

 Navigation

 	
 index

 	
 next |

 	BottleShip 0.2.4 documentation

Welcome to BottleShip’s documentation!

Contents:

	BottleShip
	Introduction

	Features

	Getting Started

	Routes

	Security

	License

	Installation

	Usage
	Getting Started

	Routes

	Security

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	Credits
	Project Lead

	Contributors

	History
	0.1.0 (2016-01-17)

	0.2.0 (2016-01-17)

	0.2.1 (2016-01-19)

	0.2.2 (2016-02-14)

	0.2.3 (2016-02-15)

	0.2.4 (2016-02-17)

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2016, Oscar Martinez.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	BottleShip 0.2.4 documentation

BottleShip

 [https://pypi.python.org/pypi/bottleship]
 [https://travis-ci.org/omtinez/bottleship][image: Documentation Status]
 [http://bottleship.readthedocs.org/en/latest/?badge=latest]Authentication for the Bottle web framework made simple.

	Free software: MIT license

	Documentation: https://bottleship.readthedocs.org.

Introduction

BottleShip is a very simple library for authentication using the Bottle web framework. It supports
the standard workflow of registration, login, and authentication required by simple applications
that need to maintain a state for individual users.

Features

	Very simple and easy to use

	Works both on Python 2.x and 3.x

	Very few dependencies

Getting Started

This documentation assumes that you already have a working Bottle application or that you are
somewhat familiar with the Bottle web framework. If you need to reference documentation for Bottle,
here is the link [http://bottlepy.org/docs/dev/api.html].

The easiest way to install BottleShip is using pip:

$ pip install bottleship

With BottleShip installed, this is what it takes to use authentication to lock certain routes so
they can only be used by users who are logged in:

Instantiate class and register "register" and "login" routes
bs = BottleShip()
bs.route('/register', method=('GET', 'POST'), callback=bs.register)
bs.route('/login', method=('GET', 'POST'), callback=bs.login)

This API endpoint can only be reached by users who have logged in
@bs.require_auth('/testapi', method=('GET', 'POST'))
def testapi(bottleship_user_record):
 return "Hello, %s!" % bottleship_user_record.get('Username')

New users can register by visiting the /register endpoint and sending their username and
password as part of their request. For example, a new user can be registered with the following
request:

>>> curl http://127.0.0.1:8080/register?Username=john&Password=1234
... HTTP/1.0 200 OK
... Content-Length: 155
... Content-Type: text/html; charset=UTF-8
... Date: Sun, 17 Jan 2016 23:36:02 GMT
... Server: WSGIServer/0.1 Python/2.7.10
...
... {"Username": "john", "SecurityLevel": "plaintext", "Password": "1723328
... 704", "RemoteIpAddr": "127.0.0.1", "__id__": "040220e5-1cce-4cdd-af9d-2
... ad2885263aa"}

Similarly, to log in, a user can make the following request:

>>> curl http://127.0.0.1:8080/login?Username=john&Password=1234
... HTTP/1.0 200 OK
... Content-Length: 247
... Content-Type: text/html; charset=UTF-8
... Date: Sun, 17 Jan 2016 23:36:03 GMT
... Set-Cookie: Token=5f04ee43-83bb-46c0-96aa-65a2c585a796; Path=/
... Server: WSGIServer/0.1 Python/2.7.10
...
... {"Username": "john", "SecurityLevel": "plaintext", "LastLogin": "145307
... 3842.72", "Token": "5f04ee43-83bb-46c0-96aa-65a2c585a796", "__id__": "0
... 40220e5-1cce-4cdd-af9d-2ad2885263aa", "Key": null, "Password": "1723328
... 704", "RemoteIpAddr": "127.0.0.1"}

Both requests will return a JSON object that represents a record with all the information that the
BottleShip server has about the user. A login request’s returned JSON also has a field named
Token that contains the user session token. In addition to that, the returned request will
also store the session token as part of the cookies in the request headers.

If the login was successful, the user can now make the following request:

>>> curl http://127.0.0.1:8080/testapi3?Token=5f04ee43-83bb-46c0-96aa-65a2c
 585a796
... HTTP/1.0 200 OK
... Content-Length: 12
... Content-Type: text/html; charset=UTF-8
... Date: Sun, 17 Jan 2016 23:36:04 GMT
... Server: WSGIServer/0.1 Python/2.7.10
...
... Hello, john!

If everything worked, the user will receive Hello, john!.

Routes

BottleShip’s require_auth method has nearly identical signature compared to Bottle’s
route. The main difference is that, instead of a single callback parameter, it has two:

	callback_success. Optional; roughly equivalent to Bottle’s callback. When not set,
defaults to sending a request back to the user with the status code of 200 and body OK.

	callback_failure. Optional; when not set, defaults to sending a request back to the user with
status code of 403 and body containing more details about the failure (but no stack trace).

