

 [image: logo]
bonobo-trans provides a set of ETL transformations for the Bonobo ETL toolkit [http://www.bonobo-project.org].

Transformations

	Source

	Target

	Lookup

	Sequencer

	Sorter

	Aggregator

Requirements

	bonobo 0.6.3

	pandas

	sqlalchemy

Installation

Install bonobo-trans by running:

$ pip install bonobo-trans

Contribute

	We need a code review!

	ReadTheDocs TOC is missing structure (and I seem to be unable to figure this out).

Support

If you are having issues, please let me know.
I can be reached via Slack’s Direct Messaging on bonobo-etl.slack.com

License

The project is licensed under the Apache license.

 Python Module Index

 b

 		 	

 		
 b	

 	[image: -]
 	
 bonobo_trans	

 	
 	
 bonobo_trans.aggregator	

 	
 	
 bonobo_trans.lookup	

 	
 	
 bonobo_trans.sequencer	

 	
 	
 bonobo_trans.sorter	

 	
 	
 bonobo_trans.source	

 	
 	
 bonobo_trans.target	

Index

 A
 | B
 | D
 | S

A

 	
 	Aggregator (class in bonobo_trans.aggregator)

B

 	
 	bonobo_trans.aggregator (module)

 	bonobo_trans.lookup (module)

 	bonobo_trans.sequencer (module)

 	
 	bonobo_trans.sorter (module)

 	bonobo_trans.source (module)

 	bonobo_trans.target (module)

D

 	
 	DbLookup (class in bonobo_trans.lookup)

 	
 	DbSource (class in bonobo_trans.source)

 	DbTarget (class in bonobo_trans.target)

S

 	
 	Sequencer (class in bonobo_trans.sequencer)

 	
 	Sorter (class in bonobo_trans.sorter)

Installation

Using PyPI

$ pip install bonobo-trans

You can check in a python shell that it worked.

>>> from bonobo-trans import __version__
>>> print __version__

Using git

TODO

 Bonobo-trans aims to provide a core set of flexible transformations.

List of transformations:

	Aggregator

	Lookup

	Sequencer

	Sorter

	Source

	Target

Aggregator

	
class bonobo_trans.aggregator.Aggregator(*args, **kwargs)

	The Aggregator transformation provides aggregates functions on row data.

Important

All input MUST BE SORTED prior to sending it to this transformation!

Configuration options

Required:

	group (list of str)

	aggregations (list of dict)

Optional:

	name (str)

	null_is_zero (bool) Default: False

	return_all_rows (bool) Default: False

Option descriptions:

	name

	Name of the transformation, for identification and logging purposes.

	null_is_zero

	Set to true to treat NULL as zero.

	return_all_rows

	Set to True to return all incoming rows. If False (default) the
transformation will only return the key group on which was aggregated.

	return_all_cols

	This setting will be ignored when return_all_rows is True.

When False the transformation will return the key columns plus the
requested aggregations. When set to True, all columns will be
returned, the values for these columns will be of the last row of
the group.

	group

	A list of the columns to aggregate on. The incoming rows must have been
sorted on these keys.

	aggregations

	A list of the aggregations (dict). An aggregation is a dictionary
object of which the key is the output key to be appended to the
outgoing row and the value is the aggregation, and must be one of the
following:

	AGG_MAX, AGG_MIN

	AGG_FIRST, AGG_LAST

	AGG_MEAN, AGG_MEAN_HARMONIC

	AGG_MEDIAN, AGG_MEDIAN_HIGH, AGG_MEDIAN_LOW

	AGG_PERCENTILE

	AGG_SUM

	AGG_STDDEV_S, AGG_STDDEV_P

	AGG_VARIANCE_S, AGG_VARIANCE_P

	AGG_COUNT

MAX, MIN

MAX returns the highest number, newest date or alphabetically last string.
MIN does the reverse.

Example:

{ 'high_key': { AGG_MAX: 'col1' } }

FIRST, LAST

FIRST returns the first row of the group. LAST does the reverse.

