

 Navigation

 	
 index

 	bmgc-docs 1 documentation

BMGC Workflow Documentation

Please consider using the updated gopher-pipelines [https://bitbucket.org/jgarbe/gopher-pipelines/wiki/Home] instead of these older pipelines:

Documentation has moved to bitbucket [https://bitbucket.org/jgarbe/gopher-pipelines/wiki/old/bmgc-docs/index.md].

 Copyright 2014, John Garbe.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	bmgc-docs 1 documentation

Index

 Copyright 2014, John Garbe.
 Created using Sphinx 1.3.5.

 _static/up.png

_static/minus.png

_static/comment-close.png

_static/ajax-loader.gif

_static/file.png

_static/down-pressed.png

_static/plus.png

_static/comment-bright.png

old-umgc.html

 Navigation

 		
 index

 		bmgc-docs 1 documentation »

UMGC Pipeline

The UMGC pipeline processes an Illumina sequencing project folder and generates a quality-control report. Is is specifically designed to work with large numbers of samples. It can be run on a single node or multiple nodes. It will automatically utilize multiple nodes when available.

The Pipeline

The pipeline performs the following steps:

The script umgcQC-ss.pl is designed to process one project folder. It is run once on each sample performing these analyses:

		Concatenate: Samples spread across multiple lanes are concatenated together (enabled with the option “-c” option)

		FastQC: FastQC is run on each fastq file to generate sequence quality plots

		Summary Plots: Plots are generated to summarize number of reads per sample and %GC content per sample

Known Issues

-This pipeline is undergoing continuing improvement.

Input

Options for umgcQC-ss.pl

		
-f folder
		A project folder, as created by Illumina demultiplexing software

		
-o folder
		A folder to deposit final results

		
-c
		Concatenate multi-lane samples

		
-t folder
		A temporary/scratch folder

		
-p integer
		Number of samples to run in parallel on each node

		
-n string
		Run name

		
-h
		Print usage instructions and exit

		
-v
		Print more information whie running (verbose)

Fastq file support:
Paired-end and single-end reads are supported. HiSeq output folders are supported, but MiSeq folders have not yet been tested.

Output

		Report

		Quality control report in html format

Running the pipeline

Log in to MSI

		Open a terminal window (OSX) or putty (Windows, www.putty.org)

		Open an SSH connection to MSI (replace USERNAME with your MSI username):

$ ssh USERNAME@login.msi.umn.edu

		Log on to the Itasca supercomputer:

$ ssh itasca

Lauch an analysis job

Note

Interactive and submitted jobs may start running immediatly, or if Itasca is very busy a job may wait in line for several hours until resources are availble to run the job.

Interactive

Start an interactive job on Itasca:

$ qsub -I -l walltime=8:00:00,nodes=1:ppn=8

Load necessary software modules:

$ module load umgcQC

Run the script. You must specify the location of a project folder using the “-f” option. Specify how many samples to process at a time using the “-p” option:

$ umgcQC-ss.pl -p 8 -f /path/to/project/folder

Submit Job

A PBS script can be submitted to a queue where it will run when resources are available. Create a pbs file named umgc.pbs containing the following text:

#!/bin/bash -l
#PBS -l nodes=1:ppn=8,walltime=1:00:00
#PBS -m abe

cd $PBS_O_WORKDIR

module load umgcQC

umgcQC-ss.pl -p 8 -f fastq/folder

Submit the pbs file to the job queue:

$ qsub umgc.pbs

You can check the status of jobs by running qstat (replace USERNAME with your MSI username):

$ qstat -a -u USERNAME

Job ID Username Queue Jobname SessID NDS TSK Memory Time S Time
----------------------- ----------- -------- ---------------- ------ ----- ------ ------ --------- - ---------
1023053.node1081.local jgarbe batch umgc.pbs -- 1 8 50gb 12:00:00 Q --

The S column indicates if a job is Running or Queued.

Multi-node jobs require an additional command:

#!/bin/bash -l
#PBS -l nodes=1:ppn=8,walltime=2:00:00
#PBS -m abe

cd $PBS_O_WORKDIR

module load umgcQC

export PARALLEL="--workdir . --env PATH --env LD_LIBRARY_PATH --env LOADEDMODULES --env _LMFILES_ --env MODULE_VERSION --env MODULEPATH --env MODULEVERSION_STACK --env MODULESHOME --env OMP_DYNAMICS --env OMP_MAX_ACTIVE_LEVELS --env OMP_NESTED --env OMP_NUM_THREADS --env OMP_SCHEDULE --env OMP_STACKSIZE --env OMP_THREAD_LIMIT --env OMP_WAIT_POLICY"

umgcQC-ss.pl -p 8 -f fastq/folder

Review results

The results of the analysis are located in /panfs/roc/scratch/USERNAME-umgc-RUNNAME/

Runtimes

This pipeline can process a HiSeq 2500 runfolder in high-speed-mode in 5-10 minutes. Pass the number of cores available to the pipeline using the “-p” option.

