
Bones IRC Bot Documentation
Release 0.2.0-DEV

404’d

October 01, 2015

Contents

1 Getting Started 3
1.1 Installation . 3
1.2 Getting started with modules . 4
1.3 Using Events . 6

2 API Documentation 9
2.1 Bot Client and Base API . 9
2.2 Configuration API . 11
2.3 Events API . 11

3 Indices and tables 23

Python Module Index 25

i

ii

Bones IRC Bot Documentation, Release 0.2.0-DEV

The Bones IRC Bot is a bare bones IRC Bot made with extensibility in mind. It provides an easy to use API for writing
Bones modules which is the base of the bot itself. The bot is by default an empty shell which does work like managing
connections, configurations, error handling and providing and implementing the API itself.

A basic Bones module may be made in as few lines as this:

1 import bones.bot
2 import bones.event
3

4 class Greeter(bones.bot.Module):
5

6 @bones.event.handler(event=bones.event.UserJoinEvent)
7 def greet_user(self, event):
8 event.user.msg(
9 "Welcome to %s, %s!" % (event.channel.name, event.user.nickname)

10)

The documentation on this page is just as much documentation of the API as it is of the bot itself. No matter whether
you just want to make something new or if you want to help out, this documentation will cover most of it. Note that
internal methods may appear here because of this even though they’re not meant to be used and/or a part of the public
API.

Contents 1

Bones IRC Bot Documentation, Release 0.2.0-DEV

2 Contents

CHAPTER 1

Getting Started

1.1 Installation

1.1.1 Getting a copy of the source

There’s basically two ways to install Bones, the version-controlled way and the uncontrolled way. The version-
controlled way is recommended because it makes upgrading and pull request merging easier, in case you’d want to try
out something that haven’t arrived yet or want to try out a development-version.

Warning: Development releases must always be installed from version-controlled source from the branch
develop, or from an archived copy of the develop branch. This is partly because there will be no tags for
releases which is currently under development. You should always use VCS for development versions to make it
easier to update your local copy.

Using version-control

Using git we’ll clone the repository where the Bones IRC Bot source code is contained, and then check out a copy
of the source of the current Bones release, v0.2.0-DEV.

git clone https://github.com/404d/Bones-IRCBot
cd Bones-IRCBot
git checkout tags/v0.2.0-DEV

If the release you’re trying to install is a development version, you should run this instead of the last step above:

git checkout develop

Using archived releases

We’ll just download an archived and compressed copy of the source code from Github and uncompress that. If you’re
installing a released version, run these commands in your shell:

wget https://github.com/404d/Bones-IRCBot/archive/v0.2.0-DEV.tar.gz
tar -xzf v0.2.0-DEV.tar.gz
cd Bones-IRCBot-v0.2.0-DEV

If you’re installing a development version, run these commands instead:

3

https://github.com/404d/Bones\unhbox \voidb@x \kern \z@ \char `\discretionary {-}{}{}IRCBot

Bones IRC Bot Documentation, Release 0.2.0-DEV

wget https://github.com/404d/Bones-IRCBot/archive/develop.tar.gz
tar -xzf develop.tar.gz
cd Bones-IRCBot-develop

1.1.2 Installing Requirements and Dependencies

From now on we’ll assume you already have a working environment with pip installed. The dependency tree for Bones
may look weird for some, but basically just skip the headers that doesn’t look like they’re for you.

Note: Module usually refers to Bones modules, which is Python classes that add functionality to the bot. However
it may also refer to Python modules which may contain Python code and classes. All Bones modules are contained
within a Python module, so be sure that you know which one of the two you’re talking/reading about.

Installing base dependencies

Bones IRC Bot is based on Twisted, mainly because the aim of the Bones bot is to provide an easily usable and
extensive API in order to make scripting easier for developers. However SSL is not supported by default and as such
pyOpenSSL is a dependency for SSL connections to work.

pip install twisted pyopenssl

If you really don’t care for SSL support you can just remove pyOpenSSL from the command above. Bones isn’t
stupid and will only try to do anything with pyOpenSSL if it is available on the system and just carry on if it’s
unneeded.

Installing module dependencies

Bones by itself does next to nothing; all functionality is provided by modules, and some of these modules have
dependencies of themselves, maybe Python modules, Bones modules or something in between.

When it comes to all the default modules, there’s about two dependencies you need to think of. All the
modules who parses and fetches information from websites uses BeautifulSoup 4 for parsing the HTML trees,
and a lot of the plugins that work with some sort of data storage uses a database for storage through the
bones.modules.storage.Database Bones module and the SQLAlchemy Python module. To install the de-
pendencies of the bundled modules, run this command in your shell:

pip install beautifulsoup4 sqlalchemy

Note: SQLAlchemy may require additional dependencies depending on what kind of database you’re going to use.
For more information about this, read about SQLAlchemy Dialects.

1.2 Getting started with modules

Bones modules are basically just normal Python classes with a familiar interface so that the bot may load them on
initialization.

4 Chapter 1. Getting Started

http://docs.sqlalchemy.org/en/rel_0_8/dialects/index.html

Bones IRC Bot Documentation, Release 0.2.0-DEV

1.2.1 Creating a dummy module

We’ll start off with something easy; a module that can be loaded by the bot but does absolutely nothing. To do this
we’ll import the Python module bones.bot and write a class that inherits from the class Module. The class itself
will be empty. The class will be saved as module.py inside a directory named tutorial.

import bones.bot

class DummyModule(bones.bot.Module):
pass

Note: Make sure there exists a file named __init__.py inside the tutorial folder, if not the module won’t
load because Python won’t recognize tutorial as a package.

