:	
	x (int [http://docs.python.org/library/functions.html#int]) – X coordinate

	y (int [http://docs.python.org/library/functions.html#int]) – Y coordinate

	z (int [http://docs.python.org/library/functions.html#int]) – Z coordinate

	count (int [http://docs.python.org/library/functions.html#int]) – number of octaves

	Returns:	Scaled fractal noise

	
bravo.simplex.offset2(x, y, xoffset, yoffset, octaves=1)[source]

	Generate an offset noise difference field.

	Parameters:	
	x (int [http://docs.python.org/library/functions.html#int]) – X coordinate

	y (int [http://docs.python.org/library/functions.html#int]) – Y coordinate

	xoffset (int [http://docs.python.org/library/functions.html#int]) – X offset

	yoffset (int [http://docs.python.org/library/functions.html#int]) – Y offset

	Returns:	Difference of noises

	
bravo.simplex.reseed(seed)[source]

	Reseed the simplex gradient field.

	
bravo.simplex.set_seed(seed)[source]

	Set the current seed.

	
bravo.simplex.simplex2(x, y)[source]

	Generate simplex noise at the given coordinates.

This particular implementation has very high chaotic features at normal
resolution; zooming in by a factor of 16x to 256x is going to yield more
pleasing results for most applications.

The gradient field must be seeded prior to calling this function; call
reseed() first.

	Parameters:	
	x (int [http://docs.python.org/library/functions.html#int]) – X coordinate

	y (int [http://docs.python.org/library/functions.html#int]) – Y coordinate

	Returns:	simplex noise

	Raises Exception:

		the gradient field is not seeded

	
bravo.simplex.simplex3(x, y, z)[source]

	Generate simplex noise at the given coordinates.

This is a 3-dimensional flavor of simplex2(); all of the same caveats
apply.

The gradient field must be seeded prior to calling this function; call
reseed() first.

	Parameters:	
	x (int [http://docs.python.org/library/functions.html#int]) – X coordinate

	y (int [http://docs.python.org/library/functions.html#int]) – Y coordinate

	z (int [http://docs.python.org/library/functions.html#int]) – Z coordinate

	Returns:	simplex noise

	Raises Exception:

		the gradient field is not seeded or you broke the
function somehow

 Copyright 2010, Corbin Simpson & Derrick Dymock.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	1.9

 	1.8.1

 	1.8

 	1.7.2

 	1.7.1

 	1.7

 	1.6.1

 	1.6

 	1.5

 	1.4

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Bravo 1.7 documentation

 	Auxiliary

utilities – Helper functions

The utilities package is the standard home for shared functions which many
modules may use. The spirit of utilities is also to isolate sections of
critical code so that unit tests can be used to ensure a minimum of bugginess.

Coordinate Handling

	
bravo.utilities.coords.split_coords(x, z)[source]

	Split a pair of coordinates into chunk and subchunk coordinates.

	Parameters:	
	x (int [http://docs.python.org/library/functions.html#int]) – the X coordinate

	z (int [http://docs.python.org/library/functions.html#int]) – the Z coordinate

	Returns:	a tuple of the X chunk, X subchunk, Z chunk, and Z subchunk

Data Packing

More affectionately known as “bit-twiddling.”

Trigonometry

	
bravo.utilities.maths.rotated_cosine(x, y, theta, lambd)[source]

	Evaluate a rotated 3D sinusoidal wave at a given point, angle, and
wavelength.

The function used is:

[image: f(x, y) = -\cos((x \cos\theta - y \sin\theta) / \lambda) / 2 + 1]

This function has a handful of useful properties; it has a local minimum
at f(0, 0) and oscillates infinitely betwen 0 and 1.

	Parameters:	
	x (float [http://docs.python.org/library/functions.html#float]) – X coordinate

	y (float [http://docs.python.org/library/functions.html#float]) – Y coordinate

	theta (float [http://docs.python.org/library/functions.html#float]) – angle of rotation

	lambda (float [http://docs.python.org/library/functions.html#float]) – wavelength

	Returns:	float of f(x, y)

 Copyright 2010, Corbin Simpson & Derrick Dymock.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	1.9

 	1.8.1

 	1.8

 	1.7.2

 	1.7.1

 	1.7

 	1.6.1

 	1.6

 	1.5

 	1.4

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Bravo 1.7 documentation

Tools

A handful of utilities are distributed with Bravo, in the tools directory.

Chunkbench

Chunkbench is a script that tests terrain generation speed.

Jsondump

Jsondump pretty-prints a JSON file.

NBTdump

NBTdump pretty-prints an NBT file.

Noiseview

Noiseview creates a picture of simplex noise, using Bravo’s builtin noise
generator.

parser-cli

parser-cli parses and pretty-prints raw Alpha packets.