Support

Contact John Garbe at jgarbe@umn.edu

 © Copyright 2014, John Garbe.
 Created using Sphinx 1.3.5.

old-vdl.html

 Navigation

 		
 index

 		bmgc-docs 1 documentation »

VDL Pipeline

The VDL pipeline processes a set Veterinary Diagnostic Lab samples and generates a quality report. Is is specifically designed to work with large numbers of samples. It can be run on a single node or multiple nodes. It will automatically utilize multiple nodes when available.

The Pipeline

The pipeline performs the following steps:

The script vdlQC-ss.pl is designed to process one VDL sample. It is run once on each sample performing these analyses:

		Subsampling: Each fastq file is (optionally) reduced to a specified number of reads in order to reduce processing time

		FastQC: FastQC is run on each fastq file to generate sequence quality plots

		Trimming/Filtering: Sequence adapters are removed and low quality bases are trimmed using Trimmomatic (3bp sliding-window trimming from 3’ end requiring minimum Q16)

		FastQC: FastQC is run on each filtered fastq file to generate sequence quality plots (enabled with the optional “-q” option)

		Host contamination: Each sample is aligned to a reference host genome using Bowtie and a new fastq file is generated, with reads that aligned to the host genome removed

The following steps are performed after all individual samples are processed:

		Summary Plots: Several plots are generated to summarize fastq file quality.

Known Issues

		This pipeline is undergoing continuing improvement.

		Loading the dnaseqQC module generates a three-line message from Picard about the PTOOL variable, which can be ignored, as well as two errors about loading an ompi module, which can also be ignored.

Input

Options for vdlQC.pl

		
-f folder
		A folder containing fastq files to process

		
-i file
		A Bowtie reference genome index

		
-m file
		A mapping file

		
-o folder
		A folder to deposit final results

		
-t folder
		A temporary/scratch folder

		
-p integer
		Number of samples to run in parallel on each node

		
-s integer
		Subsample the specified number of reads from each sample. 0 = no subsampling

		
-c
		Continue where a failed/interrupted run left off

		
-e file
		File with extra options for trimmomatic

		
-h
		Print usage instructions and exit

		
-v
		Print more information whie running (verbose)

Fastq file support:
Paired-end reads are supported, single-end read support may be added in the future if requested. If you have fastq files with names not following the Illumina Casava format you may need to create a mapping file by hand. (See documentation for the createmappingfile.pl script for additional information).

Output

		Report

		An html report is generate containing a summary of the analysis and complete details about the output of the program.

Running the pipeline

Log in to MSI

		Open a terminal window (OSX) or putty (Windows, www.putty.org)

		Open an SSH connection to MSI (replace USERNAME with your MSI username):

$ ssh USERNAME@login.msi.umn.edu

		Log on to the Mesabi (or Itasca) supercomputer:

$ ssh mesabi

Lauch an analysis job

Note

Interactive and submitted jobs may start running immediatly, or if the supercompter is very busy a job may wait in line for several hours until resources are availble to run the job.

Interactive

Start an interactive job on Itasca:

$ qsub -I -l walltime=8:00:00,nodes=1:ppn=24

Load necessary software modules:

$ module load dnaseqQC

Run the script. You must specify the location of a folder containing fastq files to process using the “-f” option and a bowtie index. Specify how many samples to process at a time using the “-p” option (recommended values: Itasca 4; ItascaSB 6; Mesabi 8):

$ vdlQC.pl -p 8 -f /path/to/fastq/folder -i /panfs/roc/rissdb/genomes/Homo_sapiens/hg319/bowtie/hg19

Submit Job

A PBS script can be submitted to a queue where it will run when resources are available. Create a pbs file named vdl.pbs containing the following text:

#!/bin/bash -l
#PBS -l nodes=1:ppn=24,walltime=24:00:00
#PBS -m abe

cd $PBS_O_WORKDIR

module load dnaseqQC

wgsQC.pl -p 1 -f fastq/folder -i bowtieindex

Submit the pbs file to the job queue:

$ qsub bdl.pbs

You can check the status of jobs by running qstat (replace USERNAME with your MSI username):

$ qstat -a -u USERNAME

Job ID Username Queue Jobname SessID NDS TSK Memory Time S Time
----------------------- ----------- -------- ---------------- ------ ----- ------ ------ --------- - ---------
1023053.node1081.local jgarbe batch vdl.pbs -- 1 8 50gb 12:00:00 Q --

The S column indicates if a job is Running or Queued.