1.2.2 Loading the dummy module

Now that the module is ready to be used we’ll need to tell the bot to load it. First up open up your configuration file
and find the line that starts with modules =. This is where we’ll add the module path in order to load it.

Now if you followed the previous section to every little detail you’ll have the module inside the file
tutorial/module.py. To find out what your module path is, we’ll use dot-notation. Dot-notation is the way
you refer to modules and classes in import statements, so the name of each folder, file and class in the path is
separated by a punctuation mark (therefore dot-notation). As the module is named DummyModule inside the file
tutorial/module.py, the path to it is tutorial.module.DummyModule

To load the module into Bones we’ll append the path to the modules list in your configuration file. Let’s take this
example here:

[bot]
nickname = Bones
username = bones
realname = Bones IRC Bot
channel = #Gameshaft

#Temporals

modules = bones.modules.utilities.Utilities
; bones.modules.services.NickServ
; bones.modules.services.HostServ

In this configuration file the modules list already contains the module
bones.modules.utilities.Utilities, so we’ll need to add a new line beneath this one and indent
it with 4 spaces. After that you can just add the module path, and the result will be this:

modules = bones.modules.utilities.Utilities
tutorial.module.DummyModule

Save the file, boot the bot and you should see something like this in your log:

2013-10-20 22:45:02,865 - bones.bot - INFO - Loaded module bones.modules.funserv.UselessResponses
2013-10-20 22:45:02,866 - bones.bot - INFO - Loaded module tutorial.module.DummyModule
2013-10-20 22:45:02,868 - bones.bot - INFO - Connecting to server irc.chatno.de:+6697
2013-10-20 22:45:04,045 - bones.bot - INFO - Signed on as Bones_.

If one of the lines read Loaded module tutorial.module.DummyModule you’ve successfully “written” a
working module!

1.2. Getting started with modules 5

Bones IRC Bot Documentation, Release 0.2.0-DEV

1.3 Using Events

Bones, and the Bones API is heavily based on events. Whenever something happens you’ll be able to find out in one
way or another. To make your method listen to and act upon events, you should use the bones.event.handler()
decorator. This decorator takes one of two keyword arguments, trigger and event, but we’ll explain this soon.

1.3.1 Creating an event handler

Event handlers in Bones is simply a method that is hooked up to an event. Event handlers should take 1 argument,
event which will be an object containing stuff relevant to the event, like the current bot instance or the user that sent
a message.

We will now create a module that will greet a user when he joins the channel. To start off, create a new module like
you did in the previous example, but name it WelcomeBack. Now you’ll have something that looks like this:

1 import bones.bot
2

3 class WelcomeBack(bones.bot.Module):
4 pass

So far so good, but we want to make this module actually do something. To start off, we should import the package
bones.event. Add the following line just below the import you’ve already got:

import bones.event

Now we’re getting close to something, but it’s still not doing anything. Now, make a method on the class and that
takes two arguments, self and event:

def greetUser(self, event):
pass

Now we’ll take off on a tangent in order to explain something. eventwill contain everything we need. In our module,
or to be specific this method, event will be an instance of bones.event.UserJoinEvent. This this object will
have two attributes that are of importance to us; first being user and the other being channel. User will give us
access to the user’s nickname, and Channel will let us send messages to the channel. I advice you to click on those
two links to read about the attributes and methods available on those two objects.

Ok, so what we need to do is 1) get the user’s nickname and 2) send a message to the channel. The first
problem can be solved by making use of event.user.nickname, and the other can be solved by using
event.channel.msg(). To start off we should build our string:

greeting = "Welcome back, %s!" % event.user.nickname

Now that our message is ready, all that’s left is sending it to our channel:

event.channel.msg(greeting)

We’re almost done! There’s just one problem left though: If you were to load your module now, nothing would happen
when the user joins despite you having written code that should do something when that happens. But why is this?
The answer isn’t far away: you haven’t turned your method into an event handler yet.

Event handlers are regular methods that gets tied to an even by using a decorator, in this case
bones.event.handler(). In other to register this method as an event handler we need to know one
thing: What is the class of the event we want to use? In this case we want to do something with
bones.event.UserJoinEvent, so what we’ll do is we’ll pass that class as the event argument to
bones.event.handler() and place the decorator above our method, like this:

6 Chapter 1. Getting Started

Bones IRC Bot Documentation, Release 0.2.0-DEV

@bones.event.handler(event=bones.event.UserJoinEvent)
def greetUser(self, event):

...

All that’s left now is to add the new module to your configuration:

modules = bones.modules.utilities.Utilities
tutorial.module.DummyModule
tutorial.module.WelcomeBack

And you should be all set. For reference, here’s what your file should look like, if we look away from the dummy
module we made in our previous tutorial:

1 import bones.bot
2 import bones.event
3

4 class WelcomeBack(bones.bot.Module):
5

6 @bones.event.handler(event=bones.event.UserJoinEvent)
7 def greetUser(self, event):
8 greeting = "Welcome back, %s!" % event.user.nickname
9 event.channel.msg(greeting)

See also:

Events API

1.3. Using Events 7

Bones IRC Bot Documentation, Release 0.2.0-DEV

8 Chapter 1. Getting Started

CHAPTER 2

API Documentation

2.1 Bot Client and Base API

2.1.1 BonesBot

class bones.bot.BonesBot(*args, **kwargs)
Bases: twisted.words.protocols.irc.IRCClient

create_user(target)
Prepares a User object for the given target.