Example:

{ 'last_key': { AGG_LAST: 'col1' } }

MEAN, HARMONIC MEAN

MEAN returns the average of all numeric values in specified column
in the group. MEAN_HARMONIC returns the harmonic (subcontrary)
mean. Values less than zero are not allowed for the harmonic mean.

Example:

{ 'sales_avg': { AGG_MEAN: 'sales_usd' } }

MEDIAN (HIGH/LOW)

MEDIAN returns the median of all numeric values in specified column
in the group. If there is an odd number of values, the median is
the middle number. If there is an even number of values, the
median is the average of the middle two values when all values are
placed ordinally on a number line. Use MEDIAN_HIGH or MEDIAN_LOW to
not return the average middle (in case of an even number of values,
but instead return the highest or lowest of the two middle values.

Example:

{ 'sales_med': { AGG_MED: 'sales_usd' } }

MODE

MODE returns the most common value, if any. If there is no exact
most common value, None is returned. Values can be non-numeric.

PERCENTILE (not implemented yet)

Calculates the value that falls at a given percentile in specified
column in the group. Column must be numeric.

Example:

{ 'percentile': { AGG_PERCENTILE: 'transaction_id', 'percentile': 25 } }

SUM

Returns the total of all numeric values in specified column in the
group.

Example:

{ 'sales_total': { AGG_SUM: 'sales_usd' } }

STDDEV (SAMPLE/POPULATION)

Returns the standard deviation of the numeric values of the
specifed column in the group. STDDEV is used to analyze statistical
data. This aggregation will return None if less than two values
provided. Use STDDEV_S or STDDEV_P to return either a sample or
population standard deviation.

Example:

{ 'score_stdev': { AGG_STDDEV_S: 'score' } }

VARIANCE (SAMPLE/POPULATION)

Returns the variance of the numeric values of the specified column
in the group. VARIANCE is used to analyze statistical data. This
aggregation will return None if less than two values provided.
Use VARIANCE_S or VARIANCE_P to return either a sample or
population standard deviation.

Example:

{ 'score_var': { AGG_VARIANCE_S: 'score' } }

COUNT

Returns the number of records in the group. The specification is
slightly different, instead of a dictionary, you only specify the
aggregation, as shown in the exmple:

Example:

{ 'nr_of_transactions': AGG_COUNT }

	Todo:

	
	Filter conditions. E.g. SUM where summed > 100.

	ABS(), ROUND() options

	Do we need a null_is_last option for the first and last functions?

	Percentile

	Args:

	
	d_row_in (dict)

d_row_in is a dictonary containing sorted row data.

	Returns:

	
	d_row_out (dict)

d_row_out contains all the keys specified in the group and
aggregations options. If return_all_cols is set to True it will
also include the non-key columns of incoming dictionary.

Attention

Any keys with the same name as the specified aggregation keys will
be overwritten.

If return_all_rows is specified, all rows will be returned, else only
one row per group.

	Parameters

	
	group (list) –

	aggregations (dict) –

	name (str) –

	null_is_zero (bool) –

	return_all_rows (bool) –

	return_all_cols (bool) –

Lookup

	TODO list:

	
	Implement EXP and REX

	Implement case (in)sensitivity, both in comparison and in dict keys (PEP455)

	Issue a WARNING if a key already exists and will be overwritten.

	Prevent “SAWarning: Textual column expression”

	Use bind parameters in SQL Order By

	Stop on warnings?

	Decide if we want to support an SQL-override which is an SQLAlchemy Select

	
class bonobo_trans.lookup.DbLookup(*args, **kwargs)

	The DbLookup transformation looks up data in a SQL database.

Note

Database connectivity is provided by SQLAlchemy. The engine must be
provided via a Bonobo Service, containing an ‘sqlalchemy.engine’.

Configuration options

Required:

	comparison (list)

Optional:

	table_name (str)

	sql_override (str or sqlalchemy.sql.Select)

	sql_override_cols (list of sqlalchemy.sql.schema.Column)

	order_by (str, int, dict, list of str/int/dict)

	ret_fields (str, dict, list of str)

	ret_prefix (str)

	name (str)

	verbose_init (bool)

	verbose_sql (bool)

	verbose_data (bool)

	multiple_match (int)

	caching (int)

Description of the options:

Note

Not all options can be used together, generally, the transformation
will issue a warning or error, depending on the severity, when invalid
combinations are issued.