 Copyright 2010, Corbin Simpson & Derrick Dymock.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	1.9

 	1.8.1

 	1.8

 	1.7.2

 	1.7.1

 	1.7

 	1.6.1

 	1.6

 	1.5

 	1.4

 Navigation

 	
 index

 	
 modules |

 	Bravo 1.7 documentation

 Python Module Index

 b

 			

 		
 b	

 	[image: -]
 	
 bravo	

 	
 	
 bravo.blocks	

 	
 	
 bravo.location	

 	
 	
 bravo.packets	

 	
 	
 bravo.simplex	

 Copyright 2010, Corbin Simpson & Derrick Dymock.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	1.9

 	1.8.1

 	1.8

 	1.7.2

 	1.7.1

 	1.7

 	1.6.1

 	1.6

 	1.5

 	1.4

 Navigation

 	
 index

 	
 modules |

 	Bravo 1.7 documentation

Index

 A
 | B
 | D
 | I
 | L
 | O
 | P
 | R
 | S

A

 	

 	armor_boots (in module bravo.blocks)

 	armor_chestplates (in module bravo.blocks)

 	

 	armor_helmets (in module bravo.blocks)

 	armor_leggings (in module bravo.blocks)

B

 	

 	Block (class in bravo.blocks)

 	blocks (in module bravo.blocks)

 	bravo.blocks (module)

 	

 	bravo.location (module)

 	bravo.packets (module)

 	bravo.simplex (module)

D

 	

 	distance() (bravo.location.Location method)

 	dot2() (in module bravo.simplex)

 	

 	dot3() (in module bravo.simplex)

I

 	

 	in_front_of() (bravo.location.Location method)

 	Item (class in bravo.blocks)

 	

 	items (in module bravo.blocks)

L

 	

 	Location (class in bravo.location)

O

 	

 	octaves2() (in module bravo.simplex)

 	octaves3() (in module bravo.simplex)

 	offset2() (in module bravo.simplex)

 	

 	orientable() (bravo.blocks.Block method)

 	orientation() (bravo.blocks.Block method)

P

 	

 	parse_block() (in module bravo.blocks)

R

 	

 	reseed() (in module bravo.simplex)

 	

 	rotated_cosine() (in module bravo.utilities.maths)

S

 	

 	save_to_packet() (bravo.location.Location method)

 	set_seed() (in module bravo.simplex)

 	simplex2() (in module bravo.simplex)

 	

 	simplex3() (in module bravo.simplex)

 	split_coords() (in module bravo.utilities.coords)

 Copyright 2010, Corbin Simpson & Derrick Dymock.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	1.9

 	1.8.1

 	1.8

 	1.7.2

 	1.7.1

 	1.7

 	1.6.1

 	1.6

 	1.5

 	1.4

 _static/minus.png

search.html

 Navigation

 		
 index

 		
 modules |

 		Bravo 1.7 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2010, Corbin Simpson & Derrick Dymock.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		latest

 		1.9

 		1.8.1

 		1.8

 		1.7.2

 		1.7.1

 		1.7

 		1.6.1

 		1.6

 		1.5

 		1.4

_static/comment-close.png

_static/up-pressed.png

_modules/bravo/location.html

 Navigation

 		
 index

 		
 modules |

 		Bravo 1.7 documentation »

 		Module code »

 Source code for bravo.location

from copy import copy
from math import cos, degrees, radians, pi, sin, sqrt

from construct import Container

from bravo.packets.beta import make_packet

[docs]class Location(object):
 """
 The position and orientation of an entity.
 """

 __slots__ = (
 "grounded",
 "phi",
 "stance",
 "_theta",
 "x",
 "_y",
 "z",
)

 def __init__(self):
 # Position in pixels.
 self.x = 0
 self.stance = 0
 self.y = 0
 self.z = 0

 # Orientation, in radians.
 # Theta and phi are like the theta and phi of spherical coordinates,
 # except that phi starts perpendicular to the xz-plane.
 self._theta = 0
 self.phi = 0

 # Whether we are in the air.
 self.grounded = False

 def __repr__(self):
 return "<Location(%s, (%d, %d (+%.6f), %d), (%.2f, %.2f))>" % (
 "grounded" if self.grounded else "midair", self.x, self.y,
 self.stance - self.y, self.z, self.theta, self.phi)

 __str__ = __repr__

 def _y_setter(self, value):
 self._y = value
 if not 0.1 < (self.stance - self.y) < 1.65:
 self.stance = self.y + 1.0
 y = property(lambda self: self._y, _y_setter)

 def _yaw_setter(self, value):
 self.theta = radians(value)
 yaw = property(lambda self: int(round(degrees(self.theta))), _yaw_setter)

 def _theta_setter(self, value):
 # Radial clamp.
 self._theta = value % (pi * 2)
 theta = property(lambda self: self._theta, _theta_setter)

 def _pitch_setter(self, value):
 self.phi = radians(value)
 pitch = property(lambda self: int(round(degrees(self.phi))),
 _pitch_setter)

[docs] def save_to_packet(self):
 """
 Returns a position/look/grounded packet.
 """

 position = Container(x=self.x, y=self.stance, z=self.z, stance=self.y)
 orientation = Container(rotation=self.yaw, pitch=self.pitch)
 grounded = Container(grounded=self.grounded)

 packet = make_packet("location", position=position,
 orientation=orientation, grounded=grounded)

 return packet

[docs] def distance(self, other):
 """
 Return the distance between this location and another location.

 Distance is measured in blocks.
 """

 dx = (self.x - other.x)**2
 dy = (self.y - other.y)**2
 dz = (self.z - other.z)**2
 return sqrt(dx + dy + dz)

[docs] def in_front_of(self, distance):
 """
 Return a ``Location`` a certain number of blocks in front of this
 position.

 The orientation of the returned location is undefined.

