

 Navigation

 	
 index

 	
 next |

 	Boo 0.9.5 documentation

Welcome to Boo’s documentation!

Boo is a new object oriented statically typed programming language for
the Common Language Infrastructure with a python inspired syntax and a
special focus on language and compiler extensibility.

Boo

	FAQ

	Manifesto (pdf) [http://boo.codehaus.org/BooManifesto.pdf]

Documentation

	Getting Started

	Boo Primer

For Developers

	Contributors

	Boo

	FAQ

	Manifesto [http://boo.codehaus.org/BooManifesto.pdf]

	Documentation

	Getting Started

	Boo Primer

	Language Guide

	Tutorials

	Cookbook

	Still Need Help?

	For Developers

	Contributors 1 _build/

	Writing Tests

	Coding Conventions

	Boo Style Checker

	Features

	Type Inference

	Closures

	Functions As Objects

	Interactive Interpreter

	Builtin Literals

	Slicing

	String Interpolation

	Syntactic Macros

	Generators

	Community

	Mailing Lists

	IRC Channel

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2012, Rodrigo B. de Oliveira.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Boo 0.9.5 documentation

FAQ

Frequently asked questions. Have a question? Post it here or to one of
our Mailing Lists.

License

boo is licensed under a MIT/BSD style license. The current license is
always available here [https://raw.github.com/bamboo/boo/master/license.txt].

How complete is boo at the present moment? What’s its current status?

Boo is already usable for a large variety of tasks but there still are
lots of things in our todo list.

Performance: since it is statically typed, can I expect a performance equal or close to c# or vb.net?

Yes.

How different is it from Python?

See Gotchas for Python Users for a summary.

Is it feasable to use boo for building desktop or asp.net applications?

Yes. Boo can already be used to implement WinForms/GTK# applications.
Take a look at the extras/boox folder for an example.

On the asp.net front, thanks to Ian it’s already possible to directly
embed boo code inside asp.net pages, handlers or webservices.
examples/asp.net should give you an idea of how everything works right
now.

(Sharp|Mono)Develop bindings?

Daniel Grunwald has made great progress on the SharpDevelop front.
Recent versions of SharpDevelop include solution creation in Boo.

As for MonoDevelop, it includes a Boo binding, written by Peter
Johanson, leveraging the parser code written by Daniel Grunwald for the
SharpDevelop binding. It includes Boo project
creation/editing/compiling, as well as an interactive shell with Gtk#
integration. See the monodevelop page for more information on installing
it.

I see references on the site for .NET 1.1 and .NET 2.0, does Boo support .NET 3.0?

.NET 3.0 is actually just an update to the framework and not to the CLR
or any of the “official” languages. As such, it should be supported by
any .NET-2.0-supporting language, such as Boo.

Also, Boo release .78 is the last version of Boo that will support .NET
1.1.

What’s a good way to get started with Boo (editors/IDEs)?

Fire up a console and check out booish - a built-in editor to check out
the basics. Then grab a copy of Sharpdevelop or monodevelop to dive into
developing with Boo.

What do people use for building ‘real’ Boo applications?

On Windows, Sharpdevelop is the most robust and stable IDE for
developing BOO applications. Linux and Mac users develop with their
favorite text editor. The monodevelop team are hard at work developing a
more professional development environment that will support Boo along
with other .NET languages.

When will version 1.0 be available?

When Boo is written in Boo it will be dubbed version 1.0.

Back to Home

 Copyright 2012, Rodrigo B. de Oliveira.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Boo 0.9.5 documentation

Getting Started

	Warm up by reading the boo manifesto [http://boo.codehaus.org/BooManifesto.pdf]

	Download the latest distro [http://dist.codehaus.org/boo/distributions/] or get the latest sources [https://github.com/bamboo/boo]

	Check out some cool language features and the language reference.

	Learn how to edit, how to run and how to compile boo programs

	You might also be interested in building boo yourself

	Consider joining one of the mailing lists or the Boo Newsgroup [https://groups.google.com/forum/?fromgroups#!forum/boolang]

	Read and contribute some boo recipes and tutorials.

	boo enthusiasts hang out in the #boo IRC channel.

	Try the boo add-in for the free SharpDevelop IDE.

	Check out some applications coded in boo.

	Experienced programmers can check out the Boo Survival Guide at
boo-contrib for quick-access to Boo information.

