
bookstore Documentation
Release 2.5.2dev0

nteract project

Dec 09, 2019

Contents

1 Table of Contents 3
1.1 Installation . 3
1.2 Configuration . 4
1.3 Usage . 4
1.4 REST API . 6
1.5 Reference . 7
1.6 Project . 21
1.7 Change Log . 27

2 Indices and tables 31

Python Module Index 33

HTTP Routing Table 35

Index 37

i

ii

bookstore Documentation, Release 2.5.2dev0

Release v2.5.2dev0 (What’s new?).

bookstore provides tooling and workflow recommendations for storing, scheduling, and publishing notebooks.

Contents 1

bookstore Documentation, Release 2.5.2dev0

2 Contents

CHAPTER 1

Table of Contents

1.1 Installation

bookstore may be installed using Python 3.6 and above.

After installation, bookstore can process Python 2 or Python 3 notebooks.

1.1.1 Install from PyPI (recommended)

python3 -m pip install bookstore

1.1.2 Install from conda-forge

conda install -c conda-forge bookstore

1.1.3 Install from Source

1. Clone this repo:

git clone https://github.com/nteract/bookstore.git

2. Change directory to repo root:

cd bookstore

3. Install dependencies:

python3 -m pip install -r requirements.txt
python3 -m pip install -r requirements-dev.txt

3

bookstore Documentation, Release 2.5.2dev0

4. Install package from source:

python3 -m pip install .

Tip: Don’t forget the dot at the end of the command

1.2 Configuration

Commonly used configuration settings can be stored in BookstoreSettings in the
jupyter_notebook_config.py file. These settings include:

• workspace location

• published storage location

• S3 bucket information

• AWS credentials for S3

1.2.1 Example configuration

Here’s an example of BookstoreSettings in the ~/.jupyter/jupyter_notebook_config.py file:

"""jupyter notebook configuration
The location for user installs on MacOS is ``~/.jupyter/jupyter_notebook_config.py``.
See https://jupyter.readthedocs.io/en/latest/projects/jupyter-directories.html for
→˓additional locations.
"""
from bookstore import BookstoreContentsArchiver

c.NotebookApp.contents_manager_class = BookstoreContentsArchiver

c.BookstoreSettings.workspace_prefix = "/workspace/kylek/notebooks"
c.BookstoreSettings.published_prefix = "/published/kylek/notebooks"

c.BookstoreSettings.s3_bucket = "<bucket-name>"

If bookstore uses an EC2 instance with a valid IAM role, there is no need to
→˓specify here
c.BookstoreSettings.s3_access_key_id = <AWS Access Key ID / IAM Access Key ID>
c.BookstoreSettings.s3_secret_access_key = <AWS Secret Access Key / IAM Secret Access
→˓Key>

The root directory of bookstore’s GitHub repo contains an example config called jupyter_config.py.example
that shows how to configure BookstoreSettings.

1.3 Usage

Data scientists and notebook users may develop locally on their system or save their notebooks to off-site or cloud
storage. Additionally, they will often create a notebook and then over time make changes and update it. As they work,
it’s helpful to be able to store versions of a notebook. When making changes to the content and calculations over time,

4 Chapter 1. Table of Contents

bookstore Documentation, Release 2.5.2dev0

a data scientist using Bookstore can now request different versions from the remote storage, such as S3, and clone the
notebook to their local system.

Note: store and clone

store

User saves to Local System ——————> Remote Data Store (i.e. S3)

clone

User requests a notebook to use locally <————– Remote Data Store (i.e. S3)

After some time working with a notebook, the data scientist may want to save or share a polished notebook version
with others. By publishing a notebook, the data scientist can display and share work that others can use at a later
time.

1.3.1 How to store and clone versions

Bookstore uses automatic notebook version management and specific storage paths when storing a notebook.

Automatic notebook version management

Every save of a notebook creates an immutable copy of the notebook on object storage. Initially, Bookstore supports
S3 for object storage.

To simplify implementation and management of versions, we currently rely on S3 as the object store using versioned
buckets. When a notebook is saved, it overwrites the existing file in place using the versioned s3 buckets to handle the
versioning.

Storage paths

All notebooks are archived to a single versioned S3 bucket using specific prefixes to denote a user’s workspace and
an organization’s publication of a user’s notebook. This captures the lifecycle of the notebook on storage. To do this,
bookstore allows users to set workspace and published storage paths. For example:

• /workspace - where users edit and store notebooks

• /published - notebooks to be shared to an organization

Bookstore archives notebook versions by keeping the path intact (until a user changes them). For example, the prefixes
that could be associated with storage types:

• Notebook in “draft” form: /workspace/kylek/notebooks/mine.ipynb

• Most recent published copy of a notebook: /published/kylek/notebooks/mine.ipynb

Note: Scheduling (Planned for a future release)

When scheduling execution of notebooks, each notebook path is a namespace that an external service can access. This
helps when working with parameterized notebooks, such as with Papermill. Scheduled notebooks may also be referred
to by the notebook key. In addition, Bookstore can find version IDs as well.

1.3. Usage 5

https://docs.aws.amazon.com/AmazonS3/latest/dev/Versioning.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/Versioning.html

bookstore Documentation, Release 2.5.2dev0

Easing the transition to Bookstore’s storage plan

Since many people use a regular filesystem, we’ll start with writing to the /workspace prefix as Archival Storage
(more specifically, writing on save using a post_save_hook for the Jupyter contents manager).

1.3.2 How to publish a notebook

To publish a notebook, Bookstore uses a publishing endpoint which is a serverextension to the classic Jupyter
server. If you wish to publish notebooks, explicitly enable bookstore as a server extension to use the endpoint. By
default, publishing is not enabled.

To enable the extension globally, run:

jupyter serverextension enable --py bookstore

If you wish to enable it only for your current environment, run:

jupyter serverextension enable --py bookstore --sys-prefix

1.4 REST API

GET /api/bookstore
Info about bookstore

Status Codes

• 200 OK – Successfully requested

GET /bookstore/clone
Landing page for initiating cloning.

This serves a simple html page that allows avoiding xsrf issues on a jupyter server.

Query Parameters

• s3_bucket (string) – S3_bucket being targeted (Required)

• s3_key (string) – S3 object key being requested (Required)

• s3_version_id (string) – S3 object key being requested

Status Codes

• 200 OK – successful operation

• 400 Bad Request – Must have a key to clone from

POST /api/bookstore/clone
Trigger clone from s3

Status Codes

• 200 OK – Successfully cloned

• 400 Bad Request – Must have a key to clone from

GET /bookstore/fs-clone
Landing page for initiating file-system cloning.

This serves a simple html page that allows avoiding xsrf issues on a jupyter server.