Note

The lookup transformation starts by loading the lookup data
(“source-data”) in memory, unless the caching setting is set to
LKP_CACHING_DISABLED. If disabled, the ‘sql_*’-options will be ignored.

	table_name, sql_override

	If the sql_override option is used, the table_name option will be
ignored. The sql_override can either be a SQL statement (str) or a
SQLAlchemy sql object. The SQL-override provides for some flexibility,
however it also has downsides. One of them is that the SQLAlchemy
database reflection is not longer limited to one table, causing an
error if there is an, otherwise unrelated, invalid view in the
database.

	sql_override_cols

	If an sql_override is provided as an SQL string (opposed to an
SQLAlchemy Select object) we will not have a column list to create an
SQLite memory table with. To enable caching using a SQLite memory
table the sql_override_cols-option can be used to provide this list
of columns.

This option must be a list of SQLAlchemy columns including datatype.

	order_by

	An ORDER BY is useful in a scenario where more than one row is expected
and in conjunction with LKP_MM_FST or LKP_MM_LST. It may also be useful
in conjunction with LKP_MM_LOV and LKP_MM_ALL to sort the output of
multiple rows. The ‘order_by’ option can be specified as follows:

	column position (int)

	column name (str)

	column name/position + direction (dict)

	a list of any of the above, for example:

[1,'user_id',{'user_type','DESC'},{6,'ASC'}]

Caution

Don’t specify more than one column in a single dictionary, as Python
does not guarantee the order of dict keys.

	comparison

	The search comparison lies at the core of the lookup. It consists of a
list of lists of dictionaries. Example:

[ol1 [il1 {d1},{d2}], [il2 {d3}]]

The two ‘inner lists’ (il1 and il2), containing the dicts, are AND-
grouped together. The conditions within the inner lists are OR-grouped
together. The example lookup would be created as follows:

WHERE (d1=X OR d2=Y) AND d3=Z

Each condition is a dictionary containing a key-value pair where the
key represents a column in the lookup table and the value the value to
compare with. There are also “special keys”, as described below.

	Special key: _compare_with_

The condition value can be of three different types:

	value

	Description

	LKP_VAL_COL

	The ‘value’ is actually a column name available in the d_row (default)

	LKP_VAL_VAL

	The ‘value’ is hardcoded (default fallback, if ‘value’ is not a valid column)

	LKP_VAL_EXP

	The ‘value’ is an expression [not implemented]

	LKP_VAL_REX

	The ‘value’ is a regular expression [not implemented]

	Special key: _operator_

By default the comparison operator is an ‘equal to’, but a different
operator can be used by adding an _operator_ key, containing one of the
following (string) values:

== or != Equality
<, >, <=, >= or <> Larger or smaller
in or not in Sets

	Special key: _case_sensitive_

(not implemented)

More examples:

Simple OR-comparison (note one group!):

[{'target_field_name1':'matching_value', 'target_field_name2':'matching_value','_operator_':'<>'}]

Doing a between:

[{'target_field_name1':'matching_value', '_operator_':'>'},{'target_field_name1':'matching_value','operator':'<'}]

This will not work, because groups are AND-ed together, use IN instead:

[{'target_field_name1':'matching_value'},{'target_field_name1':'matching_value'}]

Do this instead:

[{'target_field_name1':'(matching_value1, matching_value2)','operator':'IN'}}]

AND-comparison (note two groups!):

[{'target_field_name1':'matching_value'}
,{'target_field_name2':'matching_value'}]

Composite AND+OR-comparison:

[{'target_field_name1':'matching_value'
 ,'target_field_name2':'matching_value'}
, {'target_field_name3':'matching_value'}
, {'target_field_name4':'matching_value'}]

Multiple blocks result = ({1} OR {2}) AND {3} AND {4}

	ret_fields

	List of column(s) to return from lookup table. If not specified, all
columns will be returned. Use a dictionary to output an alias, for
example: {‘lkp_user_id’,’user_id’} will return a dict with the key
‘lkp_user_id’ (instead of ‘user_id’) and value of ‘user_id’.