 Copyright 2012, Rodrigo B. de Oliveira.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Boo 0.9.5 documentation

Boo Primer

by Cameron Kenneth Knight

A version is also available in Portuguese [http://monobrasil.sl.org.br/wiki/Boo:primer:%C3%8Dndice], translated by Cássio
Rogério Eskelsen.

A version is also available in Traditional Chinese [http://zh.wikibooks.org/wiki/%E7%A8%8B%E5%BA%8F%E8%A8%AD%E8%A8%88:BOO],
translated by Yan-ren Tsai aka Elleryq.

The english version is downloadable in a PDF [http://docs.codehaus.org/download/attachments/31934/BooPrimer.pdf].

	1. Starting out
	1.1. Overview

	1.2. Hello, World!

	1.3. Comparing code between Boo, C#, and VB.NET

	1.4. Booish

	1.5. Exercises

	2. Variables
	2.1. Using Booish as a Calculator

	2.2. Types of Numbers

	2.3. Characters and Strings

	2.4. String Interpolation

	2.5. Booleans

	2.6. Object Type

	2.7. Declaring a Type

	2.8. List of Value Types

	2.9. Exercises

	3. Flow control and Conditionals
	3.1. If Statement

	3.2. If-Else Statement

	3.3. If-Elif-Else Statement

	3.4. Unless Statement

	3.5. Statement with Modifier

	3.6. Not Condition

	3.7. Combining Conditions

	3.8. Exercises

	4. Flow control and Loops
	4.1. For Loop

	4.2. While Loop

	4.3. Continue Keyword

	4.4. While-Break-Unless Loop

	4.5. Pass Keyword

	4.6. Exercises

	5. Containers and Casting
	5.1. Lists

	5.2. Slicing

	5.3. Arrays

	5.4. List to Array Conversion

	5.5. Casting

	5.6. Hashes

	5.7. Exercises

 Copyright 2012, Rodrigo B. de Oliveira.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Boo 0.9.5 documentation

 	Boo Primer

1. Starting out

1.1. Overview

Boo is an amazing language that combines the syntactic sugar of
Python [http://www.python.org/], the features of Ruby [http://www.ruby-lang.org/], and the speed and safety of C# [http://msdn.microsoft.com/vcsharp/].

Like C#, Boo is a statically-typed language, which means that types are
important. This adds a degree of safety that Python and other
dynamically-typed languages do not currently provide.

It fakes being a dynamically-typed language by inference. This makes it
seem much like Python’s simple and programmer-friendly syntax.

1.1.1. CSharp

int i = 0;
MyClass m = new MyClass();

1.1.2. Boo

i = 0
m = MyClass()

1.2. Hello, World!

A Hello, World! [http://en.wikipedia.org/wiki/Hello_world_program] program is very simple in Boo.

Don’t worry if you don’t understand it, I’ll go through it one step at a
time.

1.2.1. helloworld.boo

print "Hello, World!"
// OR
print("Hello, World!")

1.2.2. Output

Hello, World!
Hello, World!

	First, you must compile the helloworld.boo file to an executable.

	Open up a new command line

	cd into the directory where you placed the helloworld.boo
file.

	booc helloworld.boo (this assumes that Boo is installed and in
your system path)

	helloworld.exe

	If you are using Mono [http://www.go-mono.com/], mono helloworld.exe

	Using the print macro, it prints the string “Hello, World!” to the
screen. OR

	Using the print function, it prints the string “Hello, World!” to the
screen.

Now these both in the end, do the same thing. They both call
System.Console.WriteLine("Hello, World") from the .NET Standard
Library.

And it’s that simple.

Note

Using the macro version print "Hello, World!" is recommended.

1.3. Comparing code between Boo, C#, and VB.NET

Now you may be wondering how Boo could be as fast as C# or VB.NET.

Using their Hello World programs, I’ll show you.

1.3.1. Boo

print "Hello World!"

// Output: Hello World!

1.3.2. CSharp

public class Hello
{
 public static void Main()
 {
 System.Console.WriteLine("Hello World!");
 }
}

// Output: Hello World!

1.3.3. VB.NET

Public Class Hello
 Public Shared Sub Main()
 System.Console.WriteLine("Hello World!")
 End Sub
End Class

' Output: Hello World!

All three have the same end result and all three are run in the .NET
Framework.

All three are first translated into MSIL, then into executable files.