Like Bottle’s route method, require_auth can be used both as a regular function that takes
callable objects parameters for callback_success and callback_failure, or as a decorator to
wrap the function callback_success.

For applications intended for web browsers that can rely on cookies for session tokens, this
function is essentially a drop-in replacement for Bottle’s route. For example, the following
snippet:

app = Bottle()
@app.route('/hello/<name>')
def hello(name):
 return 'Hello, %s!' % name

Becomes this:

app = BottleShip()
@app.require_auth('/hello/<name>')
def hello(name):
 return 'Hello, %s!' % name

For convenience, and to avoid interfacing with the underlying data about the users at more than one
layer in the application, routes can receive a copy of the record representing a user by adding a
parameter named bottleship_user_record to the function’s signature. The information will be
represented as a dict and contains:

	Username

	Password, if any (hashed)

	__id__, used internally by the database engine

	RemoteIpAddr

	Any other information added by the client during registration or login as part of the request

Then, the previous example can be simplified further and changed to:

app = BottleShip()
@app.require_auth('/hello')
def hello(bottleship_user_record):
 return 'Hello, %s!' % bottleship_user_record.get('Username')

Security

Needless to say, you should not be transmitting passwords over a plain connection like it is done
in the example above. If you cannot achieve a cryptographically secure connection between user and
server, your only hope is to implement a public key scheme to allow for secure transmission of user
password and token. Such scheme is not implemented in BottleShip, but it has a few mitigations in
place that yield a marginal increase in security.

When registration takes place, all information provided by the user is recorded. Most of it is
provided by the user himself so it could be easily forged, but the IP address is slightly more
difficult to fake. Using the user IP address, along with some form of whitelisting (or
blacklisting), allows for a relative improvement in the application security. To achieve this, one
must provide the whitelist upon instantiation like:

valid_users = {"RemoteIpAddr": "127.0.0.1"}
bs = BottleShip(whitelist_cond=valid_users)

Then, when the user registers, BottleShip will make sure that only requests from the provided IP
addresses have permission to reach the endpoint.

Another mitigation regarding the user IP address is the verification of addresses not changing
between registration and login. This is achieved by appending +ipaddr to the desired security
level upon registration. For example, a new user can be registered with the following request:

>>> curl http://127.0.0.1:8080/register?Username=john&Password=1234&Securit
 yLevel=plaintext%2Bipaddr
... HTTP/1.0 200 OK
... Content-Length: 162
... Content-Type: text/html; charset=UTF-8
... Date: Sun, 17 Jan 2016 23:36:05 GMT
... Server: WSGIServer/0.1 Python/2.7.10
...
... {"Username": "john", "SecurityLevel": "plaintext+ipaddr", "Password": "
... 1723328704", "RemoteIpAddr": "127.0.0.1", "__id__": "1b5ca834-f4fb-4f6a
... -96f3-5a427ca43270"}

Note that the + sign is URL encoded so plaintext becomes plaintext+ipaddr, which is
encoded into plaintext%2Bipaddr. IP address verification is the only security feature that will
persist between registration and login. Other than that, the security level during login can be
whatever the client chooses regardless of the security level during registration.

A more sophisticated security mitigation is implementing HMAC signing for the information exchanged
between client and server during registration and login. This requires an additional step to
perform the key exchange prior to registration and/or login. The key exchange will provide the user
with a single-use token that can be utilized by the client to send the server information signed
with the secret key provided during the exchange.

>>> curl http://127.0.0.1:8080/swapkeys/hmac/5f04ee43-83bb-46c0-96aa-65a2c5
 85a796
... HTTP/1.0 200 OK
... Content-Length: 114
... Content-Type: text/html; charset=UTF-8
... Date: Sun, 17 Jan 2016 23:36:06 GMT
... Server: WSGIServer/0.1 Python/2.7.10
...
... !1ICg4mv4H8NGUyV5aveJU1fJ/wnFr0cOks+KMIvZuIo=?eyJUb2tlbiI6ICI0OGYyNWM4O
... S1mZDg2LTRhMzctOGYyNi00NmYxNmE0YzVlYWIifQ==

Note that the token is encoded in base64 and later signed with the user-provided key. Decoding the
above string produces {"Token": "48f25c89-fd86-4a37-8f26-46f16a4c5eab"}.