 :param int distance: the number of blocks by which to offset this
 position
 """

 other = copy(self)

 # Do some trig to put the other location a few blocks ahead of the
 # player in the direction they are facing. Note that all three
 # coordinates are "misnamed;" the unit circle actually starts at (0,
 # 1) and goes *backwards* towards (-1, 0).
 other.x = self.x - distance * sin(self.theta)
 other.z = self.z + distance * cos(self.theta)

 return other

 © Copyright 2010, Corbin Simpson & Derrick Dymock.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		latest

 		1.9

 		1.8.1

 		1.8

 		1.7.2

 		1.7.1

 		1.7

 		1.6.1

 		1.6

 		1.5

 		1.4

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		Bravo 1.7 documentation »

 All modules for which code is available

		bravo.blocks

		bravo.location

		bravo.simplex

		bravo.utilities.coords

		bravo.utilities.maths

 © Copyright 2010, Corbin Simpson & Derrick Dymock.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		latest

 		1.9

 		1.8.1

 		1.8

 		1.7.2

 		1.7.1

 		1.7

 		1.6.1

 		1.6

 		1.5

 		1.4

_static/down.png

_static/comment.png

_modules/bravo/simplex.html

 Navigation

 		
 index

 		
 modules |

 		Bravo 1.7 documentation »

 		Module code »

 Source code for bravo.simplex

from __future__ import division

import math
from itertools import chain, izip, permutations
from random import Random

SIZE = 2**10

edges2 = list(
 set(
 chain(
 permutations((0, 1, 1), 3),
 permutations((0, 1, -1), 3),
 permutations((0, -1, -1), 3),
)
)
)
edges2.sort()

edges3 = list(
 set(
 chain(
 permutations((0, 1, 1, 1), 4),
 permutations((0, 1, 1, -1), 4),
 permutations((0, 1, -1, -1), 4),
 permutations((0, -1, -1, -1), 4),
)
)
)
edges3.sort()

[docs]def dot2(u, v):
 """
 Dot product of two 2-dimensional vectors.
 """
 return u[0] * v[0] + u[1] * v[1]

[docs]def dot3(u, v):
 """
 Dot product of two 3-dimensional vectors.
 """
 return u[0] * v[0] + u[1] * v[1] + u[2] * v[2]

[docs]def reseed(seed):
 """
 Reseed the simplex gradient field.
 """

 if seed in fields:
 return

 p = range(SIZE)
 r = Random()
 r.seed(seed)
 r.shuffle(p)
 p *= 2
 fields[seed] = p

[docs]def set_seed(seed):
 """
 Set the current seed.
 """

 global current_seed

 reseed(seed)

 current_seed = seed

fields = dict()

current_seed = None

f2 = 0.5 * (math.sqrt(3) - 1)
g2 = (3 - math.sqrt(3)) / 6

[docs]def simplex2(x, y):
 """
 Generate simplex noise at the given coordinates.

 This particular implementation has very high chaotic features at normal
 resolution; zooming in by a factor of 16x to 256x is going to yield more
 pleasing results for most applications.

 The gradient field must be seeded prior to calling this function; call
 ``reseed()`` first.

 :param int x: X coordinate
 :param int y: Y coordinate

 :returns: simplex noise
 :raises Exception: the gradient field is not seeded
 """

 if current_seed is None:
 raise Exception("The gradient field is unseeded!")

 p = fields[current_seed]

 # Set up our scalers and arrays.
 coords = [None] * 3
 gradients = [None] * 3

 s = (x + y) * f2
 i = math.floor(x + s)
 j = math.floor(y + s)
 t = (i + j) * g2
 x -= i - t
 y -= j - t

 # Clamp to the size of the simplex array.
 i = int(i) % SIZE
 j = int(j) % SIZE

 # Look up coordinates and gradients for each contributing point in the
 # simplex space.
 coords[0] = x, y
 gradients[0] = p[i + p[j]]
 if x > y:
 coords[1] = x - 1 + g2, y + g2
 gradients[1] = p[i + 1 + p[j]]
 else:
 coords[1] = x + g2, y - 1 + g2
 gradients[1] = p[i + p[j + 1]]
 coords[2] = x - 1 + 2 * g2, y - 1 + 2 * g2
 gradients[2] = p[i + 1 + p[j + 1]]

 # Do our summation.
 n = 0
 for coord, gradient in izip(coords, gradients):
 t = 0.5 - coord[0] * coord[0] - coord[1] * coord[1]
 if t > 0:
 n += t**4 * dot2(edges2[gradient % 12], coord)

 # Where's this scaling factor come from?
 return n * 70

[docs]def simplex3(x, y, z):
 """
 Generate simplex noise at the given coordinates.

 This is a 3-dimensional flavor of ``simplex2()``; all of the same caveats
 apply.

 The gradient field must be seeded prior to calling this function; call
 ``reseed()`` first.