6 Chapter 1. Table of Contents

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1

bookstore Documentation, Release 2.5.2dev0

Query Parameters

• relpath (string) – relative path being targeted (Required)

Status Codes

• 200 OK – successful operation

• 400 Bad Request – Request malformed, must provide a relative path.

• 404 Not Found – Request to clone from a path outside of base directory

POST /api/bookstore/fs-clone
Trigger clone from file system

Status Codes

• 200 OK – Successfully cloned

• 400 Bad Request – Malformed request. Provide a valid relative path.

• 404 Not Found – Invalid request. Cloning from a path outside of the base directory is not
allowed.

PUT /api/bookstore/publish/{path}
Publish a notebook to s3

Parameters

• path (string) – Path to publish to, it will be prefixed by the preconfigured published
bucket.

Status Codes

• 200 OK – Successfully published.

1.5 Reference

1.5.1 Configuration

Bookstore may be configured by providing BookstoreSettings in the ~/.jupyter/
jupyter_notebook_config.py file.

The bookstore_config module

BookstoreSettings

These settings are configurable by the user. Bookstore uses the traitlets library to handle the configurable options.

class bookstore.bookstore_config.BookstoreSettings(**kwargs)
Configuration for archival and publishing.

Settings include storage directory locations, S3 authentication, additional S3 settings, and Bookstore resources.

S3 authentication settings can be set, or they can be left unset when IAM is used.

Like the Jupyter notebook, bookstore uses traitlets to handle configuration, loading from files or CLI.

workspace_prefix
Directory to use for user workspace storage

1.5. Reference 7

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

bookstore Documentation, Release 2.5.2dev0

Type str(workspace)

published_prefix
Directory to use for published notebook storage

Type str(published)

s3_access_key_id
Environment variable JPYNB_S3_ACCESS_KEY_ID

Type str, optional

s3_secret_access_key
Environment variable JPYNB_S3_SECRET_ACCESS_KEY

Type str, optional

s3_endpoint_url
Environment variable JPYNB_S3_ENDPOINT_URL

Type str("https://s3.amazonaws.com")

s3_region_name
Environment variable JPYNB_S3_REGION_NAME

Type str("us-east-1")

s3_bucket
Bucket name, environment variable JPYNB_S3_BUCKET

Type str("")

max_threads
Maximum threads from the threadpool available for S3 read/writes

Type int(16)

enable_s3_cloning
Enable cloning from s3.

Type bool(True)

fs_cloning_basedir
Absolute path to base directory used to clone from the local file system

Type str("/Users/jupyter")

Functions

These functions will generally be used by developers of the bookstore application.

bookstore.bookstore_config.validate_bookstore(settings: book-
store.bookstore_config.BookstoreSettings)

Check that settings exist.

Parameters settings (bookstore.bookstore_config.BookstoreSettings) – In-
stantiated settings object to be validated.

Returns validation_checks – Statements about whether features are validly configured and avail-
able

Return type dict

8 Chapter 1. Table of Contents

bookstore Documentation, Release 2.5.2dev0

1.5.2 Archiving

The archive module

The archive module manages archival of notebooks to storage (i.e. S3) when a notebook save occurs.

ArchiveRecord

Bookstore uses an immutable ArchiveRecord to represent a notebook file by its storage path.

class bookstore.archive.ArchiveRecord
Represents an archival record.

An ArchiveRecord uses a Typed version of collections.namedtuple(). The record is immutable.

Example

An archive record (filepath, content, queued_time) contains:

• a filepath to the record

• the content for archival

• the queued time length of time waiting in the queue for archiving

content
Alias for field number 1

filepath
Alias for field number 0

queued_time
Alias for field number 2

BookstoreContentsArchiver

class bookstore.archive.BookstoreContentsArchiver(*args, **kwargs)
Manages archival of notebooks to storage (S3) when notebook save occurs.

This class is a custom Jupyter FileContentsManager which holds information on storage location, path to it, and
file to be written.

Example

• Bookstore settings combine with the parent Jupyter application settings.

• A session is created for the current event loop.

• To write to a particular path on S3, acquire a lock.

• After acquiring the lock, archive method authenticates using the storage service’s credentials.

• If allowed, the notebook is queued to be written to storage (i.e. S3).

path_locks
Dictionary of paths to storage and the lock associated with a path.

1.5. Reference 9

https://jupyter-notebook.readthedocs.io/en/stable/extending/contents.html#contents-api

bookstore Documentation, Release 2.5.2dev0

Type dict

path_lock_ready
A mutex lock associated with a path.

Type asyncio mutex lock

archive(record: bookstore.archive.ArchiveRecord)
Process a record to write to storage.

Acquire a path lock before archive. Writing to storage will only be allowed to a path if a valid path_lock
is held and the path is not locked by another process.

Parameters record (ArchiveRecord) – A notebook and where it should be written to stor-
age

run_pre_save_hook(model, path, **kwargs)
Send request to store notebook to S3.

This hook offloads the storage request to the event loop. When the event loop is available for execution of
the request, the storage of the notebook will be done and the write to storage occurs.

Parameters

• model (dict) – The type of file and its contents

• path (str) – The storage location

1.5.3 API Handlers

The handlers module

BookstoreVersionHandler

class bookstore.handlers.BookstoreVersionHandler(application: tor-
nado.web.Application, request:
tornado.httputil.HTTPServerRequest,
**kwargs)

Bases: notebook.base.handlers.APIHandler

Handler responsible for Bookstore version information

Used to lay foundations for the bookstore package. Though, frontends can use this endpoint for feature detection.

get(self)
Provides version info and feature availability based on serverside settings.

build_response_dict(self)
Helper to populate response.

build_response_dict()
Helper for building the version handler’s response before serialization.

get()
GET /api/bookstore/

Returns version info and validation info for various bookstore features.

10 Chapter 1. Table of Contents

bookstore Documentation, Release 2.5.2dev0

Jupyter Server extension

bookstore.handlers.load_jupyter_server_extension(nb_app)

This function loads bookstore as a Jupyter Server extension.

1.5.4 Storage

The s3_paths module

S3 path utilities

bookstore.s3_paths.s3_display_path(bucket, prefix, path=”)
Create a display name for use in logs

Parameters

• bucket (str) – S3 bucket name

• prefix (str) – prefix for workspace or publish

• path (str) – The storage location

bookstore.s3_paths.s3_key(prefix, path=”)
Compute the s3 key

Parameters

• prefix (str) – prefix for workspace or publish

• path (str) – The storage location

bookstore.s3_paths.s3_path(bucket, prefix, path=”)
Compute the s3 path.

Parameters

• bucket (str) – S3 bucket name

• prefix (str) – prefix for workspace or publish

• path (str) – The storage location

1.5.5 Cloning

The clone module

bookstore.clone.build_notebook_model(content, path)
Helper that builds a Contents API compatible model for notebooks.