Multi-node jobs require an additional command:

#!/bin/bash -l
#PBS -l nodes=1:ppn=24,walltime=24:00:00
#PBS -m abe

cd $PBS_O_WORKDIR

module load dnaseqQC

export PARALLEL="--workdir . --env PATH --env LD_LIBRARY_PATH --env LOADEDMODULES --env _LMFILES_ --env MODULE_VERSION --env MODULEPATH --env MODULEVERSION_STACK --env MODULESHOME --env OMP_DYNAMICS --env OMP_MAX_ACTIVE_LEVELS --env OMP_NESTED --env OMP_NUM_THREADS --env OMP_SCHEDULE --env OMP_STACKSIZE --env OMP_THREAD_LIMIT --env OMP_WAIT_POLICY"

vdlQC.pl -p 1 -f fastq/folder -i bowtieindex

Review results

The results of the analysis are located in /panfs/roc/scratch/USERNAME-vdl-RUNNAME/

Runtimes

Example run-times are not currently available

Support

If requested I will set up a google group discussion thread for this pipeline: vdlQC [https://groups.google.com/a/umn.edu/forum/#!category-topic/msi-user-questions/software/XXX]. Subscribe to it to hear about updates and changes and post feedback (bug reports or feature requests). You may also contact John Garbe directly at jgarbe@umn.edu

 © Copyright 2014, John Garbe.
 Created using Sphinx 1.3.5.

template.html

 Navigation

 		
 index

 		bmgc-docs 1 documentation »

Documentation Template

Brief introduction to content on this page

Section 1 title

		Be awesome

		Make things faster

Section 2 title

Subsection 1 title

Example of a command:

$ echo "Hello World"

Subsection 2 title

Code example:

print "Hello World\n";

Note

Special note about a topic

Warning

Don’t eat the yellow snow

Section 3 title

Bulleted list:

		Issue Tracker: github.com/$project/$project/issues

		Source Code: github.com/$project/$project

Numbered list:

		Item: Description of Item

		Another Item: Description of another item

Another numbered list:

		Item

		Another Item

Section 4 title

Parameter list:

		
-f folder
		A folder containing fastq files to process italicised words

		
-h
		Print a help message

		
-o folder
		A folder to deposit final results

Section 6 title

The project is unlicensed.

 © Copyright 2014, John Garbe.
 Created using Sphinx 1.3.5.

old-rnaseq.html

 Navigation

 		
 index

 		bmgc-docs 1 documentation »

RNA-Seq Pipeline

The RNA-Seq pipeline processes an rna-seq experiment and generates an analysis report for the customer. This pipeline works for traditional bulk RNA-seq datasets as well as single-cell RNA-Seq experiments. Is is specifically designed to work with large numbers of samples. It can be run on a single node or multiple nodes. It will automatically utilize multiple nodes when available. It is not designed to run on a shared node with other jobs, so please request all cores on a node.

The Pipeline

The pipeline performs the following steps:

The script rnaseqQC-ss.pl is designed to process one RNA-Seq sample. It is run once on each sample performing these analyses:

		Subsampling: Each fastq file is (optionally) reduced to a specified number of reads in order to reduce processing time

		Quality Control: Per-base and per-read quality score statistics are calculated for each fastq file

		FastQC: FastQC is run on each fastq file to generate sequence quality plots

		Trimming/Filtering: Sequence adapters are removed and low quality bases are trimmed using Trimmomatic (enabled with the optional “-q” option; 3bp sliding-window trimming from 3’ end requiring minimum Q16)

		FastQC: FastQC is run on each filtered fastq file to generate sequence quality plots (enabled with the optional “-q” option)

		alignment: Each sample is aligned to a reference genome using Tophat and the bam file is sorted and indexed

		Spike-in Control Alignment: Unmapped reads are (optionally) aligned against a spike-in control reference bowtie index

		Insert-size: Insert size metrics are calculated for each sample using Picard

		Abundance estimation with Cufflinks: Cuffquant is used to generate a .cxb transcript abundance file

		Abundance estimation with SubRead: The featureCounts program in the SubRead package is used to generate a transcript abundance file

The following steps are performed after all individual samples are processed:

		Summary Plots: Several plots are generated to summarize fastq file quality, read alignment statistics, insert size distributions, gene expression distributions, and sample clustering

		Cuffnorm: Cuffnorm is used to generate a table of FPKM expression data

Known Issues

		This pipeline is undergoing continuing improvement.

		Loading the rnaseqQC module generates a three-line message from Picard about the PTOOL variable, which can be ignored, as well as two errors about loading an ompi module, which can also be ignored.

