boolean.py Documentation

Release 3.2

Sebastian Krämer

Aug 06, 2018

Contents

1 User Guide 1
1.1 Introduction 1
1.2 Installation 2
1.3 Creating boolean expressions 2
1.4 Evaluation of expressions 2
1.5 Equality of expressions 3
1.6 Analyzing a boolean expression 4
1.7 Using boolean.py to define your own boolean algebra 5
2 Concepts and Definitions 7
2.1 Basic Definitions 7
2.2 Laws 9
3 Development Guide 13
3.1 Testing 13
3.2 Classes Hierarchy 14
3.3 Class creation 14
3.4 Class initialization 14
3.5 Ordering 14
3.6 Parsing 15
4 Acknowledgments 17

This document provides an introduction on boolean.py usage. It requires that you are already familiar with Python and know a little bit about boolean algebra. All definitions and laws are stated in Concepts and Definitions.

Contents

- User Guide
- Introduction
- Installation
- Creating boolean expressions
- Evaluation of expressions
- Equality of expressions
- Analyzing a boolean expression
- Using boolean.py to define your own boolean algebra

1.1 Introduction

boolean.py implements a boolean algebra. It defines two base elements, TRUE and FALSE, and a class Symbol for variables. Expressions are built by composing symbols and elements with AND, OR and NOT. Other compositions like XOR and NAND are not implemented.

1.2 Installation

```
pip install boolean.py
```


1.3 Creating boolean expressions

There are three ways to create a boolean expression. They all start by creating an algebra, then use algebra attributes and methods to build expressions.

You can build an expression from a string:

```
>>> import boolean
>>> algebra = boolean.BooleanAlgebra()
>>> algebra.parse('x & y')
AND (Symbol('x'), Symbol('y'))
>>> parse('(apple or banana and (orange or pineapple and (lemon or cherry)))')
OR(Symbol('apple'), AND (Symbol('banana'), OR(Symbol('orange'), AND(Symbol('pineapple
\hookrightarrow'), OR(Symbol('lemon'), Symbol('cherry'))))))
```

You can build an expression from a Python expression:

```
>>> import boolean
>>> algebra = boolean.BooleanAlgebra()
>>> x, y = algebra.symbols('x', 'y')
>>> x & y
AND (Symbol('x'), Symbol('y'))
```

You can build an expression by using the algebra functions:

```
>>> import boolean
>>> algebra = boolean.BooleanAlgebra()
>>> x, y = algebra.symbols('x', 'y')
>>> TRUE, FALSE, NOT, AND, OR, symbol = algebra.definition()
>>> expr = AND(x, y, NOT(OR(symbol('a'), symbol('b'))))
>>> expr
AND (Symbol('x'), Symbol('y'))
>>> print(expr.pretty())
>>> print(expr)
```


1.4 Evaluation of expressions

By default, an expression is not evaluated. You need to call the simplify () method explicitly an expression to perform some minimal simplification to evaluate an expression:

```
>>> import boolean
>>> algebra = boolean.BooleanAlgebra()
>>> x, y = algebra.symbols('x', 'y')
>>> print (x&~x)
0
>>> print(x|~x)
```

```
1
>>> print(x|x)
x
>>> print (x&x)
x
>>> print(x&(x|y))
x
>>> print((x&y) | (x&~y))
x
```

When simplify () is called, the following boolean logic laws are used recursively on every sub-term of the expression:

- Associativity
- Annihilator
- Idempotence
- Identity
- Complementation
- Elimination
- Absorption
- Negative absorption
- Commutativity (for sorting)

Also double negations are canceled out (Double negation).
A simplified expression is return and may not be fully evaluated nor minimal:

```
>>> import boolean
>>> algebra = boolean.BooleanAlgebra()
>>> x, y, z = algebra.symbols('x', 'y', 'z')
>>> print((((x|y)&z)|x&y).simplify())
(x&y)|(z&(x|y))
```


1.5 Equality of expressions

The expressions equality is tested by the \qquad () method and therefore the output of $\operatorname{expr}_{1}==$ expr $_{2}$ is not the same as mathematical equality.

Two expressions are equal if their structure and symbols are equal.

1.5.1 Equality of Symbols

Symbols are equal if they are the same or their associated objects are equal.

```
>>> import boolean
>>> algebra = boolean.BooleanAlgebra()
>>> x, y, z = algebra.symbols('x', 'y', 'z')
>>> x == Y
False
>>> x1, x2 = algebra.symbols("x", "x")
```

```
>>> x1 == x2
True
>>> x1, x2 = algebra.symbols(10, 10)
>>> x1 == x2
True
```


1.5.2 Equality of structure

Here are some examples of equal and unequal structures:

```
>>> import boolean
>>> algebra = boolean.BooleanAlgebra()
>>> expr1 = algebra.parse("x|y")
>>> expr2 = algebra.parse("y|x")
>>> expr1 == expr2
True
>>> expr = algebra.parse("x| ~x")
>>> expr == TRUE
False
>>> expr1 = algebra.parse("x& (~x|y)")
>>> expr2 = algebra.parse("x&y")
>>> expr1 == expr2
False
```