get_channel(name)
Returns the Channel object for the given channel.

get_user(target)
Returns the User object for the given target if it exists, None if otherwise.

signedOn()
Event called when the bot receives a registration confirmation from the server

2.1.2 BonesBotFactory

class bones.bot.BonesBotFactory(settings)
Bases: twisted.internet.protocol.ClientFactory

The Twisted client factory that provides connection management and configuration for each individual bot con-
figuration.

sourceURL
A hardcoded string URL to the Bones IRC Bot repository. Sent to clients in response to a CTCP
SOURCEURL query.

versionEnv
Currently unused. Sent to clients as a part of a CTCP VERSION reply.

versionName
The name of the bot. Sent to clients as a part of a CTCP VERSION reply.

versionNum
The release name of the current bot version. Sent to clients as a part of a CTCP VERSION reply.

9

Bones IRC Bot Documentation, Release 0.2.0-DEV

clientConnectionFailed(connector, reason)
Called when an error occured with the connection. This method will take care of reconnecting the bot to
the server after a variable time period.

clientConnectionLost(connector, reason)
Called when the connection to the server was lost. This method will take care of reconnecting the bot to
the server after a variable time period.

connect()
Connects this bot factory to the server it is configured for. Gets called automatically by the default manager
at boot.

loadModule(path)
Loads the specified module and adds it to the bot if it is a valid Bones module.

Parameters path (str.) – The Python dot-notation path to the module that should be loaded.

Raises BonesModuleAlreadyLoadedException, InvalidBonesModuleException,
InvalidConfigurationException, NoSuchBonesException

2.1.3 Exceptions

exception bones.bot.BonesModuleAlreadyLoadedException

exception bones.bot.InvalidBonesModuleException

exception bones.bot.InvalidConfigurationException

exception bones.bot.NoSuchBonesModuleException

2.1.4 Module

class bones.bot.Module(settings, factory)
Bones module base class

Parameters

• settings (bones.config.ServerConfiguration) – The settings for the current
server factory.

• factory (bones.bot.BonesBotFactory) – The bot factory that instanciated this
module.

settings
A bones.config.ServerConfiguration instance containing all the currently loaded settings for
this server factory and all its bots and modules.

factory
A bones.bot.BonesBotFactory instance representing the factory which instanciates the clients
whom this module is used with.

See also:

Getting started with modules

10 Chapter 2. API Documentation

Bones IRC Bot Documentation, Release 0.2.0-DEV

2.2 Configuration API

2.3 Events API

This section details how events and the event system in the Bones IRC Bot works. For more detailed information
regarding the IRC protocol, please read RFC 1459.

See also:

Using Events

2.3.1 Methods

bones.event.fire(server, event, *args, **kwargs)
Call all event handlers with the specified event identifier registered to the provided server with the provided
arguments.

This may be called in your Bones module to fire custom events.

Note: You should create a class that inherits from Event, and put your arguments inside this.

Warning: Using this to alter standard bot behaviour is not supported! This means doing anything like (but
not limited to) firing events that are supposed to be handled by the bot core, for example PrivmsgEvent.

Parameters

• server (str) – the server tag that identifies the server this occured on

• event (object) – an event instance or event identifier

• callback (callable) – a callable that should be called after all event handlers have been
triggered

bones.event.register(obj, server)
Look through a Module for registered event handlers and add them to the event handler list.

This is an internal function automatically called by the server bot factory while creating the factory. Do not call
this in your modules!

Parameters

• obj (bones.bot.Module) – the Module instance to look at.

• server (bones.bot.BonesBot) – the server tag that the supplied module runs under.

2.3.2 Decorators

bones.event.handler(event=None, trigger=None)
Marks the decorated callable as an event handler for the given type of event, or as a trigger handler for the given
trigger.

Note: For all events that are tied to Bones core, the event identifier is the class definition of an event.

Warning: You are free to use one callable for multiple events or multiple triggers, but it is not supported to
use the same callable for both event handling and trigger handling.

2.2. Configuration API 11

https://tools.ietf.org/html/rfc1459.html

Bones IRC Bot Documentation, Release 0.2.0-DEV

Parameters

• event (object) – the identifier for the event you are going to handle

• trigger (str) – the trigger command to react to

2.3.3 Base Events

Base events are used as building blocks to add attributes and functions to other events.
The event bones.event.ChannelMessageEvent for example inherits from both
bones.event.EventWithSource and bones.event.EventWithTarget.

class bones.event.Event

client
A bones.bot.BonesBot instance representing the server connection which received this event.

class bones.event.IrcPrivmsgEvent(client, user, channel, message)
Bases: bones.event.Event

Event fired when the bot receives a message from another user, either over a query or from a channel.

Parameters

• client (bones.bot.BonesBot) – A BonesBot instance representing the current
server connection.

• user (bones.event.User) – The hostmask of the user who sent this message.

• channel (bones.event.Target) – A Target instance representing the communi-
cation target this message was sent to.

• message (string) – The message that was sent to the target.

client
A BonesBot instance representing the server connection which received this event.

message
The message string that was sent.

channel
A Target instance representing the communication channel this message was sent to. This may be an
object something that inherits ~bones.bot.Target, like ~bones.bot.Channel and ~bones.bot.User.

user
A User instance representing the user that sent the message.

