

Bolt Task Automation

[image: Build Status]
 [https://travis-ci.org/abantos/bolt]Bolt is a task runner inspired by grunt [http://gruntjs.com/] and written in
python [http://www.python.org] that helps you automate any task in your project
whether it is executed in your development environment or in your CI/CD pipeline.
Bolt gives you the power to specify how tasks should be executed, and it takes
care of the rest. And it is as simple as describing and configuring your tasks
in the boltfile.py.

boltfile.py

import bolt

config = {
 'pip': {
 'command': 'install',
 'options': {
 'r': './requirements.txt'
 }
 },
 'delete-pyc': {
 'sourcedir': './src',
 'recursive': True
 },
 'nose': {
 'directory': './tests',
 'options': {
 'with-xunit': True,
 'xunit-file': './logs/unit_test_log.xml'
 }
 }
}

bolt.register_task('run-tests', ['pip', 'delete-pyc', 'nose'])

in your favorite shell

bolt pip
to install requirements

bolt nose
executes unit tests

bolt run-tests
installs requirements, deletes .pyc files, and runs unit tests

Why Use Bolt?

Let’s face it, you want to automate everything, but doing so becomes a burden;
especially, if you are working on a cross-platform application. You may find
your-self switching CI/CD systems and going through the pain of
rewriting your pipelines to the specific domain languages they use. Python
is cross-platform and any pipline will allow you to execute a command. This
makes Bolt ideal to create reusable tasks that can execute in any environment
indpendently of tools. And, It’s fun!

How Can I Get Started?

You can start by installing bolt and following the examples in the
Getting Started [https://bolt-task-automation.readthedocs.io/en/latest/using/getting_started.html]
guide. Once you become familiar with Bolt, you can look at other topics in
Using Bolt [https://bolt-task-automation.readthedocs.io/en/latest/using_bolt.html],
to learn about the different features it provides.

This is Great! I want to Help!

Help is highly appreciated! If you want to contribute to the project, make sure
to read our guidelines [https://bolt-task-automation.readthedocs.io/en/latest/contribute.html].
If you are a tool developer, and you want to provide Bolt support in your
library or application don’t hesitate asking for help. We want to build a great
community around Bolt, and we will help you in any way we can.

Make sure you read the bolt documentation [http://bolt-task-automation.readthedocs.io].

	Using Bolt

	Contributing to Bolt

	Documentation ToDos

Using Bolt

You want to try Bolt? That’s great! You can start by installing Bolt and
creating your first boltfile.py. You can find how to do it in the
Getting Started guide. Then, you can check the
other topics in this section to learn more about Bolt, its features, and how to
create your own tasks.

	Getting Started

	Disecting the Bolt File

	Bolt Provided Tasks

	Creating Custom Tasks

Getting Started

In this section, we will take a look at some of the basics by installing Bolt
and creating an initial boltfile.py to learn the main concepts.

Installing Bolt

Bolt can be installed directly from PyPi using pip.

pip install bolt-ta

Your First Bolt File

A Bolt file (boltfile.py) is just a Python [http://www.python.org] script that defines the tasks
available and the configuration for each of those tasks. Once we have a Bolt
file for our project, we can run the available tasks at any time. In this
section, we will learn the basics of the Bolt file by creating one that defines
a very common scenario: First, it will run a task to install any missing
requirements for the application (basically a pip install). Then, it will
clean all the .pyc files out of the source tree to insure a clean state.
After that, it will execute all the unit tests. And finally, we will add a
greeting message at the begining of our tasks just to demonstrate how to create
a simple custom task.

Let’s begin by looking at the structure for a our sample python project. The
following shows the contents of the root directory (simplified for clarity):

- project-root
 |- source
 |- tests
 |- requirements.txt
 |- boltfile.py

Installing Requirements

We will start by creating a boltfile.py file at the root of our project as
shown in the structure above. Once the file is created, we will create a
configuration object inside the file to point to our requirements file, which
contains the requirements of our application. The initial contents of
boltfile.py look like the following:

import bolt

config = {
 'pip': {
 'command': 'install',
 'options': {
 'r': 'requirements.txt'
 }
 }
}

You can now run bolt pip from the command line and see how the specified
requirements are installed. In my example, the requirements.txt file only
lists the requests module:

(btsample) D:\Projects\Playground\bolt-sample> bolt pip
INFO - Executing Python Package Installer
Collecting requests (from -r requirements.txt (line 1))
Using cached requests-2.13.0-py2.py3-none-any.whl
Installing collected packages: requests
Successfully installed requests-2.13.0
(btsample) D:\Projects\Playground\bolt-sample>

Let’s go over the example to understand what’s going on. When bolt is executed
in a directory containing a boltfile.py, the file is loaded as any other
python module. Bolt requires the boltfile.py to define a config variable
that is set to a configuration object, which is nothing but a Python [http://www.python.org]
dictionary. The root keys in the dictionary (in our case pip) are the id of
the tasks we want to configure. Turns out Bolt provides a set of out-of-the-box
tasks that can be used without any further process, and one of them is pip.

