

 Navigation

 	
 index

 	
 next |

 	Bosun 1 documentation

Welcome to Bosun’s documentation!

Bosun is a runtime environment for BESM and associated models. It is used to
document and automate the tasks related to running a climate model (prepare
inputs, compile the code, run the model, archive the results). It is based
on Fabric and can be used as a library or CLI.

Contents:

	Design principles
	Concepts

	Small tasks, composable tasks

	Bosun Tutorial
	Introduction

	Installing

	Updating

	Downloading experiments repository to your local machine

	Creating a new experiment

	Running Tasks

	Developer tips
	The env_options decorator

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2012, Luiz Irber, Guilherme Castelão, Léo Siqueira.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Bosun 1 documentation

Design principles

This section explains the philosophy behind Bosun development and how we can
fit a model to it.

Concepts

Bosun tasks acts over data sources and sinks.
Tasks can be divided in four categories: Prepare, Compile, Run and Archive.
Data sources and sinks can be Experiments, Code, Artifacts and Storage.

[image: https://docs.google.com/drawings/d/1OuNhnngb34NPufprCS1nGV7CRoqFBb25vdamvYDUX4o/pub?w=483&h=356]

Execution

In a very high level executing a model can be divided in four parts:

	Prepare

This step can include data manipulation (download, munging, copying)
and directory creation.

	Compile

Code checkout from repositories, instrumentation and compilation are
good fits for this step.

	Run

How to run the model: batch system submission, consistency checks,
status and automatic restarts.

	Archive

Sources and sinks

	Experiment

	Code

	Artifacts

	Storage

Small tasks, composable tasks

Tasks should be small, and complex tasks should be broken in smaller ones.

 Copyright 2012, Luiz Irber, Guilherme Castelão, Léo Siqueira.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Bosun 1 documentation

Bosun Tutorial

Introduction

In this manual $EXP_REPOS is the local directory where you want to keep the
model experiments (local repository) in your local machine. To name it exp_repos
and place in your $HOME dir:

$ EXP_REPOS=~/exp_repos

Installing

First you need to install Mercurial, a version control system, if not previously
installed. As first step, you should teach Mercurial your name (required). For
that you open/create the file ~/.hgrc in your home directory with a text-editor
and add the ui section (user interaction) with your username:

[ui]
username = name <user@mail.com>

In Mercurial, we do all of our work inside a repository which will be $EXP_REPOS
set up in the Introduction. A repository is a directory that contains all of the
source files that we want to keep history of, along with complete histories of
those source files. To do this, we will use the clone command (hg clone). This
makes a clone of a repository (remote in our case); it makes a complete copy of
another repository so that we will have our own local, private one to work in.
We will bring the experiments repository to your local machine after the
installation is finished.

Installing dependencies and Bosun

We need to install a series of software dependencies for Bosun to work, although
it already has built-in dependencies in itself that are installed automatically.

First, we install virtualenv which is a tool to create isolated Python
environments. It creates a Python interpreter that uses an isolated environment
in order to not create conflicts among different versions or libraries
installed. Anytime you use that interpreter the libraries in that environment
will be used. To install it follow instructions from the
official documentation [http://www.virtualenv.org/en/latest/virtualenv.html#installation]
, where myVE is the name of the virtualenv (”.bosun_env” , for example).

In order to use this recently created environment it is necessary to activate
it. To do that we execute the following command:

$ source ~/.bosun_env/bin/activate

This command will change your $PATH so its first entry is the virtualenv’s bin/
directory and your prompt is changed so that you can visually distinguish when
this environment is activated (you have to use source because it changes your
shell environment in-place.). The activate command only alters the $PATH and
prompt of you working terminal, if you want to use Bosun in another terminal you
will have to activate it in that new terminal too. If you want to undo the
changes done with activate you execute the following command:

(environment) $ deactivate

Finally, install another dependency and Bosun:

$ pip install bosun
$ rm virtualenv.py

Preparing Bosun for first use

Before running Bosun for the first time, please configure your username, remote
host and connection port, so that you don’t need to type it every time you use
it. This configuration is placed inside the file ~/.bosunrc (.bosunrc in your
$HOME directory) and needs to be edited/created.