Input

Options for rnaseqQC.pl

		
-f folder
		A folder containing fastq files to process default: . (the current working directory)

		
-b file
		A bowtie2 reference genome index

		
-g file
		A reference genome gtf gene annotation file

		
-r species
		Name of reference species (overrides -b and -g options; supported species: human, mouse)

		
-q
		Enable quality-control: use trimmomatic to trim adapter sequences, trim low quality bases from the ends of reads, and remove short sequences

		
-n name
		A Run name for the analysis, only letters, numbers, -, ., and _ allowed default: the name of the fastq folder

		
-m file
		A mapping file

		
-o folder
		A folder to deposit final results default: SCRATCHFOLDER/output

		
-t folder
		A temporary/scratch folder default: /panfs/roc/scratch/USERNAME-rnaseq-RUNNAME

		
-s integer
		Subsample the specified number of reads from each sample. 0 = no subsampling default: 0

		
-p integer
		Number of samples to run in parallel on each node (recommend 2 on Itasca batch nodes, 5 on Sandybridge nodes)

		
-a
		Single-cell analysis (uses a different data normalization before generating PCA plots)

		
-k
		A spike-in control fasta file

		
-e file
		File with extra options for tophat, cuffquant, or featurecounts

		
-c
		Continue where a failed/interrupted run left off

		
-v
		Print more information while running (verbose)

		
-h
		Print usage instructions and exit

Fastq file support:
Paired-end and single-end reads are supported. If you have fastq files with names not following the Illumina Casava format you may need to create a mapping file by hand. (See documentation for the createmappingfile.pl script for additional information).

Output

		Report

		An html report is generate containing a summary of the analysis and complete details about the output of the program. The output includes bam alignment files, cxb expressions files from Cufflinks, and raw expression counts from Subread FeatureCounts.

Running the pipeline

Log in to MSI

		Open a terminal window (OSX) or putty (Windows, www.putty.org)

		Open an SSH connection to MSI (replace USERNAME with your MSI username):

$ ssh USERNAME@login.msi.umn.edu

		Log on to the Itasca (or mesabi) supercomputer:

$ ssh itasca

Input experimental metadata (optional)

Providing experimental metadata (information about each sample such as treatment, group, age, gender, individualID, collection date, etc) to the pipeline will result in a more informative PCA plot and the data will get imported into the DESeq2 R data file produced by the pipeline.

Load the rnaseqQC module:

$ module load rnaseqQC

Generate a mapping file:

$ createmappingfile.pl -f /path/to/fastq/folder -o mappingfile.txt

Edit the tab-delimited mappingfile.txt with a text editor, add additional columns containing metadata about each sample.

When running the pipeline pass the mappingfile.txt to it using the -m option:

-m mappingfile.txt

Lauch an analysis job

Note

Interactive and submitted jobs may start running immediatly, or if Itasca is very busy a job may wait in line for several hours until resources are availble to run the job.

Interactive

Start an interactive job on Itasca:

$ qsub -I -l walltime=8:00:00,nodes=1:ppn=8

Load necessary software modules:

$ module load rnaseqQC

Run the script. You must specify the location of a folder containing fastq files to process using the “-f” option and a reference species. Specify how many samples to process at a time using the “-p” option (recommended values: Itasca 2; ItascaSB 5; Mesabi 8):

$ rnaseqQC.pl -p 2 -f /path/to/fastq/folder -r human

For reference species other than mouse or human you must specify a reference bowtie index and gtf file using the “-b” and “-g” options:

$ rnaseqQC.pl -p 2 -f fastqfolder -b /panfs/roc/rissdb/genomes/Bos_taurus/Bos_taurus_UMD_3.1/bowtie2/Bos_taurus_UMD_3.1 -g /panfs/roc/rissdb/igenomes/Bos_taurus/UCSC/bosTau7/Annotation/Archives/archive-current/Genes/genes.gtf

Submit Job

A PBS script can be submitted to a queue where it will run when resources are available. Create a pbs file named rnaseq.pbs containing the following text (adjust the ppn value to request on cores on a node, the pipeline doesn’t work well on partial nodes):

#!/bin/bash -l
#PBS -l nodes=1:ppn=8,walltime=24:00:00
#PBS -m abe

cd $PBS_O_WORKDIR

module load rnaseqQC

rnaseqQC.pl -p 2 -f fastq/folder -b bowtieindex -g gtffile

Submit the pbs file to the job queue:

$ qsub rnaseq.pbs

You can check the status of jobs by running qstat (replace USERNAME with your MSI username):

$ qstat -a -u USERNAME

Job ID Username Queue Jobname SessID NDS TSK Memory Time S Time
----------------------- ----------- -------- ---------------- ------ ----- ------ ------ --------- - ---------
1023053.node1081.local jgarbe batch rnaseq.pbs -- 1 8 50gb 12:00:00 Q --

The S column indicates if a job is Running or Queued.