 :param int x: X coordinate
 :param int y: Y coordinate
 :param int z: Z coordinate

 :returns: simplex noise
 :raises Exception: the gradient field is not seeded or you broke the
 function somehow
 """

 if current_seed is None:
 raise Exception("The gradient field is unseeded!")

 p = fields[current_seed]

 f = 1 / 3
 g = 1 / 6
 coords = [None] * 4
 gradients = [None] * 4

 s = (x + y + z) * f
 i = math.floor(x + s)
 j = math.floor(y + s)
 k = math.floor(z + s)
 t = (i + j + k) * g
 x -= i - t
 y -= j - t
 z -= k - t

 i = int(i) % SIZE
 j = int(j) % SIZE
 k = int(k) % SIZE

 # Do the coord and gradient lookups. Unrolled for speed and clarity.
 # These should be + 2 * g, but instead we do + f because we already have
 # it calculated. (2g == 2/6 == 1/3 == f)
 coords[0] = x, y, z
 gradients[0] = p[i + p[j + p[k]]]
 if x >= y >= z:
 coords[1] = x - 1 + g, y + g, z + g
 coords[2] = x - 1 + f, y - 1 + f, z + f

 gradients[1] = p[i + 1 + p[j + p[k]]]
 gradients[2] = p[i + 1 + p[j + 1 + p[k]]]
 elif x >= z >= y:
 coords[1] = x - 1 + g, y + g, z + g
 coords[2] = x - 1 + f, y + f, z - 1 + f

 gradients[1] = p[i + 1 + p[j + p[k]]]
 gradients[2] = p[i + 1 + p[j + p[k + 1]]]
 elif z >= x >= y:
 coords[1] = x + g, y + g, z - 1 + g
 coords[2] = x - 1 + f, y + f, z - 1 + f

 gradients[1] = p[i + p[j + p[k + 1]]]
 gradients[2] = p[i + 1 + p[j + p[k + 1]]]
 elif z >= y >= x:
 coords[1] = x + g, y + g, z - 1 + g
 coords[2] = x + f, y - 1 + f, z - 1 + f

 gradients[1] = p[i + p[j + p[k + 1]]]
 gradients[2] = p[i + p[j + 1 + p[k + 1]]]
 elif y >= z >= x:
 coords[1] = x + g, y - 1 + g, z + g
 coords[2] = x + f, y - 1 + f, z - 1 + f

 gradients[1] = p[i + p[j + 1 + p[k]]]
 gradients[2] = p[i + p[j + 1 + p[k + 1]]]
 elif y >= x >= z:
 coords[1] = x + g, y - 1 + g, z + g
 coords[2] = x - 1 + f, y - 1 + f, z + f

 gradients[1] = p[i + p[j + 1 + p[k]]]
 gradients[2] = p[i + 1 + p[j + 1 + p[k]]]
 else:
 raise Exception("You broke maths. Good work.")

 coords[3] = x - 1 + 0.5, y - 1 + 0.5, z - 1 + 0.5
 gradients[3] = p[i + 1 + p[j + 1 + p[k + 1]]]

 n = 0
 for coord, gradient in izip(coords, gradients):
 t = (0.6 - coord[0] * coord[0] - coord[1] * coord[1] - coord[2] *
 coord[2])
 if t > 0:
 n += t**4 * dot3(edges2[gradient % 12], coord)

 # Where's this scaling factor come from?
 return n * 32

def simplex(*args):
 if len(args) == 2:
 return simplex2(*args)
 if len(args) == 3:
 return simplex3(*args)
 else:
 raise Exception("Don't know how to do %dD noise!" % len(args))

[docs]def octaves2(x, y, count):
 """
 Generate fractal octaves of noise.

 Summing increasingly scaled amounts of noise with itself creates fractal
 clouds of noise.

 :param int x: X coordinate
 :param int y: Y coordinate
 :param int count: number of octaves

 :returns: Scaled fractal noise
 """

 sigma = 0
 divisor = 1
 while count:
 sigma += simplex2(x * divisor, y * divisor) / divisor
 divisor *= 2
 count -= 1
 return sigma

[docs]def octaves3(x, y, z, count):
 """
 Generate fractal octaves of noise.

 :param int x: X coordinate
 :param int y: Y coordinate
 :param int z: Z coordinate
 :param int count: number of octaves

 :returns: Scaled fractal noise
 """

 sigma = 0
 divisor = 1
 while count:
 sigma += simplex3(x * divisor, y * divisor, z * divisor) / divisor
 divisor *= 2
 count -= 1
 return sigma

[docs]def offset2(x, y, xoffset, yoffset, octaves=1):
 """
 Generate an offset noise difference field.

 :param int x: X coordinate
 :param int y: Y coordinate
 :param int xoffset: X offset
 :param int yoffset: Y offset

 :returns: Difference of noises
 """

 return (octaves2(x, y, octaves) -
 octaves2(x + xoffset, y + yoffset, octaves) + 1) * 0.5

 © Copyright 2010, Corbin Simpson & Derrick Dymock.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		latest

 		1.9

 		1.8.1

 		1.8

 		1.7.2

 		1.7.1

 		1.7

 		1.6.1

 		1.6

 		1.5

 		1.4

_static/ajax-loader.gif

_images/math/21c6bfaa6dc454aa72f9c438dc14c59937105909.png
flz,y) =

cos((rcost —ysinf)/A)/2+ 1

_static/file.png

_modules/bravo/utilities/coords.html

 Navigation

 		
 index

 		
 modules |

 		Bravo 1.7 documentation »

 		Module code »

 Source code for bravo.utilities.coords

"""
Utilities for coordinate handling and munging.
"""

[docs]def split_coords(x, z):
 """
 Split a pair of coordinates into chunk and subchunk coordinates.