Which can then be hashed and the signature verified using the user-provided secret key. In the next
step, the client can send all the user information encoded and signed along with the single-use
token so the server knows which key to verify the data with:

>>> curl http://127.0.0.1:8080/register?Token=48f25c89-fd86-4a37-8f26-46f16
 a4c5eab&Data=!6uz1tJzSZX%2F0EhVqj4ZpTMiiNmONVPY601ZHCHLXu9M%3D%3FeyJVc2
 VybmFtZSI6ImpvaG4iLCJQYXNzd29yZCI6IjEyMzQifQ%3D%3D
... HTTP/1.0 200 OK
... Content-Length: 202
... Content-Type: text/html; charset=UTF-8
... Date: Sun, 17 Jan 2016 23:36:07 GMT
... Server: WSGIServer/0.1 Python/2.7.10
...
... {"Username": "john", "SecurityLevel": "plaintext", "__id__": "3be4ed1c-
... d30d-4786-bfc7-97728120e7b2", "Key": "5f04ee43-83bb-46c0-96aa-65a2c585a
... 796", "Password": "1723328704", "RemoteIpAddr": "127.0.0.1"}

The data returned by the server is in plaintext because a security level was not specified in the
request. If the client wants the user information encoded, he must explicitly specify a security
level that enforces signature verification.

The only other method in the authentication workflow other than registration that supports encoding
is login. The function signature is identical and the token is also of single-use. After login, any
further references of token in the APIs assume that it is the session token. It is worth noting
that, because the token and user key are expected to last as long as the session does, it is
pointless to encode, hash, or otherwise obscure the token or user key. Since the same string,
encrypted or otherwise, will be sent in each request by the client, it makes no difference to an
attacker to sniff the plaintext version or the encrypted version of the token; he can just present
the server with the same string and it will be accepted as valid. For similar reasons, the password
is being sent in plaintext form to the server and it is only hashed internally.

License

Copyright (c) 2016 Oscar Martinez
All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the “Software”), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

 Copyright 2016, Oscar Martinez.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	BottleShip 0.2.4 documentation

Installation

At the command line:

$ pip install bottleship

Or, if you have virtualenvwrapper installed:

$ mkvirtualenv bottleship
$ pip install bottleship

 Copyright 2016, Oscar Martinez.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	BottleShip 0.2.4 documentation

Usage

Getting Started

This documentation assumes that you already have a working Bottle application or that you are
somewhat familiar with the Bottle web framework. If you need to reference documentation for Bottle,
`here is the link`_.

The easiest way to install BottleShip is using pip:

$ pip install bottleship

With BottleShip installed, this is what it takes to use authentication to lock certain routes so
they can only be used by users who are logged in:

Instantiate class and register "register" and "login" routes
bs = BottleShip()
bs.route('/register', method=('GET', 'POST'), callback=bs.register)
bs.route('/login', method=('GET', 'POST'), callback=bs.login)

This API endpoint can only be reached by users who have logged in
@bs.require_auth('/testapi', method=('GET', 'POST'))
def testapi(bottleship_user_record):
 return "Hello, %s!" % bottleship_user_record.get('Username')

New users can register by visiting the /register endpoint and sending their username and
password as part of their request. For example, a new user can be registered with the following
request:

>>> curl http://127.0.0.1:8080/register?Username=john&Password=1234
... HTTP/1.0 200 OK
... Content-Length: 155
... Content-Type: text/html; charset=UTF-8
... Date: Sun, 17 Jan 2016 23:36:02 GMT
... Server: WSGIServer/0.1 Python/2.7.10
...
... {"Username": "john", "SecurityLevel": "plaintext", "Password": "1723328
... 704", "RemoteIpAddr": "127.0.0.1", "__id__": "040220e5-1cce-4cdd-af9d-2
... ad2885263aa"}

Similarly, to log in, a user can make the following request:

>>> curl http://127.0.0.1:8080/login?Username=john&Password=1234
... HTTP/1.0 200 OK
... Content-Length: 247
... Content-Type: text/html; charset=UTF-8
... Date: Sun, 17 Jan 2016 23:36:03 GMT
... Set-Cookie: Token=5f04ee43-83bb-46c0-96aa-65a2c585a796; Path=/
... Server: WSGIServer/0.1 Python/2.7.10
...
... {"Username": "john", "SecurityLevel": "plaintext", "LastLogin": "145307
... 3842.72", "Token": "5f04ee43-83bb-46c0-96aa-65a2c585a796", "__id__": "0
... 40220e5-1cce-4cdd-af9d-2ad2885263aa", "Key": null, "Password": "1723328
... 704", "RemoteIpAddr": "127.0.0.1"}

Both requests will return a JSON object that represents a record with all the information that the
BottleShip server has about the user. A login request’s returned JSON also has a field named
Token that contains the user session token. In addition to that, the returned request will
also store the session token as part of the cookies in the request headers.