Multi-node jobs require an additional command:

#!/bin/bash -l
#PBS -l nodes=1:ppn=8,walltime=24:00:00
#PBS -m abe

cd $PBS_O_WORKDIR

module load rnaseqQC

export PARALLEL="--workdir . --env PATH --env LD_LIBRARY_PATH --env LOADEDMODULES --env _LMFILES_ --env MODULE_VERSION --env MODULEPATH --env MODULEVERSION_STACK --env MODULESHOME --env OMP_DYNAMICS --env OMP_MAX_ACTIVE_LEVELS --env OMP_NESTED --env OMP_NUM_THREADS --env OMP_SCHEDULE --env OMP_STACKSIZE --env OMP_THREAD_LIMIT --env OMP_WAIT_POLICY"

rnaseqQC.pl -p 2 -f fastq/folder -b bowtieindex -g gtffile

Review results

The results of the analysis are located in /panfs/roc/scratch/USERNAME-rnaseq-RUNNAME/

Runtimes

Single-cell data: 94 human samples with an average of 200,000 100bp PE reads per sample took 47 minutes to run on 5 Sandybridge nodes (running 5 samples at a time on a node). Maximum memory usage: 24G.

Support

There is a google group discussion thread for this pipeline: rnaseqQC [https://groups.google.com/a/umn.edu/forum/#!category-topic/msi-user-questions/software/7rdsrhYaHN4]. Subscribe to it to hear about updates and changes and post feedback (bug reports or feature requests). You may also contact John Garbe directly at jgarbe@umn.edu

 © Copyright 2014, John Garbe.
 Created using Sphinx 1.3.5.

_static/up-pressed.png

old-wgs.html

 Navigation

 		
 index

 		bmgc-docs 1 documentation »

WGS Pipeline

The WGS pipeline processes a set of whole-genome-shotguen re-sequencing samples and generates an analysis report for the customer. Is is specifically designed to work with large numbers of samples. It can be run on a single node or multiple nodes. It will automatically utilize multiple nodes when available.

The Pipeline

The pipeline performs the following steps:

The script wgsQC-ss.pl is designed to process one wgs sample. It is run once on each sample performing these analyses:

		Subsampling: Each fastq file is (optionally) reduced to a specified number of reads in order to reduce processing time

		Quality Control: Per-base and per-read quality score statistics are calculated for each fastq file

		FastQC: FastQC is run on each fastq file to generate sequence quality plots

		Trimming/Filtering: Sequence adapters are removed and low quality bases are trimmed using Trimmomatic (enabled with the optional “-q” option; 3bp sliding-window trimming from 3’ end requiring minimum Q16)

		FastQC: FastQC is run on each filtered fastq file to generate sequence quality plots (enabled with the optional “-q” option)

		BWA alignment: Each sample is aligned to a reference genome using BWA and the bam file is sorted and indexed

		Insert-size: Insert size metrics are calculated for each sample using Picard

The following steps are performed after all individual samples are processed:

		SNP Calling: Samtools and Bcftools are used to perform joint SNP calling on all samples

		Summary Plots: Several plots are generated to summarize fastq file quality, read alignment statistics, insert size distributions, genome coverage, and SNP calls.

Known Issues

		This pipeline is undergoing continuing improvement.

		Loading the dnaseqQC module generates a three-line message from Picard about the PTOOL variable, which can be ignored, as well as two errors about loading an ompi module, which can also be ignored.

Input

Options for wgsQC.pl

		
-f folder
		A folder containing fastq files to process

		
-i file
		A BWA reference genome index

		
-q
		Enable quality-control: use trimmomatic to trim adapter sequences, trim low quality bases from the ends of reads, and remove short sequences

		
-m file
		A mapping file

		
-o folder
		A folder to deposit final results

		
-t folder
		A temporary/scratch folder

		
-p integer
		Number of samples to run in parallel on each node

		
-s integer
		Subsample the specified number of reads from each sample. 0 = no subsampling

		
-c
		Continue where a failed/interrupted run left off

		
-e file
		File with extra options for trimmomatic

		
-h
		Print usage instructions and exit

		
-v
		Print more information whie running (verbose)

Fastq file support:
Paired-end reads are supported, single-end read support may be added in the future if requested. If you have fastq files with names not following the Illumina Casava format you may need to create a mapping file by hand. (See documentation for the createmappingfile.pl script for additional information).

Output

		Report

		An html report is generate containing a summary of the analysis and complete details about the output of the program. The output includes bam alignment files, and vcf variant call files.