Parameters

• content (str) – The content of the model.

• path (str) – The path to be targeted.

Returns Jupyter Contents API compatible model for notebooks

Return type dict

bookstore.clone.build_file_model(content, path)
Helper that builds a Contents API compatible model for files.

1.5. Reference 11

bookstore Documentation, Release 2.5.2dev0

Parameters

• content (str) – The content of the model

• path (str) – The path to be targeted.

Returns Jupyter Contents API compatible model for files

Return type dict

bookstore.clone.validate_relpath(relpath, settings, log)
Validates that a relative path appropriately resolves given bookstore settings.

Parameters

• relpath (string) – Relative path to a notebook to be cloned.

• settings (BookstoreSettings) – Bookstore configuration.

• log (logging.Logger) – Log (usually from the NotebookApp) for logging endpoint
changes.

Returns Absolute path to file to be cloned.

Return type Path

BookstoreCloneHandler

class bookstore.clone.BookstoreCloneHandler(application: tornado.web.Application, re-
quest: tornado.httputil.HTTPServerRequest,
**kwargs)

Prepares and provides clone options page, populating UI with clone option parameters.

Provides handling for GET requests when cloning a notebook from storage (S3). Launches a user interface with
cloning options.

initialize(self)
Helper to access bookstore settings.

get(self)
Checks for valid storage settings and render a UI for clone options.

construct_template_params(self, s3_bucket, s3_object_key, s3_version_id=None)
Helper to populate Jinja template for cloning option page.

get_template(self, name)
Loads a Jinja template and its related settings.

See also:

Jupyter Notebook reference on Custom Handlers

Methods

BookstoreCloneHandler.initialize()
Helper to retrieve bookstore setting for the session.

BookstoreCloneHandler.get()
GET /bookstore/clone?s3_bucket=<your_s3_bucket>&s3_key=<your_s3_key>

Renders an options page that will allow you to clone a notebook from a specific bucket via the Bookstore cloning
API.

12 Chapter 1. Table of Contents

https://jupyter-notebook.readthedocs.io/en/stable/extending/handlers.html#registering-custom-handlers

bookstore Documentation, Release 2.5.2dev0

s3_bucket is the bucket you wish to clone from. s3_key is the object key that you wish to clone.

BookstoreCloneHandler.construct_template_params(s3_bucket, s3_object_key,
s3_version_id=None)

Helper that takes valid S3 parameters and populates UI template

Returns Template parameters in a dictionary

Return type dict

BookstoreCloneHandler.get_template(name)
Loads a Jinja template by name.

BookstoreCloneAPIHandler

class bookstore.clone.BookstoreCloneAPIHandler(application: tor-
nado.web.Application, request: tor-
nado.httputil.HTTPServerRequest,
**kwargs)

Handle notebook clone from storage.

Provides API handling for POST and clones a notebook from storage (S3).

initialize(self)
Helper to access bookstore settings.

post(self)
Clone a notebook from the location specified by the payload.

build_content_model(self, obj, path)
Helper that takes a response from S3 and creates a ContentsAPI compatible model.

build_post_response_model(self, model, obj, s3_bucket, s3_object_key)
Helper that takes a Jupyter Contents API compliant model and adds cloning specific information.

See also:

Jupyter Notebook reference on Custom Handlers

Methods

BookstoreCloneAPIHandler.initialize()
Helper to retrieve bookstore setting for the session.

BookstoreCloneAPIHandler.post()
POST /api/bookstore/clone

Clone a notebook to the path specified in the payload.

The payload type for the request should be:

{
"s3_bucket": string,
"s3_key": string,
"target_path"?: string
"s3_version_id"?: string
}

The response payload should match the standard Jupyter contents API POST response.

1.5. Reference 13

https://jupyter-notebook.readthedocs.io/en/stable/extending/handlers.html#registering-custom-handlers

bookstore Documentation, Release 2.5.2dev0

BookstoreCloneAPIHandler.build_content_model(content, target_path)
Helper that takes a response from S3 and creates a ContentsAPI compatible model.

If the file at target_path already exists, this increments the file name.

Parameters

• content (str) – string encoded file content

• target_path (str) – The the path we wish to clone to, may be incremented if already
present.

Returns Jupyter Contents API compatible model

Return type dict

BookstoreCloneAPIHandler.build_post_response_model(model, obj, s3_bucket,
s3_object_key)

Helper that takes a Jupyter Contents API compliant model and adds cloning specific information.

Parameters

• model (dict) – Jupyter Contents API model

• obj (dict) – Log (usually from the NotebookApp) for logging endpoint changes.

• s3_bucket (str) – The S3 bucket we are cloning from

• s3_object_key (str) – The S3 key we are cloning

Returns Model with additional info about the S3 cloning

Return type dict

BookstoreFSCloneHandler

Methods

BookstoreFSCloneHandler.initialize()
Helper to retrieve bookstore setting for the session.

BookstoreFSCloneHandler.get()
GET /bookstore/fs-clone?relpath=<your_relpath>

Renders an options page that will allow you to clone a notebook from a via the Bookstore file-system cloning
API.

relpath is the relative path that you wish to clone from

BookstoreFSCloneHandler.construct_template_params(relpath, fs_clonepath)
Helper that takes a valid relpath and populates UI template

Returns Template parameters in a dictionary

Return type dict

BookstoreFSCloneHandler.get_template(name)
Loads a Jinja template by name.

14 Chapter 1. Table of Contents

https://jupyter-notebook.readthedocs.io/en/stable/extending/contents.html

bookstore Documentation, Release 2.5.2dev0

BookstoreFSCloneAPIHandler

class bookstore.clone.BookstoreFSCloneAPIHandler(application: tor-
nado.web.Application, request:
tornado.httputil.HTTPServerRequest,
**kwargs)

Handle notebook clone from an accessible file system (local or cloud).

Provides API handling for POST and clones a notebook from the specified file system (local or cloud).

initialize(self)
Helper to access bookstore settings.

post(self)
Clone a notebook from the filesystem location specified by the payload.

build_content_model(self, content, path)
Helper for creating a Jupyter ContentsAPI compatible model.

See also:

Jupyter Notebook reference on Custom Handlers

Methods

BookstoreFSCloneAPIHandler.initialize()
Helper to retrieve bookstore setting for the session.

BookstoreFSCloneAPIHandler.post()
POST /api/bookstore/fs-clone

Clone a notebook to the path specified in the payload.

The payload type for the request should be:

{
"relpath": string,
"target_path": string #optional
}

The response payload should match the standard Jupyter contents API POST response.

BookstoreFSCloneAPIHandler.build_content_model(content, target_path)
Helper that takes a content and creates a ContentsAPI compatible model.

