
boolean.py Documentation
Release 3.2

Sebastian Krämer

Aug 06, 2018

Contents

1 User Guide 1
1.1 Introduction . 1
1.2 Installation . 2
1.3 Creating boolean expressions . 2
1.4 Evaluation of expressions . 2
1.5 Equality of expressions . 3
1.6 Analyzing a boolean expression . 4
1.7 Using boolean.py to define your own boolean algebra . 5

2 Concepts and Definitions 7
2.1 Basic Definitions . 7
2.2 Laws . 9

3 Development Guide 13
3.1 Testing . 13
3.2 Classes Hierarchy . 14
3.3 Class creation . 14
3.4 Class initialization . 14
3.5 Ordering . 14
3.6 Parsing . 15

4 Acknowledgments 17

i

ii

CHAPTER 1

User Guide

This document provides an introduction on boolean.py usage. It requires that you are already familiar with Python
and know a little bit about boolean algebra. All definitions and laws are stated in Concepts and Definitions.

Contents

• User Guide

– Introduction

– Installation

– Creating boolean expressions

– Evaluation of expressions

– Equality of expressions

– Analyzing a boolean expression

– Using boolean.py to define your own boolean algebra

1.1 Introduction

boolean.py implements a boolean algebra. It defines two base elements, TRUE and FALSE, and a class Symbol for
variables. Expressions are built by composing symbols and elements with AND, OR and NOT. Other compositions
like XOR and NAND are not implemented.

1

boolean.py Documentation, Release 3.2

1.2 Installation

pip install boolean.py

1.3 Creating boolean expressions

There are three ways to create a boolean expression. They all start by creating an algebra, then use algebra attributes
and methods to build expressions.

You can build an expression from a string:

>>> import boolean
>>> algebra = boolean.BooleanAlgebra()
>>> algebra.parse('x & y')
AND(Symbol('x'), Symbol('y'))

>>> parse('(apple or banana and (orange or pineapple and (lemon or cherry)))')
OR(Symbol('apple'), AND(Symbol('banana'), OR(Symbol('orange'), AND(Symbol('pineapple
→˓'), OR(Symbol('lemon'), Symbol('cherry'))))))

You can build an expression from a Python expression:

>>> import boolean
>>> algebra = boolean.BooleanAlgebra()
>>> x, y = algebra.symbols('x', 'y')
>>> x & y
AND(Symbol('x'), Symbol('y'))

You can build an expression by using the algebra functions:

>>> import boolean
>>> algebra = boolean.BooleanAlgebra()
>>> x, y = algebra.symbols('x', 'y')
>>> TRUE, FALSE, NOT, AND, OR, symbol = algebra.definition()
>>> expr = AND(x, y, NOT(OR(symbol('a'), symbol('b'))))
>>> expr
AND(Symbol('x'), Symbol('y'))
>>> print(expr.pretty())

>>> print(expr)

1.4 Evaluation of expressions

By default, an expression is not evaluated. You need to call the simplify() method explicitly an expression to
perform some minimal simplification to evaluate an expression:

>>> import boolean
>>> algebra = boolean.BooleanAlgebra()
>>> x, y = algebra.symbols('x', 'y')
>>> print(x&~x)
0
>>> print(x|~x)

(continues on next page)

2 Chapter 1. User Guide

boolean.py Documentation, Release 3.2

(continued from previous page)

1
>>> print(x|x)
x
>>> print(x&x)
x
>>> print(x&(x|y))
x
>>> print((x&y) | (x&~y))
x

When simplify() is called, the following boolean logic laws are used recursively on every sub-term of the expression:

• Associativity

• Annihilator

• Idempotence

• Identity

• Complementation

• Elimination

• Absorption

• Negative absorption

• Commutativity (for sorting)

Also double negations are canceled out (Double negation).

A simplified expression is return and may not be fully evaluated nor minimal:

>>> import boolean
>>> algebra = boolean.BooleanAlgebra()
>>> x, y, z = algebra.symbols('x', 'y', 'z')
>>> print((((x|y)&z)|x&y).simplify())
(x&y)|(z&(x|y))

1.5 Equality of expressions

The expressions equality is tested by the __eq__() method and therefore the output of 𝑒𝑥𝑝𝑟1 == 𝑒𝑥𝑝𝑟2 is not the
same as mathematical equality.

Two expressions are equal if their structure and symbols are equal.

1.5.1 Equality of Symbols

Symbols are equal if they are the same or their associated objects are equal.