The pip task requires to specify a command to execute. In our sample we use
the install command, but you can use any command supported by the actual
pip package Installer. The install allows to specify a requirements
file. In our example, we set the r option to the file containing the
requirements (requirements.txt). If you think about it, all we are doing
is invoking pip install -r requirements.txt, which is what you will
normally use from the command line, but Bolt is taking care of invoking the
command for us (see pip task documentation
for more information about how to use the task).

Because the pip task is provided out-of-the-box, we do not need to register
it with Bolt, so we can just execute it from the command line by invoking
bolt pip.

Cleaining PYCs and Executing Unit Tests

Before we run our unit tests, we want to clear any .pyc files that have been
generated from a previous run. Bolt provies a task (delete-pyc) to do just
that and it can be configured as follows:

import bolt

config = {
 'pip': {
 'command': 'install',
 'options': {
 'r': 'requirements.txt'
 }
 },
 'delete-pyc': {
 'sourcedir': './source',
 'recursive': True
 }
}

As you can see, the configuration of the delete-pyc task is self-explanatory.
The task will search the sourcedir specified for .pyc files and it
will delete them. Because we specified the recursive option, it will also
search the entire directory tree under source and delete all the matches
(for more information see the delete-pyc task documentation).

Let’s not stop there! We don’t want to just delete the .pyc files, we also
want to execute the unit tests. In my example, I use nose as the test
runner since Bolt already provides a task for that. Let’s take a look at the
updated boltfile.py:

import bolt

config = {
 'pip': {
 'command': 'install',
 'options': {
 'r': 'requirements.txt'
 }
 },
 'delete-pyc': {
 'sourcedir': './source',
 'recursive': True
 },
 'nose': {
 'directory': 'tests'
 }
}

bolt.register_task('run-tests', ['pip', 'delete-pyc', 'nose'])

We added nose to the configuration, which just uses a directory parameter
that points to the location of the tests (see the nose task documentation
for more information). But, we also added the following line
at the end: bolt.register_task('run-tests', ['pip', 'delete-pyc', 'nose']).
Let’s take a look at what that does.

The run-tests task, which we are defining, is composed of the three
other tasks that we have configured. These tasks will be executed sequentially
when the run-tests task is invoked by invoking Bolt as bolt run-tests.
We can additionally run bolt delete-pyc to just delete the .pyc files,
run bolt nose to just run the unit tests, and of course bolt pip as we
saw before.

Bolt will take care of executing the task you provide and insuring the correct
configuration is passed to the task. It will also handle and report errors
and stop execution if there are any problems, so the problems can be fixed.

Display a Greeting When Bolt Runs

Bolt provides a set of tasks that can be used as soon as you install it, but
it also allows you to add other tasks that are specific to your project.
Furthermore, tool makers can provide their own tasks to integrate Bolt with
their applications and libraries. To demonstrate how easy is to create a Bolt
task, we will provide one that displays a greeting at the begining of the
run-tests task. Let’s take a look at the implementation, and then, we’ll
discuss it.

import bolt

config = {
 'pip': {
 'command': 'install',
 'options': {
 'r': 'requirements.txt'
 }
 },
 'delete-pyc': {
 'sourcedir': './source',
 'recursive': True
 },
 'nose': {
 'directory': 'tests'
 },
 'greet': {
 'message': 'Welcome to Bolt!'
 }
}

def greet_task(**kwargs):
 config = kwargs.get('config')
 message = config.get('message')
 print(message)

bolt.register_task('greet', greet_task)
bolt.register_task('run-tests', ['greet', 'pip', 'delete-pyc', 'nose'])

We first added a configuration key greet for our task. This is the id we
chose for the task, and we will also use it to register it with Bolt. The
configuration takes a message option, which value is the message we want to
display.

Then we added a new function greet_task, which is the callable object that
Bolt will call when the task is invoked. The funtion receives a keyword
arguments object, which contains a config, which value is the configuration
we defined. The function retrieves the configuration and reads the message from
it in order to display it. Notice that the value of the config keyword
argument is not the entire configuration; it just contains the parameters
related to our task, in other words the value is:

{
 'message': 'Welcome to Bolt!'
}

Once we have the function and its configuration, we register it by calling
bolt.register_task('greet', greet_task) where the first parameter is the id
of our task, which we also used for the configuration, and the second parameter
is the callable we want to execute, in our case the function greet_task.
Finally, we put our greet task at the beginning of run-tests and we will
see the message when we execute it.