If the file at target_path already exists, this increments the file name.

Parameters

• content (dict or string) – dict or string encoded file content

• target_path (str) – The the path we wish to clone to, may be incremented if already
present.

Returns

Jupyter Contents API compatible model

Return type dict

1.5. Reference 15

https://jupyter-notebook.readthedocs.io/en/stable/extending/handlers.html#registering-custom-handlers
https://jupyter-notebook.readthedocs.io/en/stable/extending/contents.html

bookstore Documentation, Release 2.5.2dev0

1.5.6 Publishing

The publish module

BookstorePublishAPIHandler

class bookstore.publish.BookstorePublishAPIHandler(application: tor-
nado.web.Application,
request: tor-
nado.httputil.HTTPServerRequest,
**kwargs)

Publish a notebook to the publish path

Methods

BookstorePublishAPIHandler.initialize()
Initialize a helper to get bookstore settings and session information quickly

BookstorePublishAPIHandler.put(path)
Publish a notebook on a given path.

PUT /api/bookstore/publish

The payload directly matches the contents API for PUT.

Parameters path (str) – Path describing where contents should be published to, postfixed to the
published_prefix .

BookstorePublishAPIHandler.validate_model(model)
Checks that the model given to the API handler meets bookstore’s expected structure for a notebook.

Pattern for surfacing nbformat validation errors originally written in https://github.com/jupyter/notebook/blob/
a44a367c219b60a19bee003877d32c3ff1ce2412/notebook/services/contents/manager.py#L353-L355

Parameters model (dict) – Request model for publishing describing the type and content of the
object.

Raises tornado.web.HTTPError – Your model does not validate correctly

BookstorePublishAPIHandler.prepare_response(obj, full_s3_path)
Prepares repsonse to publish PUT request.

Parameters

• obj (dict) – Validation dictionary for determining which endpoints to enable.

• path – path to place after the published prefix in the designated bucket

Returns Model for responding to put request.

Return type dict

1.5.7 Notebook Client

The bookstore.client.nb_client module

16 Chapter 1. Table of Contents

https://github.com/jupyter/notebook/blob/a44a367c219b60a19bee003877d32c3ff1ce2412/notebook/services/contents/manager.py#L353-L355
https://github.com/jupyter/notebook/blob/a44a367c219b60a19bee003877d32c3ff1ce2412/notebook/services/contents/manager.py#L353-L355

bookstore Documentation, Release 2.5.2dev0

NotebookClient

class bookstore.client.nb_client.NotebookClient(nb_config)
EXPERIMENTAL SUPPORT: Client used to interact with a notebook server from within a notebook.

Parameters nb_config (dict) – Dictionary of info compatible with creating a LiveNote-
bookRecord.

nb_config
Dictionary of info compatible with creating a LiveNotebookRecord.

Type dict

nb_record
LiveNotebookRecord of info for this notebook

Type LiveNotebookRecord

url
url from nb_record minus final /

Type str

token
token used for authenticating requests serverside

Type str

xsrf_token
xsrf_token used in cookie for authenticating requests

Type str

req_session
Session to be reused across methods

Type requests.Session

contents_endpoint
Current server’s contents API endpoint.

get_contents(path)
Requests info about current contents from notebook server.

get_kernels()
Requests info about current kernels from notebook server.

get_sessions()
Requests info about current sessions from notebook server.

headers
Default headers to be shared across requests.

kernels
Current notebook kernels. Reissues request on each call.

kernels_endpoint
Current server’s kernels API endpoint.

sessions
Current notebook sessions. Reissues request on each call.

sessions_endpoint
Current server’s kernels API endpoint.

1.5. Reference 17

bookstore Documentation, Release 2.5.2dev0

setup_auth()
Sets up token access for authorizing requests to notebook server.

This sets the notebook token as self.token and the xsrf_token as self.xsrf_token.

setup_request_sessions()
Sets up a requests.Session object for sharing headers across API requests.

NotebookClientCollection

class bookstore.client.nb_client.NotebookClientCollection
EXPERIMENTAL SUPPORT: Representation of a collection of notebook clients

classmethod current_server()
class method for current notebook server

CurrentNotebookClient

class bookstore.client.nb_client.CurrentNotebookClient
EXPERIMENTAL SUPPORT: Represents the currently active notebook client.

connection_file
Connection file for connecting to current notebook’s kernel.

kernel_id
Kernel id for identifying which notebook is currently being used by this session.

LiveNotebookRecord

class bookstore.client.nb_client.LiveNotebookRecord
Representation of live notebook server.

This is a record of an object returned by notebook.notebookapp.list_running_servers().

Example

[{'base_url': '/',
'hostname': 'localhost',
'notebook_dir': '/Users/mpacer/jupyter/eg_notebooks',
'password': False,
'pid': 96033,
'port': 8888,
'secure': False,
'token': '',
'url': 'http://localhost:8888/'}]

base_url
Alias for field number 0

hostname
Alias for field number 1

notebook_dir
Alias for field number 2

18 Chapter 1. Table of Contents

bookstore Documentation, Release 2.5.2dev0

password
Alias for field number 3

pid
Alias for field number 4

port
Alias for field number 5

secure
Alias for field number 6

token
Alias for field number 7

url
Alias for field number 8

KernelInfo

class bookstore.client.nb_client.KernelInfo(*args, id, name, last_activity, execu-
tion_state, connections)

Representation of kernel info returned by the notebook’s /api/kernel endpoint.

id

Type str

name

Type str

last_activity

Type str

execution_state

Type str

connections

Type int

Example

{id: 'f92b7c8b-0858-4d10-903c-b0631540fb36',
name: 'dev',
last_activity: '2019-03-14T23:38:08.137987Z',
execution_state: 'idle',
connections: 0}

NotebookSession

class bookstore.client.nb_client.NotebookSession(*args, path, name, type, kernel, note-
book={}, **kwargs)

Representation of session info returned by the notebook’s /api/sessions/ endpoint.

id

1.5. Reference 19

bookstore Documentation, Release 2.5.2dev0

Type str

path

Type str

name

Type str

type

Type str

kernel

Type KernelInfo

notebook

Type dict

model
Record of the raw response (without converting the KernelInfo).

Type dict

Example

{id: '68d9c58f-c57d-4133-8b41-5ec2731b268d',
path: 'Untitled38.ipynb',
name: '',
type: 'notebook',
kernel: KernelInfo(id='f92b7c8b-0858-4d10-903c-b0631540fb36',

name='dev',
last_activity='2019-03-14T23:38:08.137987Z',
execution_state='idle',
connections=0),

notebook: {'path': 'Untitled38.ipynb', 'name': ''}}

Helper Function

bookstore.client.nb_client.extract_kernel_id(connection_file)
Get the kernel id string from a file

1.5.8 Bookstore Client

The bookstore.client.store_client module

BookstoreClient

class bookstore.client.store_client.BookstoreClient(s3_bucket=None)
Bases: bookstore.client.nb_client.CurrentNotebookClient

EXPERIMENTAL SUPPORT: A client that allows access to a Bookstore from within a notebook.