It is allowed to return the same value multiple times, for example:

{'user_id_1':'user_id', 'user_id_2':'user_id'}

The ‘ret_fields’ option can be specified as follows:

	None (return all fields)

	column name (str)

	alias(es) + column name(s) (dict, key=alias, val=source column)

	a list of any of the above, for example:

['user_id', {'user_type_A','user_type'}, {'user_type_B':'user_type', 'user_description','user_desc'}]

	column_prefix

	Prefix to apply to output column keys. For example: ‘lkp_users’ would
output column ‘user_id’ as ‘lkp_users.user_id’. Note the separation dot.

	name

	If this option is specified, an extra special key will be added to the
output, called __LKP_<name>__. This key is a dict containing misc.
lookup details.

	CACHING

	Caching strategy

	MULTIPLE_MATCH

	Multiple match setting

	LKP_ROWS_SOURCE

	Number of rows in the source-data

	LKP_ROWS_MATCHED

	Number of rows matched (before selecting first or last)

	LKP_ROW_NR

	Row index, in case of LKP_MM_ALL

	verbose_init

	If True, all interesting details are printed to the output.

	verbose_sql

	If True, the generated SQL statement for the source data and
lookups will be printed.

	verbose_data

	If True, every outgoing row is printed.

Note

Notes on multiple match

The DbLookup can either return a single or multiple rows. However,
often only one row is required or expected. This setting decides what
happens when more than one row is received from the database.

	Setting

	Result

	LKP_MM_ALL

	Return all rows, this will generate additional rows in the Bonobo chain!

	LKP_MM_LOV

	Return all rows as one list (List of Values)

	LKP_MM_ANY

	Return first received row

	LKP_MM_FST

	Return first row (more efficient than return last)

	LKP_MM_LST

	Return last row (use first instead, if possible)

	LKP_MM_ERR

	Raise error

Note

Notes on caching

The DbLookup first pulls in the table on which to perform the lookup.
It stores this in one of the data structures below.

	None / Disabled
Don’t cache data. Do a query on the lookup table for every row passing
through the lookup. Useful when the lookup table data changes during
processing. You cannot specify any “source-data” ‘sql_*’-options.

	SQLite memory table
Requires datatypes, thus cannot be used in combination with a ‘raw’
SQL statement.

	Pandas DataFrame

SQLite vs Pandas:
https://github.com/thedataincubator/data-science-blogs/blob/master/sqlite-vs-pandas.md

Caching can be enabled via the ‘caching’-option. It accepts the
following values:

	caching

	Description

	LKP_CACHING_DISABLED

	Don’t use caching

	LKP_CACHING_ENABLED

	Will select the default

	LKP_CACHING_SQLITE_MEM

	Force SQLite memory table

	LKP_CACHING_PANDAS

	Force Pandas DataFrame

Tip

To improve performance and reduce memory usage, always limit the source
selection as much as possible using the ret_fields (limit columns)
option and a where clauses (limit rows) whenever possible.

	Todo:

	Issues, todo’s and outstanding questions

	
	How much data can we handle before starting to run into problems?

Consider implementing Dask.

	
	What problems can we expect when the source data is big?

	TODO) Cleaner import statements (what’s the best practice?)

	TODO) Implement LKP_VAL_EXP and LKP_VAL_REX

	Args:

	
	d_row_in (dict)

d_row_in is a dictonary containing row data. It must contain all
columns specified in the ‘comparison’.

	Returns:

	
	d_row_out (dict)

d_row_out contains all the keys of the incoming dictionary plus keys
(columns) specified in ‘ret_fields’ (or all columns if not specified).
Any keys in the incoming record that are identical to return columns
are overwritten.

If ‘multiple_match’ = LKP_MM_ALL, the transformation may yield more
than one row.