[image: MSIL Diagram]
MSIL Diagram

If you were to take the executables created by their compilers, and
disassemble them with ildasm.exe, you would see a very similar end
result, which means that the executables themselves are very similar, so
the speed between C# and Boo is practically the same, it just takes less
time to write the Boo code.

1.4. Booish

booish is a command line utility that provides a realtime
environment to code boo in. It is great for testing purposes, and I
recommend following along for the next few pages by trying out a few
things in booish. You can invoke it by loading up a terminal, then
typing booish (this assumes that Boo is installed and in your system
path), or by double-clicking the booish icon. In booish, you can up
arrow to re-enter (with editing) a previously entered line. Here’s what
booish will look like:

1.4.1. Booish

>>> print "Hello, World!"
Hello, World!

1.5. Exercises

	Write a Boo program that prints Hello, World!, then prints
Goodbye, World!

	Play around with booish

	Advanced: Compile the Hello, World! programs for Boo (using booc)
and C# (using csc or mcs), run ildasm on each of them and
compare the result.

 Copyright 2012, Rodrigo B. de Oliveira.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Boo 0.9.5 documentation

 	Boo Primer

2. Variables

2.1. Using Booish as a Calculator

There are four basic mathematical operators: addition +, subtraction -,
multiplication *, and division /. There are more than just these, but
that’s what will be covered now.

>>> 2 + 4 // This is a comment
6
>>> 2 * 4 # So is this also a comment
8
>>> 4 / 2 /* This is also a comment */
2
>>> (500/10)*2
100
>>> 7 / 3 // Integer division
2
>>> 7 % 3 // Take the remainder
1
>>> -7 / 3
-2

You may have noticed that there are 3 types of comments available, //,
#, and /* */. These do not cause any affect whatsoever, but help you
when writing your code.

Note

When doing single-line comments, use // instead of #

You may have noticed that 7 / 3 did not give 2.333…, this is because you
were dividing two integers together.

Note

Integer - Any positive or negative number that does not
include a fraction or decimal, including zero.

The way computers handle integer division is by rounding to the floor
afterwards.

In order to have decimal places, you must use a floating-point number.

Note

Floating point Number - Often referred to in
mathematical terms as a “rational” number, this is just a number that
can have a fractional part.

>>> 7.0 / 3.0 # Floating point division
2.33333333333333
>>> -8.0 / 5.0
-1.6

If you give a number with a decimal place, even if it’s .0, it become a
floating-point number.

2.2. Types of Numbers

There are 3 kinds of floating point numbers, single, double, and
decimal.

The differences between single and double is the size they take
up. double is prefered in most situations.

These two also are based on the number 2, which can cause some problems
when working with our base-10 number system.

Ususally this is not the case, but in delecate situations like banking,
it would not be wise to lose a cent or two on a multi-trillion dollar
contract.

Thus decimal was created. It is a base-10 number, which means that
we wouldn’t lose that precious penny.

In normal situations, double is perfectly fine. For a higher
precision, a decimal should be used. Integers, which we covered
earlier, have many more types to them.

They also have the possibility to be “unsigned”, which means that they
must be non-negative.

The size goes in order as such: byte, short, int, and
long.

In most cases, you will be using int, which is the default.

2.3. Characters and Strings

Note

Character - A written symbol that is used to represent
speech.

All the letters in the alphabet are characters. All the numbers are
characters. All the symbols of the Mandarin language are characters. All
the mathematical symbols are characters.

In Boo/.NET, characters are internally encoded as UTF-16, or Unicode [http://www.unicode.org/].

Note

String - A linear sequence of characters.

The word “apple” can be represented by a string.

>>> s = "apple"
'apple'
>>> print s
apple
>>> s += " banana"
'apple banana'
>>> print s
apple banana
>>> c = char('C')
C
>>> print c
C

Now you probably won’t be using chars much, it is more likely you
will be using strings.

To declare a string, you have one of three ways.

	using double quotes. “apple”

	using single quotes. ‘apple’

	using tripled double quotes. “”“apple”“”

The first two can span only one line, but the tribbled double quotes can
span multiple lines.

The first two also can have backslash-escaping. The third takes
everything literally.

>>> print "apple\nbanana"
apple
banana
>>> print 'good\ttimes'
good times
>>> print """Leeroy\Jenkins"""
Leeroy\Jenkins

Common escapes are: * {{ … }} literal backslash * newline * carriage
return * tab

If you are declaring a double-quoted string, and you want a double
quote inside it, also use a backslash.