2.3.4 Events

All events inherits the attributes of its parents in addition to its own attributes. The class UserJoinEvent for
example inherits the attribute client from the class Event even though that attribute may not be mentioned in the
UserJoinEvent documentation.

class bones.event.BotInitializedEvent(factory)
Bases: bones.event.Event

An event that is fired whenever the bot factory for a configuartion has been initialized and is ready to connect to
the server.

12 Chapter 2. API Documentation

Bones IRC Bot Documentation, Release 0.2.0-DEV

factory
The BonesBotFactory instance which was initialized.

class bones.event.BotJoinEvent(client, channel)
Bases: bones.event.Event

An event that is fired whenever the bot joins a new channel. The bot has “joined” a channel when the server
informs the bot of its presence in that channel, and not when the bot calls client.join("#channel").

client
The client instance that this event applies to.

channel
A Channel instance representing the channel that were joined by the bot.

class bones.event.BotKickedEvent(client, channel, kicker, message)
Bases: bones.event.Event

An event that is fired whenever the bot gets kicked from a channel it is in.

client
The client instance that this event applies to.

channel
A Channel instance representing the channel that the bot was kicked form.

kicker
A User instance representing the user that kicked the bot.

message
The kick reason as specified by the kicker, as a string.

class bones.event.BotModuleLoaded(module)
Bases: bones.event.Event

Called by the BonesBotFactory when a module is loaded during initialization.

module
The module instance that were initialized and loaded.

class bones.event.BotNickChangedEvent(client, nick)
Bases: bones.event.Event

Called by the bot when its nickname has changed, either by the bot itself or something like services, nick
collision or the like.

client
The client instance that this event applies to.

nick
The new nickname that the bot now goes by.

class bones.event.BotNoticeReceivedEvent(client, user, channel, message)
Bases: bones.event.Event

Fired whenever the bot receives a notice.

client
The client instance that this event applies to.

user
A string representing the nickname of the user that sent the notice.

channel
A string representing the name of the channel that the notice were sent to.

2.3. Events API 13

Bones IRC Bot Documentation, Release 0.2.0-DEV

message
The message that was sendt as part of the notice.

class bones.event.BotPreJoinEvent(client, channel)
Bases: bones.event.Event

Called by the bot before the bot joins a channel. This may be used to prevent the bot from joining a channel.

client
The client instance that this event applies to.

channel
The channel that the bot is trying to join, in string format.

isCancelled
A boolean that tells the bot whether to stop this event chain and prevent the bot from joining a channel.

class bones.event.PreNicknameInUseError(client, prefix, params)
Bases: bones.event.Event

An event that is fired before the bot’s username is changed because of collision. As the bot’s default
behaviour tells it to cycle through all of the nicks in the bot nickname list, this may be used to pre-
vent floods when changing the nickname by hand. An example use of this event is available in the
bones.modules.utilities.NickFix module that makes the bot try to recover its nick if it is in use.

client
The client instance that this event applies to.

isCancelled
A boolean that tells the bot whether to stop this event chain and prevent the bot from automatically chang-
ing its nick.

class bones.event.BotSignedOnEvent(client)
Bases: bones.event.Event

An event which is fired whenever the bot finishes connecting and registrating with the server.

Parameters client (bones.bot.BonesBot) – The bot instance that this event originates
from.

client
The client instance that this event applies to.

class bones.event.BounceEvent(client, info)
Bases: bones.event.Event

class bones.event.ChannelMessageEvent(client, user, channel, message)
Bases: bones.event.IrcPrivmsgEvent

class bones.event.ChannelTopicChangedEvent(client, user, channel, newTopic)
Bases: bones.event.Event

class bones.event.CTCPVersionEvent(client, user)
Bases: bones.event.Event

Fired by the bot after a CTCP VERSION has been received. This event may be used to cancel the CTCP
VERSION reply that is usually sent.

client
The client instance that this event applies to.

isCancelled
A boolean that tells the bot whether to stop this event chain and prevent the bot from joining a channel.

14 Chapter 2. API Documentation

Bones IRC Bot Documentation, Release 0.2.0-DEV

user
The user that sent the CTCP VERSION request, as a bones.event.User instance.

class bones.event.CTCPPongEvent(client, user, secs)
Bases: bones.event.Event

Fired by the bot after a CTCP PING reply has been received. This event may be used to get the result of a
client.ping request.

client
The client instance that this event applies to.

secs
Time elapsed since the ping request started, in seconds as a float.

user
The user that sent the CTCP VERSION request, as a bones.event.User instance.

class bones.event.IRCUnknownCommandEvent(client, prefix, command, params)
Bases: bones.event.Event

Fired whenever the bot encouters an unknown numeric reply and/or command.

client
The client instance that this event applies to.

prefix
The sender of the unknown command.

command
The numeric or string representation of the unknown command.

params
All supplied parameters, as a list.

class bones.event.ModeChangedEvent(client, user, channel, set, modes, args)
Bases: bones.event.Event

class bones.event.PrivmsgEvent(client, user, channel, msg)
Bases: bones.event.Event

Event fired when the bot receives a message from another user, either over a query or from a channel.

Deprecated since version Use: bones.event.IrcPrivmsgEvent instead.

Parameters

• client (bones.bot.BonesBot) – A BonesBot instance representing the current
server connection.

• user (string) – The hostmask of the user who sent this message.

• channel (bones.event.Target) – A Target instance representing the communi-
cation target this message was sent to.