That’s it! You can run bolt greet to just see the message, or you can
execute bolt run-tests and see the message followed by the other tasks.

Disecting the Bolt File

The boltfile.py is the main script used by Bolt to execute the tasks which
with it is invoked. The file contains the task definitions, as well as, the
configuration parameters for the tasks. If you haven’t done so
yet, review the Getting Started guide to familiarize
your-self with a very basic example of a boltfile.py. In this section, we
will look at more advanced examples to learn the different features of Bolt.

In essence, a Bolt File is just a Python [http://www.python.org] script. Within it, you can use the
Bolt API to define and configure the tasks you want to execute. You can name the
script whatever you want and place it in any location, but Bolt, by default,
will look in the current working directory for a file named boltfile.py and
use it if no other file is specified. This is the recommended way to work with
Bolt.

Assumes boltfile.py in the current working directory.
bolt task-to-execute

Uses specified file.
bolt task-to-execute --bolt-file myboltfile.py

Tip

You can run bolt --help to see Bolt’s usage and supported arguments.

The Structure of a Bolt File

There are three distinct sections in a boltfile.py. The first section, like
in any other Python [http://www.python.org] module is the imports, and your can bring in any module
you want.

The second part is the registration of tasks. This involves registering custom
task modules you want to use, as well as, defining custom tasks to create more
complex execution workflows.

The third section of the boltfile.py is the configuration. Every Bolt File
must declare a config variable set to a dictionary where the configuration
parameters are defined. The dictionary can be empty, but it is required to
define the variable. Of course, an empty dictionary will not help us to do
much.

The following shows the contents of the boltfile.py that we created in the
Getting Started guide and illustrates the three
sections.

Imports section
import bolt

Task registration section
bolt.register_task('run-tests', ['pip', 'delete-pyc', 'nose'])

Configuration section
config = {
 'pip': {
 'command': 'install',
 'options': {
 'r': 'requirements.txt'
 }
 },
 'delete-pyc': {
 'sourcedir': './source',
 'recursive': True
 },
 'nose': {
 'directory': 'tests'
 }
}

Tip

It doesn’t make any difference if you include your configuration before the
registration of tasks. As a matter of fact, I started doing it that way
myself because of the experience I had with Grunt [http://gruntjs.com/]. But my experience has
been that it makes the boltfile.py more readable if you register your
tasks right after the imports, and users can see the tasks available
immediately after opening the file. Overtime, your configuration will grow
with the usage of Bolt and users will have to scroll all the way down to
find the available tasks, which is, usually, the most important part of the
file.

The Import Section

The import section of the boltfile.py is no different than the imports in any
other python script or module. You will always need to import bolt to gain
access to its API, which is used, among other things, to register tasks. You will
import and register other modules containing custom tasks. Finally, you can
import any other libraries you might need.

The Task Registration Section

There are different ways to define and register tasks with Bolt. In this section,
we will take a look at the different options and when we should use each one of
them.

Bolt Provided Tasks

Bolt provides a set of tasks that are always available when executing Bolt. You
don’t need to register them because Bolt does that for you, and they
can be configured without prior registration. This is the case for the tasks
shown in the following example, which we will use as starting point.

import bolt

config = {
 'pip': {
 'command': 'install',
 'options': {
 'r': 'requirements.txt'
 }
 },
 'delete-pyc': {
 'sourcedir': './source',
 'recursive': True
 },
 'nose': {
 'directory': 'tests'
 }
}

The tasks in the example (pip, delete-pyc, and nose) are provided by
Bolt; therefore, we don’t need to register them to use them. With this simple
example you can still run each task independently to execute them.

Install requirements
bolt pip

Delete existing .pyc files
bolt delete-pyc

Execute unit tests
bolt nose

As you can see, it is very easy to leverage the existing functionality in Bolt,
but the true power comes from the ability to define and create your own tasks
or use other tasks provided by tool and library implementers. Let’s take a look
at other ways to define tasks.

Composing Tasks From Existing Ones

In the example above, we can use any of the three tasks provided by Bolt, but
most of the time I will want to run all those tasks together. I want to make
sure that when anyone working on my project gets source changes they can have
the correct environment setup; therefore, I want them to install any required
packages, and execute the tests with a clean run. For that I can define a
composite task that will execute all three. The following shows the full contents
of the boltfile.py after adding the composite tasks.

import bolt

bolt.register_task('run-tests', ['pip', 'delete-pyc', 'nose'])
bolt.register_task('default', ['run-tests'])

config = {
 'pip': {
 'command': 'install',
 'options': {
 'r': 'requirements.txt'
 }
 },
 'delete-pyc': {
 'sourcedir': './source',
 'recursive': True
 },
 'nose': {
 'directory': 'tests'
 }
}

We added two additional lines to our bolt file. The first one defines a
composite task run-tests that execute the previous three. The second line
registers a default task that executes the previously defined run-tests.
Both of this tasks will execute the same set of steps.