Same goes for the single-quoted string.

>>> print "The man said \"Hello\""
The man said "Hello"
>>> print 'I\'m happy'
I'm happy

strings are immutable, which means that the characters inside them
can never change. You would have to recreate the string to change a
character.

Note

Immutable - Not capable of being modified after it is
created. It is an error to attempt to modify an immutable object. The
opposite of immutable is mutable.

2.4. String Interpolation

String interpolation allows you to insert the value of almost any valid
boo expression inside a string by preceeding a lonesome variable
name with $, or quoting an expression with $().

>>> name = "Santa Claus"
Santa Claus
>>> print "Hello, $name!"
Hello, Santa Claus!
>>> print "2 + 2 = $(2 + 2)"
2 + 2 = 4

String Interpolation is the preferred way of adding strings
together. It is preferred over simple string addition.

String Interpolation can function in double-quoted strings,
including tripled double-quoted string.

It does not work in single-quoted strings.

To stop String Interpolation from happening, just escape the dollar
sign: ${}

2.5. Booleans

Note

Boolean - A value of true or false represented
internally in binary notation.

Boolean values can only be true or false, which is very handy
for conditional statements, covered in the next section.

>>> b = true
true
>>> print b
True
>>> b = false
false
>>> print b
False

2.6. Object Type

Note

Object - The central concept in the object-oriented
programming paradigm.

Everything in Boo/.NET is an object.

Although some are value types, like numbers and characters, these are
still objects.

>>> o as object
>>> o = 'string'
'string'
>>> print o
string
>>> o = 42
42
>>> print o
42

The problem with objects is that you can’t implicitly expect a
string or an int.

If I were to do that same sequence without declaring o as object,

>>> o = 'string'
'string'
>>> print o
string
>>> o = 42
--------^
ERROR: Cannot convert 'System.Int32' to 'System.String'.

This static typing keeps the code safe and reliable.

2.7. Declaring a Type

In the last section, you issued the statement o as object.

This can work with any type and goes with the syntax
<variable> as <type>.

<type> can be anything from an int to a string to a date
to a bool to something which you defined yourself, but those will be
discussed later. In most cases, Boo will be smart and implicitly figure
out what you wanted.

The code i = 25 is the same thing as i as int = 25, just easier
on your wrists.

Note

Unless you are declaring a variable beforehand, or declaring it of a different type,
don’t explicitly state what kind of variable it is. (ie: use i = 25 instead of
i as int = 25)

2.8. List of Value Types

	Boo type
	.Net Framework type
	Signed?
	Size
	Possible Values

	sbyte
	System.Sbyte
	Yes
	1
	-128 to 127

	short
	System.Int16
	Yes
	2
	-32768 - 32767

	int
	System.Int32
	Yes
	4
	-2147483648 - 2147483647

	long
	System.Int64
	Yes
	8
	-9223372036854775808 - 9223372036854775807

	byte
	System.Byte
	No
	1
	0 - 255

	ushort
	System.Uint16
	No
	2
	0 - 65535

	uint
	System.UInt32
	No
	4
	0 - 4294967295

	ulong
	System.Uint64
	No
	8
	0 - 18446744073709551615

	single
	System.Single
	Yes
	4
	Approximately ±1.5 x 10-45 - ±3.4 x 1038
with 7 significant figures

	double
	System.Double
	Yes
	8
	Approximately ±5.0 x 10-324 - ±1.7 x 10308
with 15 or 16 significant figures

	decimal
	System.Decimal
	Yes
	12
	Approximately ±1.0 x 10-28 - ±7.9 x 1028
with 28 or 29 significant figures

	char
	System.Char
	N/A
	2
	Any UTF-16 character

	bool
	System.Boolean
	N/A
	1
	true or false

Note

Never call a type by its .NET Framework type, use the builtin boo types.

2.9. Exercises

	Declare some variables. Go wild.

 Copyright 2012, Rodrigo B. de Oliveira.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Boo 0.9.5 documentation

 	Boo Primer

3. Flow control and Conditionals

3.1. If Statement

Note

if statement - A control statement that contains one or
more Boolean expressions whose results determine whether to execute
other statements within the If statement.

An if statemnt allows you to travel down multiple logical paths,
depending on a condition given. If the condition given is true, the
block of code associated with it will be run.