If the login was successful, the user can now make the following request:

>>> curl http://127.0.0.1:8080/testapi3?Token=5f04ee43-83bb-46c0-96aa-65a2c
 585a796
... HTTP/1.0 200 OK
... Content-Length: 12
... Content-Type: text/html; charset=UTF-8
... Date: Sun, 17 Jan 2016 23:36:04 GMT
... Server: WSGIServer/0.1 Python/2.7.10
...
... Hello, john!

If everything worked, the user will receive Hello, john!.

Routes

BottleShip’s require_auth method has nearly identical signature compared to Bottle’s
route. The main difference is that, instead of a single callback parameter, it has two:

	callback_success. Optional; roughly equivalent to Bottle’s callback. When not set,
defaults to sending a request back to the user with the status code of 200 and body OK.

	callback_failure. Optional; when not set, defaults to sending a request back to the user with
status code of 403 and body containing more details about the failure (but no stack trace).

Like Bottle’s route method, require_auth can be used both as a regular function that takes
callable objects parameters for callback_success and callback_failure, or as a decorator to
wrap the function callback_success.

For applications intended for web browsers that can rely on cookies for session tokens, this
function is essentially a drop-in replacement for Bottle’s route. For example, the following
snippet:

app = Bottle()
@app.route('/hello/<name>')
def hello(name):
 return 'Hello, %s!' % name

Becomes this:

app = BottleShip()
@app.require_auth('/hello/<name>')
def hello(name):
 return 'Hello, %s!' % name

For convenience, and to avoid interfacing with the underlying data about the users at more than one
layer in the application, routes can receive a copy of the record representing a user by adding a
parameter named bottleship_user_record to the function’s signature. The information will be
represented as a dict and contains:

	Username

	Password, if any (hashed)

	__id__, used internally by the database engine

	RemoteIpAddr

	Any other information added by the client during registration or login as part of the request

Then, the previous example can be simplified further and changed to:

app = BottleShip()
@app.require_auth('/hello')
def hello(bottleship_user_record):
 return 'Hello, %s!' % bottleship_user_record.get('Username')

Security

Needless to say, you should not be transmitting passwords over a plain connection like it is done
in the example above. If you cannot achieve a cryptographically secure connection between user and
server, your only hope is to implement a public key scheme to allow for secure transmission of user
password and token. Such scheme is not implemented in BottleShip, but it has a few mitigations in
place that yield a marginal increase in security.

When registration takes place, all information provided by the user is recorded. Most of it is
provided by the user himself so it could be easily forged, but the IP address is slightly more
difficult to fake. Using the user IP address, along with some form of whitelisting (or
blacklisting), allows for a relative improvement in the application security. To achieve this, one
must provide the whitelist upon instantiation like:

valid_users = {"RemoteIpAddr": "127.0.0.1"}
bs = BottleShip(whitelist_cond=valid_users)

Then, when the user registers, BottleShip will make sure that only requests from the provided IP
addresses have permission to reach the endpoint.

Another mitigation regarding the user IP address is the verification of addresses not changing
between registration and login. This is achieved by appending +ipaddr to the desired security
level upon registration. For example, a new user can be registered with the following request:

>>> curl http://127.0.0.1:8080/register?Username=john&Password=1234&Securit
 yLevel=plaintext%2Bipaddr
... HTTP/1.0 200 OK
... Content-Length: 162
... Content-Type: text/html; charset=UTF-8
... Date: Sun, 17 Jan 2016 23:36:05 GMT
... Server: WSGIServer/0.1 Python/2.7.10
...
... {"Username": "john", "SecurityLevel": "plaintext+ipaddr", "Password": "
... 1723328704", "RemoteIpAddr": "127.0.0.1", "__id__": "1b5ca834-f4fb-4f6a
... -96f3-5a427ca43270"}

Note that the + sign is URL encoded so plaintext becomes plaintext+ipaddr, which is
encoded into plaintext%2Bipaddr. IP address verification is the only security feature that will
persist between registration and login. Other than that, the security level during login can be
whatever the client chooses regardless of the security level during registration.

A more sophisticated security mitigation is implementing HMAC signing for the information exchanged
between client and server during registration and login. This requires an additional step to
perform the key exchange prior to registration and/or login. The key exchange will provide the user
with a single-use token that can be utilized by the client to send the server information signed
with the secret key provided during the exchange.