Now, I can execute bolt run-tests from the command line to execute all tasks,
or I can simply call bolt.

Tip

The default task is a special task that gets executed when calling Bolt
without specifying a task to execute. You should always provide a default
task in your boltfile.py.

Tip

You want your default task to be compose of the steps you will execute
more often. I like to define default as the task that I will
always execute when I pull new changes from my central repo and before
publishing those changes, so I usually include steps to install new
required packages, clean the project tree, and execute the unit tests.

Registering Additional Modules

As you start using Bolt more, you will find your-self implementing your own
custom tasks or using modules provided by third-party libraries you use (see
Creating Custom Tasks).
In order to use those tasks, you need to import the module containing them and
register the module. The following example shows how can your register the tasks
in a custom or third-party provided module.

Removed contents for simplicity.
import my_custom_tasks

bolt.register_module_tasks(my_custom_tasks)

Now, all the tasks registered by my_custom_tasks become available for use
and configure (see Creating Custom Tasks for more
information about how to create your own).

The Power of Configuration

Bolt provides a very powerful configuration mechanism that abstracts what the
user wants to do from task implementers that expose configuration settings. This
means Bolt gives users the power to describe the configuration parameters of a
task, and it takes care of resolving the configuration before it is sent to the
task implementation, so that developers implementing tasks get a consistent set
of configuration options.

To illustrate how Bolt processes configuration options, I will describe a
scenario that I recently run into in one of my projects.

In a recent project, I found myself using the awscli and boto3 libraries
available for Python [http://www.python.org]. Without going too much into the details of what I was
doing, let’s just say that I usually work on a Windows machine, but many of my
applications and scripts are executed in Linux; therefore, cross-platform it is
very important for my projects (and one of the reasons why I choose Python [http://www.python.org]).

Turns out that when you use awscli and/or boto3 in Windows, you need to
install an additional dependency called pypiwin32. This dependency is not
installed nor can be installed on Linux, so that simple fact threw me out for a
few seconds on how I was going to manage the requirements for my project.
Thankfully, I had Bolt at my disposal and I was able to fix the problem in a
very simple, elegant way.

The first step was to add awscli and boto3 to my requirements.txt
file.

In requirements.txt
awscli>=1.11
boto3>=1.4

Then, I created a second requirements file called requirements_win.txt and
added the Windows specific library.

In requirements_win.txt
pypiwin32>=219

I still want all the people collaborating in my code to have the correct set of
requirements, but I don’t want them to have to worry about what they need to
install because we use bolt for that. So, this is what I did in my bolt file:

Many lines removed for simplicity.

import bolt
import sys

Define a task to install the requirements.
if sys.platform.startswith('win'):
 bolt.register_task('requirements', ['pip', 'pip.win']) # More on this below.
else:
 bolt.register_task('requirements', ['pip'])

bolt.register_task('run-tests', ['requirements', 'delete-pyc', 'nose'])
bolt.register_task('default', ['run-tests'])

config = {
 'pip': {
 'command': 'install',
 'options': {
 'r': 'requirements.txt'
 },
 'win': {
 'options': {
 'r': 'requirements_win.txt'
 }
 }
 },
}

This may seem more complicated than it really is once you understand how Bolt
processes configurations, so let’s take a look at it step by step.

The first change I made was to check for the OS in which we are running and
register a requirements task to install the requirements accordingly. Since,
the boltfile.py is just a Python [http://www.python.org] script, I can import sys and create
conditional code if I want to.

Now, let’s take a look at what I do on Windows because it is something we haven’t
seen yet bolt.register_task('requirements', ['pip', 'pip.win']). What is this
``pip.win thing?

There might be times when I want to configure a task differently depending on the
environment I’m running (I will show another example later, but this is so cool
that we will expain it first). In those circumstances, instead of providing a
completely different boltfile.py with a different configuration, Bolt allows
me to nest configuration options that I name my self.

The pip task knows nothing about the win option specified, and it doesn’t
have to worry about it, but when the pip task is invoked as pip.win, Bolt
takes the configuration options for pip and then adds or overwrites any
options defined in the nested win configuration. Therefore, the configuration
passed to the pip task when called as pip.win will look like the following:

config = {
 'commmand': 'install', # Taken from parent
 'options': {
 'r': 'requirements_win.txt'
 }
}

When the task is invoked as pip, the configuration passed is:

config = {
 'commmand': 'install', # Taken from parent
 'options': {
 'r': 'requirements.txt'
 }
}

In the registration of the requirements task for Windows, we execute both,
where if we run on Linux we just execute pip.