>>> import boolean
>>> algebra = boolean.BooleanAlgebra()
>>> x, y, z = algebra.symbols('x', 'y', 'z')
>>> x == y
False
>>> x1, x2 = algebra.symbols("x", "x")

(continues on next page)

1.5. Equality of expressions 3

boolean.py Documentation, Release 3.2

(continued from previous page)

>>> x1 == x2
True
>>> x1, x2 = algebra.symbols(10, 10)
>>> x1 == x2
True

1.5.2 Equality of structure

Here are some examples of equal and unequal structures:

>>> import boolean
>>> algebra = boolean.BooleanAlgebra()
>>> expr1 = algebra.parse("x|y")
>>> expr2 = algebra.parse("y|x")
>>> expr1 == expr2
True
>>> expr = algebra.parse("x|~x")
>>> expr == TRUE
False
>>> expr1 = algebra.parse("x&(~x|y)")
>>> expr2 = algebra.parse("x&y")
>>> expr1 == expr2
False

1.6 Analyzing a boolean expression

1.6.1 Getting sub-terms

All expressions have a property args which is a tuple of its terms. For symbols and base elements this tuple is empty,
for boolean functions it contains one or more symbols, elements or sub-expressions.

>>> import boolean
>>> algebra = boolean.BooleanAlgebra()
>>> algebra.parse("x|y|z").args
(Symbol('x'), Symbol('y'), Symbol('z'))

1.6.2 Getting all symbols

To get a set() of all unique symbols in an expression, use its symbols attribute

>>> import boolean
>>> algebra = boolean.BooleanAlgebra()
>>> algebra.parse("x|y&(x|z)").symbols
{Symbol('y'), Symbol('x'), Symbol('z')}

To get a list of all symbols in an expression, use its get_symbols method

>>> import boolean
>>> algebra = boolean.BooleanAlgebra()
>>> algebra.parse("x|y&(x|z)").get_symbols()
[Symbol('x'), Symbol('y'), Symbol('x'), Symbol('z')]

4 Chapter 1. User Guide

boolean.py Documentation, Release 3.2

1.6.3 Literals

Symbols and negations of symbols are called literals. You can test if an expression is a literal:

>>> import boolean
>>> algebra = boolean.BooleanAlgebra()
>>> x, y, z = algebra.symbols('x', 'y', 'z')
>>> x.isliteral
True
>>> (~x).isliteral
True
>>> (x|y).isliteral
False

Or get a set() or list of all literals contained in an expression:

>>> import boolean
>>> algebra = boolean.BooleanAlgebra()
>>> x, y, z = algebra.symbols('x', 'y', 'z')
>>> x.literals
{Symbol('x')}
>>> (~(x|~y)).get_literals()
[Symbol('x'), NOT(Symbol('y'))]

To remove negations except in literals use literalize():

>>> (~(x|~y)).literalize()
~x&y

1.6.4 Substitutions

To substitute parts of an expression, use the subs() method:

>>> e = x|y&z
>>> e.subs({y&z:y})
x|y

1.7 Using boolean.py to define your own boolean algebra

You can customize about everything in boolean.py to create your own custom algebra: 1. You can subclass
BooleanAlgebra and override or extend the tokenize() and parse() methods to parse custom expressions
creating your own mini expression language. See the tests for examples.

2. You can subclass the Symbol, NOT, AND and OR functions to add additional methods or for custom representations.
When doing so, you configure BooleanAlgebra instances by passing the custom sub-classes as agruments.

1.7. Using boolean.py to define your own boolean algebra 5

boolean.py Documentation, Release 3.2

6 Chapter 1. User Guide

CHAPTER 2

Concepts and Definitions

In this document the basic definitions and important laws of Boolean algebra are stated.

Contents

• Concepts and Definitions

– Basic Definitions

– Laws

2.1 Basic Definitions

2.1.1 Boolean Algebra

This is the main entry point. An algebra is define by the actual classes used for its domain, functions and variables.

2.1.2 Boolean Domain

S := {1, 0}

These base elements are algebra-level singletons classes (only one instance of each per algebra instance), called
TRUE and FALSE.

2.1.3 Boolean Variable

A variable holds an object and its implicit value is TRUE.

Implemented as class or subclasses of class Symbol.

7

boolean.py Documentation, Release 3.2

2.1.4 Boolean Function

A function 𝑓 : 𝑆𝑛 → 𝑆 (where n is called the order).

Implemented as class Function.