3.1.1. if statement

i = 5
if i == 5:
 print "i is equal to 5."

// Output: i is equal to 5.

Warning

notice the difference between i = 5 and i == 5. The former is an assignment
while the latter is a comparison.

If you try an assignment while running a conditional, Boo will emit a
warning.

You may have noticed that unlike other languages, there is no then-endif
or do-end or braces { }. Blocks of code are determined in Boo by its
indentation. By this, your code blocks will always be noticeable and
readable.

Note

Always use tabs for indentation. In your editor, set the tab-size to
view as 4 spaces.

You can have multiple code blocks within eachother as well.

3.1.2. Multiple if statements

i = 5
if i > 0:
 print "i is greater than 0."
 if i < 10:
 print "i is less than 10."
 if i > 5:
 print "i is greater than 5."

// Output: i is greater than 0.
// i is less than 10.

3.2. If-Else Statement

With the if statement comes the else statement. It is called
when your if statement’s condition is false.

3.2.1. if-else statement

i = 5
if i > 5:
 print "i is greater than 5."
else:
 print "i is less than or equal to 5."

// Output: i is less than or equal to 5.

Quite simple.

3.3. If-Elif-Else Statement

Now if you want to check for a condition after your if is
false, that is easy as well. This is done through the elif
statement.

3.3.1. if-elif-else statement

i = 5
if i > 5:
 print "i is greater than 5."
elif i == 5:
 print "i is equal to 5."
elif i < 5:
 print "i is less than 5."

// Output: i is equal to 5.

You can have one if, any number of elif s, and an optional
else.

3.4. Unless Statement

The unless statement is handy if you want a readable way of checking
if a condition is not true.

3.4.1. unless statement

i = 5
unless i == 5:
 print "i is not equal to 5."

// Output:

It didn’t output because i was equal to 5 in that case.