Tip

You can nest configurations as deep as you want, so it will be possible to
define tasks as pip.win.32 and pip.win.64 if needed. In my experience,
one level of nesting is what you will need for most practical cases, and it
keeps the configuration readable.

A More Common Configuration Example

The previous example is pretty cool, and it solve a very real problem, but most
of the time you will not need or want to have a lot of conditional code in your
boltfile.py. The following scenario illustrates a more common approach to
define and configure tasks differently for different environments.

Many times I find my self wanting to execute a task differently when I run it in
my local development environment than when that task is running in the CI/CD
pipeline for my project. A very common scenario for all my projects is that when
I run the unit tests locally, which I do all the time, I run them with bare
options, so I configure the task in the same way as the examples above.

During the build process, however, I want to get more information about the
execution of the tests, and I want to produce some reports and post them to my
CI/CD system. Usually, I want a tests results report, and a code coverage
report. The following shows the tasks I normally register and configure to
execute the unit tests in the different environments.

Lines omitted for simplicity.

Developer's tasks. I like to keep the names short, to type less when
I run them.
#
bolt.register_task('ut', ['pip', 'delete-pyc', 'nose'])

Ci/CD Tasks
#
bolt.register_task('run-tests', ['pip', 'nose.ci'])

config = {
 # Again, lines omitted for simplicity.

 'nose': {
 'directory': './tests',
 'ci': {
 'options': {
 'with-xunit': True,
 'xunit-file': os.path.join('output', 'unit_tests_log.xml'),
 'with-coverage': True,
 'cover-erase': True,
 'cover-package': './source',
 'cover-branches': True,
 'cover-html': True,
 'cover-html-dir': os.path.join('output', 'coverage')
 }
 }
 }
}

When I’m working on the project, I execute bolt ut, which does all the
operations I want in my local development environment. In CI/CD, I execute
bolt run-tests, which runs different tasks, but I want you to focus on the
different options that I use with nose.

Without using any conditional code in the boltfile.py` itself, I can run
``nose in different ways by specifying a nested configuration ci.

Tip

If you look at the options set for nose.ci, you can see that I use
os.path.join() to resolve the location where reports will be generated.
This illustrates the power of configuration as code.

Bolt Provided Tasks

Bolt provides the implementation of a few common tasks that most Python [http://www.python.org]
projects should be able to leverage their functionality. This tasks are
registered when Bolt is executed, and users only need to configure and invoke
them in their boltfile.py.

The following documents the included tasks and how they work.

delete-files

This task deletes files matching a specified pattern found in a specified
sourcedir. A recursive flag can be specified to search also in
sub-directories of sourcedir.

The pattern specified follows the matching rules of the Python [http://www.python.org] standard
library glob.glob() function.

The following example configures the delete-file task to delete all the
files in a tmp directory located at the project root, and all its
sub-directories:

config = {
 'delete-files': {
 'sourcedir': './tmp',
 'pattern': '*.*',
 'recursive': True
 }
}

The sourcedir configuration option indicates the directory to search for
file matches. This option is required.

The pattern option specifies the matching pattern to find files. This
option is required.

The recursive option indicates if sub-directories should be searched for
matches. This option is optional and has a value of False by default.

delete-pyc

Searches for .pyc in the specified directory and deletes them. The task
allows to recursively search sub-directories for .pyc files.

The following example shows how to configure the task to recursively delete
files from a source directory and its sub-directories:

config = {
 'delete-pyc': {
 'sourcedir': './source',
 'recursive': True
 }
}

The sourcedir option specifies the directory to search for .pyc files.
This option is required.

The recursive option indicates if sub-directories should be searched for
matches. This option is optional and has a value of False by default.

	
class bolt.tasks.bolt_delete_files.DeleteFilesTask

	

	
class bolt.tasks.bolt_delete_files.DeletePycTask

	

mkdir

Creates the directory specified, including intermediate directories, if they
do not exist:

config = {
 'mkdir': {
 'directory': 'several/intermediate/directories'
 }
}

	
class bolt.tasks.bolt_mkdir.ExecuteMKDir

	

shell

The shell task allows executing a shell command with specified arguments
inside the bolt execution context. This task comes handy when no bolt
specific implementation has been provided for a particular task or to invoke
an existing script that should be included as part of the process.

The trade-off of using this task is that commands are system specific and
it makes it harder to implement a cross-platform boltfile.py.

The task takes a command parameter specifying the command to be executed,
and an arguments option that must be set to a list of string for each of
the command line argument tokens to be passed to the tool.