2.1.5 Boolean Expression

Either a base element, a boolean variable or a boolean function.

Implemented as class Expression - this is the base class for BaseElement, Symbol and Function.

2.1.6 NOT

A boolean function of order 1 with following truth table:

x NOT(x)
0 1
1 0

Instead of 𝑁𝑂𝑇 (𝑥) one can write ∼ 𝑥.

Implemented as class NOT.

2.1.7 AND

A boolean function of order 2 or more with the truth table for two elements

x y AND(x,y)
0 0 0
0 1 0
1 0 0
1 1 1

and the property 𝐴𝑁𝐷(𝑥, 𝑦, 𝑧) = 𝐴𝑁𝐷(𝑥,𝐴𝑁𝐷(𝑦, 𝑧)) where 𝑥, 𝑦, 𝑧 are boolean variables.

Instead of 𝐴𝑁𝐷(𝑥, 𝑦, 𝑧) one can write 𝑥&𝑦&𝑧.

Implemented as class AND.

2.1.8 OR

A boolean function of order 2 or more with the truth table for two elements

x y OR(x,y)
0 0 0
0 1 1
1 0 1
1 1 1

and the property 𝑂𝑅(𝑥, 𝑦, 𝑧) = 𝑂𝑅(𝑥,𝑂𝑅(𝑦, 𝑧)) where 𝑥, 𝑦, 𝑧 are boolean expressions.

8 Chapter 2. Concepts and Definitions

boolean.py Documentation, Release 3.2

Instead of 𝑂𝑅(𝑥, 𝑦, 𝑧) one can write 𝑥|𝑦|𝑧.

Implemented as class OR.

2.1.9 Literal

A boolean variable, base element or its negation with NOT.

Implemented indirectly as Expression.isliteral, Expression.literals and Expression.
literalize().

2.1.10 Disjunctive normal form (DNF)

A disjunction of conjunctions of literals where the conjunctions don’t contain a boolean variable and it’s negation. An
example would be 𝑥&𝑦|𝑥&𝑧.

Implemented as BooleanAlgebra.dnf.

2.1.11 Full disjunctive normal form (FDNF)

A DNF where all conjunctions have the same count of literals as the whole DNF has boolean variables. An example
would be 𝑥&𝑦&𝑧|𝑥&𝑦&(∼ 𝑧)|𝑥&(∼ 𝑦)&𝑧.

2.1.12 Conjunctive normal form (CNF)

A conjunction of disjunctions of literals where the disjunctions don’t contain a boolean variable and it’s negation. An
example would be (𝑥|𝑦)&(𝑥|𝑧).

Implemented as BooleanAlgebra.cnf.

2.1.13 Full conjunctive normal form (FCNF)

A CNF where all disjunctions have the same count of literals as the whole CNF has boolean variables. An example
would be: (𝑥|𝑦|𝑧)&(𝑥|𝑦|(∼ 𝑧))&(𝑥|(∼ 𝑦)|𝑧).

2.2 Laws

In this section different laws are listed that are directly derived from the definitions stated above.

In the following 𝑥, 𝑦, 𝑧 are boolean expressions.

2.2.1 Associativity

• 𝑥&(𝑦&𝑧) = (𝑥&𝑦)&𝑧

• 𝑥|(𝑦|𝑧) = (𝑥|𝑦)|𝑧

2.2. Laws 9

boolean.py Documentation, Release 3.2

2.2.2 Commutativity

• 𝑥&𝑦 = 𝑦&𝑥

• 𝑥|𝑦 = 𝑦|𝑥

2.2.3 Distributivity

• 𝑥&(𝑦|𝑧) = 𝑥&𝑦|𝑥&𝑧

• 𝑥|𝑦&𝑧 = (𝑥|𝑦)&(𝑥|𝑧)

2.2.4 Identity

• 𝑥&1 = 𝑥

• 𝑥|0 = 𝑥

2.2.5 Annihilator

• 𝑥&0 = 0

• 𝑥|1 = 1

2.2.6 Idempotence

• 𝑥&𝑥 = 𝑥

• 𝑥|𝑥 = 𝑥

2.2.7 Absorption

• 𝑥&(𝑥|𝑦) = 𝑥

• 𝑥|(𝑥&𝑦) = 𝑥

2.2.8 Negative absorption

• 𝑥&((∼ 𝑥)|𝑦) = 𝑥&𝑦

• 𝑥|(∼ 𝑥)&𝑦 = 𝑥|𝑦

2.2.9 Complementation

• 𝑥&(∼ 𝑥) = 0

• 𝑥|(∼ 𝑥) = 1

2.2.10 Double negation

• ∼ (∼ 𝑥) = 𝑥

10 Chapter 2. Concepts and Definitions

boolean.py Documentation, Release 3.2

2.2.11 De Morgan

• ∼ (𝑥&𝑦) = (∼ 𝑥)|(∼ 𝑦)