Running the pipeline

Log in to MSI

		Open a terminal window (OSX) or putty (Windows, www.putty.org)

		Open an SSH connection to MSI (replace USERNAME with your MSI username):

$ ssh USERNAME@login.msi.umn.edu

		Log on to the Itasca (or mesabi) supercomputer:

$ ssh itasca

Lauch an analysis job

Note

Interactive and submitted jobs may start running immediatly, or if Itasca is very busy a job may wait in line for several hours until resources are availble to run the job.

Interactive

Start an interactive job on Itasca:

$ qsub -I -l walltime=8:00:00,nodes=1:ppn=8

Load necessary software modules:

$ module load dnaseqQC

Run the script. You must specify the location of a folder containing fastq files to process using the “-f” option and a bwa index. Specify how many samples to process at a time using the “-p” option (recommended values: Itasca 1; ItascaSB 1; Mesabi 1):

$ wgsQC.pl -p 1 -f /path/to/fastq/folder -i /panfs/roc/rissdb/genomes/Homo_sapiens/hg38/bwa/hg38.fa

Submit Job

A PBS script can be submitted to a queue where it will run when resources are available. Create a pbs file named dnaseq.pbs containing the following text:

#!/bin/bash -l
#PBS -l nodes=1:ppn=8,walltime=24:00:00
#PBS -m abe

cd $PBS_O_WORKDIR

module load dnaseqQC

wgsQC.pl -p 1 -f fastq/folder -i bwaindex

Submit the pbs file to the job queue:

$ qsub dnaseq.pbs

You can check the status of jobs by running qstat (replace USERNAME with your MSI username):

$ qstat -a -u USERNAME

Job ID Username Queue Jobname SessID NDS TSK Memory Time S Time
----------------------- ----------- -------- ---------------- ------ ----- ------ ------ --------- - ---------
1023053.node1081.local jgarbe batch dnaseq.pbs -- 1 8 50gb 12:00:00 Q --

The S column indicates if a job is Running or Queued.

Multi-node jobs require an additional command:

#!/bin/bash -l
#PBS -l nodes=1:ppn=8,walltime=24:00:00
#PBS -m abe

cd $PBS_O_WORKDIR

module load dnaseqQC

export PARALLEL="--workdir . --env PATH --env LD_LIBRARY_PATH --env LOADEDMODULES --env _LMFILES_ --env MODULE_VERSION --env MODULEPATH --env MODULEVERSION_STACK --env MODULESHOME --env OMP_DYNAMICS --env OMP_MAX_ACTIVE_LEVELS --env OMP_NESTED --env OMP_NUM_THREADS --env OMP_SCHEDULE --env OMP_STACKSIZE --env OMP_THREAD_LIMIT --env OMP_WAIT_POLICY"

dnaseqQC.pl -p 1 -f fastq/folder -i bwaindex

Review results

The results of the analysis are located in /panfs/roc/scratch/USERNAME-wgs-RUNNAME/

Runtimes

Example run-times are not currently available

Support

There will be a google group discussion thread for this pipeline: dnaseqQC [https://groups.google.com/a/umn.edu/forum/#!category-topic/msi-user-questions/software/XXX]. Subscribe to it to hear about updates and changes and post feedback (bug reports or feature requests). You may also contact John Garbe directly at jgarbe@umn.edu

 © Copyright 2014, John Garbe.
 Created using Sphinx 1.3.5.

_static/down.png

search.html

 Navigation

 		
 index

 		bmgc-docs 1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, John Garbe.
 Created using Sphinx 1.3.5.

createmappingfile.html

 Navigation

 		
 index

 		bmgc-docs 1 documentation »

Create Mapping File

The createmappingfile.pl script automatically creates a (Qiime-compatible) mapping file for a folder of fastq files.

The Script

The script performs the following steps:

		Identifies fastq files in the fastq folder

		Determines if the folder is paired-end or single-end

		For each sample, the sample name is parsed from the fastq filename

		Primers are read in from the primer file, bases other than AGCTagct are converted to N

		Cutadapt is used to determine how many times each primer is seen in the first 4000 reads of each file (can be configured using -s option)

		A mapping file is created using the most frequent primer for each sample.

Sample names are not modified to be compatible with Qiime.

Input

Options for createmappingfile.pl

		
-f folder
		A folder containing fastq files to process default: . (the current working directory)

		
-o file
		Name of the output mapping file default: mappingfile.txt

		
-q
		Enable Qiime mode: generate a Qiime-compatible mapping file

		
-p file
		A fasta file containing possible primers to look for (Qiime-mode) default: /soft/metagenomicsQC/1.0/data/primers.fa

		
-e
		Do not attempt to identify primers in the reads (Qiime-mode: for use with EMP protocol datasets, or any other 16s protocol where primers are not present in the reads)

		
-s integer
		Only use this many sequence from the beginning of each fastq file for primer detection (Qiime-mode) default: 4000

		
-h
		Print usage instructions and exit

		
-v
		Print more information while running (verbose)