Parameters s3_bucket (str) – (optional) Provide a default bucket for this bookstore client to
clone from.

20 Chapter 1. Table of Contents

bookstore Documentation, Release 2.5.2dev0

default_bucket
The default bucket to be used for cloning.

Type str

clone(s3_bucket=”, s3_key=”, target_path=”)
Clone files via bookstore.

Parameters

• s3_bucket (str) – (optional) S3 bucket you wish to clone from; defaults to client’s
bucket.

• s3_object_key (str) – The object key describing the object you wish to clone from
S3.

• target_path (str) – (optional) The location you wish to clone the object to; defaults
to s3_object_key.

clone_endpoint
Helper to refer to construct the clone endpoint for this notebook server.

publish(path=None)
Publish notebook to bookstore

Parameters

• path (str) – (optional) Path that you wish to publish; defaults to current notebook.

• s3_object_key (str) – The the path we wish to clone to.

publish_endpoint
Helper to refer to construct the publish endpoint for this notebook server.

1.6 Project

1.6.1 Contributing

Oh, hello there! You’re probably reading this because you are interested in contributing to nteract. That’s great to
hear! This document will help you through your journey of open source. Love it, cherish it, take it out to dinner, but
most importantly: read it thoroughly!

What do I need to know to help?

Read the README.md file. This will help you set up the project. If you have questions, please ask on the nteract
Slack channel. We’re a welcoming project and are happy to answer your questions.

How do I make a contribution?

Never made an open source contribution before? Wondering how contributions work in the nteract world? Here’s a
quick rundown!

1. Find an issue that you are interested in addressing or a feature that you would like to address.

2. Fork the repository associated with the issue to your local GitHub organization.

3. Clone the repository to your local machine using:

1.6. Project 21

bookstore Documentation, Release 2.5.2dev0

git clone https://github.com/github-username/repository-name.git

4. Create a new branch for your fix using:

git checkout -b branch-name-here

5. Make the appropriate changes for the issue you are trying to address or the feature that you want to add.

6. You can run python unit tests using pytest. Running integration tests locally requires a more complicated
setup. This setup is described in running_ci_locally.md

#. Add and commit the changed files using git add and git commit. #.

Push the changes to the remote repository using:

git push origin branch-name-here

1. Submit a pull request to the upstream repository.

2. Title the pull request per the requirements outlined in the section below.

3. Set the description of the pull request with a brief description of what you did and any questions you might have
about what you did.

4. Wait for the pull request to be reviewed by a maintainer.

5. Make changes to the pull request if the reviewing maintainer recommends them.

6. Celebrate your success after your pull request is merged! :tada:

How should I write my commit messages and PR titles?

Good commit messages serve at least three important purposes:

• To speed up the reviewing process.

• To help us write a good release note.

• To help the future maintainers of nteract/nteract (it could be you!), say five years into the future, to find out why
a particular change was made to the code or why a specific feature was added.

Structure your commit message like this:

> Short (50 chars or less) summary of changes
>
> More detailed explanatory text, if necessary. Wrap it to about 72
> characters or so. In some contexts, the first line is treated as the
> subject of an email and the rest of the text as the body. The blank
> line separating the summary from the body is critical (unless you omit
> the body entirely); tools like rebase can get confused if you run the
> two together.
>
> Further paragraphs come after blank lines.
>
> - Bullet points are okay, too
>
> - Typically a hyphen or asterisk is used for the bullet, preceded by a
> single space, with blank lines in between, but conventions vary here
>

Source: https://git-scm.com/book/ch5-2.html

22 Chapter 1. Table of Contents

./running_ci_locally.md
https://git-scm.com/book/ch5-2.html

bookstore Documentation, Release 2.5.2dev0

DO

• Write the summary line and description of what you have done in the imperative mode, that is as if you were
commanding. Start the line with “Fix”, “Add”, “Change” instead of “Fixed”, “Added”, “Changed”.

• Always leave the second line blank.

• Line break the commit message (to make the commit message readable without having to scroll horizontally in
gitk).

DON’T

• Don’t end the summary line with a period - it’s a title and titles don’t end with a period.

Tips

• If it seems difficult to summarize what your commit does, it may be because it includes several logical changes
or bug fixes, and are better split up into several commits using git add -p.

References

The following blog post has a nice discussion of commit messages:

• “On commit messages” http://who-t.blogspot.com/2009/12/on-commit-messages.html

How fast will my PR be merged?

Your pull request will be merged as soon as there are maintainers to review it and after tests have passed. You might
have to make some changes before your PR is merged but as long as you adhere to the steps above and try your best,
you should have no problem getting your PR merged.

That’s it! You’re good to go!

1.6.2 Contributor Code of Conduct

As contributors and maintainers of this project, and in the interest of fostering an open and welcoming community, we
pledge to respect all people who contribute through reporting issues, posting feature requests, updating documentation,
submitting pull requests or patches, and other activities.

We are committed to making participation in this project a harassment-free experience for everyone, regardless of
age, body size, disability, ethnicity, sex characteristics, gender identity and expression, level of experience, education,
socio-economic status, nationality, personal appearance, race, religion, or sexual identity and orientation.

Examples of behavior that contributes to creating a positive environment include:

• Using welcoming and inclusive language

• Being respectful of differing viewpoints and experiences

• Gracefully accepting constructive criticism

• Focusing on what is best for the community

• Showing empathy towards other community members

1.6. Project 23

http://who-t.blogspot.com/2009/12/on-commit-messages.html

bookstore Documentation, Release 2.5.2dev0

Examples of unacceptable behavior by participants include:

• The use of sexualized language or imagery and unwelcome sexual attention or advances

• Trolling, insulting/derogatory comments, and personal or political attacks

• Public or private harassment

• Publishing others’ private information, such as a physical or electronic address, without explicit permission

• Other conduct which could reasonably be considered inappropriate in a professional setting

Project maintainers are responsible for clarifying the standards of acceptable behavior and are expected to take appro-
priate and fair corrective action in response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits,
issues, and other contributions that are not aligned to this Code of Conduct, or to ban temporarily or permanently any
contributor for other behaviors that they deem inappropriate, threatening, offensive, or harmful.

By adopting this Code of Conduct, project maintainers commit themselves to fairly and consistently applying these
principles to every aspect of managing this project. Project maintainers who do not follow or enforce the Code of
Conduct may be permanently removed from the project team.