• msg (string) – The message that was sent to the target.

client
A BonesBot instance representing the server connection which received this event.

msg
The message string that was sent.

2.3. Events API 15

Bones IRC Bot Documentation, Release 0.2.0-DEV

channel
A Target instance representing the communication channel this message was sent to. This may be an
object something that inherits ~bones.bot.Target, like ~bones.bot.Channel and ~bones.bot.User.

user
A User instance representing the user that sent the message.

class bones.event.ServerChannelCountEvent(client, channels)
Bases: bones.event.Event

Fired when the bot receives the RPL_LUSERCHANNELS numeric.

client
A BonesBot instance that represents the client that received this numeric reply.

channels
The server channel count, as an integer.

class bones.event.ServerCreatedEvent(client, when)
Bases: bones.event.Event

Fired when the bot receives the RPL_CREATED numeric.

client
A BonesBot instance that represents the client that received this numeric reply.

when
The creation date, as a string.

class bones.event.ServerClientInfoEvent(client, info)
Bases: bones.event.Event

Fired when the bot receives the RPL_LUSERCLIENT numeric.

client
A BonesBot instance that represents the client that received this numeric reply.

info
The client info, as a string.

class bones.event.ServerHostInfoEvent(client, info)
Bases: bones.event.Event

Fired when the bot receives the RPL_YOURHOST numeric.

client
A BonesBot instance that represents the client that received this numeric reply.

info
The server info, as a string.

class bones.event.ServerInfoEvent(client, servername, version, umodes, cmodes)
Bases: bones.event.Event

Fired when the bot receives the RPL_MYINFO numeric.

client
A BonesBot instance that represents the client that received this numeric reply.

servername
The name of the current server, as a string.

version
The version info of the current server, as a string.

16 Chapter 2. API Documentation

Bones IRC Bot Documentation, Release 0.2.0-DEV

umodes
The supported user modes on the current server.

cmodes
The supported channel modes on the current server.

class bones.event.ServerLocalInfoEvent(client, info)
Bases: bones.event.Event

Fired when the bot receives the RPL_LUSERME numeric.

client
A BonesBot instance that represents the client that received this numeric reply.

info
The server info, as a string.

class bones.event.ServerMOTDReceivedEvent(client, motd)
Bases: bones.event.Event

class bones.event.ServerOpCountEvent(client, ops)
Bases: bones.event.Event

An event that is fired during server connection. This event details how many operators are connected to the
server.

Parameters client (bones.bot.BonesBot) – The bot instance for the server this event orig-
inated from.

client
A bones.bot.BonesBot instance representing the server connection which received this event.

ops
The number of local operators connected to the server, as an integer.

class bones.event.ServerSupportEvent(client, options)
Bases: bones.event.Event

An event that is fired whenever the bot receives an ISUPPORT during connection. This should be used by your
Bones module if you for example need WATCH for your module to work.

Parameters client (bones.bot.BonesBot) – The bot instance for the server this event orig-
inated from.

client
A bones.bot.BonesBot instance representing the server connection which received this event.

options
A list of all the different options the server supports, in strings with the format “KEY=VALUE”.

class bones.event.TriggerEvent(client, args=None, channel=None, user=None, msg=None,
match=None)

Bases: bones.event.ChannelMessageEvent

An event that is fired by the bot whenever it receives a PRIVMSG event that starts with a valid trigger prefix and
is a valid command.

Parameters

• client (bones.bot.BonesBot) – The bot instance which the event originated from.

• args (list) – A list of all the arguments provided with the trigger command.

• user (bones.bot.User) – The user which initiated this event.

• msg (str.) – The original message that was parsed to reveal the trigger command.

2.3. Events API 17

Bones IRC Bot Documentation, Release 0.2.0-DEV

• match (SRE_Match) – The Regular Expression match object containing additional infor-
mation about the parsing of the trigger command.

See also:

Event, ChannelMessageEvent

args
A list of strings containing all the arguments passed to the trigger command.

match
The regex match object that was returned while parsing the original message, msg

class bones.event.UserActionEvent(client, user, channel, data)
Bases: bones.event.Event

An event that is fired whenever another user sends a CTCP ACTION to the channel.

Parameters

• client (bones.bot.BonesBot) – The bot instance where this event occured.

• user (bones.event.User) – The user that initiated this event.

• channel (str.) – The channel the CTCP ACTION was sent to.

• data (str.) – The text which is actioned.

channel
A string representation of the channel the User joined.

client
The bones.bot.BonesBot instance representing the connection to the server that this event originated
from.

data
A string representing the text which was actioned. Using the following example,

* Nickname slaps Operator around a bit with a large trout

the actioned text is everything following the nickname and the space immediately following i, or in other
words slaps Operator around a bit with a large trout.

user
A User instance representing the user who initiated this event.

class bones.event.UserJoinEvent(client, channel, user)
Bases: bones.event.Event

An event that is fired whenever another user joins one of the channels the bot is in.

Parameters

• client (bones.bot.BonesBot) – The bot instance where this event occured.

• channel (str.) – The channel where this event occured.

• user (User) – The user who fired this event.

channel
A string representation of the channel the User joined.

client
The bones.bot.BonesBot instance representing the connection to the server that this event originated
from.

18 Chapter 2. API Documentation

Bones IRC Bot Documentation, Release 0.2.0-DEV

user
A User instance representing the user who joined.

class bones.event.UserKickedEvent(client, kickee, channel, kicker, message)
Bases: bones.event.Event

An event that is fired whenever a user have been kicked from a channel.