	Parameters

	
	engine (str) –

	comparison (list) –

	table_name (str) –

	ret_fields –

	ret_prefix (str) –

	sql_override (str) –

	sql_override_cols (list) –

	order_by –

	name (str) –

	multiple_match (int) –

	caching (int) –

	verbose_init (bool) –

	verbose_sql (bool) –

	verbose_data (bool) –

Sequencer

	
class bonobo_trans.sequencer.Sequencer(*args, **kwargs)

	The Sequencer transformation is a number generator.

Configuration options

Optional:

	name (str, length max. 30)

	sequence_key (str) Default: SEQ

	initial (int) Default: 1

	increment (int) Default: 1

	max (int)

	cycle (bool) Default: False

	generator (bool) Default: False

	generate (int)

	source_value_col (str)

	source_value_tbl (str)

	persist_type (int) Default:

	persist_table (str)

	persist_file (str)

Option descriptions:

	name

	Name of the transformation. Required when using persistence.

	sequence_key

	Name of the sequence key in the outgoing grow. Default is ‘SEQ’.

	initial

	Starting value. Will start at 1 if not specified.

	increment

	Value to add in every increment. Will increment by 1 if not specified.

	max

	Maximum allowed value. When reached the sequencer will stop generating
new numbers. If the ‘cycle’ option is True, the sequencer will restart
at the initial value.

	cycle

	When set to True, the sequencer will restart at the initial value after
reaching the max value.

	source_value_tbl, source_value_col

	Use to retrieve an initial value from an existing table. See notes
below.

Note

Row generation

	generator, generate

	Use to generate rows instead of appending. See notes below.

	persist_type, persist_file, persist_table

	Persist sequence values. See notes below.

	source_value_tbl, source_value_col

	It’s possible to start with an initial value based on an existing value
in a database table. Provide the table and column name using the
source_value_tbl and source_value_col-options.

	generator, generate

	Instead of appending a row with a sequence number it is possible to
generate a set of rows instead. To do so, set the ‘generator’ option to
True and the ‘generate’ option to the number of rows you want to
generate.

The generator mode is essentialy an “extract” transformation, and as
such, no rows can be passed onto it.

By default the generator mode is not enabled.

Note

Persistence

Persistence enables the sequencer to continue the sequence after
restarting. The current value will need to be stored in a database or
in a file.

By default persistence is not enabled.

There is no mechanism to remove unused files, tables or table entries.
You will need to clean-up these using ?? How to add utility functions to this class ??

	persist_type

	

	persist_type

	Description

	SEQ_PERSIST_DISABLED

	No persistence.

	SEQ_PERSIST_DB

	Persist to a DB table.

	SEQ_PERSIST_FILE

	Persist to a flatfile.

	persist_file

	When using SEQ_PERSIST_FILE, the persist_file option will need to
hold the fully qualifed path and file name to which to save the
sequence value.

	persist_table, persist_allow_creation

	When using SEQ_PERSIST_DB, the persist_table option will need to
hold the table name to which to write the sequence value. If the
table does not exist and ‘persist_allow_creation’ is True, the
table will be created automatically. When creating the table in
advance, you must include the following fields:
- sequence_name string(30)
- sequence_nr numeric

	Args:

	
	d_row_in (dict)

	Returns:

	
	d_row_out (dict)

d_row_out contains all the keys of the incoming dictionary plus the
sequencer key (set using the ‘sequence_key’-option). If there
already is a key with that name it will be overwritten.

	Parameters

	
	engine (str) –

	name (str) –

	sequence_key (str) –

	source_value_tbl (str) –

	source_value_col (str) –

	initial (int) –

	increment (int) –

	max (int) –

	cycle (bool) –

	persist_type (int) –

	persist_table (str) –

	persist_file (str) –

	persist_allow_creation (bool) –

	generator (bool) –

	generate (int) –

Sorter

	
class bonobo_trans.sorter.Sorter(*args, **kwargs)

	The Sorter transformation sorts rows and can de-duplicate data.

Configuration options

Required:

	keys_sort (dict) {key:direction}

Optional:

	name (str)

	distinct (int) Default: SRT_DUP_KEEP

	keys_dedup (list of str)

	case_sensitive (bool) Default: False

	null_is_last (bool) Default: True

Description of the options:

	keys_sort

	The sort_keys option is a dictionary where the keys refer to the keys
in the incoming row. The direction indicates an ascending or descending
sort.