 :param int x: the X coordinate
 :param int z: the Z coordinate

 :returns: a tuple of the X chunk, X subchunk, Z chunk, and Z subchunk
 """

 first, second = divmod(int(x), 16)
 third, fourth = divmod(int(z), 16)

 return first, second, third, fourth

def taxicab2(x1, y1, x2, y2):
 """
 Return the taxicab distance between two blocks.
 """

 return abs(x1 - x2) + abs(y1 - y2)

def taxicab3(x1, y1, z1, x2, y2, z2):
 """
 Return the taxicab distance between two blocks, in three dimensions.
 """

 return abs(x1 - x2) + abs(y1 - y2) + abs(z1 - z2)

 © Copyright 2010, Corbin Simpson & Derrick Dymock.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		latest

 		1.9

 		1.8.1

 		1.8

 		1.7.2

 		1.7.1

 		1.7

 		1.6.1

 		1.6

 		1.5

 		1.4

_static/down-pressed.png

_static/comment-bright.png

_modules/bravo/blocks.html

 Navigation

 		
 index

 		
 modules |

 		Bravo 1.7 documentation »

 		Module code »

 Source code for bravo.blocks

from __future__ import division

faces = ("-y", "+y", "-z", "+z", "-x", "+x")

[docs]class Block(object):
 """
 A model for a block.

 There are lots of rule and properties specific to different types of
 blocks. This class encapsulates those properties in a singleton-style
 interface, allowing many blocks to be referenced in one location.

 The basic idea of this class is to provide some centralized data and
 information about blocks, in order to abstract away as many special cases
 as possible. In general, if several blocks all have some special behavior,
 then it may be worthwhile to store data describing that behavior on this
 class rather than special-casing it in multiple places.
 """

 __slots__ = (
 "_o_dict",
 "breakable",
 "dim",
 "drop",
 "key",
 "name",
 "quantity",
 "ratio",
 "replace",
 "slot",
)

 def __init__(self, slot, name, secondary=0, drop=None, replace=0, ratio=1,
 quantity=1, dim=16, breakable=True, orientation=None):
 """
 :param int slot: The index of this block. Must be globally unique.
 :param str name: A common name for this block.
 :param int secondary: The metadata/damage/secondary attribute for this
 block. Defaults to zero.
 :param int drop: The type of block that should be dropped when an
 instance of this block is destroyed. Defaults to the slot value, to
 drop instances of this same type of block. To indicate that this
 block does not drop anything, set to air.
 :param int replace: The type of block to place in the map when
 instances of this block are destroyed. Defaults to air.
 :param float ratio: The probability of this block dropping a block
 on destruction.
 :param int quantity: The number of blocks dropped when this block
 is destroyed.
 :param int dim: How much light dims when passing through this kind
 of block. Defaults to 16 = opaque block.
 :param bool breakable: Whether this block is diggable, breakable,
 bombable, explodeable, etc. Only a few blocks actually genuinely
 cannot be broken, so the default is True.
 :param tuple orientation: The orientation data for a block. See
 :meth:`orientable` for an explanation. The data should be in standard
 face order.
 """

 self.slot = slot
 self.name = name

 self.key = (self.slot, secondary)

 if drop is None:
 self.drop = slot
 else:
 self.drop = drop

 self.replace = replace
 self.ratio = ratio
 self.quantity = quantity
 self.dim = dim
 self.breakable = breakable

 if orientation:
 self._o_dict = dict(zip(faces, orientation))
 else:
 self._o_dict = {}

 def __str__(self):
 """
 Fairly verbose explanation of what this block is capable of.
 """

 attributes = []
 if not self.breakable:
 attributes.append("unbreakable")
 if self.dim == 0:
 attributes.append("transparent")
 elif self.dim < 16:
 attributes.append("translucent (%d)" % self.dim)
 if self.replace:
 attributes.append("becomes %d" % self.replace)
 if self.ratio != 1 or self.quantity > 1 or self.drop != self.slot:
 attributes.append("drops %d slot %d rate %2.2f%%" %
 (self.quantity, self.drop, self.ratio * 100))
 if attributes:
 attributes = ": %s" % ", ".join(attributes)
 else:
 attributes = ""

 return "Block(%r %r%s)" % (self.key, self.name, attributes)

 __repr__ = __str__

[docs] def orientable(self):
 """
 Whether this block can be oriented.

 Orientable blocks are positioned according to the face on which they
 are built. They may not be buildable on all faces. Blocks are only
 orientable if their metadata can be used to directly and uniquely
 determine the face against which they were built.

 Ladders are orientable, signposts are not.

 :rtype: bool
 :returns: True if this block can be oriented, False if not.
 """

 return any(self._o_dict)

[docs] def orientation(self, face):
 """
 Retrieve the metadata for a certain orientation, or None if this block
 cannot be built against the given face.