This Code of Conduct applies both within project spaces and in public spaces when an individual is representing the
project or its community. Examples of representing a project or community include using an official project e-mail
address, posting via an official social media account, or acting as an appointed representative at an online or offline
event. Representation of a project may be further defined and clarified by project maintainers.

Instances of abusive, harassing, or otherwise unacceptable behavior may be reported by contacting the project main-
tainer at [rgbkrk@gmail.com]. All complaints will be reviewed and investigated and will result in a response that is
deemed necessary and appropriate to the circumstances. Maintainers are obligated to maintain confidentiality with
regard to the reporter of an incident.

This Code of Conduct is adapted from the Contributor Covenant, version 1.4, available from http://
contributor-covenant.org/version/1/4/

1.6.3 Local Continuous Integration

It helps when developing to be able to run integration tests locally. Since bookstore relies on accessing S3, this requires
that we create a local server that can model how S3 works.

We will be using minio to mock S3 behavior.

Setup Local CI environment

To run the ci tests locally, you will need to have a few things set up:

• a functioning docker service

• define /mnt/data/ and /mnt/config/ and give full permissions (e.g., chmod 777 /mnt/data). =
add /mnt/data and /mnt/config to be accessible from docker. You can do so by modifying Docker’s
preferences by going to Docker → Preferences → File Sharing and adding /mnt/data and
/mnt/config to the list there.

• an up-to-date version of node.

24 Chapter 1. Table of Contents

mailto:rgbkrk@gmail.com
http://contributor-covenant.org/version/1/4/
http://contributor-covenant.org/version/1/4/
https://docs.minio.io/

bookstore Documentation, Release 2.5.2dev0

Run Local tests

1. Open two terminals with the current working directory as the root bookstore directory.

2. In one terminal run yarn test:server. This will start up minio.

3. In the other terminal run yarn test. This will run the integration tests.

Interactive python tests

The CI scripts are designed to be self-contained and run in an automated setup. This makes it makes it harder to iterate
rapidly when you don’t want to test the entire system but when you do need to integrate with a Jupyter server.

In addition the CI scripts, we have included ./ci/clone_request.py for testing the clone endpoint. This is
particularly useful for the /api/bookstore/cloned endpoint because while it is an API to be used by other
applications, it also acts as a user facing endpoint since it provides a landing page for confirming whether or not a
clone is to be approved.

It’s often difficult to judge whether what is being served makes sense from a UI perspective without being able to
investigate it directly. At the same time we’ll need to access it as an API to ensure that the responses are well-behaved
from an API standpoint. By using python to query a live server and a browser to visit the landing page, we can rapidly
iterate between the API and UI contexts from the same live server’s endpoint.

We provide examples of jupyter notebook commands needed in that file as well for both accessing the
nteract-notebooks S3 bucket as well as the Minio provided bookstore bucket (as used by the CI scripts).

1.6.4 Running Python Tests

The project uses pytest to run Python tests and tox as a tool for running tests in different environments.

Setup Local development system

Using Python 3.6+, install the dev requirements:

pip install -r requirements-dev.txt

Run Python tests

Important: We recommend using tox for running tests locally. Please deactivate any conda environments before
running tests using tox. Failure to do so may corrupt your virtual environments.

To run tests for a particular Python version (3.6 or 3.7):

tox -e py36 # or py37

This will run the tests and display coverage information.

Run linters

tox -e flake8
tox -e black

1.6. Project 25

bookstore Documentation, Release 2.5.2dev0

Run type checking

tox -e mypy

Run All Tests and Checks

tox

1.6.5 Releasing

Pre-release

• [] First check that the CHANGELOG is up to date for the next release version.

• [] Update docs

Installing twine package

Install and upgrade, if needed,twine with python3 -m pip install -U twine. The long description of
the package will not render on PyPI unless an up-to-date version is used.

Create the release

• [] Update version numbers in

– [] bookstore/_version.py (version_info)

– [] docs/source/conf.py (version and release)

– [] docs/source/bookstore_api.yaml (info.version)

• [] Commit the updated version

• [] Clean the repo of all non-tracked files: git clean -xdfi

• [] Commit and tag the release

git commit -am"release $VERSION"
git tag $VERSION

• [] Push the tags and remove any existing dist directory files

git push && git push --tags
rm -rf dist/*

• [] Build sdist and wheel

python setup.py sdist
python setup.py bdist_wheel

26 Chapter 1. Table of Contents

bookstore Documentation, Release 2.5.2dev0

Test and upload release to PyPI

• [] Test the wheel and sdist locally

• [] Upload to PyPI using twine over SSL

twine upload dist/*

• [] If all went well:

– Change bookstore/_version.py back to .dev

– Push directly to master and push --tags too.

1.7 Change Log

1.7.1 Unreleased

1.7.2 2.5.1

This enables adds a new feature to bookstore cloning from s3, cloning specific versions of notebooks from versioned
s3 buckets.

Specifically, it introduces the s3_version_id query parameter to the /bookstore/clone/ GET handler.

So if you wanted to clone a specific version myVersion of /workspace/my_notebook.ipynb from the
my_bucket S3 bucket, you would change the route from something like

http://localhost:8888/bookstore/clone?s3_bucket=my_bucket&s3_key=workspace/my_notebook.ipynb

to

http://localhost:8888/bookstore/clone?s3_bucket=my_bucket&s3_key=workspace/my_notebook.ipynb&s3_version_
id=myVersion

1.7.3 2.5.0

This switches the bookstore serverextension and landing page from using absolute urls to relative paths.

1.7.4 2.4.1 2019-08-6

This improves the landing page experience with a cleaner and clearer landing page design.

1.7.5 2.4.0 2019-08-5

Thank you to the following contributors:

• Carol Willing

• M Pacer

• Peter Volpe

The full list of changes they made can be seen on GitHub

1.7. Change Log 27

http://localhost:8888/bookstore/clone?s3_bucket=my_bucket&s3_key=workspace/my_notebook.ipynb
http://localhost:8888/bookstore/clone?s3_bucket=my_bucket&s3_key=workspace/my_notebook.ipynb&s3_version_id=myVersion
http://localhost:8888/bookstore/clone?s3_bucket=my_bucket&s3_key=workspace/my_notebook.ipynb&s3_version_id=myVersion
https://github.com/nteract/bookstore/issues?q=milestone%3A2.4.0

bookstore Documentation, Release 2.5.2dev0

Significant changes

Cloning

As of 2.4.0 cloning from a local or network attached file system is now possible, but disabled by default.

To enable this filesystem (fs) cloning, set BookstoreSettings.fs_cloning_basedir to the root directory
from which you want people to be able to clone.

Adding fs cloning offers users more flexibility to clone notebooks from attached filesystems, like EFS. For more
information about the motivation and design of this endpoint, please see this issue.