Ex:1)
If you are inside CPTEC/INPE:

user: your_user_at_tupa
hosts: tupa.cptec.inpe.br

	

user: your_user_at_tupa
hosts: lmo-f
port: 6000

Updating

In order to update Bosun without installing all the built-in dependencies again:

$ pip install -U --no-deps bosun==dev

Downloading experiments repository to your local machine

Bring the experiments repository to your local machine using:

$ hg clone ssh://tupa//stornext/online2/ocean/exp_repos $EXP_REPOS

When you clone a repository, the new repository becomes an exact copy of the
existing one at the time of the clone, but subsequent changes in either one will
not show up in the other unless you explicitly transfer them, by either pulling
(hg pull -u) or pushing (hg push) using Mercurial.

Creating a new experiment

In order to create a new experiment, copy the directory expbase to a new exp
dir, e.g. expnew:

$ cd $EXP_REPOS/exp
$ cp -R expbase expnew
$ cd expnew

The new experiment directory will have the following structure: 1. MODELIN 1.
AGCM model configuration 1. input.nml 1. OGCM and coupler configuration. 1.
instrument_coupler.apa 1. Instrumentation configuration. 1. namelist.yaml
Configurations for running the experiment.

1. runscripts/ 1. Files for compiling, executing, and post-processing. You
should not need to modify these. 1. tables/ 1. field_table 2. diag_table 3.
data_table 1. 1. data_override

Go on and edit namelist.yaml which contains the experiment name, start/end
dates, etc:

$ vi namelist.yaml

Change name to expnew and save.

$ cd tables

Edit diag_table for selecting diagnostic variables for the OGCM model outputs:

$ vi diag_table
$ cd $EXP_REPOS/exp

Update new exp in the repository:

$ hg add expnew

Check for changes:

$ hg pull –u

Merge if necessary:

$ hg merge

The act of creating a changeset in the main repository is called committing it.
We perform a commit using the commit command. The hg commit command has a nice
short alias: ci (“check in”), so we can use that:

$ hg ci

This drops us into an editor, and presents us with a few cryptic lines of text.
The first line is empty and the lines that follow identify the user, branch name
and the files that will go into this changeset. Edit the text in the first line
briefly mentioning your changes so it can be understood by yourself and other
users of the same repository/branch.

Upload your changes to the main repository (remote) using:

$ hg push

Running Tasks

Before running a task with Bosun, please check if your virtualenv is activated:

$ source ~/.bosun_env/bin/activate

Bosun has several tasks that can be performed. To list the available tasks to be
performed:

$ bosun --list

To detail the task dependencies and which variables need to be set in the
namelists respective to a specific task from the list:

$ bosun -d taskname

Run Experiment from scratch

In order to run a full model cycle, i.e. prepare (create all directories, and
copy the necessary inputs to the right place), compile and run: $ bosun
deploy_and_run:name=expnew The three tasks performed in deploy_and_run can also
be achieved if the user runs the tasks: prepare, compilation, and run in this
specific order. This will create directories in:
/scratchin/grupos/ocean/home/${USER}/${EXP}/ containing source files for
compilation, namelists, and executables for this specific experiment. It will
also create directories in:
/scratchout/grupos/ocean/home/${USER}/${EXP}/${TYPE}/ where ${TYPE} is the type
of run: ocean model only (mom4p1_falsecoupled) or coupled ocean/atmosphere run
(coupled). It contains the input, outputs, and restart files. If running a
coupled run, the atmospheric outputs are located in:
/scratchout/grupos/ocean/home/${USER}/${EXP}/coupled/model/dataout/TQ0062L028/

Restart an experiment

Assuming you’ve successfully ran the model, you now have the model restart files
written to your RESTART directory. For safety, rename the restart directory to
save the data intact, before starting a new run: $ cp RESTART RESTART_yyyymmddhh
In order to restart and existing experiment: $ bosun
restart:name=expnew,restart=yyyymmddhh,finish=yyyymmddhh This task will check
the current model time in /RESTART/coupler.res against the given date and return
an error message if they do not match. Observation: If restarting again, don’t
forget to rename the newly formed RESTART directory if you plan to keep those
files!