 This method only returns valid data for orientable blocks; check
 :meth:`orientable` first.
 """

 return self._o_dict.get(face)

[docs]class Item(object):
 """
 An item.
 """

 __slots__ = (
 "key",
 "name",
 "slot",
)

 def __init__(self, slot, name, secondary=0):

 self.slot = slot
 self.name = name

 self.key = (self.slot, secondary)

 def __str__(self):
 return "Item(%r %r)" % (self.key, self.name)

 __repr__ = __str__

block_names = [
 "air", # 0x0
 "stone",
 "grass",
 "dirt",
 "cobblestone",
 "wood",
 "sapling",
 "bedrock",
 "water",
 "spring",
 "lava",
 "lava-spring",
 "sand",
 "gravel",
 "gold-ore",
 "iron-ore",
 "coal-ore", # 0x10
 "log",
 "leaves",
 "sponge",
 "glass",
 "lapis-lazuli-ore",
 "lapis-lazuli",
 "dispenser",
 "sandstone",
 "note-block",
 "bed",
 "powered-rail",
 "detector-rail",
 "",
 "spider-web",
 "tall-grass",
 "shrub", # 0x20
 "",
 "",
 "wool",
 "",
 "flower",
 "rose",
 "brown-mushroom",
 "red-mushroom",
 "gold",
 "iron",
 "double-step",
 "step",
 "brick",
 "tnt",
 "bookshelf",
 "mossy-cobblestone", # 0x30
 "obsidian",
 "torch",
 "fire",
 "mob-spawner",
 "wooden-stairs",
 "chest",
 "redstone-wire",
 "diamond-ore",
 "diamond",
 "workbench",
 "crops",
 "soil",
 "furnace",
 "burning-furnace",
 "signpost",
 "wooden-door", # 0x40
 "ladder",
 "tracks",
 "stone-stairs",
 "wall-sign",
 "lever",
 "stone-plate",
 "iron-door",
 "wooden-plate",
 "redstone-ore",
 "glowing-redstone-ore",
 "redstone-torch-off",
 "redstone-torch",
 "stone-button",
 "snow",
 "ice",
 "snow-block", # 0x50
 "cactus",
 "clay",
 "sugar-cane",
 "jukebox",
 "fence",
 "pumpkin",
 "brimstone",
 "slow-sand",
 "lightstone",
 "portal",
 "jack-o-lantern",
 "cake",
 "redstone-repeater-off",
 "redstone-repeater-on",
 "locked-chest",
 "trapdoor", #0x60
]

item_names = [
 "iron-shovel",
 "iron-pickaxe",
 "iron-axe",
 "flint-and-steel",
 "apple",
 "bow",
 "arrow",
 "coal",
 "diamond",
 "iron-ingot",
 "gold-ingot",
 "iron-sword",
 "wooden-sword",
 "wooden-shovel",
 "wooden-pickaxe",
 "wooden-axe",
 "stone-sword",
 "stone-shovel",
 "stone-pickaxe",
 "stone-axe",
 "diamond-sword",
 "diamond-shovel",
 "diamond-pickaxe",
 "diamond-axe",
 "stick",
 "bowl",
 "mushroom-soup",
 "gold-sword",
 "gold-shovel",
 "gold-pickaxe",
 "gold-axe",
 "string",
 "feather",
 "sulphur",
 "wooden-hoe",
 "stone-hoe",
 "iron-hoe",
 "diamond-hoe",
 "gold-hoe",
 "seeds",
 "wheat",
 "bread",
 "leather-helmet",
 "leather-chestplate",
 "leather-leggings",
 "leather-boots",
 "chainmail-helmet",
 "chainmail-chestplate",
 "chainmail-leggings",
 "chainmail-boots",
 "iron-helmet",
 "iron-chestplate",
 "iron-leggings",
 "iron-boots",
 "diamond-helmet",
 "diamond-chestplate",
 "diamond-leggings",
 "diamond-boots",
 "gold-helmet",
 "gold-chestplate",
 "gold-leggings",
 "gold-boots",
 "flint",
 "raw-porkchop",
 "cooked-porkchop",
 "paintings",
 "golden-apple",
 "sign",
 "wooden-door",
 "bucket",
 "water-bucket",
 "lava-bucket",
 "mine-cart",
 "saddle",
 "iron-door",
 "redstone",
 "snowball",
 "boat",
 "leather",
 "milk",
 "clay-brick",
 "clay-balls",
 "sugar-cane",
 "paper",
 "book",
 "slimeball",
 "storage-minecart",
 "powered-minecart",
 "egg",
 "compass",
 "fishing-rod",
 "clock",
 "glowstone-dust",
 "raw-fish",
 "cooked-fish",
 "dye",
 "bone",
 "sugar",
 "cake",
 "bed",
 "redstone-repeater",
 "cookie",
]

special_item_names = [
 "gold-music-disc",
 "green-music-disc",
]

dye_names = [
 "ink-sac",
 "red-dye",
 "green-dye",
 "cocoa-beans",
 "lapis-lazuli",
 "purple-dye",
 "cyan-dye",
 "light-gray-dye",
 "gray-dye",
 "pink-dye",
 "lime-dye",
 "yellow-dye",
 "light-blue-dye",
 "magenta-dye",
 "orange-dye",
 "bone-meal",
]

wool_names = [
 "white-wool",
 "orange-wool",
 "magenta-wool",
 "light-blue-wool",
 "yellow-wool",
 "light-green-wool",
 "pink-wool",
 "gray-wool",
 "light-gray-wool",
 "cyan-wool",
 "purple-wool",
 "blue-wool",
 "brown-wool",
 "dark-green-wool",
 "red-wool",
 "black-wool",
]

sapling_names = [
 "normal-sapling",
 "pine-sapling",
 "birch-sapling",
]

log_names = [
 "normal-log",
 "pine-log",
 "birch-log",
]

leave_names = [
 "normal-leave",
 "pine-leave",
 "birch-leave",
]

coal_names = [
 "normal-coal",
 "charcoal",
]

step_names = [
 "stone-step",
 "sandstone-step",
 "wooden-step",
 "cobblestone-step",
]

drops = {}

Block -> block drops.
If the drop block is zero, then it drops nothing.
drops[1] = 4 # Stone -> Cobblestone
drops[2] = 3 # Grass -> Dirt
drops[20] = 0 # Glass
drops[52] = 0 # Mob spawner
drops[60] = 3 # Soil -> Dirt
drops[62] = 61 # Burning Furnace -> Furnace
drops[78] = 0 # Snow