Direction can be one of the following:

	‘ASC’, ‘ASCENDING’, True, 1

	‘DESC’, ‘DESCENDING’, False, any number except 1

Example:

{'year':'ASC', 'month':'DESC', 'day':'ASC'}

	name

	Name of the transformation. Mainly used for identification in logging.

	distinct, keys_dedup

	The sorter transformation allows for removal of duplicate rows. There
are different strategies to choose from:

	distinct

	Description

	SRT_DUP_KEEP

	Don’t remove duplicates

	SRT_DUP_DISTINCT_ROW

	Remove identical rows

	SRT_DUP_KEY_FIRST

	Remove duplicate key, keep first

	SRT_DUP_KEY_LAST

	Remove duplicate key, keep last

By default duplicates are not removed (SRT_DUP_KEEP).

SRT_DUP_DISTINCT_ROW

Remove identical rows. This is similar to the SQL “DISTINCT”
keyword. This setting will remove rows in which all rows are similar.

SRT_DUP_KEY_FIRST, SRT_DUP_KEY_LAST

Remove rows that have duplicate keys. This behaviour is more akin to
an aggregator’s FIRST and LAST-functions. It will remove rows with an
identical key. You can specify to keep the first or last row.

You can specify the de-duplication key as a subset of the sort key
using then keys_dedup-option. It accepts a list of keys (str). If
you don’t specify a ‘keys_dedup’ the first row will be kept, but this
will give you less control and security as it will depend on how the
rows enter this transformation.

Example:

'distinct' = SRT_DUP_KEY_FIRST
'keys_sort' = {'year':'ASC', 'month':'ASC', 'day':'ASC'}
'keys_dedup' = ['year', 'month']

Input rows:
 2019,02,15,'Friday'
 2019,02,16,'Saturday'
 2019,02,17,'Sunday'

Output rows:
 2019,02,15,'Friday'

	case_sensitive

	TODO!

	null_is_last

	This option will determine if the None/Null will be on top or on
bottom of the sorted output. By default it’s True and the None
value will be on the bottom.

	ToDo:

	
	[Q] (How) could we create a Deduplicator Class transformation as subclass of the sorter?
Would that be nice?

	Args:

	
	d_row_in (dict)

d_row_in is a dictonary containing row data.

	Returns:

	
	d_row_out (dict)

d_row_out contains all the keys of the incoming dictionary without
any changes or additions.

Only the order of the rows will change.

	Parameters

	
	keys_sort (dict) –

	name (str) –

	distinct (int) –

	keys_dedup (list) –

	case_sensitive (bool) –

	null_is_last (bool) –

Source

	
class bonobo_trans.source.DbSource(*args, **kwargs)

	The DbSource transformation extracts data from a SQL database.

Note

Database connectivity is provided by SQLAlchemy. The engine must be
provided via a Bonobo Service, containing an ‘sqlalchemy.engine’.

Tip

From a Bonobo point of view this transformation is not a true
“extractor”, the tranformation allows (but does not require) to pass
one(!) row to it. The keys of this rows will be appended to all
outgoing rows.

Configuration options

Required:

	table_name (str)

Optional:

	sql_select (str or sqlalchemy.sql)

	sql_pre (str or sqlalchemy.sql)

	sql_filter (str or sqlalchemy.where)

	bp_select (dict)

	bp_pre_sql (dict)

	distinct (bool)

	ordered_cols (int or list of str)

	verbose_sql (bool), default: False

	verbose_data (bool), default: False

	streaming (bool), default: False

	row_counters (bool), default: True

	keep_alive (bool), default: False

Description of the selection options:

	sql_select, sql_pre

	Either provide a ‘raw’ SQL statement or a SQLAlchemy sql object.
All columns and records will be selected if no selection is provided.

	sql_filter

	Source filters can be specified in the sql_select parameter and/or in
the sql_filter parameter. (Additional) filters specified in the
sql_filter will be appended to the where clause (AND?).