Fastq file support:
Folders with either Paired-end or single-end fastq files are supported. Fastq files must be named using the BMGC convention: sample_*_R1_*.fastq or sample_*_R1.fastq

Output

		Mapping file

		Named “mappingfile.txt” by default

Columns in the mapping file

		#sample

		The first column in the file, contains the sample name, as parsed from the fastq file name, with forbidden characters converted to ”.”

		fastqR1

		Name of the R1 fastq file

		fastqR2

		Name of the R2 fastq file, only present for paired-end datasets

		BarcodeSequence

		Qiime-specific empty column,

		LinkerPrimerSequence

		Qiime-specific column, contains R1 primer sequence

		ReversePrimer

		Qiime-specific column, contains R2 primer sequence, only present for paired-end datasets

		Group

		The first two characters of the sample name (often sufficient to split the samples into apropriate experimental groups)

		Description

		Contains the sample name before forbidden characters were removed

Running the program

Load necessary software modules:

$ module load riss_util

Run the script. You must specify the location of a folder containing fastq files to process using the “-f” option:

$ createmappingfile.pl -f /path/to/fastq/folder

Support

If you are having issues, please contact John Garbe at jgarbe@umn.edu

 © Copyright 2014, John Garbe.
 Created using Sphinx 1.3.5.

old-metagenomics.html

 Navigation

 		
 index

 		bmgc-docs 1 documentation »

Metagenomics Pipeline

The Metagenomics pipeline processes one MiSeq run at a time and generates a quality-control report for the UMGC as well as an analysis report for the customer.

The Pipeline

The pipeline performs the following steps:

		Subsampling: Each fastq file is reduced to a specified number of reads in order to reduce processing time

		Quality Control: Per-base and per-read quality score statistics are calculated for each fastq file

		Trimming/Filtering/Converting
		Overlapping paired-end reads: Read pairs are stitched together and amplicon primers are removed using PandaSeq. Sequence IDs are converted to Qiime format and fastq files are converted to fasta format.

		Non-overlapping paired-end reads: Samples with paired end reads that don’t overlap are treated like single-end reads; the second (R2) read is ignored

		Single-end reads: 3’ ends are quality trimmed and the amplicon primer is removed. Sequence IDs are converted to Qiime format and fastq files are converted to fasta format. (Qiime scripts convert_fasta_qual_fastq.py and split_libraries.py used)

		Fasta merge: The individual sample fasta files are concatenated into one fasta file

		Chimera Detection: Chimeras are detected using ChimeraSlayer’s usearch61 method.

		Second Subsampling: Each sample is reduced to a specified number of reads in order to reduce processing time. This second subsampling allows you to ensure that the same number of reads are used from each sample in the OTU picking step

		OTU Picking: Qiime’s pick_open_reference_otus.py script is used to pick OTUs using usearch61.

		Qiime Plots: A series of plots based on the OTU table are generated using Qiime

		Beta Diversity:

		Alpha Diversity:

Known Issues

		If you have a .qiime_config file in your home directory you may override some Qiime configuration options that the pipeline requires. I recommend moving (or renaming) your .qiime_config file so Qiime can’t find it to ensure the pipeline runs correctly.

		The pipeline should work with single-end read datasets and non-overlapping paired-end read datasets, however the pipeline hasn’t been extensivly tested with these types of datasets, so errors may be encountered. Please report any problems.

		The pipeline may occasionaly print out a verbose warning that begins: An MPI process has executed an operation involving a call to the fork() system call to create a child process”. I have ben unable to determine the source of the warning, and I am not aware that the issue raised by the warning is affecting the pipeline

Input

Options for metagenomicsQC.pl

		
-f folder
		A folder containing fastq files to process default: . (the current working directory)

		
-d folder
		A folder containing a greengenes database default: /panfs/roc/rissdb/adhoc/greengenes/gg_13_8_otus

		
-o folder
		A folder to deposit final results default: SCRATCHFOLDER/output

		
-t folder
		A temporary/scratch folder default: /lustre/USERNAME-metagenomics-RUNNAME (Itasca) or ~/USERNAME-metagenomics-RUNNAME (Lab)

		
-p integer
		Number of processors to use (number of threads to run) default: 1 or number of processors assigned to PBS job

		
-s integer
		Subsample the specified number of reads from each sample. 0 = no subsampling default: 0

		
-r integer
		Second subsampling: subsample the specified number of quality-controlled reads from each sample default: 0

		
-m file
		Full path to a Qiime mapping file default: none, mapping file is automatically generated by createmappingfile.pl

		
-b file
		A bowtie index to use for host contamination detection default: /panfs/roc/rissdb/genomes/Homo_sapiens/hg19/bowtie2/hg19