3.5. Statement with Modifier

Like in Ruby and Perl, you can follow a statement with a modifier.

```boo i = 0 print i i = 5 if true print i i = 10 unless true print i

// Output: 0 // 5 // 5 ```


Note

Don’t use Statement with Modifier on a long line. In that case, you
should just create a code block.

A good rule of thumb is to not use it if the statement is more than 3
words long.

This will keep your code readable and beautiful.



Some common conditionals:








	Operator
	Meaning
	Example




	==
	equal
	5 == 5


	!=
	not equal
	0 != 5


	>
	greater than
	4 > 2


	<
	less than
	2 < 4


	>=
	greater than or equal to
	7 >= 7 and 7 >= 4


	<=
	less than or equal to
	4 <= 8 and 6 <= 6








3.6. Not Condition

To check if a condition is not true, you would use not.


3.6.1. not condition

i = 0
if not i > 5:
    print "i is not greater than 5"

// Output: i is not greater than 5










3.7. Combining Conditions

To check more than one condition, you would use and or or. Use
parentheses ( ) to change the order of operations.

i = 5
if i > 0 and i < 10:
    print "i is between 0 and 10."
if i < 3 or i > 7:
    print "i is not between 3 and 7."
if (i > 0 and i < 3) or (i > 7 and i < 10):
    print "i is either between 0 and 3 or between 7 and 10."

// Output: i is between 0 and 10.





Note that and requires that both comparisons are true, while or
requires that only one is true or both are true.




3.8. Exercises


	Given the numbers x = 4, y = 8, and z = 6, compare them and print the
middle one.









          

      

      

    


    
         Copyright 2012, Rodrigo B. de Oliveira.
      Created using Sphinx 1.3.4.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	Boo 0.9.5 documentation 

          	Boo Primer 
 
      

    


    
      
          
            
  
4. Flow control and Loops


4.1. For Loop


Note

For loop - A loop whose body gets obeyed once for each
item in a sequence.



A for loop in Boo is not like the for loop in languages like C
and C#. It is more similar to a foreach.

The most common usage for a for loop is in conjunction with the
range function.

The range function creates an enumerator which yields numbers.

The join function in this case, will create a string from an
enumerator.


4.1.1. join and range example

join(range(5))         // Output: 0 1 2 3 4
join(range(3, 7))      // Output: 3 4 5 6
join(range(0, 10, 2))  // Output: 0 2 4 6 8





range can be called 3 ways:


	range(end)

	range(start, end)

	range(start, end, step)



To be used in a for loop is quite easy.




4.1.2. for loop

for i in range(5):
    print i

// Output: 0
//         1
//         2
//         3
//         4






Note

Practically as fast as C#’s - The range function does not create
an array holding all the values called, instead it is an
IEnumerator, that will quickly generate the numbers you need.








4.2. While Loop


Note

While loop - A structure in a computer program that
allows a sequence of instructions to be repeated while some condition
remains true.



The while loop is very similar to an if statement, except that
it will repeat itself as long as its condition is true.


4.2.1. while loop

i = 0
while i < 5:
    print i
    i += 1

// Output: 0
//         1
//         2
//         3
//         4





In case you didn’t guess, i += 1 adds 1 to i.






4.3. Continue Keyword


Note

Continue keyword - A keyword used to resume program execution at the
end of the current loop.



The continue keyword is used when looping. It will cause the
position of the code to return to the start of the loop (as long as the
condition still holds).


4.3.1. continue statement

for i in range(10):
    continue if i % 2 == 0
    print i

// Output: 1
//         3
//         5
//         7
//         9





This skips the print part of this loop whenever i is even,
causing only the odds to be printed out.

The i % 2 actually takes the remainder of i / 2, and checks it
against 0.






4.4. While-Break-Unless Loop

the while-break-unless loop is very similar to other languages
do-while statement.


4.4.1. while-break-unless loop

i = 10
while true:
    print i
    i -= 1
    break unless i < 10 and i > 5

// Output: 10
//         9
//         8
//         7
//         6
//         5





Normally, this would be a simple while loop.

This is a good method of doing things if you want to accomplish
something at least once or have the loop set itself up.






4.5. Pass Keyword

The pass keyword is useful if you don’t want to accomplish anything
when defining a code block.


4.5.1. pass statement

while true:
    pass //Wait for keyboard interrupt (ctrl-C) to close program.










4.6. Exercises


	print out all the numbers from 10 to 1.

	print out all the squares from 1 to 100.









          

      

      

    


    
         Copyright 2012, Rodrigo B. de Oliveira.
      Created using Sphinx 1.3.4.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	Boo 0.9.5 documentation 

          	Boo Primer 
 
      

    


    
      
          
            
  
5. Containers and Casting


5.1. Lists


Note

List - A linked list that can hold a variable amount of objects.



Lists are mutable, which means that the List can be changed, as
well as its children.


5.1.1. lists

print([0, 'alpha', 4.5, char('d')])
print List('abcdefghij')
l = List(range(5))
print l
l[2] = 5
print l
l[3] = 'banana'
print l
l.Add(100.1)
print l