1.6 Analyzing a boolean expression

1.6.1 Getting sub-terms

All expressions have a property args which is a tuple of its terms. For symbols and base elements this tuple is empty, for boolean functions it contains one or more symbols, elements or sub-expressions.

```
>>> import boolean
>>> algebra = boolean.BooleanAlgebra()
>>> algebra.parse("x|y|z").args
(Symbol('x'), Symbol('y'), Symbol('z'))
```


1.6.2 Getting all symbols

To get a set() of all unique symbols in an expression, use its symbols attribute

```
>>> import boolean
>>> algebra = boolean.BooleanAlgebra()
>>> algebra.parse("x|y&(x|z)").symbols
{Symbol('y'), Symbol('x'), Symbol('z')}
```

To get a list of all symbols in an expression, use its get_symbols method

```
>>> import boolean
>>> algebra = boolean.BooleanAlgebra()
>>> algebra.parse("x|y&(x|z)").get_symbols()
[Symbol('x'), Symbol('y'), Symbol('x'), Symbol('z')]
```


1.6.3 Literals

Symbols and negations of symbols are called literals. You can test if an expression is a literal:

```
>>> import boolean
>>> algebra = boolean.BooleanAlgebra()
>>> x, y, z = algebra.symbols('x', 'y', 'z')
>>> x.isliteral
True
>>> (~x).isliteral
True
>>> (x|y).isliteral
False
```

Or get a set() or list of all literals contained in an expression:

```
>>> import boolean
>>> algebra = boolean.BooleanAlgebra()
>>> x, y, z = algebra.symbols('x', 'y', 'z')
>>> x.literals
{Symbol('x')}
>>> (~(x|~y)).get_literals()
[Symbol('x'), NOT(Symbol('y'))]
```

To remove negations except in literals use literalize ():

```
>>> (~(x|~y)).literalize()
~x&y
```


1.6.4 Substitutions

To substitute parts of an expression, use the subs () method:

```
>>> e = x|y&z
>>> e.subs({y&z:y})
x|y
```


1.7 Using boolean.py to define your own boolean algebra

You can customize about everything in boolean.py to create your own custom algebra: 1. You can subclass BooleanAlgebra and override or extend the tokenize () and parse () methods to parse custom expressions creating your own mini expression language. See the tests for examples.
2. You can subclass the Symbol, NOT, AND and OR functions to add additional methods or for custom representations. When doing so, you configure BooleanAlgebra instances by passing the custom sub-classes as agruments.

CHAPTER 2

Concepts and Definitions

In this document the basic definitions and important laws of Boolean algebra are stated.

Contents
 - Concepts and Definitions
 - Basic Definitions
 - Laws

2.1 Basic Definitions

2.1.1 Boolean Algebra

This is the main entry point. An algebra is define by the actual classes used for its domain, functions and variables.

2.1.2 Boolean Domain

$\mathrm{S}:=\{1,0\}$
These base elements are algebra-level singletons classes (only one instance of each per algebra instance), called TRUE and FALSE.

2.1.3 Boolean Variable

A variable holds an object and its implicit value is TRUE.
Implemented as class or subclasses of class Symbol.

2.1.4 Boolean Function

A function $f: S^{n} \rightarrow S$ (where n is called the order).
Implemented as class Function.

2.1.5 Boolean Expression

Either a base element, a boolean variable or a boolean function.
Implemented as class Expression - this is the base class for BaseElement, Symbol and Function.

2.1.6 NOT

A boolean function of order 1 with following truth table:

x	$\operatorname{NOT}(x)$
0	1
1	0

Instead of $N O T(x)$ one can write $\sim x$.
Implemented as class NOT.

2.1.7 AND

A boolean function of order 2 or more with the truth table for two elements

x	y	AND (x, y)
0	0	0
0	1	0
1	0	0
1	1	1

and the property $A N D(x, y, z)=A N D(x, A N D(y, z))$ where x, y, z are boolean variables.
Instead of $A N D(x, y, z)$ one can write $x \& y \& z$.
Implemented as class AND.

2.1.8 OR

A boolean function of order 2 or more with the truth table for two elements

x	y	$O R(x, y)$
0	0	0
0	1	1
1	0	1
1	1	1

and the property $O R(x, y, z)=O R(x, O R(y, z))$ where x, y, z are boolean expressions.

Instead of $O R(x, y, z)$ one can write $x|y| z$.
Implemented as class OR.

2.1.9 Literal

A boolean variable, base element or its negation with NOT.
Implemented indirectly as Expression.isliteral, Expression.literals and Expression. literalize().

2.1.10 Disjunctive normal form (DNF)

A disjunction of conjunctions of literals where the conjunctions don't contain a boolean variable and it's negation. An example would be $x \& y \mid x \& z$.

Implemented as BooleanAlgebra.dnf.

2.1.11 Full disjunctive normal form (FDNF)

A DNF where all conjunctions have the same count of literals as the whole DNF has boolean variables. An example would be $x \& y \& z|x \& y \&(\sim z)| x \&(\sim y) \& z$.