		
-k file
		A mock community bowtie index - this option enables the mock analysis pipeline and skips OTU calling

		
-e
		EMP protocol, or any other protocol where primers are not present in the reads

		
-c integer
		crop integer bases from the start of every read (neccessary for “IIS” library prep method)

		
-l integer
		minimum fragment length (post-stitching)

		
-L integer
		maximum fragment length (post-stitching)

		
-T real
		Pandaseq threshold parameter, a number between 0 and 1. Default is 0.6

		
-h
		Print usage instructions and exit

		
-v
		Print more information while running (verbose)

Fastq file support:
Overlapping and non-overlapping paired-end fastq files are supported, as well as single-end fastq files. Minimum read length of 70 is required. Fastq files must be named using the BMGC convention: sample_*_R1_*.fastq or sample_*_R1.fastq

Mapping File

The Qiime mapping file supplied to the program must contain these columns:

		SampleID: Name of the sample

		BarcodeSequence: This column should be blank

		LinkerPrimerSequence: The forward (R1) 16s primer (blank for primerless protocols such as emp)

		ReversePrimer: The reverse (R2) 16s primer (blank fr primerless protocols such as emp, omit this column for single-end read datasets)

		fastqR1: Name of the R1 fastq file (just the name, not the full path)

		fastqR1: Name of the R2 fastq file (just the name, not the full path, blank or omitted for single-end datasets)

		Description: This must be the final column in the mapping file

If you don’t supply metagenomicsQC.pl with a mapping file using the -m option it will run the createmappingfile.pl script for you and use the mapping file it generates. You may wish to run createmappingfile.pl on your own first and manually edit it to suit your needs: Create Mapping File

Running the pipeline

It is recommended you run the pipeline interactively using the -s subsampling option to make sure the pipeline works correctly on a small sample of your data before submitting a job to process your entire dataset. This allows you to identify and solve problems quickly. A miseq run subsampled to 1000 reads per sample should complete within five minutes for simple (e.g. gut) samples, and withing an hour for complex (e.g. soil) samples.

Log in to MSI

		Open a terminal window (OSX) or putty (Windows, www.putty.org)

		Open an SSH connection to MSI (replace USERNAME with your MSI username):

$ ssh USERNAME@login.msi.umn.edu

		Log on to the Itasca supercomputer (Itasca is the only system on which the pipeline is installed):

$ ssh itasca

Lauch a Metagenomics analysis job

Note

Interactive and submitted jobs may start running immediatly, or if Itasca is very busy a job may wait in line for several hours until resources are availble to run the job.

Interactive

Start an interactive job on a Sandybridge node on Itasca:

$ qsub -I -q sb -l walltime=8:00:00,nodes=1:ppn=16

Load necessary software modules:

$ module load metagenomicsQC

Run the script. You must specify the location of a folder containing fastq files to process using the “-f” option:

$ metagenomicsQC.pl -f /path/to/fastq/folder

Example fastq folders: /panfs/roc/data_release/0/bmgc/sadowsky/miseq/140714_M00262_0154_000000000-AA4RW_Analysis or /panfs/roc/umgc/umgc_upload/140714_M00262_0154_000000000-AA4RW_Analysis/Data/Intensities/BaseCalls

Submit Job

A PBS script can be submitted to a queue where it will run when resources are available. Create a pbs file named meta.pbs containing the following text:

#!/bin/bash -l
#PBS -l nodes=1:ppn=16,walltime=8:00:00
#PBS -m abe

cd $PBS_O_WORKDIR

module load metagenomicsQC

metagenomicsQC.pl -f /path/to/fastq/folder

Submit the pbs file to the job queue:

$ qsub -q sb meta.pbs

You can check the status of jobs by running qstat (replace USERNAME with your MSI username):

$ qstat -a -u USERNAME

Job ID Username Queue Jobname SessID NDS TSK Memory Time S Time
----------------------- ----------- -------- ---------------- ------ ----- ------ ------ --------- - ---------
1023053.node1081.local jgarbe sb meta.pbs -- 1 16 50gb 12:00:00 Q --

The S column indicates if a job is Running or Queued.

Review results

The results of the analysis are located in /lustre/USERNAME-metagenomics-RUNNAME/output. Download the entire output folder to your local computer and open up the AnalysisReport.html file to see a summary of the analysis results.

Support

There is a google group discussion thread for this pipeline: metagenomicsQC [https://groups.google.com/a/umn.edu/forum/#!category-topic/msi-user-questions/software/jcO35FcxI3E]. Subscribe to it to hear about updates and changes and post feedback (bug reports or feature requests). You may also contact John Garbe directly at jgarbe@umn.edu

 © Copyright 2014, John Garbe.
 Created using Sphinx 1.3.5.

_static/comment.png