The following example shows how to invoke an existing Python [http://www.python.org] script that
takes a few parameters:

config = {
 'shell': {
 'command': 'python',
 'arguments': ['existing_script.py', '--with-argument', '-f', '--arg-with', 'a_value']
 }
}

Todo

Find a better example.

	
exception bolt.tasks.bolt_shell.ShellError(shell_code)

	

	
class bolt.tasks.bolt_shell.ShellExecuteTask

	

pip

The pip task provides an automation hook to execute pip inside of
Bolt. In its simplest form, the task does not require any configuration,
and it just assumes a requirements.txt file is provided at the
current working directory, which will be used to execute a pip install.

The task also provides a simple form where a command and package
are specified to allow install a single package.

config = {
 'pip': {
 'command': 'install',
 'package': 'package_name'
 }
}

The supported pip functionality can be configured by setting the
command option to a valid pip command, and providing a set of
arguments to pip as an options dictionary where the keys are
valid pip arguments in short or long form without leading dashes
and the values are the respective argument values, or True in the
case of flags. The following shows a more advance use of this task.

config = {
 'pip': {
 'command': 'install',
 'options': {
 'r': './data/project_requirements.txt',
 'target': './requirements',
 'upgrade': True,
 'force-reinstall': True
 }
 }
}

	
class bolt.tasks.bolt_pip.ExecutePipTask

	

	
exception bolt.tasks.bolt_pip.PipError(pip_code)

	

set-vars

Sets environment variables for all specified variable:value pairs. The following
shows how the task is configured:

config = {
 'set-vars': {
 'vars': {
 'STRING_VAR': 'string_value',
 'INT_VAR': 10
 }
 }
}

Numeric vars will be converted to their integer representation.

	
class bolt.tasks.bolt_set_vars.SetVarsTask

	

setup

The setup task provides an automation hook to execute setup.py
commands and options inside of Bolt. The task, in its simplest form,
assumes a default setup.py in the current working directory and
uses a build command as a default if no configuration is provided.

The task configuration allows spcifying a setup script, which by
default will be set to setup.py if no script is specified, a valid
command, and it command arguments. The following example shows how to
configure the task.

config = {
 'setup':{
 'script': 'special_setup.py',
 'command': 'install',
 'options': {
 'verbose': True,
 'dry-run': True
 }
 }
}

	
exception bolt.tasks.bolt_setup.BuildSetupError(code=4)

	

	
class bolt.tasks.bolt_setup.ExecuteSetupTask

	

nose

Executes unit tests using nose and nosetests as the unit test runner. The task
allows to specify the directory where the tests are located through the directory
parameter and supports all the arguments available in the installed version
of nosetests:

config = {
 'nose': {
 'directory': 'test/unit',
 'options': {
 'xunit-file': 'output/unit_tests.xml'
 'with-coverage': True,
 'cover-erase': True,
 'cover-package': 'mypackage',
 'cover-html': True,
 'cover-html-dir': 'output/coverage',
 }
}

	
class bolt.tasks.bolt_nose.ExecuteNoseTask

	

	
exception bolt.tasks.bolt_nose.NoseError(nose_code)

	

conttest

This task uses conttest to monitor a directory for changes and executes the specified
task everytime a change is made. The following configuration is supported:

config = {
 'conttest': {
 'task': 'registered_task',
 'directory': './directory/to/monitor/'
 }
}

The task parameter is the task to be executed and must be registered in boltfile.py.
The directory parameter is the directory (including sub-directories) to monitor for
changes.

To use this task, you need to have conttest installed, which you can do by calling:

pip install conttest

	
class bolt.tasks.bolt_conttest.ExecuteConttest

	

Creating Custom Tasks

The real power of Bolt is the ability to extend its functionality through new
tasks that can be registered, configured, and executed through the boltfile.py.
This section explains the different ways in which you can provide new tasks to
bolt and some best practices that you should consider when creating your own
tasks.

What is a Bolt Task

A Bolt task is nothing but a Python callable object that will be invoked when
its id is scheduled for execution. This means that to provide a new custom task
you need to implement the callable and register it with Bolt giving it a unique
id, which can be used to invoke the task.

The Getting Started guide demonstrated this with a
very simple example. Let’s revisit it on its own for clarity:

import bolt

def greeting(**kwargs):
 config = kwargs.get('config')
 message = config.get('message')
 print(message)

bolt.register_task('greet', greeting)

config = {
 'greet': {
 'message': 'Hello from Bolt!'
 }
}

In this example, we implement our task right in the boltfile.py. As you will
see later, the recommended way is to create your tasks in their own package or
modules so you can re-use them, but this example will help us understand how
things work.

Right after the import statement, you have our task callable, which is a
function that takes a set of keyword arguments (**kwargs). The function reads
the config argument and from it, it extracts the message we want to
display.