Important

It is not possible to specify an sql_filter when the sql_select contains
an ORDER BY clause!

	distinct

	When True, applies the SQL distinct to source query. Not
available if the sql_select is a plain string.

	ordered_cols

	An ORDER BY should ideally be specified via the ordered_cols option
rather than via an “ORDER BY”-clause in the sql_select option.
The ordered_cols parameter can take any of the following formats:

	a list of columns (str)

	a list of column positions (int)

	an integer specifying how many columns are sorted, eg. “3”, would
order by the first three columns.

Important

When using the ordered_cols, you cannot already have an order by clause
in the sql_select.

	bp_select, bp_pre_sql

	Bind parameters for the selection and pre-sql statements.

Attention

Bind parameters must be provided using a dictionary. The format for
this is: {'parameter': 'value'}

The name of the parameter depends on the your wether you’re using a
‘raw’ SQL statement or an SQLAlchemy.sql object.

	Raw SQL:

	For ‘raw’ SQL, bound parameters are specified by name. For example:

sql_select = 'SELECT * FROM users WHERE id=:user_id'
bp_select = { 'user_id':555 }

	SQLAlchemy:

	For an sqlalchemy.sql object, bound parameters can be specified in
various different manners. Make sure the key in the dictionary matches.
For example:

sql_select = select([users]).where(users.c.id == bindparam('user_id'))
bp_select = { 'user_id':555 }

	name

	Name of the transformation, for identification and logging purposes.

	verbose_sql

	If ‘verbose_sql’ is True, the generated SQL statement will be printed.

	verbose_data

	If ‘verbose_data’ is True, every outgoing row is printed.

	streaming

	If ‘streaming’ is False, the query is executed and fetched. Only after it
is received completely will it start ‘yielding’ the data. This enables
use of the __ROW_NR_TOTAL__ field. If this setting is True, a total
row count will not be available. Set to True for large datasets. Set to
False to use the total row count, or to avoid reading and writing the
same database table.

	row_counters

	If ‘row_counters’ is True, the additional keys __ROW_NR__ and
__ROW_NR_TOTAL__ will be added to the outgoing row.

	keep_alive

	If ‘keep_alive’ is True it will keep the connection open. This might
block access on single user databases like SQLite.

	Args:

	
	d_row_in (dict)

	Returns:

	
	d_row_out (dict)

d_row_out is a dictionary containing all the keys of the incoming
dictionary plus keys (columns) of the selected data. Any keys in the
incoming record that are identical to selected columns are overwritten.

Additionally the following special keys may be added:

	__ROW_NR__ (int) Row counter.

	__ROW_NR_TOTAL__ (int) Total number of selected rows.

	__ORDERED__ (bool) Data is sorted (not implemented yet).

	Parameters

	
	engine (str) –

	table_name (str) –

	sql_select –

	sql_pre –

	sql_filter –

	bp_select (dict) –

	bp_pre_sql (dict) –

	distinct (bool) –

	ordered_cols –

	name (str) –

	verbose_sql (bool) –

	verbose_data (bool) –

	streaming (bool) –

	row_counters (bool) –

	keep_alive (bool) –

Target

	
class bonobo_trans.target.DbTarget(*args, **kwargs)

	The DbTarget transformation writes data to a SQL database.

Note

Database connectivity is provided by SQLAlchemy. The engine must be
provided via a Bonobo Service, containing an ‘sqlalchemy.engine’.

Tip

From a Bonobo point of view this transformation is not a true
“loader”, the tranformation allows (but does not require)
transformations after it to keep processing the data.

Configuration options

Required:

	table_name (str)

Optional:

	operation (int)

	upsert_strategy (int)

	sql_insert (str or sqlalchemy.sql.insert) Override

	sql_update (str or sqlalchemy.sql.update) Override

	sql_delete (str or sqlalchemy.sql.delete) Override

	sql_pre (str or sqlalchemy.sql) Pre-SQL

	bp_update (dict)

	bp_pre_sql (dict)

	target_key (str or list of str) Override?

	verbose_sql (bool) False

	verbose_data (bool) False

	truncate (bool) False

	dry_run (bool) False

	simulate (bool) False

Description of the options:

	operation, upsert_strategy

	operation can hold any of the following constants:

	operation

	Description

	TGT_OPER_DATA_DRIVEN

	Operation is determined by ‘__TARGET_OPERATION__’ field.