1.7.6 2.3.1 2019-07-16

Fixing problems

This fixes an issue that arose where in certain cases cloning would hang indefinitely when trying to read content #145.

1.7.7 2.3.0 2019-07-02

Thank you to the following contributors:

• Carol Willing

• Kyle Kelley

• M Pacer

• Matthew Seal

• Safia Abdalla

• Shelby Sturgis

The full list of changes they made can be seen on GitHub

Significant changes

New Publishing endpoint

Previously our publishing endpoint was /api/bookstore/published, it is now /api/bookstore/
publish.

Cloning

As of 2.3.0 cloning from S3 is now enabled by default.

Cloning allows access to multiple S3 buckets. To use them, you will need to set up your configuration for any such
bucket.

Massive Testing improvements

We have built out a framework for unit-testing Tornado handlers. In addition, we have added a collection of unit tests
that bring us to a coverage level in non-experimental code of well over 80%.

28 Chapter 1. Table of Contents

https://github.com/nteract/bookstore/issues/154
https://github.com/nteract/bookstore/issues/145
https://github.com/nteract/bookstore/issues?q=milestone%3A2.3.0

bookstore Documentation, Release 2.5.2dev0

/api/bookstore/: Features and Versions

You can identify which features have been enabled and which version of bookstore is available by using the /api/
bookstore endpoint.

REST API Documentation

All APIs are now documented at our REST API docs using the OpenAPI spec.

Experimental

Clients (subject to change in future releases)

To enable access to bookstore publishing and cloning from within a notebook, we have created a Notebook and
Bookstore clients. This is still experimental functionality at the moment and needs additional testing, so we discourage
its use in production. The design relies on an assumption that a single kernel is attached to a single notebook, and will
break if you use multiple notebooks attached to the same kernel.

However, for those who wish to experiment, it offers some fun ways of exploring bookstore.

Example: if you run a notebook from within the top-level ‘‘bookstore/ci‘ <https://github.com/nteract/bookstore/tree/
master/ci>‘_ directory while running the integration test server with yarn test:server (see more about local
integration testing), you should be able to publish from inside a notebook using the following code snippet:‘‘‘

from bookstore.client import BookstoreClient
book_store = BookstoreClient()
book_store.publish()

And if you have published your notebook to the local ci (e.g., publishing my_notebook.ipynb to the minio
bookstore bucket with the ci-published published prefix), you can clone it from S3 using:

from bookstore.client import BookstoreClient
book_store = BookstoreClient()
book_store.clone("bookstore", "ci-published/my_notebook.ipynb")

1.7.8 Releases prior to 2.3.0

2.2.1 (2019-02-03)

2.2.0 (2019-01-29)

2.1.0 (2018-11-20)

2.0.0 (2018-11-13)

0.1 (2018=10-16)

1.7. Change Log 29

https://bookstore.readthedocs.io/en/latest/openapi.html
https://github.com/nteract/bookstore/tree/master/ci
https://github.com/nteract/bookstore/tree/master/ci
https://bookstore.readthedocs.io/en/latest/project/local_ci.html
https://bookstore.readthedocs.io/en/latest/project/local_ci.html
https://github.com/nteract/bookstore/releases/tag/2.2.1
https://github.com/nteract/bookstore/releases/tag/2.2.0
https://github.com/nteract/bookstore/releases/tag/2.1.0
https://github.com/nteract/bookstore/releases/tag/2.0.0
https://github.com/nteract/bookstore/releases/tag/0.1

bookstore Documentation, Release 2.5.2dev0

30 Chapter 1. Table of Contents

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

31

bookstore Documentation, Release 2.5.2dev0

32 Chapter 2. Indices and tables

Python Module Index

b
bookstore.archive, 9
bookstore.bookstore_config, 7
bookstore.client.nb_client, 16
bookstore.client.store_client, 20
bookstore.clone, 11
bookstore.handlers, 10
bookstore.publish, 16
bookstore.s3_paths, 11

33

bookstore Documentation, Release 2.5.2dev0

34 Python Module Index

HTTP Routing Table

/api
GET /api/bookstore, 6
POST /api/bookstore/clone, 6
POST /api/bookstore/fs-clone, 7
PUT /api/bookstore/publish/{path}, 7

/bookstore
GET /bookstore/clone, 6
GET /bookstore/fs-clone, 6

35

bookstore Documentation, Release 2.5.2dev0

36 HTTP Routing Table

Index

A
archive() (bookstore.archive.BookstoreContentsArchiver

method), 10
ArchiveRecord (class in bookstore.archive), 9

B
base_url (bookstore.client.nb_client.LiveNotebookRecord

attribute), 18
bookstore.archive (module), 9
bookstore.bookstore_config (module), 7
bookstore.client.nb_client (module), 16
bookstore.client.store_client (module), 20
bookstore.clone (module), 11
bookstore.handlers (module), 10
bookstore.publish (module), 16
bookstore.s3_paths (module), 11
BookstoreClient (class in book-

store.client.store_client), 20
BookstoreCloneAPIHandler (class in book-

store.clone), 13
BookstoreCloneHandler (class in book-

store.clone), 12
BookstoreContentsArchiver (class in book-

store.archive), 9
BookstoreFSCloneAPIHandler (class in book-

store.clone), 15
BookstorePublishAPIHandler (class in book-

store.publish), 16
BookstoreSettings (class in book-

store.bookstore_config), 7
BookstoreVersionHandler (class in book-

store.handlers), 10
build_content_model() (book-

store.clone.BookstoreCloneAPIHandler
method), 13

build_content_model() (book-
store.clone.BookstoreFSCloneAPIHandler
method), 15

build_file_model() (in module bookstore.clone),

11
build_notebook_model() (in module book-

store.clone), 11
build_post_response_model() (book-

store.clone.BookstoreCloneAPIHandler
method), 13, 14

build_response_dict() (book-
store.handlers.BookstoreVersionHandler
method), 10

C
clone() (bookstore.client.store_client.BookstoreClient

method), 21
clone_endpoint (book-

store.client.store_client.BookstoreClient
attribute), 21

connection_file (book-
store.client.nb_client.CurrentNotebookClient
attribute), 18

connections (bookstore.client.nb_client.KernelInfo
attribute), 19

construct_template_params() (book-
store.clone.BookstoreCloneHandler method),
12, 13

construct_template_params() (book-
store.clone.BookstoreFSCloneHandler
method), 14

content (bookstore.archive.ArchiveRecord attribute), 9
contents_endpoint (book-

store.client.nb_client.NotebookClient at-
tribute), 17

current_server() (book-
store.client.nb_client.NotebookClientCollection
class method), 18