Block -> item drops.
drops[16] = 263 # Coal Ore Block -> Coal
drops[26] = 355 # Bed block -> Bed
drops[56] = 264 # Diamond Ore Block -> Diamond
drops[63] = 323 # Sign Post -> Sign Item
drops[64] = 324 # Wooden Door -> Wooden Door Item
drops[68] = 323 # Wall Sign -> Sign Item
drops[71] = 330 # Iron Door -> Iron Door Item
drops[83] = 338 # Reed -> Reed Item
drops[89] = 348 # Lightstone -> Lightstone Dust
drops[93] = 356 # Redstone-repeater-on -> Redstone-repeater
drops[94] = 356 # Redstone-repeater-off -> Redstone-repeater

unbreakables = set()

unbreakables.add(0) # Air
unbreakables.add(7) # Bedrock
unbreakables.add(10) # Lava
unbreakables.add(11) # Lava spring

dims = {}

dims[0] = 0 # Air
dims[6] = 0 # Sapling
dims[10] = 0 # Lava
dims[11] = 0 # Lava spring
dims[20] = 0 # Glass
dims[26] = 0 # Bed
dims[37] = 0 # Yellow Flowers
dims[38] = 0 # Red Flowers
dims[39] = 0 # Brown Mushrooms
dims[40] = 0 # Red Mushrooms
dims[44] = 0 # Single Step
dims[51] = 0 # Fire
dims[52] = 0 # Mob spawner
dims[53] = 0 # Wooden stairs
dims[55] = 0 # Redstone (Wire)
dims[59] = 0 # Crops
dims[60] = 0 # Soil
dims[63] = 0 # Sign
dims[64] = 0 # Wood door
dims[66] = 0 # Rails
dims[67] = 0 # Stone stairs
dims[68] = 0 # Sign (on wall)
dims[69] = 0 # Lever
dims[70] = 0 # Stone Pressure Plate
dims[71] = 0 # Iron door
dims[72] = 0 # Wood Pressure Plate
dims[78] = 0 # Snow
dims[81] = 0 # Cactus
dims[83] = 0 # Sugar Cane
dims[85] = 0 # Fence
dims[90] = 0 # Portal
dims[92] = 0 # Cake
dims[93] = 0 # redstone-repeater-off
dims[94] = 0 # redstone-repeater-on

blocks = {}
"""
A dictionary of ``Block`` objects.

This dictionary can be indexed by slot number or block name.
"""

def _add_block(block):
 blocks[block.slot] = block
 blocks[block.name] = block

Special blocks. Please remember to comment *what* makes the block special;
most of us don't have all blocks memorized yet.

Water (both kinds) is unbreakable, and dims by 3.
_add_block(Block(8, "water", breakable=False, dim=3))
_add_block(Block(9, "spring", breakable=False, dim=3))
Gravel drops flint, with 1 in 10 odds.
_add_block(Block(13, "gravel", drop=318, ratio=1 / 10))
Leaves drop saplings, with 1 in 9 odds, and dims by 1.
_add_block(Block(18, "leaves", drop=6, ratio=1 / 9, dim=1))
Torches are orientable.
_add_block(Block(50, "torch", orientation=(None, 5, 4, 3, 2, 1), dim=0))
Furnaces are orientable.
_add_block(Block(61, "furnace", orientation=(0, 1, 2, 3, 4, 5)))
Ladders are orientable.
_add_block(Block(65, "ladder", orientation=(None, None, 2, 3, 4, 5), dim=0))
Redstone ore drops 5 redstone dusts.
_add_block(Block(73, "redstone-ore", drop=331, quantity=5))
_add_block(Block(74, "glowing-redstone-ore", drop=331, quantity=5))
Redstone torches are orientable.
_add_block(Block(75, "redstone-torch-off", orientation=(None, 5, 4, 3, 2, 1), dim=0))
_add_block(Block(76, "redstone-torch", orientation=(None, 5, 4, 3, 2, 1), dim=0))
Stone buttons are orientable.
_add_block(Block(77, "stone-button", orientation=(None, None, 1, 2, 3, 4), dim=0))
Ice drops nothing, is replaced by springs, and dims by 3.
_add_block(Block(79, "ice", drop=0, replace=9, dim=3))
Clay drops 4 clay balls.
_add_block(Block(82, "clay", drop=337, quantity=4))

for block in blocks.values():
 blocks[block.name] = block
 blocks[block.slot] = block

items = {}
"""
A dictionary of ``Item`` objects.