	TGT_OPER_INSERT_ONLY

	Only insert into target table (default?)

	TGT_OPER_UPDATE_ONLY

	Only update target table, based on target_key ? or an actual key ???????? TBD

	TGT_OPER_UPSERT

	Update key in target, otherwise insert if key doesn’t exist yet.

	TGT_OPER_DELETE

	Deletes by PK definition or by provided key. Target table must have a primary key, if no delete key specified.

	TGT_OPER_REJECT

	Not implemented

If operation is TGT_OPER_UPSERT, the upsert_strategy option
can be used to choose one of the following options, specifiying how
to execute the upsert:

	upsert_strategy

	Description

	TGT_UPSERT_TRY_INSERT

	Try to insert, if fails try to update

	TGT_UPSERT_EXISTS

	If exist update, else insert

	TGT_UPSERT_EXISTS_SERIALIZABLE

	Same, but with: WITH(UPDLOCK) and SET TRANSACTION ISOLATION LEVEL SERIALIZABLE

	TGT_UPSERT_MERGE

	Upsert using merge statement

	TGT_UPSERT_MERGE_SERIALIZABLE

	Same, but with: SET TRANSACTION ISOLATION LEVEL SERIALIZABLE

	sql_insert, sql_update, sql_delete

	Either provide a ‘raw’ SQL statement or a SQLAlchemy sql object.

The target SQL is normally generated based on the operation parameter.
It is possible to provide a custom SQL statement via one of the three
override parameters.

The provided override must still be in accordance with the operation in
order to be executed. Would you, for example, provide a sql_insert
override when the operation is TGT_OPER_DELETE, the sql_insert override
would be ignored.

	bp_select, bp_pre_sql

	Bind parameters for the selection and pre-sql statements.

Attention

Bind parameters must be provided using a dictionary. The format for
this is: {'parameter': 'value'}

The name of the parameter depends on the your wether you’re using a
‘raw’ SQL statement or an SQLAlchemy.sql object.

	Raw SQL:

	For ‘raw’ SQL, bound parameters are specified by name. For example:
sql_pre = 'DELETE * FROM users WHERE id=:user_id'
bp_select = { 'user_id':555 }

	SQLAlchemy:

	For an sqlalchemy.sql object, bound parameters can be specified in
various different manners. Make sure the key in the dictionary matches.
For example:
sql_pre = delete().where(users.c.id == bindparam('user_id'))
bp_select = { 'user_id':555 }

	verbose_sql

	If ‘verbose_sql’ is True, the generated SQL statement will be printed.

	verbose_data

	If ‘verbose_data’ is True, every outgoing row is printed.

	truncate

	Truncate target table before writing.

	dry_run

	Don’t actually write to target. Useful in combination with
verbose_sql and/or verbose_data.

	simulate

	Not implemented. Possible future feature: copy target table into
memory table to simulate a target load

	Args:

	
	d_row_in (dict)

d_row_in is a dictionary containing key for some or all of the target
columns.

Additionally the following special keys may be added:

	__TARGET_TABLE__ (str) Used in conjuction with “Data Driven” operation.

	__TARGET_OPERATION__ (str) Override specified operation.

	Returns:

	
	d_row_out (dict)

	Parameters

	
	engine (str) –

	table_name (str) –

	operation (int) –

	sql_insert –

	sql_update –

	sql_delete –

	sql_pre –

	bp_update (dict) –

	bp_pre_sql (dict) –

	name (str) –

	verbose_sql (bool) –

	verbose_data (bool) –

	truncate (bool) –

	dry_run (bool) –

	simulate (bool) –

 _static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_images/logo.png

_static/ajax-loader.gif

_static/comment-close.png

nav.xhtml

 Table of Contents

 		
 Transformations