>>> curl http://127.0.0.1:8080/swapkeys/hmac/5f04ee43-83bb-46c0-96aa-65a2c5
 85a796
... HTTP/1.0 200 OK
... Content-Length: 114
... Content-Type: text/html; charset=UTF-8
... Date: Sun, 17 Jan 2016 23:36:06 GMT
... Server: WSGIServer/0.1 Python/2.7.10
...
... !1ICg4mv4H8NGUyV5aveJU1fJ/wnFr0cOks+KMIvZuIo=?eyJUb2tlbiI6ICI0OGYyNWM4O
... S1mZDg2LTRhMzctOGYyNi00NmYxNmE0YzVlYWIifQ==

Note that the token is encoded in base64 and later signed with the user-provided key. Decoding the
above string produces {"Token": "48f25c89-fd86-4a37-8f26-46f16a4c5eab"}.

Which can then be hashed and the signature verified using the user-provided secret key. In the next
step, the client can send all the user information encoded and signed along with the single-use
token so the server knows which key to verify the data with:

>>> curl http://127.0.0.1:8080/register?Token=48f25c89-fd86-4a37-8f26-46f16
 a4c5eab&Data=!6uz1tJzSZX%2F0EhVqj4ZpTMiiNmONVPY601ZHCHLXu9M%3D%3FeyJVc2
 VybmFtZSI6ImpvaG4iLCJQYXNzd29yZCI6IjEyMzQifQ%3D%3D
... HTTP/1.0 200 OK
... Content-Length: 202
... Content-Type: text/html; charset=UTF-8
... Date: Sun, 17 Jan 2016 23:36:07 GMT
... Server: WSGIServer/0.1 Python/2.7.10
...
... {"Username": "john", "SecurityLevel": "plaintext", "__id__": "3be4ed1c-
... d30d-4786-bfc7-97728120e7b2", "Key": "5f04ee43-83bb-46c0-96aa-65a2c585a
... 796", "Password": "1723328704", "RemoteIpAddr": "127.0.0.1"}

The data returned by the server is in plaintext because a security level was not specified in the
request. If the client wants the user information encoded, he must explicitly specify a security
level that enforces signature verification.

The only other method in the authentication workflow other than registration that supports encoding
is login. The function signature is identical and the token is also of single-use. After login, any
further references of token in the APIs assume that it is the session token. It is worth noting
that, because the token and user key are expected to last as long as the session does, it is
pointless to encode, hash, or otherwise obscure the token or user key. Since the same string,
encrypted or otherwise, will be sent in each request by the client, it makes no difference to an
attacker to sniff the plaintext version or the encrypted version of the token; he can just present
the server with the same string and it will be accepted as valid. For similar reasons, the password
is being sent in plaintext form to the server and it is only hashed internally.

 Copyright 2016, Oscar Martinez.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	BottleShip 0.2.4 documentation

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/omtinez/bottleship/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “feature”
is open to whoever wants to implement it.

Write Documentation

BottleShip could always use more documentation, whether as part of the
official BottleShip docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/omtinez/bottleship/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up bottleship for local development.

	Fork the bottleship repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/bottleship.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv bottleship
$ cd bottleship/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the tests, including testing other Python versions with tox:

$ flake8 bottleship tests
$ python setup.py test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.6, 2.7, 3.3, 3.4 and 3.5, and for PyPy. Check
https://travis-ci.org/omtinez/bottleship/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ python -m unittest tests.test_bottleship

 Copyright 2016, Oscar Martinez.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	BottleShip 0.2.4 documentation

Credits

Project Lead

	Oscar Martinez <omtinez@gmail.com>

Contributors

None yet. Why not be the first?

 Copyright 2016, Oscar Martinez.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 previous |

 	BottleShip 0.2.4 documentation

History

0.1.0 (2016-01-17)

	First release on PyPI.

0.2.0 (2016-01-17)

	Fixed Python 2 vs 3 compatibility.

	Updated documentation and setup TravisCI

0.2.1 (2016-01-19)

	Update interface with pddb

	Fix line endings

0.2.2 (2016-02-14)

	Added logout() function and corresponding documentation

	Updated example html file

0.2.3 (2016-02-15)

	Added logout() tests

	Added callback_success fallback for callback parameter in require_auth()

0.2.4 (2016-02-17)

	Dynamically import all public methods and classes from bottle

 Copyright 2016, Oscar Martinez.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	BottleShip 0.2.4 documentation

Index

 Copyright 2016, Oscar Martinez.
 Created using Sphinx 1.3.4.

 search.html

 Navigation

 		
 index

 		BottleShip 0.2.4 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, Oscar Martinez.
 Created using Sphinx 1.3.4.

_static/up-pressed.png

_static/down.png

_static/comment-close.png

_static/down-pressed.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up.png