Parameters

• client (bones.bot.BonesBot) – The bot instance where this event occured.

• channel (bones.event.Channel) – The channel instance where this event occured.

• kickee (User) – The nickname of the user who was kicked.

• kicker (User) – The nickname of the user who kicked the kickee.

• message (str.) – The message provided with the kick, usually as a reason for the kick.

channel
A bones.event.Channel instance representing the channel where the kick occurred.

client
A bones.bot.BonesBot instance representing the server from which the event originated.

kickee
A User instance representing the nickname of the user who was kicked by the kicker.

kicker
A User instance representing the nickname of the user who kicked the kickee. This is the user who
initiated this event.

message
A string representing the message the kicker sent with the kick. This is often used as a reason for explaining
the kick.

class bones.event.UserMessageEvent(client, user, channel, message)
Bases: bones.event.IrcPrivmsgEvent

class bones.event.UserNickChangedEvent(client, user, oldname, newname)
Bases: bones.event.Event

An event which is fired whenever a user in one of the joined channels changes his/her nickname.

Parameters

• client – The bot instance that this event originated from.

• user – The user who changed his/her nickname.

type user: bones.event.user :param oldname: The previous nickname the user went by. :type oldname:
str :param newname: The new nickname the user is now using. :type newname: str

client
The bones.bot.BonesBot instance representing the connection to the server that this event originated
from.

user
A User instance representing the user who changed his/her nickname.

newname
A string representation of the new nickname the user is using on the server.

oldname
A string representation of the nickname the user went by on the server before the nickname change.

2.3. Events API 19

Bones IRC Bot Documentation, Release 0.2.0-DEV

class bones.event.UserPartEvent(client, user, channel)
Bases: bones.event.Event

An event that is fired whenever a user leaves a channel. This should not be confused with a
bones.event.UserQuitEvent, which is sent only when a user quits from the server.

A UserPartEvent is sent once to each channel the user parts from. The user may still be connected to IRC,
but the user is not available in the channel designated by the channel attribute.

Parameters

• client (bones.bot.BonesBot) – The bot instance that this event originated from.

• user (bones.event.User) – The the user who parted from the channel.

• channel (str.) – The name of the channel the user parted from.

channel
A string representation of the name of the channel the user parted from.

client
The bones.bot.BonesBot instance representing the connection to the server that this event originated
from.

user
A User instance representing the nickname of the user who parted from the channel.

class bones.event.UserQuitEvent(client, user, quitMessage)
Bases: bones.event.Event

An event that is fired whenever a user quits IRC, or in other words leaves the server. This may be either because
of a ping timeout, server/IRC operator KILL or the user sending QUIT to the server. This event should not be
confused with a bones.event.UserPartEvent, which is sent once only when a user leaves a channel the
bot is a part of.

A UserQuitEvent is sent once to the bot when the user quits from IRC, and does not mention what channels
the user left while doing so. As such, when a UserQuitEvent is sent all plugins should usually treat this as
the user parted from all channels the users where in.

The bot will not receive a UserQuitEvent if the user has only been involved with the bot through a query,
and not been in any of the channels the bot is in. The bot will also not receive a UserQuitEvent if the user
left all the channels the bot was in, and then QUIT from IRC afterwards.

Parameters

• client (bones.bot.BonesBot) – The bot instance where this event occured.

• user (bones.event.User) – The user who quit IRC.

• quitMessage (str.) – The message sent with the quit command.

client
The bones.bot.BonesBot instance representing the connection to the server where this event oc-
cured.

user
A User instance representing the nickname of the user who quit IRC.

quitMessage
A string representing the message that was sent with the quit. This message is usually formated by the
server so that user-specified quit messages doesn’t look like i.e. a ping timeout or an operator KILL.

20 Chapter 2. API Documentation

Bones IRC Bot Documentation, Release 0.2.0-DEV

2.3.5 Utility Classes

class bones.event.Channel(name, server)
Bases: bones.event.Target

Utility class representing a channel on a server.

modes
A dictionary of mode-value pairs representing the modes in the channel. Modes such as +b will be added
to and removed from this list when the bot sees them.

users
A list of user instances representing all the users in the channel.

topic
An Topic instance containing the current topic and the user that wrote it.

kick(user, reason=None)
Kick a user from the channel.

Parameters

• user (User) – The user that should be kicked.

• reason (str) – A message that will be shown to users in the channel when kicking user.

part(reason=None)
Makes the bot part the channel.

Parameters reason (str) – The part message that will be sent to the channel when parting the
channel.

setTopic(topic)
Changes the channel’s topic.

Parameters topic (str) – The topic that should be changed to.

class bones.event.Target(name, server)
Utility class providing easy access to methods commonly used against targets.

Parameters

• name (string) – a string identifying the message target, as used in protocol message MSG
targetNameHere :Message to be sent

• server (bones.bot.BonesBot) – the BonesBot client instance that will be used to
send messages to this target.

name
String with the target name. This could for example be a nick, a hostname or a channel name.

server
BonesBot instance that will be used to send the messages to the target.

msg(msg)
Sends the provided message to the represented target.

Parameters msg (string) – message to be sent.

notice(msg)
Sends the provided message as a notice to the represented target.

Parameters msg (string) – message to be sent as a notice

2.3. Events API 21

Bones IRC Bot Documentation, Release 0.2.0-DEV

class bones.event.User(mask, server)
Bases: bones.event.Target

Utility class turning a hostmask into distinguishable nickname, user and hostname attributes.