This dictionary can be indexed by slot number or block name.
"""

for i, name in enumerate(block_names):
 if not name or name in blocks:
 continue

 kwargs = {}
 if i in drops:
 kwargs["drop"] = drops[i]
 if i in unbreakables:
 kwargs["breakable"] = False
 if i in dims:
 kwargs["dim"] = dims[i]

 b = Block(i, name, **kwargs)
 _add_block(b)

for i, name in enumerate(item_names):
 kwargs = {}
 i += 0x100
 item = Item(i, name, **kwargs)
 items[i] = item
 items[name] = item

for i, name in enumerate(special_item_names):
 kwargs = {}
 i += 0x8D0
 item = Item(i, name, **kwargs)
 items[i] = item
 items[name] = item

_secondary_items = {
 items["coal"]: coal_names,
 items["dye"]: dye_names,
}

for base_item, names in _secondary_items.iteritems():
 for i, name in enumerate(names):
 kwargs = {}
 item = Item(base_item.slot, name, i, **kwargs)
 items[name] = item

_secondary_blocks = {
 blocks["leaves"]: leave_names,
 blocks["log"]: log_names,
 blocks["sapling"]: sapling_names,
 blocks["step"]: step_names,
 blocks["wool"]: wool_names,
}

for base_block, names in _secondary_blocks.iteritems():
 for i, name in enumerate(names):
 kwargs = {}
 kwargs["drop"] = base_block.drop
 kwargs["breakable"] = base_block.breakable
 kwargs["dim"] = base_block.dim

 block = Block(base_block.slot, name, i, **kwargs)
 _add_block(block)

glowing_blocks = {
 blocks["torch"].slot: 14,
 blocks["lightstone"].slot: 15,
 blocks["jack-o-lantern"].slot: 15,
 blocks["fire"].slot: 15,
 blocks["lava"].slot: 15,
 blocks["lava-spring"].slot: 15,
 blocks["locked-chest"].slot: 15,
 blocks["burning-furnace"].slot: 13,
 blocks["portal"].slot: 11,
 blocks["glowing-redstone-ore"].slot: 9,
 blocks["redstone-repeater-on"].slot: 9,
 blocks["redstone-torch"].slot: 7,
 blocks["brown-mushroom"].slot: 1,
}

armor_helmets = (86, 298, 302, 306, 310, 314)
"""
List of slots of helmets.

Note that slot 86 (pumpkin) is a helmet.
"""

armor_chestplates = (299, 303, 307, 311, 315)
"""
List of slots of chestplates.

Note that slot 303 (chainmail chestplate) is a chestplate, even though it is
not normally obtainable.
"""

armor_leggings = (300, 304, 308, 312, 316)
"""
List of slots of leggings.
"""

armor_boots = (301, 305, 309, 313, 317)
"""
List of slots of boots.
"""

[docs]def parse_block(block):
 """
 Get the key for a given block/item.
 """

 try:
 if block.startswith("0x") and (
 (int(block, 16) in blocks) or (int(block, 16) in items)):
 return (int(block, 16), 0)
 elif (int(block) in blocks) or (int(block) in items):
 return (int(block), 0)
 else:
 raise Exception("Couldn't find block id %s!" % block)
 except ValueError:
 if block in blocks:
 return blocks[block].key
 elif block in items:
 return items[block].key
 else:
 raise Exception("Couldn't parse block %s!" % block)

 © Copyright 2010, Corbin Simpson & Derrick Dymock.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		latest

 		1.9

 		1.8.1

 		1.8

 		1.7.2

 		1.7.1

 		1.7

 		1.6.1

 		1.6

 		1.5

 		1.4

_static/up.png

_static/plus.png

_modules/bravo/utilities/maths.html

 Navigation

 		
 index

 		
 modules |

 		Bravo 1.7 documentation »

 		Module code »

 Source code for bravo.utilities.maths

from math import cos, sin

[docs]def rotated_cosine(x, y, theta, lambd):
 r"""
 Evaluate a rotated 3D sinusoidal wave at a given point, angle, and
 wavelength.

 The function used is:

 .. math::

 f(x, y) = -\cos((x \cos\theta - y \sin\theta) / \lambda) / 2 + 1

 This function has a handful of useful properties; it has a local minimum
 at f(0, 0) and oscillates infinitely betwen 0 and 1.

 :param float x: X coordinate
 :param float y: Y coordinate
 :param float theta: angle of rotation
 :param float lambda: wavelength

 :returns: float of f(x, y)
 """

 return -cos((x * cos(theta) - y * sin(theta)) / lambd) / 2 + 1

def morton2(x, y):
 """
 Create a Morton number by interleaving the bits of two numbers.

 This can be used to map 2D coordinates into the integers.

 Inputs will be masked off to 16 bits, unsigned.
 """

 gx = x & 0xffff
 gy = y & 0xffff

 b = 0x00ff00ff, 0x0f0f0f0f, 0x33333333, 0x55555555
 s = 8, 4, 2, 1

 for i, j in zip(b, s):
 gx = (gx | (gx << j)) & i
 gy = (gy | (gy << j)) & i

 return gx | (gy << 1)

 © Copyright 2010, Corbin Simpson & Derrick Dymock.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		latest

 		1.9

 		1.8.1

 		1.8

 		1.7.2

 		1.7.1

 		1.7

 		1.6.1

 		1.6

 		1.5

 		1.4