• ∼ (𝑥|𝑦) = (∼ 𝑥)&(∼ 𝑦)

2.2.12 Elimination

• 𝑥&𝑦|𝑥&(∼ 𝑦) = 𝑥

• (𝑥|𝑦)&(𝑥|(∼ 𝑦)) = 𝑥

2.2. Laws 11

boolean.py Documentation, Release 3.2

12 Chapter 2. Concepts and Definitions

CHAPTER 3

Development Guide

This document gives an overview of the code in boolean.py, explaining the layout and design decisions and some
difficult algorithms. All used definitions and laws are stated in Concepts and Definitions.

Contents

• Development Guide

– Testing

– Classes Hierarchy

– Class creation

– Class initialization

– Ordering

– Parsing

3.1 Testing

Test boolean.py with your current Python environment:

python setup.py test

Test with all of the supported Python environments using tox:

pip install -r test-requirements.txt
tox

If tox throws InterpreterNotFound, limit it to python interpreters that are actually installed on your machine:

13

boolean.py Documentation, Release 3.2

tox -e py27,py36

3.2 Classes Hierarchy

3.2.1 Expression

3.2.2 Symbol

3.2.3 Function

3.2.4 NOT

3.2.5 AND

3.2.6 OR

3.3 Class creation

Except for BooleanAlgebra and Symbol, no other classes are is designed to be instantiated directly. Instead you should
create a BooleanAlgebra instance, then use BooleanAlgebra.symbol, BooleanAlgebra.NOT, BooleanAlgebra.AND,
BooleanAlgebra.OR BooleanAlgebra.TRUE and BooleanAlgebra.FALSE to compose your expressions in the context
of this algebra.

3.4 Class initialization

In this section for all classes is stated which arguments they will accept and how these arguments are processed before
they are used.

3.4.1 Symbol

& obj (Named Symbol)

3.5 Ordering

As far as possible every expression should always be printed in exactly the same way. Therefore a strict ordering
between different boolean classes and between instances of same classes is needed. This is defined primarily by the
sort_order attribute.

3.5.1 Class ordering

BaseElement < Symbol < AND < OR

NOT is an exception in this scheme. It will be sorted based on the sort order of its argument.

14 Chapter 3. Development Guide

boolean.py Documentation, Release 3.2

Class ordering is implemented by an attribute sort_order in all relevant classes. It holds an integer that will be
used for comparison if it is available in both compared objects. For Symbols, the attached obj object is used instead.

Class sort_order
BaseElement 0
Symbol 5
AND 10
OR 25

3.5.2 Instance ordering

BaseElement FALSE < TRUE

Symbol

Symbol.obj o Symbol.obj

NOT if NOT.args[0] == other —> other < NOT

NOT o other —> NOT.args[0] o other

AND AND o AND —> AND.args[0] o AND.args[0]

if undecided: repeat for all args

if undecided: len(AND.args) o len(AND.args)

if undecided: return AND < AND

OR OR o OR —> OR.args[0] o OR.args[0]

if undecided: repeat for all args

if undecided: len(OR.args) o len(OR.args)

if undecided: return OR < OR

3.6 Parsing

Parsing is done in two steps: A tokenizer iterates over string characters assigning a TOKEN_TYPE to each token. The
parser receives this stream of token types and strings and creates adequate boolean objects from a parse tree.

3.6. Parsing 15

boolean.py Documentation, Release 3.2

16 Chapter 3. Development Guide

CHAPTER 4

Acknowledgments

1. Nicolaie Popescu-Bodorin: Review of “Concepts and Definitions”

2. Silviu Ionut Carp: Review of “Concepts and Definitions”

17

	User Guide
	Introduction
	Installation
	Creating boolean expressions
	Evaluation of expressions
	Equality of expressions
	Analyzing a boolean expression
	Using boolean.py to define your own boolean algebra

	Concepts and Definitions
	Basic Definitions
	Laws

	Development Guide
	Testing
	Classes Hierarchy
	Class creation
	Class initialization
	Ordering
	Parsing

	Acknowledgments