The next step is to register the callable with Bolt, which is done by the call
to bolt.register_task(). We pass a unique identifier to our task and the
callable that will be invoked.

Finally, we use the unique identifier for the task in our config to configure
the message that we want to display.

As you can see, it is very simple to add a new custom task, but you will want to
implement your tasks in a way that you can re-use them in different projects.
The best way to do that is by creating your own modules or packages containing
the Bolt tasks and then install them as requirements to the projects that use
them. Let’s take a look at that.

Implementing Custom Bolt Task Modules/Packages

Like any other python tool or application, you want to implement your Bolt tasks
in their own modules or packages, so that you can install them as requirements
in the projects you use them. The process to implement the tasks in a module
is the same as above. The only difference is that you will have to provide a
mechanism to register those tasks with Bolt, so they become available. Let’s
take a look at an example:

in my_bolt_module.py

def greeting(**kwargs):
 config = kwargs.get('config')
 message = config.get('message')
 print(message)

def register_tasks(registry):
 registry.register_task('greet', greeting)

As we discussed, the implementation stays the same, but we added a
register_tasks() function that takes a registry parameter, which
allows us to make available the task to clients.

Now if someone wants to use our task, they can install the module and add it
to the boltfile.py:

import bolt
import my_bolt_module

bolt.register_module_tasks(my_bolt_module)

config = {
 'greet': {
 'message': 'Hello from Bolt!'
 }
}

In this example, we first import the module containing the tasks, and then we
register them by calling bolt.register_module_tasks(). Bolt will create the
registry instance and pass it to the registration function in the module,
which will make the task available.

Note

The bolt.register_task() function grabs the instance of the registry
and delegates to its method to register the task. Even-thought the result
is the same, you should always use bolt.register_task() in your
boltfile.py and registry.register_task() in the register_task()
function of your custom modules.

Using a Callable Class to Implement Bolt Tasks

Bolt tasks are callable objects; therefore, you can implement your task in a
callable class. The following example shows how to implement the greet task
in a callable class:

in my_bolt_module.py

class GreetingTask(object):

 def __call__(**kwargs):
 config = kwargs.get('config')
 message = config.get('message')
 print(message)

def register_tasks(registry):
 registry.register_task('greet', GreetingTask())

This example implements the same task, but it uses a callable class (a class
that implements a __call__() method) to implement the functionality. When
the task is registered, we use a class instance as opposed to the function
name as the callable registration. Other than that, the code is the same.

You may ask your-self why use a class when implementing a function is simpler.
For very simple tasks, a function will work fine. When I started working on Bolt,
most of the standard tasks were implemented as functions. Overtime, I reealize
that classes will suit me better for the following reasons:

Classes are more suitable for testing. I write all my code using a TDD
(Test Driven Development) process, and you should too. Unit testing functions
that return a result is very simple, but testing functions with side-effects, it
is a little bit more complicated. It didn’t take long to see that most task were
accessing external resources or code that will perform operations but will not
return any useful values. In these cases, unit testing a function becomes very
difficut, because it is hard to mock a specific state. Using a class makes unit
testing simpler because you can always set the class to a desired state.

Classes simplify passing parameters. In our examples, we are dealing with
just one option in our configuration. As soon as you start supporting more
configuration options, you have to deal with validation of those options and
conditional code that depends of values of those parameters. Classes work a
lot better because you can have internal implementation methods that can
access those options as data members, as opposed to having to pass them as
parameters to other functions.

Classes can keep alive resources after execution. Imagine a task that needs
to start a web-server to make a service available, while subsequent tasks run
tests against the server. This task will have to start the service in a separate
process and keep it running until the tests are done, but it will be nice to
shut down the server once the test is complete. As we will see below, Bolt
supports a tear_down() method that gets invoked at the end, and where
resources can be freed. This can only be done with classes and not with functions.

The Execution Context

We have seen how to create new tasks and how support configuration options for
them. But once in a while, you will run into a situation where it will be nice
to share some data or state among different tasks. In those situations, you can
use the execution context object.

The execution context is a Python [http://www.python.org] dictionary like object where you can store
key/value pairs to share them with subsequent tasks.

Tip

The context object is a plain Python [http://www.python.org] dictionary that is passed to every
task being executed, but this might change in the future, so you should
assume that the only available interface for this object is that of a
dictionary.

I am not a big fan of sharing data between tasks because it can create unwanted
dependencies among otherwise independent tasks, but I also recognize that it is
a concept that may come handy in certain situations. In general, try to avoid
task implementations that rely on certain properties available in the context
object and always provide suitable defaults in case the properties are missing.
Let’s take a look at a scenario where the execution context might come handy.

Assume we are writing a task that requires a job name from a service and doing
so, it is an expensive operation. Furthermore, there is group of tasks that
will use that job name, so you want to retrieve it once and use it in all other
tasks.