Parameters

• mask (str) – The IRC hostmask to be parsed. Ex: Bones!bot@192.168.0.2

• server (bones.bot.BonesBot) – BonesBot instance representing the server con-
nection where we can reach this user.

mask
A string of the hostmask that this object originated from.

nickname
A string of the nickname for the provided hostmask. Given the hostmask above, the nickname will be
Bones.

hostname
A string of the hostname for the provided hostmask. Given the hostmask above, the hostname will be
192.168.0.2. If the provided hostmask is missing the hostname part, this will be None.

username
A string of the username for the provided hostmask. Given the hostmask above, the username will be bot.
If the provided hostmask is missing the username part, this will be None.

kick(channel, reason=None)
Kicks the user from the specified channel.

reason
A string that will be supplied with the kick as a reason for the kick.

channel
The Channel instance that represents the channel the user is to be kicked from.

ping()
Sends the user a CTCP PING query.

22 Chapter 2. API Documentation

CHAPTER 3

Indices and tables

• genindex

• glossary

• modindex

• search

23

Bones IRC Bot Documentation, Release 0.2.0-DEV

24 Chapter 3. Indices and tables

Python Module Index

b
bones.bot, 9
bones.config, 11
bones.event, 11

25

Bones IRC Bot Documentation, Release 0.2.0-DEV

26 Python Module Index

Index

A
args (bones.event.TriggerEvent attribute), 18

B
bones.bot (module), 9
bones.config (module), 11
bones.event (module), 11
BonesBot (class in bones.bot), 9
BonesBotFactory (class in bones.bot), 9
BonesModuleAlreadyLoadedException, 10
BotInitializedEvent (class in bones.event), 12
BotJoinEvent (class in bones.event), 13
BotKickedEvent (class in bones.event), 13
BotModuleLoaded (class in bones.event), 13
BotNickChangedEvent (class in bones.event), 13
BotNoticeReceivedEvent (class in bones.event), 13
BotPreJoinEvent (class in bones.event), 14
BotSignedOnEvent (class in bones.event), 14
BounceEvent (class in bones.event), 14

C
channel (bones.event.BotJoinEvent attribute), 13
channel (bones.event.BotKickedEvent attribute), 13
channel (bones.event.BotNoticeReceivedEvent attribute),

13
channel (bones.event.BotPreJoinEvent attribute), 14
channel (bones.event.IrcPrivmsgEvent attribute), 12
channel (bones.event.PrivmsgEvent attribute), 15
channel (bones.event.User attribute), 22
channel (bones.event.UserActionEvent attribute), 18
channel (bones.event.UserJoinEvent attribute), 18
channel (bones.event.UserKickedEvent attribute), 19
channel (bones.event.UserPartEvent attribute), 20
Channel (class in bones.event), 21
ChannelMessageEvent (class in bones.event), 14
channels (bones.event.ServerChannelCountEvent at-

tribute), 16
ChannelTopicChangedEvent (class in bones.event), 14
client (bones.event.BotJoinEvent attribute), 13
client (bones.event.BotKickedEvent attribute), 13

client (bones.event.BotNickChangedEvent attribute), 13
client (bones.event.BotNoticeReceivedEvent attribute),

13
client (bones.event.BotPreJoinEvent attribute), 14
client (bones.event.BotSignedOnEvent attribute), 14
client (bones.event.CTCPPongEvent attribute), 15
client (bones.event.CTCPVersionEvent attribute), 14
client (bones.event.Event attribute), 12
client (bones.event.IrcPrivmsgEvent attribute), 12
client (bones.event.IRCUnknownCommandEvent at-

tribute), 15
client (bones.event.PreNicknameInUseError attribute), 14
client (bones.event.PrivmsgEvent attribute), 15
client (bones.event.ServerChannelCountEvent attribute),

16
client (bones.event.ServerClientInfoEvent attribute), 16
client (bones.event.ServerCreatedEvent attribute), 16
client (bones.event.ServerHostInfoEvent attribute), 16
client (bones.event.ServerInfoEvent attribute), 16
client (bones.event.ServerLocalInfoEvent attribute), 17
client (bones.event.ServerOpCountEvent attribute), 17
client (bones.event.ServerSupportEvent attribute), 17
client (bones.event.UserActionEvent attribute), 18
client (bones.event.UserJoinEvent attribute), 18
client (bones.event.UserKickedEvent attribute), 19
client (bones.event.UserNickChangedEvent attribute), 19
client (bones.event.UserPartEvent attribute), 20
client (bones.event.UserQuitEvent attribute), 20
clientConnectionFailed() (bones.bot.BonesBotFactory

method), 9
clientConnectionLost() (bones.bot.BonesBotFactory

method), 10
cmodes (bones.event.ServerInfoEvent attribute), 17
command (bones.event.IRCUnknownCommandEvent at-

tribute), 15
connect() (bones.bot.BonesBotFactory method), 10
create_user() (bones.bot.BonesBot method), 9
CTCPPongEvent (class in bones.event), 15
CTCPVersionEvent (class in bones.event), 14

27

Bones IRC Bot Documentation, Release 0.2.0-DEV

D
data (bones.event.UserActionEvent attribute), 18

E
Event (class in bones.event), 12

F
factory (bones.bot.Module attribute), 10
factory (bones.event.BotInitializedEvent attribute), 12
fire() (in module bones.event), 11