CurrentNotebookClient (class in book-
store.client.nb_client), 18

D
default_bucket (book-

store.client.store_client.BookstoreClient

37

bookstore Documentation, Release 2.5.2dev0

attribute), 20

E
enable_s3_cloning (book-

store.bookstore_config.BookstoreSettings
attribute), 8

execution_state (book-
store.client.nb_client.KernelInfo attribute),
19

extract_kernel_id() (in module book-
store.client.nb_client), 20

F
filepath (bookstore.archive.ArchiveRecord attribute),

9
fs_cloning_basedir (book-

store.bookstore_config.BookstoreSettings
attribute), 8

G
get() (bookstore.clone.BookstoreCloneHandler

method), 12
get() (bookstore.clone.BookstoreFSCloneHandler

method), 14
get() (bookstore.handlers.BookstoreVersionHandler

method), 10
get_contents() (book-

store.client.nb_client.NotebookClient method),
17

get_kernels() (book-
store.client.nb_client.NotebookClient method),
17

get_sessions() (book-
store.client.nb_client.NotebookClient method),
17

get_template() (book-
store.clone.BookstoreCloneHandler method),
12, 13

get_template() (book-
store.clone.BookstoreFSCloneHandler
method), 14

H
headers (bookstore.client.nb_client.NotebookClient at-

tribute), 17
hostname (bookstore.client.nb_client.LiveNotebookRecord

attribute), 18

I
id (bookstore.client.nb_client.KernelInfo attribute), 19
id (bookstore.client.nb_client.NotebookSession at-

tribute), 19

initialize() (book-
store.clone.BookstoreCloneAPIHandler
method), 13

initialize() (book-
store.clone.BookstoreCloneHandler method),
12

initialize() (book-
store.clone.BookstoreFSCloneAPIHandler
method), 15

initialize() (book-
store.clone.BookstoreFSCloneHandler
method), 14

initialize() (book-
store.publish.BookstorePublishAPIHandler
method), 16

K
kernel (bookstore.client.nb_client.NotebookSession at-

tribute), 20
kernel_id (bookstore.client.nb_client.CurrentNotebookClient

attribute), 18
KernelInfo (class in bookstore.client.nb_client), 19
kernels (bookstore.client.nb_client.NotebookClient at-

tribute), 17
kernels_endpoint (book-

store.client.nb_client.NotebookClient at-
tribute), 17

L
last_activity (book-

store.client.nb_client.KernelInfo attribute),
19

LiveNotebookRecord (class in book-
store.client.nb_client), 18

load_jupyter_server_extension() (in mod-
ule bookstore.handlers), 11

M
max_threads (book-

store.bookstore_config.BookstoreSettings
attribute), 8

model (bookstore.client.nb_client.NotebookSession at-
tribute), 20

N
name (bookstore.client.nb_client.KernelInfo attribute),

19
name (bookstore.client.nb_client.NotebookSession at-

tribute), 20
nb_config (bookstore.client.nb_client.NotebookClient

attribute), 17
nb_record (bookstore.client.nb_client.NotebookClient

attribute), 17

38 Index

bookstore Documentation, Release 2.5.2dev0

notebook (bookstore.client.nb_client.NotebookSession
attribute), 20

notebook_dir (book-
store.client.nb_client.LiveNotebookRecord
attribute), 18

NotebookClient (class in book-
store.client.nb_client), 17

NotebookClientCollection (class in book-
store.client.nb_client), 18

NotebookSession (class in book-
store.client.nb_client), 19

P
password (bookstore.client.nb_client.LiveNotebookRecord

attribute), 18
path (bookstore.client.nb_client.NotebookSession at-

tribute), 20
path_lock_ready (book-

store.archive.BookstoreContentsArchiver
attribute), 10

path_locks (bookstore.archive.BookstoreContentsArchiver
attribute), 9

pid (bookstore.client.nb_client.LiveNotebookRecord at-
tribute), 19

port (bookstore.client.nb_client.LiveNotebookRecord
attribute), 19

post() (bookstore.clone.BookstoreCloneAPIHandler
method), 13

post() (bookstore.clone.BookstoreFSCloneAPIHandler
method), 15

prepare_response() (book-
store.publish.BookstorePublishAPIHandler
method), 16

publish() (bookstore.client.store_client.BookstoreClient
method), 21

publish_endpoint (book-
store.client.store_client.BookstoreClient
attribute), 21

published_prefix (book-
store.bookstore_config.BookstoreSettings
attribute), 8

put() (bookstore.publish.BookstorePublishAPIHandler
method), 16

Q
queued_time (bookstore.archive.ArchiveRecord at-

tribute), 9

R
req_session (book-

store.client.nb_client.NotebookClient at-
tribute), 17

run_pre_save_hook() (book-
store.archive.BookstoreContentsArchiver
method), 10

S
s3_access_key_id (book-

store.bookstore_config.BookstoreSettings
attribute), 8

s3_bucket (bookstore.bookstore_config.BookstoreSettings
attribute), 8

s3_display_path() (in module book-
store.s3_paths), 11

s3_endpoint_url (book-
store.bookstore_config.BookstoreSettings
attribute), 8

s3_key() (in module bookstore.s3_paths), 11
s3_path() (in module bookstore.s3_paths), 11
s3_region_name (book-

store.bookstore_config.BookstoreSettings
attribute), 8

s3_secret_access_key (book-
store.bookstore_config.BookstoreSettings
attribute), 8

secure (bookstore.client.nb_client.LiveNotebookRecord
attribute), 19

sessions (bookstore.client.nb_client.NotebookClient
attribute), 17

sessions_endpoint (book-
store.client.nb_client.NotebookClient at-
tribute), 17

setup_auth() (book-
store.client.nb_client.NotebookClient method),
17

setup_request_sessions() (book-
store.client.nb_client.NotebookClient method),
18

T
token (bookstore.client.nb_client.LiveNotebookRecord

attribute), 19
token (bookstore.client.nb_client.NotebookClient at-

tribute), 17
type (bookstore.client.nb_client.NotebookSession at-

tribute), 20

U
url (bookstore.client.nb_client.LiveNotebookRecord at-

tribute), 19
url (bookstore.client.nb_client.NotebookClient at-

tribute), 17

V
validate_bookstore() (in module book-

store.bookstore_config), 8

Index 39

bookstore Documentation, Release 2.5.2dev0

validate_model() (book-
store.publish.BookstorePublishAPIHandler
method), 16

validate_relpath() (in module bookstore.clone),
12

W
workspace_prefix (book-

store.bookstore_config.BookstoreSettings
attribute), 7

X
xsrf_token (bookstore.client.nb_client.NotebookClient

attribute), 17

40 Index

	Table of Contents
	Installation
	Configuration
	Usage
	REST API
	Reference
	Project
	Change Log

	Indices and tables
	Python Module Index
	HTTP Routing Table
	Index