l.Remove(1)
print l
for item in l:
    print item

// Output:
// [0, alpha, 4.5, d]
// [a, b, c, d, e, f, g, h, i, j]
// [0, 1, 2, 3, 4]
// [0, 1, 5, 3, 4]
// [0, 1, 5, 'banana', 4]
// [0, 1, 5, 'banana', 4, 100.1]
// [0, 5, 'banana', 4, 100.1]
// 0
// 5
// 'banana'
// 4
// 100.1





As you can see, Lists are very flexible, which is very handy.

Lists can be defined two ways: 1. by using brackets [] 2. by
creating a new List wrapping an IEnumerator, or an array.






5.2. Slicing

Slicing is quite simple, and can be done to strings, Lists, and
arrays.

It goes in the form var[start:end]. both start and end are optional,
and must be integers, even negative integers.

To just get one child, use the form var[position]. It will return a
char for a string, an object for a List, or the
specified type for an array.

Slicing counts up from the number 0, so 0 would be the 1st value, 1
would be the 2nd, and so on.


5.2.1. slicing

list = List(range(10))
print list
print list[:5]    // first 5
print list[2:5]   // starting with 2nd, go up to but not including the 5
print list[5:]    // everything past the 5th
print list[:-2]   // everything up to the 2nd to last
print list[-4:-2] // starting with the 4th to last, go up to 2nd to last
print list[5]     // the 6th
print list[-8]    // the 8th from last
print '---'
str = 'abcdefghij'
print str
print str[:5]     // first 5
print str[2:5]    // starting with 3rd, go up to but not including the 6th
print str[5:]     // everything past the 6th
print str[:-2]    // everything before the 2nd to last
print str[-4:-2]  // starting with the 4th to last, to before the 2nd to last
print str[5]      // the 6th
print str[-8]     // the 8th from last

// Output
// [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
// [0, 1, 2, 3, 4]
// [2, 3, 4]
// [5, 6, 7, 8, 9]
// [0, 1, 2, 3, 4, 5, 6, 7]
// [6, 7]
// 5
// 2
// ---
// abcdefghij
// abcde
// cde
// fghij
// abcdefgh
// gh
// f
// c





I hope you get the idea. Slicing is very powerful, as it allows you to
express what you need in a minimal amount of space, while still being
readable.






5.3. Arrays


Note

Array - Arrays are simple objects that hold equally-sized
data elements, generally of the same data type.



Arrays, unlike Lists, cannot change their size. They can still
be sliced, just not added on to. Arrays can be defined three ways:
1. by using parentheses () 1. If you have 0 members, it’s declared:
(,) 2. If you have 1 member, it’s declared: (member,) 3. If you
have 2 or more members, it’s declared: (one, two) 2. by creating a
new array wrapping an IEnumerator, or an List. 3. by
creating a blank array with a specified size: array(type, size)


5.3.1. arrays

print((0, 'alpha', 4.5, char('d')))
print array('abcdefghij')
l = array(range(5))
print l
l[2] = 5
print l
l[3] = 'banana'

// Output
// (0, alpha, 4.5, d)
// (a, b, c, d, e, f, g, h, i, j)
// (0, 1, 2, 3, 4)
// (0, 1, 5, 3, 4)
// ERROR: Cannot convert 'System.String' to 'System.Int32'.





Arrays, unlike Lists, do not necessarily group objects. They
can group any type, in the case of array(range(5)), it made an
array of ints.






5.4. List to Array Conversion

If you create a List of ints and want to turn it into an
array, you have to explicitly state that the List contains
ints.


5.4.1. list to array conversion

list = []
for i in range(5):
    list.Add(i)
    print list
a = array(int, list)
for a_s in a:
    print a_s
a[2] += 5
print a
list[2] += 5
print list[2]

// Output
// [0]
// [0, 1]
// [0, 1, 2]
// [0, 1, 2, 3]
// [0, 1, 2, 3, 4]
// (0, 1, 2, 3, 4)
// (0, 1, 7, 3, 4)
// ERROR: Operator '+' cannot be used with a left-hand side of type 'System.Object' and a right-hand side of type 'System.Int32'





This didn’t work, because the List still gives out objects instead
of ints, even though it only holds ints.






5.5. Casting


Note

Typecast - The conversion of a variable’s data type to another
data type to bypass some restrictions imposed on datatypes.



To get around a list storing only objects, you can
cast an object individually to what its type really is, then play
with it like it should be.

Granted, if you cast to something that is improper, say a string to
an int, Boo will emit an error. There are two ways to cast an object
as another data type. 1. using var as <type> 2. using
var cast <type>


5.5.1. casting example

list = List(range(5))
print list
for item in list:
    print ((item cast int) * 5)
print '---'
for item as int in list:
    print item * item

// Output
// [0, 1, 2, 3, 4]
// 0
// 5
// 10
// 15
// 20
// ---
// 0
// 1
// 4
// 9
// 16






Note

Try not to cast too much. If you are constantly cast-ing, think if
there is a better way to write the code.




Note

Generics - Generics, which has been part of the .NET Framework since
2.0, will allow you to create a List with a specified data type as its
base. So there is a way to not have to cast a List’s items every time.








5.6. Hashes


Note

Hash - A List in which the indices may be objects, not just
sequential integers in a fixed range.



Hashes are also called “dictionaries” in some other languages.
Hashes are very similar to Lists, except that the key in which
to set values can be an object, though usually an int or a
string. Hashes can be defined two common ways: 1. by using
braces {} 2. by creating a new Hash wrapping an IEnumerator, or
an IDictionary.


5.6.1. hash example

hash = {'a': 1, 'b': 2, 'monkey': 3, 42: 'the answer'}