Creating new grids

The generation of new grids is treated in the same way as a regular experiment
in Bosun. However, it does require some editing of the grid specification data
file (to be moved inside the namelist in the future):

$ cd $EXP_REPOS/exp
$ cp -R expbase expnewgrid
$ cd expnewgrid
$ vi runscripts/mom4_pre/ocean_grid_run.csh

Usually you will need to edit hgrid_nml, vgrid_nml and topog_nml inside this
file to include your grid specifications and suitable topography file for the
intended resolution before running.

Once you configured your new grid, you need to commit the changes and send to
the remote machine:

$ hg add expnewgrid
$ hg pull -u
$ hg commit -m "New grid generation"
$ hg push

In order to create the grid and the exchange grid for the coupled model using
Bosun:

$ bosun generate_grid:name="expnewgrid"
$ bosun make_xgrids:name="expnewgrid"

This tasks will generate the following file in the remote machine:

/scratchout/grupos/ocean/home/${USER}/${EXP}/coupled/gengrid/grid_spec_UNION.nc

The grid_spec_UNION.nc is the actual file that will be used when running the
model. It is recommended to change the name of the file so that it includes the
grid resolution, e.g. grid_spec_0.1.nc for a 1/10 of degree global regular grid.

Regridding required fields for new grids

The generation of regrid fields is also treated in the same way as a regular
experiment in Bosun. Make sure that you have the destination grid available if
it wasn’t created using the previous section. Go on and edit namelist.yaml
inside expnewgrid:

$ vi namelist.yaml

regrid_3d_src_file: /stornext/online2/ocean/database/your_source_file.nc
regrid_3d_dest_grid: ${gengrid_workdir}/your_destination_grid.nc
regrid_3d_output_filename: your_3D_field_regridded.nc

Make sure “regrid_3d_run_this_module” is set to “True” in order to run the
regrid 3D module, then edit the above three lines in order to set the source
file, e.g. with temperature and salt 3D fields (monthly climatology with 12 time
steps), your model grid file, and the output file name.

Make sure the number of variables and their names in
runscripts/mom4_pre/regrid_3d_run.csh match the names of the source fields in
regrid_3d_src_file:

$ vi runscripts/mom4_pre/regrid_3d_run.csh

numfields = 2
src_field_name = 'temp','salt'

Once the above is done, run the task:

$ bosun regrid_3d:name="expnewgrid"

This will create the following regrid file in the directory:

/scratchout/grupos/ocean/home/${USER}/${EXP}/coupled/regrid_3d/your_3D_field_regridded.nc

Always check if the output file really contains the required fields with the
correct numbers of grid points and time steps before running the model.

To start a run using a new grid, it is also required to have three other 2D
fields regridded: temp, salt, and chlorophyll. Go on and edit namelist.yaml
inside expnewgrid:

$ vi namelist.yaml

regrid_2d_namelist:
 file: ${expdir}/tables/regrid_2d.nml
 vars:
 regrid_2d_nml:
 numfields: 1
 src_file: /stornext/online2/ocean/database/levitus.nc
 src_field_name: temp
 dest_field_name: temp
 dest_grid: ${gengrid_workdir}/your_destination_grid.nc
 dest_file: temp_0.1regrid.nc
 dest_grid_type: T
 vector_field: False

Make sure “regrid_2d_run_this_module” is set to “True” in order to run the
regrid 2D module, then edit the regrid_2d_namelist shown in the lines above.
You’ll need to edit this regrid_2d_namelist for each field and create individual
files for temp, salt, and chlorophyll.

This will create the following regrid file in the directory:

/scratchout/grupos/ocean/home/${USER}/${EXP}/coupled/regrid_2d/your_2D_field_regridded.nc

 Copyright 2012, Luiz Irber, Guilherme Castelão, Léo Siqueira.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	Bosun 1 documentation

Developer tips

The env_options decorator

Why env_options is a decorator?

 Copyright 2012, Luiz Irber, Guilherme Castelão, Léo Siqueira.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	Bosun 1 documentation

Index

 Copyright 2012, Luiz Irber, Guilherme Castelão, Léo Siqueira.
 Created using Sphinx 1.3.1.

 _static/up-pressed.png

_static/up.png

search.html

 Navigation

 		
 index

 		Bosun 1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, Luiz Irber, Guilherme Castelão, Léo Siqueira.
 Created using Sphinx 1.3.1.

_static/comment-bright.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/plus.png

_static/minus.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