G
get_channel() (bones.bot.BonesBot method), 9
get_user() (bones.bot.BonesBot method), 9

H
handler() (in module bones.event), 11
hostname (bones.event.User attribute), 22

I
info (bones.event.ServerClientInfoEvent attribute), 16
info (bones.event.ServerHostInfoEvent attribute), 16
info (bones.event.ServerLocalInfoEvent attribute), 17
InvalidBonesModuleException, 10
InvalidConfigurationException, 10
IrcPrivmsgEvent (class in bones.event), 12
IRCUnknownCommandEvent (class in bones.event), 15
isCancelled (bones.event.BotPreJoinEvent attribute), 14
isCancelled (bones.event.CTCPVersionEvent attribute),

14
isCancelled (bones.event.PreNicknameInUseError

attribute), 14

K
kick() (bones.event.Channel method), 21
kick() (bones.event.User method), 22
kickee (bones.event.UserKickedEvent attribute), 19
kicker (bones.event.BotKickedEvent attribute), 13
kicker (bones.event.UserKickedEvent attribute), 19

L
loadModule() (bones.bot.BonesBotFactory method), 10

M
mask (bones.event.User attribute), 22
match (bones.event.TriggerEvent attribute), 18
message (bones.event.BotKickedEvent attribute), 13
message (bones.event.BotNoticeReceivedEvent at-

tribute), 13
message (bones.event.IrcPrivmsgEvent attribute), 12
message (bones.event.UserKickedEvent attribute), 19
ModeChangedEvent (class in bones.event), 15
modes (bones.event.Channel attribute), 21

module (bones.event.BotModuleLoaded attribute), 13
Module (class in bones.bot), 10
msg (bones.event.PrivmsgEvent attribute), 15
msg() (bones.event.Target method), 21

N
name (bones.event.Target attribute), 21
newname (bones.event.UserNickChangedEvent at-

tribute), 19
nick (bones.event.BotNickChangedEvent attribute), 13
nickname (bones.event.User attribute), 22
NoSuchBonesModuleException, 10
notice() (bones.event.Target method), 21

O
oldname (bones.event.UserNickChangedEvent attribute),

19
ops (bones.event.ServerOpCountEvent attribute), 17
options (bones.event.ServerSupportEvent attribute), 17

P
params (bones.event.IRCUnknownCommandEvent at-

tribute), 15
part() (bones.event.Channel method), 21
ping() (bones.event.User method), 22
prefix (bones.event.IRCUnknownCommandEvent at-

tribute), 15
PreNicknameInUseError (class in bones.event), 14
PrivmsgEvent (class in bones.event), 15

Q
quitMessage (bones.event.UserQuitEvent attribute), 20

R
reason (bones.event.User attribute), 22
register() (in module bones.event), 11
RFC

RFC 1459, 11

S
secs (bones.event.CTCPPongEvent attribute), 15
server (bones.event.Target attribute), 21
ServerChannelCountEvent (class in bones.event), 16
ServerClientInfoEvent (class in bones.event), 16
ServerCreatedEvent (class in bones.event), 16
ServerHostInfoEvent (class in bones.event), 16
ServerInfoEvent (class in bones.event), 16
ServerLocalInfoEvent (class in bones.event), 17
ServerMOTDReceivedEvent (class in bones.event), 17
servername (bones.event.ServerInfoEvent attribute), 16
ServerOpCountEvent (class in bones.event), 17
ServerSupportEvent (class in bones.event), 17
settings (bones.bot.Module attribute), 10

28 Index

Bones IRC Bot Documentation, Release 0.2.0-DEV

setTopic() (bones.event.Channel method), 21
signedOn() (bones.bot.BonesBot method), 9
sourceURL (bones.bot.BonesBotFactory attribute), 9

T
Target (class in bones.event), 21
topic (bones.event.Channel attribute), 21
TriggerEvent (class in bones.event), 17

U
umodes (bones.event.ServerInfoEvent attribute), 16
user (bones.event.BotNoticeReceivedEvent attribute), 13
user (bones.event.CTCPPongEvent attribute), 15
user (bones.event.CTCPVersionEvent attribute), 14
user (bones.event.IrcPrivmsgEvent attribute), 12
user (bones.event.PrivmsgEvent attribute), 16
user (bones.event.UserActionEvent attribute), 18
user (bones.event.UserJoinEvent attribute), 18
user (bones.event.UserNickChangedEvent attribute), 19
user (bones.event.UserPartEvent attribute), 20
user (bones.event.UserQuitEvent attribute), 20
User (class in bones.event), 21
UserActionEvent (class in bones.event), 18
UserJoinEvent (class in bones.event), 18
UserKickedEvent (class in bones.event), 19
UserMessageEvent (class in bones.event), 19
username (bones.event.User attribute), 22
UserNickChangedEvent (class in bones.event), 19
UserPartEvent (class in bones.event), 19
UserQuitEvent (class in bones.event), 20
users (bones.event.Channel attribute), 21

V
version (bones.event.ServerInfoEvent attribute), 16
versionEnv (bones.bot.BonesBotFactory attribute), 9
versionName (bones.bot.BonesBotFactory attribute), 9
versionNum (bones.bot.BonesBotFactory attribute), 9

W
when (bones.event.ServerCreatedEvent attribute), 16

Index 29

	Getting Started
	Installation
	Getting started with modules
	Using Events

	API Documentation
	Bot Client and Base API
	Configuration API
	Events API

	Indices and tables
	Python Module Index