print hash['a']
print hash[42]
print '---'
for item in hash:
    print item.Key, '=>', item.Value

# the same hash can be created from a list like this :
ll = [ ('a',1), ('b',2), ('monkey',3), (42, "the answer") ]
hash = Hash(ll)

// Output
// 1
// the answer
// ---
// a => 1
// b => 2
// monkey => 3
// 42 => the answer










5.7. Exercises


	Produce a List containing the fibonacci sequence that has 1000 values
in it. (See if you can do it in 4 lines)









          

      

      

    


    
         Copyright 2012, Rodrigo B. de Oliveira.
      Created using Sphinx 1.3.4.
    

  

    
      Navigation

      
        	
          index

        	
          previous |

        	Boo 0.9.5 documentation 
 
      

    


    
      
          
            
  
Contributors

There are many ways you can make boo better.

As an user you can contribute by reporting any issues you find, by
adding, commenting on and/or fixing the documentation on this website
(see that little edit link down the page?), by helping other users
through one of our mailing lists and irc channel.

Feel like hacking today? Get the latest sources from our repository and
see what you think.

Browse the list of open issues, see anything you like? Take ownership
and try to fix it!


Getting in touch

subscribe to any of our Mailing Lists stop by the boo irc channel:
irc://irc.codehaus.org/boo add comments to the pages in our wiki add
comments to and/or vote for the issues in our issue tracker If you find
a bug or problem Please raise an issue in our issue tracker.

If you can provide a test case then your issue is more likely to be
resolved quicker.




Sending patches

We gladly accept patches if you can find ways to improve, tune or fix
boo in some way.

The basic process goes like this:

check out the code from the git repository or update you working copy
optionally write new test cases or change existing ones git diff your
changes to a file attach that file to the related issue or create a new
issue including the details on what’s being improved, tuned or fixed
Always try to make sure that all the unit tests that were passing before
the code changes are still green after them.

Code eventually committed to the repository must follow our coding
conventions.




Using the issue tracker

Before you can raise an issue in the issue tracker you need to register
with it. This is quick & painless.

If you want to have a go at fixing an issue you need to be in the list
of boo-developers on the issue tracker. To join the group, please mail
dev@boo.codehaus.org with the username you used to register with the
issue tracker and we’ll add you to the group.




Helping with the documentation

Before you start adding comments to and/or editing the pages on this
website you need to register with confluence. This is also quick &
painless.

If you want to fix and/or add new pages you need to be in the list of
boo-developers on confluence. To join the group, please mail
dev@boo.codehaus.org with the username you used to register with
confluence and we’ll add you to the group.







          

      

      

    


    
         Copyright 2012, Rodrigo B. de Oliveira.
      Created using Sphinx 1.3.4.
    

  

    
      Navigation

      
        	
          index

        	Boo 0.9.5 documentation 
 
      

    


    
      
          
            

Index



 




          

      

      

    


    
         Copyright 2012, Rodrigo B. de Oliveira.
      Created using Sphinx 1.3.4.
    

  _static/minus.png





_static/comment-close.png





_static/up.png





_static/file.png





_static/plus.png





_static/down-pressed.png





_static/ajax-loader.gif





_static/comment-bright.png





_static/up-pressed.png





_images/net_diagram.png
C#
Boo ) MsIL Program.exe

Visual BASIC
NET





search.html


    
      Navigation


      
        		
          index


        		Boo 0.9.5 documentation »

 
      


    


    
      
          
            
  Search


  
  
  
    Please activate JavaScript to enable the search
    functionality.
  


  

  
    From here you can search these documents. Enter your search
    words into the box below and click "search". Note that the search
    function will automatically search for all of the words. Pages
    containing fewer words won't appear in the result list.
  


  
    
    
    
  

  
  
  
  


          

      

      

    


    
        © Copyright 2012, Rodrigo B. de Oliveira.
      Created using Sphinx 1.3.4.
    

  

Home.html


    
      Navigation


      
        		
          index


        		Boo 0.9.5 documentation »

 
      


    


    
      
          
            
  Read the documentation at ReadTheDocs [http://bootest.readthedocs.org/en/latest/].


Browse the documentation in this wiki.



		Boo







		FAQ


		Manifesto [http://boo.codehaus.org/BooManifesto.pdf]










		Documentation







		Getting Started


		Boo Primer







		Starting out


		Variables


		Conditionals


		Loops


		Containers and Casting










		Language Guide


		Tutorials


		Cookbook


		Still Need Help?










		For Developers







		Contributors


		Writing Tests


		Coding Conventions


		Boo Style Checker











          

      

      

    


    
        © Copyright 2012, Rodrigo B. de Oliveira.
      Created using Sphinx 1.3.4.
    

  

_static/comment.png





_static/down.png