2.1.12 Conjunctive normal form (CNF)

A conjunction of disjunctions of literals where the disjunctions don't contain a boolean variable and it's negation. An example would be $(x \mid y) \&(x \mid z)$.
Implemented as BooleanAlgebra.cnf.

2.1.13 Full conjunctive normal form (FCNF)

A CNF where all disjunctions have the same count of literals as the whole CNF has boolean variables. An example would be: $(x|y| z) \&(x|y|(\sim z)) \&(x|(\sim y)| z)$.

2.2 Laws

In this section different laws are listed that are directly derived from the definitions stated above.
In the following x, y, z are boolean expressions.

2.2.1 Associativity

- $x \&(y \& z)=(x \& y) \& z$
- $x|(y \mid z)=(x \mid y)| z$

2.2.2 Commutativity

- $x \& y=y \& x$
- $x|y=y| x$

2.2.3 Distributivity

- $x \&(y \mid z)=x \& y \mid x \& z$
- $x \mid y \& z=(x \mid y) \&(x \mid z)$

2.2.4 Identity

- $x \& 1=x$
- $x \mid 0=x$

2.2.5 Annihilator

- $x \& 0=0$
- $x \mid 1=1$

2.2.6 Idempotence

- $x \& x=x$
- $x \mid x=x$

2.2.7 Absorption

- $x \&(x \mid y)=x$
- $x \mid(x \& y)=x$

2.2.8 Negative absorption

- $x \&((\sim x) \mid y)=x \& y$
- $x|(\sim x) \& y=x| y$

2.2.9 Complementation

- $x \&(\sim x)=0$
- $x \mid(\sim x)=1$
2.2.10 Double negation
- $\sim(\sim x)=x$

2.2.11 De Morgan

- $\sim(x \& y)=(\sim x) \mid(\sim y)$
- $\sim(x \mid y)=(\sim x) \&(\sim y)$

2.2.12 Elimination

- $x \& y \mid x \&(\sim y)=x$
- $(x \mid y) \&(x \mid(\sim y))=x$

Development Guide

This document gives an overview of the code in boolean.py, explaining the layout and design decisions and some difficult algorithms. All used definitions and laws are stated in Concepts and Definitions.

Contents

- Development Guide
- Testing
- Classes Hierarchy
- Class creation
- Class initialization
- Ordering
- Parsing

3.1 Testing

Test boolean.py with your current Python environment:

```
python setup.py test
```

Test with all of the supported Python environments using tox:

```
pip install -r test-requirements.txt
tox
```

If tox throws InterpreterNotFound, limit it to python interpreters that are actually installed on your machine:

```
tox -e py27,py36
```


3.2 Classes Hierarchy

3.2.1 Expression

3.2.2 Symbol

3.2.3 Function

3.2.4 NOT

3.2.5 AND

3.2.6 OR

3.3 Class creation

Except for BooleanAlgebra and Symbol, no other classes are is designed to be instantiated directly. Instead you should create a BooleanAlgebra instance, then use BooleanAlgebra.symbol, BooleanAlgebra.NOT, BooleanAlgebra.AND, BooleanAlgebra.OR BooleanAlgebra.TRUE and BooleanAlgebra.FALSE to compose your expressions in the context of this algebra.

3.4 Class initialization

In this section for all classes is stated which arguments they will accept and how these arguments are processed before they are used.

3.4.1 Symbol

\& obj (Named Symbol)

3.5 Ordering

As far as possible every expression should always be printed in exactly the same way. Therefore a strict ordering between different boolean classes and between instances of same classes is needed. This is defined primarily by the sort_order attribute.

3.5.1 Class ordering

```
BaseElement < Symbol < AND < OR
```

NOT is an exception in this scheme. It will be sorted based on the sort order of its argument.

Class ordering is implemented by an attribute sort_order in all relevant classes. It holds an integer that will be used for comparison if it is available in both compared objects. For Symbols, the attached obj object is used instead.

Class	sort_order
BaseElement	0
Symbol	5
AND	10
OR	25

3.5.2 Instance ordering

BaseElement FALSE < TRUE

Symbol
Symbol.objo Symbol.obj
NOT if NOT.args [0] ==other \longrightarrow other $<$ NOT
NOT o other \longrightarrow NOT. args [0] o other
AND AND o AND — AND. args [0] o AND.args [0]
if undecided: repeat for all args
if undecided: len(AND. args) o len(AND. args)
if undecided: return AND < AND
OR OR o OR \longrightarrow OR.args[0] o OR.args[0]
if undecided: repeat for all args
if undecided: len(OR.args) o len(OR.args)
if undecided: return $O R<O R$

3.6 Parsing

Parsing is done in two steps: A tokenizer iterates over string characters assigning a TOKEN_TYPE to each token. The parser receives this stream of token types and strings and creates adequate boolean objects from a parse tree.

Acknowledgments

1. Nicolaie Popescu-Bodorin: Review of "Concepts and Definitions"
2. Silviu Ionut Carp: Review of "Concepts and Definitions"