In a situation like this, we will write a task that retrieves the job name and
stores it in the context object, so subsequent tasks can use it (I’m using
functions for simplicity, but I prefer classes).

In my_job_tasks.py

def retrieve_job_name(**kwargs):
 config = kwargs.get('config')
 job_id = config.get('job-id')
 manager = JobManager()
 job = manager.get_job(job_id) # Very expensive operation.
 context = kwargs.get('context')
 context['job-name'] = job.name

def notify_job_name(**kwargs):
 config = kwargs.get('config')
 context = kwargs.get('context')
 job_name = config.get('job-name') or context.get('job-name')
 notifier = Notifier()
 notifier.notify_job_name(job_name)

def register_tasks(registry):
 registry.register_task('retrieve-job', retrieve_job_name)
 registry.register_task('notify-job-name', notify_job_name)

As you can see, the retrieve_job_name task retrieves the job name and
stores it in the context object. Then, the value is used by the
notify_job_name task. Notice how we still try to retrieve the job name
from the task config. This allows to override that value in the
boltfile.py which might come handy during testing.

Tip

When implementing a task that relies on some information stored in the
context object, think about whether there is a suitable default or might be
convenient to override the value through the configuration.

Tip

Avoid creating dependencies between tasks by over-using the context object.
However, you’ll find that some times it is a very handy feature.

Contributing to Bolt

Todo

Write contribute topic.

Documentation ToDos

The following is a list of ToDos to improve the documentation. Ideally, we won’t
have any entries here.

Todo

Write contribute topic.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/bolt-task-automation/checkouts/latest/docs/source/contribute.rst, line 5.)

Todo

Find a better example.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/bolt-task-automation/checkouts/latest/bolt/tasks/bolt_shell.py:docstring of bolt.tasks.bolt_shell, line 26.)

 Python Module Index

 b

 		 	

 		
 b	

 	[image: -]
 	
 bolt	

 	
 	
 bolt.tasks.bolt_conttest	

 	
 	
 bolt.tasks.bolt_delete_files	

 	
 	
 bolt.tasks.bolt_mkdir	

 	
 	
 bolt.tasks.bolt_nose	

 	
 	
 bolt.tasks.bolt_pip	

 	
 	
 bolt.tasks.bolt_set_vars	

 	
 	
 bolt.tasks.bolt_setup	

 	
 	
 bolt.tasks.bolt_shell	

Index

 B
 | D
 | E
 | N
 | P
 | S

B

 	
 	bolt.tasks.bolt_conttest (module)

 	bolt.tasks.bolt_delete_files (module)

 	bolt.tasks.bolt_mkdir (module)

 	bolt.tasks.bolt_nose (module)

 	
 	bolt.tasks.bolt_pip (module)

 	bolt.tasks.bolt_set_vars (module)

 	bolt.tasks.bolt_setup (module)

 	bolt.tasks.bolt_shell (module)

 	BuildSetupError

D

 	
 	DeleteFilesTask (class in bolt.tasks.bolt_delete_files)

 	
 	DeletePycTask (class in bolt.tasks.bolt_delete_files)

E

 	
 	ExecuteConttest (class in bolt.tasks.bolt_conttest)

 	ExecuteMKDir (class in bolt.tasks.bolt_mkdir)

 	
 	ExecuteNoseTask (class in bolt.tasks.bolt_nose)

 	ExecutePipTask (class in bolt.tasks.bolt_pip)

 	ExecuteSetupTask (class in bolt.tasks.bolt_setup)

N

 	
 	NoseError

P

 	
 	PipError

S

 	
 	SetVarsTask (class in bolt.tasks.bolt_set_vars)

 	
 	ShellError

 	ShellExecuteTask (class in bolt.tasks.bolt_shell)

 _static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/up.png

nav.xhtml

 Table of Contents

 		
 Bolt Task Automation

 		
 Using Bolt

 		
 Getting Started

 		
 Installing Bolt

 		
 Your First Bolt File

 		
 Disecting the Bolt File

 		
 The Structure of a Bolt File

 		
 The Import Section

 		
 The Task Registration Section

 		
 The Power of Configuration

 		
 Bolt Provided Tasks

 		
 delete-files

 		
 delete-pyc

 		
 mkdir

 		
 shell

 		
 pip

 		
 set-vars

 		
 setup

 		
 nose

 		
 conttest

 		
 Creating Custom Tasks

 		
 What is a Bolt Task

 		
 Implementing Custom Bolt Task Modules/Packages

 		
 Using a Callable Class to Implement Bolt Tasks

 		
 The Execution Context

 		
 Contributing to Bolt

 		
 Documentation ToDos

